
The Journal of Systems & Software 195 (2023) 111507

a

b

c

c
2
(
l
c
b
d
t
d
h
2

t
i
r
b
l

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

AMon: A domain-specific language and framework for adaptive
monitoring of Cyber–Physical Systems✩

Michael Vierhauser a,∗, Rebekka Wohlrab b, Marco Stadler a, Jane Cleland-Huang c

Johannes Kepler University Linz, LIT Secure and Correct Systems Lab, Linz, 4040, Austria
Chalmers | University of Gothenburg, Department of Computer Science and Engineering, Gothenburg, 41296, Sweden
University of Notre Dame, Department of Computer Science and Eng., Notre Dame, 46617, IN, United States

a r t i c l e i n f o

Article history:
Received 5 April 2022
Received in revised form 22 July 2022
Accepted 5 September 2022
Available online 22 September 2022

Keywords:
Runtime monitoring
Adaptive monitoring
Domain-specific language
Cyber–Physical Systems

a b s t r a c t

Cyber–Physical Systems (CPS) are increasingly used in safety–critical scenarios where ensuring their
correct behavior at runtime becomes a crucial task. Therefore, the behavior of the CPS needs to be
monitored at runtime so that violations of requirements can be detected. With the inception of edge
devices that facilitate runtime analysis at the edge and the increasingly diverse environments that
CPS operate in, flexible monitoring approaches are needed that consider the data that needs to be
monitored and the analyses performed on that data. In this paper, we propose AMon, a flexible
adaptive monitoring framework that supports the specification and validation of monitoring adaptation
rules, using a domain-specific language. Based on these rules, AMon automatically generates code for
direct deployment onto devices. We evaluated AMon by applying it to TurtleBot Robots and a fleet of
Unmanned Aerial Vehicles. Furthermore, we conducted a user study assessing the understandability
and ease of use of our language. Results show that creating multiple adaptation rules with our DSL
is feasible with minimal effort, and that adaptive monitoring can reduce the amount of runtime data
transmitted from the edge device according to the current state of the system and its monitoring
needs.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
f
d
s

1. Introduction

As Cyber–Physical Systems (CPS), such as autonomous vehi-
les (Stocco et al., 2020), robotic applications (Mallozzi et al.,
020), and self-adaptive Unmanned Aerial Vehicles (UAVs)
Cleland-Huang et al., 2018; Pereira et al., 2009) are used in
argely uncertain and safety–critical environments, ensuring the
orrect behavior of these systems and their components has
ecome a crucial endeavor. To enable quality assurance, and vali-
ate that a running system fulfills its requirements, it is important
o adequately monitor its behavior. The collection and analysis of
ata at runtime, commonly referred to as Runtime Monitoring,
as become an increasingly explored research area (Rabiser et al.,
017).
Furthermore, the continuing rise in edge devices introduces

he possibility of monitoring at the edge, rather than sending
nformation to a centralized monitoring system. This not only
educes communication overhead, but also decreases the latency
etween data collection and analysis and is therefore particu-
arly useful for enabling a device to autonomously monitor its

✩ Editor: Heiko Koziolek.
∗ Corresponding author.

E-mail address: michael.vierhauser@jku.at (M. Vierhauser).
ttps://doi.org/10.1016/j.jss.2022.111507
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
behavior in the presence of real-time constraints (Taherizadeh
et al., 2018). However, distributed and more flexible monitor-
ing solutions introduce new challenges to monitoring, including
specifying properties to be monitored, their frequencies and con-
texts, and determining whether the monitoring activities will
be performed locally (on the device) or centrally. In practice,
defining the monitoring behavior is a non-trivial task and many
systems use sub-optimal one-size-fits-all monitoring strategies
instead of adaptive monitoring.

While some approaches explicitly target adaptive monitor-
ing (Brand and Giese, 2018; Ehlers and Hasselbring, 2011), limited
work has explored the adaptation of the runtime monitoring
infrastructure itself. In a recent systematic mapping study (Zavala
et al., 2019), adaptive monitoring has been defined as ‘‘the ability
a monitoring system has to modify its structure and/or behav-
ior, in order to respond to internal and external stimuli’’. The
study found limited applicability of existing adaptive monitoring
frameworks beyond their original application domains, requiring
‘‘more complete, flexible, reusable and generic software engineering
solutions for supporting adaptive monitoring’’ (Zavala et al., 2019).

To illustrate this, consider the case of UAVs providing support
or diverse mission tasks, such as searching for a missing person
uring a rescue operation (Erdelj et al., 2017). Depending on the
tate of the mission and environmental factors (e.g., weather or
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111507
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111507&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:michael.vierhauser@jku.at
https://doi.org/10.1016/j.jss.2022.111507
http://creativecommons.org/licenses/by/4.0/

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

a
l
p
d
t
r
c
c
o

i
a
a
o
g
c
c
i
t

i
(
i
c
(
T
a
p
e

p
i
S
d
i
t
T
o
o
p

G

2

e
a
e
b
c
o
t
d
d

p
t
i
i
s
t
m

i
l

ir traffic), different types and amounts of data need to be col-
ected and checked. For example, during take-off, initial startup
arameters, such as GPS fix, are of particular interest; whereas
uring flight, the altitude and battery levels need to be main-
ained within a certain range to ensure safe operations. This
equires the monitoring infrastructure to dynamically adapt ac-
ording to the system status and to activate or deactivate data
ollection of specific attributes, and to increase or decrease rates
f data collection accordingly.
In this article, we present AMon, an approach for specify-

ng monitoring adaptation rules, and automatically generating
daptive monitors for a target CPS. We propose and evaluate
n adaptive monitoring platform that supports the definition
f monitoring behavior that can be triggered by state-based or
lobal events. Furthermore, we differentiate between local and
entral monitoring to reduce the amount of data that is sent to a
entralized monitoring system and provide support for the spec-
fication of consistent monitoring adaptation behavior through
ool support.

We address these requirements through a model-based mon-
toring framework, contributing: (i) a domain-specific language
DSL) for specifying monitoring adaptation rules; (ii) static val-
dation of the rules to ensure their consistency; (iii) automated
ode generation for deploying the monitoring framework; and
iv) an evaluation using a CPS for managing UAVs, as well as
urtleBot robots. To evaluate AMon, we conducted experiments
nd simulations, as well as a qualitative user study involving six
articipants in order to investigate AMon’s understandability and
ase of use.
The remainder of this paper is structured as follows. Section 2

resents a motivating example and challenges to adaptive mon-
toring, while Section 3 provides an overview of our approach.
ections 4 and 5 describe our DSL for adaptive monitoring, vali-
ation of the defined rules, generation of monitors, and prototype
mplementation. In Section 6 we lay out evaluation objectives and
hen describe the evaluation using a UAV system and ROS-based
urtleBot robots in Section 7. In Section 8 we report results from
ur user study. Threats to validity are presented in Section 9 and
ur findings are discussed in Section 10. Finally, related work is
resented in Section 11 and the paper is concluded in Section 12.
All data related to the study and the DSL are available in our

itHub repository (AMon, 2022).

. Motivating example and challenges

We motivate the need for adaptive monitoring through an
xample of a UAV-based search and rescue mission in an urban
rea. As multiple UAVs work together and (semi-)autonomously
xecute the mission, their current state and behavior need to
e continuously monitored so that the UAVs and their operators
an react to emergent hardware issues, such as battery failures,
r safety–critical situations. Given the limited computation and
ransmission resources of the UAV, and its onboard companion
evices, the monitoring load should be selectively increased or
ecreased according to the current situational needs.
For example, at the start of a mission, UAVs perform initial

reflight checks. During this startup phase, the operator observes
he UAVs’ GPS signal and configuration properties, e.g., by check-
ng whether battery failsafes have been correctly established, or
f a geofence has been set to prevent UAVs from flying out-
ide a predefined area. Once preflight checks are completed,
hese properties become less important and do not need to be
onitored.
Additionally, depending on the available computation capabil-

ties of the monitored device, certain monitors can be executed
ocally, reducing the required bandwidth for data transmission to
2

a central server. Existing monitoring frameworks are commonly
coordinated either entirely centrally or entirely locally, but rarely
allow for dynamically changing scope according to the current state
of the system.

For example, once the UAVs take off, their current and target
altitudes, and their GPS coordinates become particularly impor-
tant, especially if multiple UAVs are launched in close proximity
to each other. Furthermore, location data may need to be an-
alyzed centrally to prevent early-flight collisions, by detecting
conflicting takeoff altitudes or detecting overly close proximity
on the launch pad. When the UAVs start flying towards their
assigned waypoints, the frequency at which altitude and GPS
coordinates are monitored can be reduced, while other checks,
such as whether the UAV is following its planned flightpath, can
be shifted to the onboard computer.

However, in addition to this ‘‘normal course’’ of preplanned
steps, undesired situations, i.e., ‘‘exception courses’’ can also occur.
For example, during flight, a UAV’s onboard sensors might de-
tect another UAV in close proximity, resulting in an increased
monitoring frequency for proximity. Furthermore, data should be
again monitored centrally, for as long as minimum separation dis-
tances are violated. Once the situation is resolved, the monitoring
framework can again reduce monitoring frequency and scope to
minimize communication overhead and preserve battery.

To support dynamic monitoring, e.g., when UAVs transition
between different states while performing a mission, rules need
to be defined covering these specific situations or events. This
affects both the ‘‘regular’’ states (such as taking off or flying to
a waypoint), as well undesired behavior that can occur at any
time during the mission. While self-adaptive systems already
support similar scenarios, adapting the behavior of the system it-
self (e.g., through system goal models (Baresi et al., 2010; Muccini
et al., 2016)), such adaptations fail to address the need to change
the behavior of the monitors, adapting how data is collected.

3. The AMon framework

To provide support for dynamic adaptation at the monitoring
level, we have developed a framework for adaptive monitoring.
AMon focuses on small autonomous robotic systems and can be
integrated into existing systems, such as self-adaptive systems
using the MAPE-K feedback loop.

3.1. Scope of our approach

Fig. 1 provides an overview of how AMon can be embedded
into a distributed self-adaptive system using the MAPE-K frame-
work (Kephart and Chess, 2003), which supports monitoring (M),
analyzing monitored data (A), planning adaptations (P), and exe-
cuting (E) them. Self-adaptive systems typically consist of multi-
ple, potentially distributed, subsystems and components (Weyns
et al., 2013). AMon supports users in generating an API that
enables local monitoring components to send monitored data
to an adaptive monitoring component (labeled as Monitoring
Comp. in Fig. 1). In terms of adapting monitoring needs, AMon
facilitates the dynamic adjustment of the scope, period, and status
of the monitoring properties depending on the current context.
The scope hereby indicates whether data should be forwarded to
the centralized monitoring component of the overall system or
analyzed locally. The status indicates whether a property should
currently be analyzed or not.

Furthermore, different paradigms for performing runtime
monitoring exist, influencing the interaction of the monitor-
ing component(s) with the system to be monitored. Push-based
monitoring components play a passive role in receiving data

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

a
b
m
p
t
i
f
a
i

m
n
d
s
c

m
l
h
c

3

m
a
f
d
s
a

t
r
p
a
r

Fig. 1. Overview of how AMon can be embedded into distributed self-adaptive systems.
Fig. 2. High-level overview of the main components of our AMon framework.
nd do not actively interact with the system; whereas pull-
ased components actively request data from the system under
onitoring (Rabiser et al., 2019). To reduce the user effort of im-
lementing adaptive monitoring, we adopted a passive approach
hat provides a simple API for pushing data to the adaptive mon-
toring component. In this approach, the monitor is responsible
or adapting the scope and period of each property, and users
dopting our framework do not need to implement additional
nterfaces and components in order to dynamically request data.

However, this decision requires certain assumptions to be
ade about the system’s performance. The monitoring compo-
ent assumes that the time between properties being pushed
oes not exceed the specified maximum period, e.g., at least every
econd, so that the monitoring requirements defined in the rules
an be fulfilled.
For example, given a rule that the location data for UAVs is

onitored once per second, the system must provide an updated
ocation at least every second. To check that such assumptions
old, we provide validation capabilities for adaptive monitoring
onfigurations described using our DSL (Section 5.3).

.2. Framework overview

Fig. 2 provides a high-level overview of the main parts of our
onitoring framework. We use a number of monitoring resources
s an input for the adaptation rules (1). To apply monitoring rules
or different system states, we use a state transition diagram that
escribes the states and triggers for the state transitions. The
tates are specific to the system and can be modeled, for instance,
s a Papyrus state chart (Lanusse et al., 2009).
The purpose of the state transition diagram is to facilitate

he specification of rules that serve as preplanned rules during
untime execution, indicating what system states require which
roperties to be monitored. Furthermore, adaptation rules must
lso describe the scopes and periods of monitoring properties for

elevant system states.

3

The remaining monitoring resources (Constraints, Adaptation
Rules, and Assumptions) are defined in our Adaptation Rule DSL
(2). To ensure consistency of the specified rules, a rule validation
component (3) performs static validation, for example, providing
a warning if a rule specifies a higher monitoring period for a
property than defined in the assumptions for that property.

One novel aspect of our dynamic monitoring approach is sup-
port for automated generation (4) of monitors and their dynamic
adaptation when rules are triggered. We leverage model-driven
techniques to automatically generate code based on the rules
specified in our DSL and the state transition diagram. The gen-
erated monitoring component is capable of switching states ac-
cording to the current context and transition rules, and executing
the respective monitoring rules for each state without the need
to manually implement adaptive behavior in either the system or
monitoring component. The push-based monitoring component
can be directly deployed (5) to the system and/or devices (e.g., the
flight computer of the UAV) where it will receive data via the gen-
erated API. The rules are executed on the edge device, as part of
the monitoring component. Internally, the generated monitoring
component schedules monitoring data to be sent to either a cen-
tral monitoring server or a local monitoring component. If data is
pushed more frequently than necessary, the component adjusts
the frequency according to the currently active rule. At run time,
the monitoring component complements the static validation by
checking that data is pushed at a sufficient frequency, as specified
in assumptions using the Adaptation Rule DSL. If a deviation is
detected, the monitoring component can issue warnings.

4. A domain-specific language for specifying adaptive moni-
tors

To facilitate the specification of adaptation rules for a runtime
monitoring environment, we created a domain-specific language
that provides capabilities for defining different types of adapta-

tion rules and specifying assumptions about the monitoring data.

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

B
l
a
r
‘
b
t
o
s
e

4

R
p
t
i
t
a
e
d
i
e
S
m
s

i
c
T
e

t
i
R
o
t
i
i
e
b
m
e

s
r
b
e
f
e
i
c
(
U
E
r

ased on the scenarios described in Section 2, and on existing
iterature in adaptive monitoring (Rabiser et al., 2017; Ehlers
nd Hasselbring, 2011; Al-Shaer, 1999), we include two types of
ules: (1) Preplanned Rules that are triggered based on different
‘regular’’ states of the system, or of its devices (e.g., a UAV
eing in a ‘‘takeoff’’ state versus ‘‘flying’’), and (2) Ubiquitous Rules
hat are triggered by exceptions (e.g., a low battery warning) or
ther factors. In addition to the specification of rules, we also
upport the description of assumptions about the system and its
nvironment.

.1. Rules

ules for Preplanned Adaptation: As previously explained, pre-
lanned adaptations of the monitoring environment may occur as
he CPS changes state, and these adaptations may require chang-
ng the monitoring location from the edge device (e.g., onboard
he UAV) to a centralized monitoring component. Listing 1 shows
Preplanned Rule for monitoring preflight data. Such rules can
ither apply globally, as shown in this example, or to specific
evices (e.g., a group of UAVs performing a joint mission, or even
ndividual devices identified by their respective id). The Context
lement in the Trigger condition indicates the UAV’s current state.
ubsequently, each Monitor entry denotes a property item (i.e., a
essage) that is collected and distributed by the monitoring
ystem.
Monitor specifications define the Scope i.e., whether the data

s processed locally on the device (scope local), or sent to a
entral server (scope central) for processing or further analysis.
he Period further specifies how often data is sent from, for
xample, the edge device to the central server.

1 Rule 'Preflight_Data' applies globally
2 Type PREPLANNED
3 Trigger Context['initialized'] ENTRY
4 Monitor 'Drone.GPS':
5 CHANGE_SCOPE: scope central
6 CHANGE_PERIOD: every 0.5 seconds
7 Monitor 'Drone.StartupChecks':
8 CHANGE_SCOPE: scope central
9 CHANGE_PERIOD: every 1 seconds

Listing 1: Preplanned Rule – Preflight Checks.

This preplanned rule applies from the time the UAV transitions
o the initialized state until its preflight checks are completed and
t switches to another state.
ules for Ubiquitous States: In addition to the preplanned course
f events, modeled in a state transition diagram, deviations from
he intended behavior may occur. In such cases, the monitor-
ng infrastructure must adapt the monitors to provide sufficient
nformation according to the current state of the system. For
xample, as specified in Listing 2, a sudden drop in a UAV’s
attery voltage level might require a corresponding increase in
onitoring periods whilst remedial actions are taken to preserve
nergy and ensure the UAV’s safe return or landing.
Ubiquitous rules can be triggered at any time, regardless of the

tate of the system, and will supersede the original adaptation
ules for a certain state. For example, given a sudden drop in
attery voltage, the monitoring period might be decreased for less
ssential properties in order to preserve battery, but increased
or essential battery data. When the battery_state_warning
vent is triggered, the corresponding ubiquitous rule (cf. List-
ng 2) supersedes the monitoring behavior of the UAV’s current
ontext. If at some point the ubiquitous state no longer applies
e.g., because the battery warning was a temporary glitch), the
AV resumes its normal mode of operation. In these contexts, an
XIT event for a ubiquitous state indicates that the ubiquitous
ule should no longer apply, and the monitoring infrastructure
4

1 Rule 'Battery_State_Warning' applies globally
2 Type UBIQUITOUS
3 Trigger Event['battery_state_warning'] ENTRY
4 Salience 1
5 Monitor 'Drone.GPS':
6 CHANGE_SCOPE: scope local
7 CHANGE_PERIOD: every 3 seconds
8 Monitor 'Drone.Battery':
9 CHANGE_SCOPE: scope global

10 CHANGE_PERIOD: every 1 seconds

Listing 2: Ubiquitous Rule – Battery Warning.

resumes its ‘‘normal’’ monitoring duty by selecting and applying
preplanned rules.

Multiple parallel states and overlapping rules:While preplanned
rules are applied according to the current system context, ubiq-
uitous rules can apply any time that the respective event is trig-
gered. This means that multiple rules may apply simultaneously.
For example, a UAV might enter a no-fly zone whilst simulta-
neously experiencing a critical battery state. These two events
trigger conflicting rules. The first rule increases the required
period of GPS and altitude data, whilst the second decreases
monitoring periods to preserve power. To address these conflicts,
we provide a multi-layered resolution strategy. We explicitly
specify rules for common combinations of states by specifying
monitoring rules for those combinations. Either a detected trigger
event or the transition out of an existing state causes the monitor-
ing infrastructure to check rules that apply to all combinations of
active states. We utilize a salience-based approach, as commonly
adopted by other rules engines (e.g., Drools (Red Hat, 2022));
however, whereas they execute rules sequentially according to
their salience, we only execute one selected rule to ensure that
lower-priority rules do not override the monitoring behavior
specified in selected higher-priority rules.

If an exact matching combination is found, then that rule is ap-
plied. Otherwise, rules are prioritized by scoring them according
to the number of matches as follows:

scorer = 1 −
|Tr \ A| ∗ wa + |A \ Tr | ∗ wb

|Tr ∪ A|
(1)

where Tr denotes the set of triggers that are specified for the
rule (i.e., the two trigger Events battery_critica and prohib-
ited_airspace) and A denotes the set of ubiquitous states that
are currently active. The score calculates the ratio of rule triggers
versus active states. In addition, wa and wb define penalty weights
when a state is active but not in the rule trigger, or vice versa, a
rule has an additional trigger specified that is not currently active.
The rule with the highest score is selected and ties are broken
using a salience element indicating the priority of a rule.

4.2. Default values and assumptions

Our DSL supports the definition of two additional elements:
Default Values and Assumptions.
Default Values: To make rules more precise and avoid the need
for specifying long lists of properties in each rule, we support
Default value definitions.

1 Default 'Drone.State' off;
2 Default 'Drone.StartupChecks' keep;

Listing 3: Default specification for Monitoring properties.

Default values apply globally across all rules for specific prop-
erties (cf. Listing 3) and can assume one of two values. If a
value is off, then unless a rule explicitly specifies a monitor

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

f
d
u
e
g
a
A

t
h
a
m
t
W
i
w
v
t
a

5

u
w
e
c
e

5

D
d
i
t
s
a
m
c

m
q
a
r
e
t
i
m
t
t
w
P

a
i
s

A
q
p
i
C
a
l
i
s
s
a
s
D
p
i
t

b
V

6

c
o
e
a

or that event, the monitoring is automatically turned off. If a
efault value is keep, then the monitor for this event remains
nchanged and retains the period and scope from the previously
xecuted rule. Introducing the default value concept allows to
reatly reduce the number of monitors that need to be specified
s part of each rule.
ssumptions: Finally, Assumptions are used to specify properties,

such as the assumed monitoring period, that should not be vio-
lated by the monitoring rules. For example, Listing 4 specifies that
the minimum period with which we can expect updates is 500 ms
for Drone.State messages and 1 s for Drone.Startupchecks.

1 Assumption 'Drone.State' MIN_PERIOD: 0.5 seconds;
2 Assumption 'Drone.StartupChecks' MIN_PERIOD: 1 seconds;
3 Assumption on Constraint 'separation_distance' scope central
4 requires monitor 'Drone.Location';

Listing 4: Assumption specification for Monitoring properties.

Assumptions can be used to specify limitations on the proper-
ies’ minimum periods and scopes. The minimum period specifies
ow often the monitored system guarantees updated values. If an
ssumption specifies a minimum period of x for a property and a
onitoring rule requires the property to be monitored more often

han that (with a period of y < x), the assumption is violated.
ith the assumptions from Listing 4, a subsequent rule specify-

ng a period of, for example, 0.25 s for Drone.StartupChecks
ould be invalid, as it is not guaranteed that that data can be pro-
ided frequently enough by the system. We validate assumptions
hrough a combination of static rules validation (see Section 5.3)
nd additional runtime checks.

. Framework implementation

In this section, we present the framework implementation
sing Eclipse. Our approach is designed to support the end-user
ithout requiring them to develop custom implementations for
ach monitoring rule. Therefore, our DSL is complemented by a
ode generation component that transforms monitoring rules into
xecutable code that can be deployed to specific devices.

.1. Generating monitoring components

User-defined rules, assumptions, and default values from the
SL are used in conjunction with the specified state transition
iagram to generate executable code for the target system. This
ncludes an API for the monitored system or device, and an adap-
ation component that handles transitions between preplanned
tates, rule execution, and the selection of ubiquitous rules. We
im to shift the burden of providing the right monitoring infor-
ation from the system developer to the adaptive monitoring
omponent.
To achieve this goal, the generated monitoring API provides

ethods for submitting monitoring data, regardless of the re-
uired period, while the internal adaptation mechanism executes
ctions, such as controlling the frequency, as specified in the
ules. The mechanism leverages an internal state machine, gen-
rated from the state transition diagram and monitoring executors
hat are dynamically triggered. For example, as soon as the UAV
s activated, it starts sending location data every 500 ms to the
onitoring API. Based on the currently active state/context of

he system, a monitoring executor is spun up that performs
he actions specified in the active rule. Examples include for-
arding the message every 0.5 s to the central server, in the
reflight_Data context, or discarding the message in the Bat-

tery_Critical context (as the monitor in this rule is set to the
state OFF). We provide additional details and examples for the
code generation as part of the evaluation in Section 7.1.
5

5.2. Prototype implementation

We use the Eclipse Xtext (Eclipse Foundation, 2021) and
Xtend (Eclipse Foundation, 2022) frameworks, for the adaptive
monitoring DSL and code generator which enables context assist
and syntax highlighting. Static validation can also be directly
performed inside the rule editor, and OCL constraints are au-
tomatically evaluated when a new rule is added or modified
(cf. Section 5.3), and violations are directly reported within the
Eclipse IDE. State transition diagrams are created using Papyrus,
a UML editor extension for Eclipse (Lanusse et al., 2009). How-
ever, any tool that provides the diagram in a machine-readable
format, e.g., XML or JSON, could be used. Xtend is then used to
generate executable monitoring code for a specific target system.
As part of the evaluation, we have created two code generators
for a Java-based system, as well as a ROS-based Python system
(cf. Section 7.1).

5.3. Static validation

Rule validation provides support for writing valid and con-
sistent rules, so that users receive immediate feedback while
using the DSL. While Xtext helps to ensure that the specified
monitoring rules are syntactically valid, we created a dedicated
Rule Validator component, in order to further improve the static
validation. Our Rule Validator automatically checks a set of con-
straints and allows users to define declarative constraints in Java
that are reflectively invoked at run time, and also allows them to
describe a majority of our constraints in OCL (Cabot and Gogolla,
2012).

Scope Consistency: Different constraints can be specified using our
DSL, such as indicating that a particular form of analysis requires
state data to be analyzed centrally. The corresponding OCL con-
straint (CentralScopeMismatch in Listing 5) checks whether
ny constraint requires a particular property to be centrally mon-
tored, whilst a conflicting rule sets the property’s monitoring
cope to local.

ssumption Consistency: The OCL constraint (Assumption Fre-
uency in Listing 5) allows assumptions to specify the minimum
eriod at which a property is reported. The constraint is violated
f any rule sets the period to a lower value.
overage of Monitoring Properties: This constraint checks that
ll monitoring properties of the monitored system appear in at
east one rule (i.e., important properties are not overlooked). The
dea is that monitoring properties that are considered important
hould be used in at least one rule. The validator iterates over all
pecified monitoring properties and checks whether there exists
t least one rule that states how this property (e.g., the UAV’s
tate) is monitored in the adaptive monitoring system.
efault Values: An additional rule checks whether monitoring
roperties without a default value explicitly appear in all mon-
toring rules. In addition, we ensure that monitoring properties
hat are set as keep are switched on by at least one rule.

Static validation rules can be modified as OCL constraints or
y adding additional Java rules in our implementation of Xtext
alidator.

. Evaluation objectives

When evaluating our adaptive monitoring framework, we fo-
us on two main aspects. First, we evaluate the general feasibility
f applying AMon in realistic contexts, by focusing on the DSL’s
xpressiveness and ease of use. Second, we evaluate its efficiency
nd scalability to large-scale environments.

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

o
g
f
s
u
O
R
m

s
H
m
2
f
a
i
J
f
R
a
m

t
r
s
A
o
o
w
g
d
s
R
a
T
h
e
r
r
(

f
a
m
a
e
r
w
o
n
s

1 -- if there is a constraint with a central scope, the property must not
2 be local in any rule
3 inv CentralScopeMismatch:
4 constraints->forAll(c | c.scope.scope->includes('central')
5 implies not (rules.monitors->exists(m | c.monitors->includes(m.name)
6 and m.changes->select(oclIsTypeOf(ChangeScope)).oclAsType(ChangeScope)
7 ->exists(scope.scope->includes('local')))))
8
9 -- if a min frequency of x seconds is assumed, then there should

10 not be any rule that sets the frequency < x
11 inv AssumptionFrequency:
12 contracts->forAll(c rules.monitors->forAll(m m.name = c.name implies
13 m.changes->select(oclIsTypeOf(ChangeFrequency)).oclAsType(ChangeFrequency)
14 ->forAll(frequency.toReal()>=c.frequency.frequency.toReal())))

Listing 5: Excerpt of our OCL Constraints.
The first part of the evaluation assesses the general feasibility
f our approach by creating adaptation rules, implementing code
enerators, and generating monitoring components for two dif-
erent systems. We further perform realistic simulations of a UAV
ystem, focusing on the approach’s scalability and flexibility for
se in a completely different system based on TurtleBot3 robots.
ur research questions are as follows:
Q1: Is AMon’s DSL sufficiently expressive for specifying adaptive
onitoring rules for real-world systems?
To answer this research question, we used AMon’s DLS to

pecify rules for two different systems. First, Dronology (Cleland-
uang et al., 2018) a CPS for managing, controlling, and executing
issions for UAVs, and second, TurtleBot3 Robots (Park and Son,
021), using the ROS-based hardware and software robotics plat-
orm. For each system, we derived two scenarios. We then created
ll necessary artifacts, including state transition diagrams, mon-
toring adaptation rules in our DSL, and a code generator for a
ava-based API for Dronology and a Python-based ROS connector
or the TurtleBots (Section 7.1).
Q2: To what extent can AMon support the efficient and fine-grained
daptation of monitoring behavior, in comparison to a non-adaptive
onitoring approach?
To answer the second research question and further assess

he feasibility of the framework, we used the previously created
ules and performed a series of simulations with a high-fidelity
imulator that was provided as part of the Dronology system.
dditionally, we use the TurtleBots to demonstrate the feasibility
n real hardware (Section 7.2). For both systems, we compared
ur adaptive monitoring solution with a non-adaptive monitor in
hich data was processed as it was received from the system. The
oal was to demonstrate that AMon can reduce the monitoring
ata that is sent to the monitoring framework according to the
pecified rules.
Q3: Does the performance of AMon scale when handling a re-
listic number of rules and large quantities of monitoring data?
o demonstrate the scalability of our approach, that AMon can
andle rules for various different states and rules, we conducted
xperiments, scaling up the number of messages and ubiquitous
ule combinations, to ensure that selecting the correct rules at
untime was still possible within a reasonable amount of time
Section 7.3).

Besides evaluating the general feasibility and scalability of our
ramework, we further investigated the understandability as well
s ease of use of our DSL. This specifically pertains to creating new
onitoring rules using our DSL, and how well potential end-users
re able to understand the various concepts (rules, assumptions,
tc.,) of our DSL and monitoring requirements encoded in these
ules. For this reason, we conducted a user study (Section 8)
ith six participants providing them with a scenario drawn from
ur two example systems and evaluating their ability to create
ew rules for a predefined set of monitoring requirements. In a

econd step, we also assessed understandability of created rules

6

without deep domain-expert knowledge about the system. For
this purpose, we defined the following two research questions:
RQ4: How easy is it for users to define new monitoring behavior
for a given scenario with the domain-specific language? Based on
the previously derived scenarios for the Dronology and TurtleBot
system, we asked participants to create a set of preplanned and
ubiquitous rules, as well as assumptions and default values using
our DSL.
RQ5: How understandable are the rules and the adaptations encoded
in these rules? We investigated how understandable our DSL is
by assessing how our participants comprehend the purpose of
adaptation rules written in our DSL.

7. Experimental evaluation (RQ1–RQ3)

To support our planned experiments, three of the authors
created preplanned and ubiquitous rules for four use cases. These
included two unique use cases, based on a real-world application
scenario drawn from literature and application examples for each
of our two targeted systems.

Our first targeted application was Dronology, representing a
UAV management control system with a publicly available set
of use cases (Cleland-Huang et al., 2020; sUAS Use Cases, 2022).
Dronology is a Java-based system with available source code for
coordinating, planning, and flying missions with either physical
or simulated UAVs. For the purpose of the evaluation, we chose
two diverse use cases, one in which multiple UAVs contribute to
a River Search and Rescue mission (UC1-RESC) and one in which
a UAV performs Item Delivery (UC2-DELI).

To demonstrate that AMon can be applied to different sys-
tems using diverse technologies, we used TurtleBot3 robots for
our second application. TurtleBots are small robotic systems,
frequently used for research (Li and Tu, 2021; Mainampati and
Chandrasekaran, 2021). In contrast to the Dronology system, they
are based on the Robot Operating System (ROS) and applications
for controlling them are mainly implemented in Python. Our first
use case involved maneuvering through a narrow tunnel and
detecting an obstacle (UC3-OBST) (cf. Fig. 3), whilst the second
involved picking up and transporting an item (UC4-TRAN).

7.1. RQ1 – Expressiveness

With this first research question, we evaluated the general
feasibility of our approach and assessed the expressiveness of our
DSL. As part of this RQ, we investigated how different monitor-
ing needs can be expressed in our DSL and if monitors can be
generated based on the different adaptation rules.

For this purpose, we used the four use cases described above,
selected relevant system states, created state transition diagrams,
derived monitoring adaptation rules, and generated monitoring

code.

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

7

a
s
o
c
a
r

u
I
u
v
n
r
r
(
d
t
t
n
b
l
c
b
D

a

Fig. 3. Use Case 3 – TurtleBot Obstacle Tunnel Search and Reporting (All use cases with their respective rules can be found in our GitHub repository).
Fig. 4. State Transition Diagram for the Search and Rescue use case.
.1.1. Specifying monitoring behavior
We created formal use case descriptions using a commonly

dopted template (Cockburn, 2000) to specify the main success
cenario describing the normal course of actions, as well as a set
f exception states. These steps were based on the existing use
ases for the Dronology system (Cleland-Huang et al., 2020) and
pplication examples and tutorials provided for the TurtleBot3
obots (ROBOTIS, 2022).

Based on these use cases, we created a state transition diagram
sing Papyrus, representing both the normal and error states.
n a second step, for each use case, two researchers created
biquitous and preplanned monitoring rules and specified default
alues and assumptions. This resulted in a total of 21 states (17
ormal course and 5 error states) and 15 monitoring adaptation
ules specified with our DSL (10 preplanned and 5 ubiquitous
ules) with some states and rules shared across both use cases
cf. Table 1). Fig. 4 provides an overview of the state transition
iagram for RESC, the search and rescue use case. In RESC, mul-
iple UAVs perform a synchronized, concurrent takeoff, meaning
hat frequent data regarding each UAV’s location and altitude are
eeded, as well as additional information about the GPS accuracy,
ased on the number of satellites. Once all UAVs are successfully
aunched and commence flights to their designated search areas,
omputing power of the onboard computer and bandwidth can
e freed up for other tasks, such as image recognition (cf. rule
R_PR-4 in Table 1).
For the TurtleBot use cases, we followed a similar approach

nd created two state transition diagrams containing 25 states
7

(with 17 normal course and 8 error states) and then derived rules
for each step of the use case, resulting in 14 preplanned and 4
ubiquitous rules. All rules are shown in Table 2.

For example, if the TurtleBot navigates to its target loca-
tion (cf. TB_PR-7 in Table 2), information about its environment
(e.g., odometry data), as well as information about the robot itself
(e.g., velocity), are needed more frequently. In contrast, once the
TurtleBot has reached the target location and is therefore no
longer in motion, resources can be freed up for other tasks, such
as determining whether the pickup has been completed.

7.1.2. Monitoring code generation
In order to generate actual monitoring code for the systems,

we implemented two code generators. One for the Dronology
system that generates executable Java Code and a second one
for the TurtleBot robots that generates Python code and can then
directly be integrated into the ROS-based robot application. For
both code generators, we leveraged the Eclipse tool support, using
Xtend in conjunction with the Xtext framework. It is important
to note that the code generators are not system-specific, but
rather technology-dependent, meaning that the Dronology code
generator can be easily reused for generating monitoring code
for other Java-based systems. The same applies to the Turtle-
Bot code generator, requiring only minor adjustments to the
system-specific parts (e.g., the concrete topics from which data is
collected), which can be reused for other ROS-based applications.

Listing 6 provides a snippet of the resulting Python code
showing how the property ‘‘BatteryStatus’’ is monitored. For each

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

A

Table 1
Preplanned and ubiquitous rules for the Dronology RESC and DELI use cases.

Rule Use case

RESC DELI

Preplanned rules

DR_PR-1 Preflight Data ✓ ✓
DR_PR-2 Awaiting Takeoff ✓ ✓
DR_PR-3 Multi-UAV Synchronized Takeoff ✓
DR_PR-4 Flying to Target Location ✓ ✓
DR_PR-5 Searching for Victim ✓
DR_PR-6 Active Tracking ✓
DR_PR-7 Return to base ✓ ✓
DR_PR-8 Single UAV Takeoff ✓
DR_PR-9 Drop-off location reached ✓
DR_PR-10 Drop-off in progress ✓

Ubiquitous rules

DR_UB-1 UAV Low Battery: The UAV’s battery is low; power needs to be preserved to safely
return home

✓ ✓

DR_UB-2 UAV in no fly zone: The UAV enters a prohibited area, additional monitoring data should
be collected and logged centrally

✓ ✓

DR_UB-3 UAV Low Battery AND Close Proximity: The UAVs battery is low, but at the same time a
second UAV is in close proximity, i.e., only certain properties can be send at a reduced
frequency

✓ ✓

DR_UB-4 Mechanical Failure: A potential hardware failure might have occurred severely
hampering the UAVs flying capability

✓ ✓

DR_UB-5 Adverse weather: The UAV flies in rough weather conditions, more frequent updates on
the UAVs state and location should be collected

✓ ✓
Table 2
Preplanned and ubiquitous rules for the TurtleBot TRAN and OBST use cases.

Rule Use case

TRAN OBST

Preplanned rules

TB_PR-1 Pre-Setup Data ✓ ✓
TB_PR-2 Calibrating ✓ ✓
TB_PR-3 Ready for Mission ✓ ✓
TB_PR-4 In Home Zone ✓
TB_PR-5 Travelling to Target Location ✓
TB_PR-5 Entering Target Zone ✓
TB_PR-7 Target Location Reached ✓
TB_PR-8 Pick-Up Item ✓
TB_PR-9 Return to Home Location ✓
TB_PR-10 Initialize Mission ✓
TB_PR-11 Start Collaboration ✓
TB_PR-12 Object Pushing ✓
TB_PR-13 Object Confirmed ✓
TB_PR-14 Move to Final Position ✓

Ubiquitous rules

TB_UB-1 Turtebot Low Battery: The TurtleBot’s battery is low; power needs to be preserved to
safely return to the home location

✓ ✓

TB_UB-2 Sensor Failure: At least one of the sensors reports a system failure; more frequent data
collection is advised to identify the cause of the failure

✓ ✓

TB_UB-3 Diagnostics Error: The internal diagnosis detects an error in one of the hardware
component requiring a more frequent data collection

✓ ✓

TB_UB-4 Pathplanning Error: The specified navigation goal cannot be reached due to a
pathplanning error

✓ ✓
property that is monitored, a wrapper object and a set of methods
are generated. When a state transition occurs, the respective
configuration is activated and the monitoring thread is configured
accordingly. The entire monitoring code can be automatically
generated based on the state transition diagram and the mon-
itoring configuration in our DSL. Similar code is generated for
Dronology’s Java implementation. In both cases, when a property
is added, removed, or modified, no changes to the actual genera-
tors need to be made and the monitoring code can be regenerated
automatically.

7.1.3. Analysis of results
By applying AMon to four use cases, we demonstrated that

Mon can be used to specify adaptive monitoring rules for diverse
8

states and scenarios. While creating state charts and specifying
rules in the DSL requires some additional effort compared to
using non-adaptive monitors, selecting and defining the rules in
our DSL for the four use cases took three researchers approx-
imately two person-hours per use case, where the majority of
the time was spent on selecting appropriate states and decid-
ing on the adaptive behavior. We found that the language was
sufficiently expressive for the specification of rules with triggers
and monitoring behavior. While some up-front investment is
required to implement the code generator, this could be done
in reasonable time, taking about 20 h to implement and test
the generated monitoring code for each code generator. One
observation we made when creating the respective rules was that,
for a single system, with different use cases, a significant overlap

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

o
w
(
e
m
i
t

7

o
m
s
m
b
B
w
a
(
d
T

l
a
p
a
w
o
c
r
a
w
b
t
t

r
u
e
p
s
t
a
c
n

c
a
t
i
i
u

f
w
l
l
f
c
s
p
e
r
m
t

7

r
f
p
o
c
a
w
o
f

3
r
i
s
r
i
(
a
e
s
a
a
n
c
w

u
p
e
m
t
t
1
w
W
s
m
n
m
t
e
n

1 def handle_BatteryStatus_data(): ### runnable.
2 #...
3 while not BatteryStatus_config_event.is_set():
4 data = BatteryStatus_data['data']
5 msg = ros_msg2json(data)
6 # forward msg
7 mqtt_forwarder_obj.publish('BatteryStatus', msg,
8 BatteryStatus_config_obj['is_central_scope'])
9 # wait according to config

10 BatteryStatus_config_event.
11 wait(BatteryStatus_config_obj['frequency'])
12 BatteryStatus_config_obj['is_thread_running'] = False
13
14 def switch_to_state(state): ## state change
15 match state:
16 case 'active':
17 # ... other states and properties

Listing 6: Example Python code generation for TurtleBot3
monitoring.

f rules, specifically exception cases (i.e. ubiquitous rules), as
ell as ‘‘common‘‘ system states. A more compositional approach
e.g., combining different rule fragments) could further reduce the
ffort and structure the rule space. Regarding RQ1, our adaptive
onitoring DSL was able to capture the necessary rules for real-

stic use cases and we were able to generate monitoring code for
he target system.

.2. RQ2 – Efficient and fine-grained adaptation

The purpose of AMon is to facilitate the fine-grained definition
f monitoring adaptation rules, so that relevant monitoring infor-
ation can be collected, depending on the state or context of the
ystem. To address RQ2 we evaluated whether context-specific
onitoring can be used to reduce the number of messages and
andwidth when using AMon with customized adaptation rules.
ased on the monitoring rules and code generator part of RQ1
e conducted a series of experiments. Concretely, we performed
series of simulations using the Dronology Software-in-the-loop
SITL) simulator with the Item Delivery use case (DELI), and con-
ucted experiments with a TurtleBot robot applying the Item
ransportation use case (TRAN).

7.2.1. Evaluation setup
Dronology — Item Delivery: We simulated multiple UAVs de-

ivering items and compared the monitoring information received
gainst a non-adaptive monitoring implementation. For this pur-
ose, we used four Raspberry Pi 4 computers with 4 GB RAM
nd running Raspbian OS (32-bit, Debian 10). Three Raspberry Pi
ere set up with the Dronology Simulator and the latest version
f ArduPilot SITL to simulate UAVs and their onboard computing
apabilities, whilst the fourth Pi acted as the ‘‘central server’’ for
eceiving data. Each UAV was assigned a unique home location
nd tasked with five delivery runs to randomly selected locations
ithin its vicinity. During each simulation, the UAV transitioned
etween the different states (flying, dropping item, etc.), executed
he monitoring rules, and adapted the period and amount of data
hat was sent to the central server.

In the first run of the simulation, we assessed the preplanned
ules and performed five ‘‘normal’’ delivery flights without any
nanticipated errors. In the second run, we randomly injected an
rror during each delivery flight (e.g., a low battery warning, a
roximity alert, or entering a no-fly zone) to trigger ubiquitous
tates, in order to validate the execution of ubiquitous rules. The
hird and fourth runs repeated the first two runs but without
dapting the monitoring infrastructure regardless of its state and
ontext. We executed each run three times and collected the
umber of monitoring messages that were sent for each property.
9

TurtleBot — Item Pickup: For the Item Transportation use
ase, we used a physical TurtleBot3 robot to compare our AMon
daptive monitoring implementation with non-adaptive moni-
oring. For navigation, we employed the navigation stack built
nto ROS, in conjunction with the pre-generated SLAM map. We
mplemented a small TurtleBot application using Python to start
p, calibrate, and control the robot during the evaluation runs.
After starting the ROS nodes generated by AMon, we per-

ormed two evaluation runs. In each run, the TurtleBot was tasked
ith navigating to five target locations and returning to its home

ocation after reaching a target goal (using SLAM). At a target
ocation, the TurtleBot was loaded with a small item (a USB
lash drive) to simulate the actual pick-up. During the run, AMon
ollected monitoring data with a local MQTT broker, that was
et up on the edge device, and a central broker, running inde-
endently on a remote server. As with the Dronology case, we
valuated the pre-planned rules by performing five collection
uns to different locations. We repeated the runs with adaptive
onitoring disabled and collected data as originally published by

he ROS components, regardless of their states and contexts.

.2.2. Results
Dronology — Item Delivery: An overview of the evaluation

esults is presented in Table 3. For the preplanned scenario, the
ive simulated delivery flights performed by each UAV took ap-
roximately 32.5 min (which is within realistic flying capabilities
f a physical UAV). In total, 6,521 messages were sent to the
entral monitoring server per iteration (average of three runs),
nd 136 transitions between different contexts were performed
ith monitoring rules being executed. Fig. 5 provides a partial
verview of the changes in the period of the different monitors
or one UAV.

Compared to the non-adaptive monitoring run where over
8,000 messages per run were collected, there was a significant
eduction in messages that were sent to the central monitor-
ng server. For the non-adaptive runs, no restrictions could be
pecified and the messages were sent ‘‘as is’’ when they were
eceived from the UAV in the Dronology system. The most signif-
cant reduction was observed for the ‘‘FlightSchedule’’ messages
5750 messages vs. 171) that provided information about newly
vailable routes. For the second run with the randomly injected
rrors, we observed that the UAVs switched from their ‘‘regular’’
tate to the ubiquitous rules as soon as errors were injected. We
gain compared our adaptive approach with the non-adaptive
pproach and observed approximately 40,000 messages for the
on-adaptive run vs. 7,200 messages for our adaptive approach,
onfirming that ubiquitous rules were triggered when an error
as injected.
TurtleBot — Item Pickup: For the TurtleBot’s item pickup

se case, we executed three runs, with each run including five
hysical deliveries with and without our adaptive monitoring
nabled. On average, adaptive runs took just under 16 min (15:50
in). They resulted in a total of 4,458 messages that were sent

o the monitoring component via MQTT, and a total of 44 state
ransitions. This contrasted with the non-adaptive run where over
93,000 messages were reported. An overview of the results,
ith the different properties collected, are provided in Table 3
hen using our adaptive monitoring approach, we were able to

ignificantly reduce the total amount of messages sent, namely by
ore than 188,000. Most significant was the monitor for ‘‘Mag-
eticField’’, where more than 99% (91,146 messages) of the initial
essages were filtered. Furthermore, the non-adaptive moni-

ors for ‘‘BatteryStatus’’, ‘‘JointState’’, ‘‘SensorState’’ and ‘‘Odom-
try’’ all sent messages with a frequency of about 23 Hz in the
on-adaptive runs.

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

A
s
t
c
i
c
o
a
m

7

h
m
a
a
F
a
L
s

b
a
t
r
1
w
e
r
e
m
s
a

1
e
r

Table 3
Results of the DELI and TRAN use case simulation runs comparing our adaptive monitoring approach
with a non-adaptive approach.
Scenario Monitor Non adapt. count Adapt. mon. count

Dronology –
Preplanned Rule
Execution

Drone.Battery 3,829 1,258
Drone.Startupchecks 5,747 99
Drone.Status 5,747 1,349
Drone.Location 5,714 2,459
Drone.Monitoring 11,494 1,185
Drone.FlightSchedule 5,750 171

Total 38,282 6,521

Dronology –
Ubiquitous Rule
Execution
(Injected Errors)

Drone.Battery 5,780 1,235
Drone.Startupchecks 5,780 100
Drone.Status 5,780 1,052
Drone.Location 5,780 2,793
Drone.Monitoring 11,559 1,845
Drone.FlightSchedule 5,784 172

Total 40,463 7,197

TurtleBot –
Preplanned Rule
Execution

Bot.BatteryStatus 21,453 337
Bot.Velocity 9,419 694
Bot.Diagnostics 944 504
Bot.JointState 21,451 569
Bot.MagneticField 91,404 258
Bot.VersionInfo 934 179
Bot.SensorState 21,455 492
Bot.Odometry 21,284 780
Bot.LaserScan 4,663 644

Total 193,007 4,458
7.2.3. Analysis of results
When performing simulation runs with the two systems using

Mon, we observed a significant reduction in data that was
ent to the monitoring framework. For all use cases, we found
hat specified preplanned and ubiquitous rules were executed
orrectly. Furthermore, whenever an error state for a UAV was
ntroduced, the adaptive monitor for this UAV transitioned to its
orresponding ubiquitous state and returned to the normal state
nce the error was removed. We conclude that AMon successfully
dapted its monitoring behavior based only on the user-defined
onitoring rules.

.3. RQ3 – Scalability

With respect to scalability, we evaluated (i) that AMon can
andle a large number of ubiquitous rule combinations where the
ost suitable rule needed to be selected and applied at runtime,
nd (ii) demonstrating the general suitability of our approach for
realistic robotic or CPS, handing a large number of messages.
or the first part, we performed the rule selection evaluation on
Standard Intel Core i5 Laptop, with 16 GB of RAM, running

inux Mint (20.3), and for the second part, we executed additional
imulation runs using the setup described in Section 7.2.1.
To ensure timely selection of rules and demonstrate the scala-

ility of the rule selection and activation component, we created
new, larger rule set of 150 ubiquitous rules. To generate diverse
riggers for each rule, we first created 20 ubiquitous states. Each
ule’s trigger was then defined as a random combination of either
, 2, or 3 of these ubiquitous states, and a random salience level
as added to each rule. Once the rule set was generated, we
xecuted the rule selection component 1000 times, in each case
andomly selecting one of the possible trigger combinations. Each
xecution performed was internally logged with AMon, and we
easured the execution time and collected information about the
elected rules and scores. After the executions were finished, we
nalyzed the results and selected rules.
The selection and rule execution time was 10 ms (median,

st quartile: 8 ms, 3rd quartile: 11 ms). Out of the 1000 rule
xecutions, we further spot-checked 50, to ensure that the correct
ules were in fact executed, which was the case for all 50 rules
10
checked. With regards to RQ3 we conclude that AMon is capable
of handling both a large number of messages from different prop-
erties and different UAVs as well as many rules and ubiquitous
states.

Additionally, to validate the scalability of message transmis-
sion, and ensure that our framework can in fact handle realistic
amounts of monitoring data, we added 20 additional artificial
monitoring properties to the Dronology system, integrated them
into rules, and set the monitoring period for all properties to
1 s. We then re-executed our DELI Item Delivery simulation and
collected the number of messages transmitted. For the approxi-
mately 32-minute run, we received 118,915 messages, i.e., more
than 3,700 messages per minute, and observed a constant number
of messages being received by the central server throughout the
run without any observed increase in latency. In a second step,
we scaled up the number of UAVs. We replicated the setup of
the Raspberry Pi onboard computers in a Docker container and
executed 20 parallel instances, i.e., 20 UAVs each sending 20
properties at a frequency of 1 s. We again executed the deliv-
ery simulation and collected over 793,000 messages and over
900 rule executions in the 32-minute run, again without any
observable increase in latency.

7.3.1. Analysis of results
With regards to RQ3, for both dimensions we scaled up, mes-

sage transmission and rule selection, we could observe that AMon
was capable of handling large amounts of monitoring data and
rules as input to the selection algorithm. Especially the latter is
critical for adaptive monitoring, as ubiquitous rules are related
to erroneous system behavior, and collecting required data can
be crucial, e.g., for documenting errors, or detecting potentially
dangerous situations before they occur. One aspect we observed
is that depending on the different ubiquitous states might reflect
different levels of severity, and it might be necessary to introduce
more sophisticated mechanisms for specifying rule combinations
and/or hierarchies (cf. Section 10).

8. User study (RQ4 and RQ5)

For our user study, we invited six participants to perform a
series of tasks using our DSL. The participants were contacts in

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

1

2

3

Fig. 5. Overview of monitored message per minute from one UAV in the Dronology system for different monitored properties.
4
our professional networks. The main selection criteria included
for the participants to have basic knowledge about CPS and have
actively worked with, or developed applications in the context
of CPS. This was the case for all six selected participants, with
experience either in the domain of industrial automation, UAVs,
IoT, or smart devices. Furthermore, all participants had several
years of general programming experience as well as CPS experi-
ence, and four participants have industry experience. None of the
study participants was involved in the design or development of
our framework and DSL.

8.1. Study setup

The study consisted of three parts: (1) A set of tasks where
participants were asked to write monitor adaptation rules based
on a description of the scenario; (2) a ‘‘Glitch Detector’’ task,
where we presented participants with a number of monitor adap-
tation rules written in our DSL and asked them to find glitch-
es/problems in the rules; and (3) a semi-structured interview
in which we asked participants about their experiences when
writing monitor adaptation rules, difficulties, and potential im-
provements.

To evaluate the ease of use, we asked the subjects to ex-
press monitoring adaptation rules in our DSL for either (i) the
UAV delivery scenario, or (ii) the TurtleBot item transportation
scenario. Each participant was presented with one of the two
scenarios and was provided with a textual description of the
rules that should be created for a specific use case. Each session
took approximately 45–60 min (with one session taking slightly
longer due to technical issues not related to the study) and started
with a brief introduction of approximately 10 min. In the first
part (Task 1), the participants were asked to write default values,
assumptions, and two preplanned and two ubiquitous rules based
on a description of the expected monitoring behavior.

To assess the DSL’s understandability, we followed Hoffman
et al.’s (Hoffman et al., 2019) recommendations for eliciting our
subjects’ mental models and analyzing their understanding. More
specifically, we used a glitch detector task (Task 2), in which par-
ticipants identify things that are wrong in a system/explanation.
The glitch detector task allowed us to identify semantic issues in
our DSL. For this task, we gave the participants 10 min to find
examples of the following four errors in a set of rules:

. Assumption violation: The frequency within a rule violates an
assumption.

. Default value missing: Given our assumption that if no default
value is defined, the monitoring property needs to be defined
in all rules.

. Entry vs. exit trigger: A mismatch of whether a rule should be
triggered when an entry or an exit event occurs.
11
. Local vs. central monitoring: A mismatch of whether a property
should be monitored locally or centrally.

All static validation rules were disabled in the IDE, as these would
have directly generated error messages in the Eclipse Error View.

Finally, we conducted a post-study interview in which we
asked participants several questions about their experience with
writing and understanding rules, including what they liked and
disliked about the approach, and whether they had any sugges-
tions for improving the DSL. Furthermore, we collected demo-
graphic data about the participants and their background.

To validate the materials and tasks prior to running our study,
we ran a pilot study with a Ph.D. student who was familiar with
the domain. To improve clarity, we made minor adjustments to
the tasks descriptions and study material. We used a think-aloud
protocol to collect data from the different tasks, and participants
were encouraged to express problems or issues they face whilst
writing rules. One researcher collected important statements,
which were later augmented by extracted statements from the
transcribed recordings. For the semi-structured interview, we
asked four Likert-scale questions and a series of open-ended
questions, focusing on how well the participants understood the
different concepts and if they had suggestions for improvements.
After the interviews, two researchers consolidated the notes,
extracted key statements, and documented the main findings of
the results.

8.2. Study results

Table 4 provides an overview of all study participants and the
results of the rule creation and glitch detector tasks. All six par-
ticipants successfully completed the first tasks, which included
creating default values and assumptions and writing preplanned
and ubiquitous rules.

For the second task, the glitch detection, four out of six partic-
ipants were able to detect all four errors, whereas the remaining
two managed to correctly identify three errors, but missed one. In
both cases, the error that was overlooked was related to an incor-
rect monitoring period, which was constrained by an assumption
(i.e., the rule incorrectly specified a lower period of a property
than the corresponding assumption).

When discussing this error, all participants stated that having
static validation support available would significantly ease this
task and reduce the effort of manually checking the rules every
time changes were made. All participants found it generally easy
to write rules based on the desired behavior, with one participant
mentioning that they ‘‘[...] like using the DSL and it is very easy to
define rules in the editor’’, Both the preplanned and the ubiquitous
rules were considered very easy to understand, with one partici-
pant stating that he ‘‘[...] had no problems understanding what the

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

p
p
a
G
e
i
s
a
W
t
u
M
t
m
t
w
‘
t
a
a

a
t
t
f
i
t
i
d
n
t
t
i
i
a

9

I
c
o
o
T
W
l
o
t
m
p
p
f

Table 4
Overview of study participants, experience, and results for the two tasks. Task 1, the Creation of rules (T1), and
Task 2, finding glitches in a set of predefined rules (T2).
Part. UC Exp

[years]
CPS Experience T1:

Rule Cr.
T2:
Glitch Det.

P1 TB 14/7 IoT, home automation, robotic systems 4/4 4/4
P2 TB 16/4 ind. automation, robotic systems 4/4 4/4
P3 TB 7.5/1.5 digital twins, production systems, ind. 4.0 4/4 3/4
P4 DR 12/6 IoT, security, microcontroller 4/4 4/4
P5 DR 8/4 drones, robots 4/4 3/4
P6 DR 14/1 industrial automation systems 4/4 4/4
rules should do’’, and the provided state transition diagram made
it easy for them to relate specific monitoring behavior to certain
states of the system.

One observation made during the study was that all partici-
ants extensively used copy&paste to first create a rule and then
aste the finished rule multiple times and only adapt the values
nd trigger event. One participant mentioned that ‘‘templates or a
UI where you can select a rule and then insert it’’ would further
ase the tasks of writing rules and reduce time to configure
ndividual properties. Generally, all participants found the tool
upport useful, and the autocomplete feature for both the states
nd property names was positively mentioned by participants.
e also received valuable comments regarding the DSL itself. Par-

icipants noticed minor inconsistencies in the language (e.g., the
se of quotation marks, and upper and lowercase keywords).
ost notably, participants mentioned that the difference between

he two types of rules (Preplanned and Ubiquitous) was not im-
ediately clear and required additional context and description

o fully comprehend when each type of rule would need to be
ritten. During the discussions with study participants, the terms

‘State-specific’’ (as these rules are specific for a certain state in
he state chart), and ‘‘Global’’ emerged. We will use this feedback
nd comments as we evolve our AMon framework and DSL, with
specific focus on clarity, readability, and ease of use.
In summary, for RQ4, we can conclude that creating rules,

ssumptions, and default values was an easy and straightforward
ask and could be performed by participants with very limited
raining. With regards to RQ5, all six participants had no issues
ully comprehending the provided rule file. Four participants
dentified all mismatches between the natural language descrip-
ion and the DSL rules. The error that was missed by two partic-
pants, was related to violations of specified assumptions. When
iscussing the error participants had no issue understanding the
ature of the error and stated that it was simply overlooked due
o the large number of rules. Our static validation component
argets this issue and supports users in identifying potentially
nvalid configurations. As code generation is performed automat-
cally, the most time-consuming task is the creation of the rules,
s well as the selection of properties that need to be monitored.

. Threats to validity

nternal validity. Our user study was designed to evaluate AMon’s
apabilities to specify monitoring rules. All participants had previ-
us experience with CPS. Our participants might have been biased
r impacted by the projects they were previously involved in.
hese factors might have confounded the effects we observed.
orking with similar systems in the past can affect the ease of

earning new approaches and expressing monitoring behavior in
ur DSL. We aimed to gain insights into how well the DSL and
ool support can be used and if improvements to the DSL can be
ade. We decided to conduct a think-aloud study to broadly elicit
articipants’ mental models and collected interview transcripts,
articipants’ answers to glitch detector tasks, and the created rule
iles to triangulate data and improve internal validity.
12
External validity. External validity is concerned with the gener-
alizability of our findings to other contexts. The results of our
work might not generalize beyond the cases we considered. Our
Dronology UAV management and control system informed the
design of AMon and some of the reported challenges and resulting
requirements for adaptive monitors are based on observations we
made when designing Dronology. Additionally, we have applied
AMon to TurtleBot robots from a different application domain,
that uses different hardware, and a different technology stack.
Based on our findings, we expect our approach to be applicable to
other types of CPS with similar characteristics. In its current form,
AMon is particularly suitable for systems consisting of multiple
devices for which local and central monitoring behavior needs to
be defined (as in a system of systems).

The initial implementation generated a monitoring component
for the Java-based Dronology system, and we were able to extend
it for a ROS-based system. Regarding data measurement, the
results of our Dronology experiments are based on simulated
UAVs. In terms of scalability, we considered a limited amount
of rules and properties. However, our experiments with scaling
the number of rules and events with generated data (RQ3) go far
beyond what one would typically expect in practical scenarios,
which demonstrates that our approach has the potential to scale
to an adequately large number of rules and events. We have
conducted several simulation runs as part of the experiment,
three per scenario, and previous experiments with Dronology
have demonstrated almost seamless transitions from the high-
fidelity ArduPilot simulator (ArduPilot, 2022) to physical UAVs.
In the future, we plan to perform additional simulations and field
tests with physical UAVs.

Conclusion validity. Conclusion validity is concerned with rela-
tionships in the data that do not exist or missing relationships
that should not have been reported. Our study does not aim at
statistically significant conclusions and we aimed to elicit impor-
tant factors broadly in our study. The reliability of our findings
might have been compromised by the limited data collection in
six 45-60 min sessions. Our selection criteria required all partic-
ipants to have CPS experience and additionally, four out of six
participants have additional industry experience. To strengthen
conclusion validity, additional sessions can be performed with
further participants. We described our study in detail and made
the material available to facilitate replication of the study.

Construct validity. Construct validity is concerned with the de-
gree to which the measures in our study correctly reflect real-
world constructs. The participants might have behaved differ-
ently, given that they were observed during the study (evaluation
apprehension). Moreover, we designed tasks to evaluate AMon
under realistic conditions, but actual scenarios might vary in
practice. To mitigate threats to construct validity, we aimed to be
as transparent as possible about the concepts we were investigat-
ing, communicated the purpose of the study to our participants,
carefully discussed the study setup and execution among multiple
researchers, and conducted a pilot study.

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

1

c
f
u
h
f
s
O
s
c
A
r
c
T
o
a
t
W
s
b
f
a
p
f
f
•

s
f
f
v
w
p
w
i
i
r
O
g
2
r
i
•

p
p
t
I
c
t
U
c
u
a
m
c
e
s
•

t
a
s
t
s
i
m

U
t
o
v
a
a
•

t
t
r
o
b
e
u
o
i
a

1

o
o
(

s
a
2
i
a
a
t
e
s
c
m
r
e
m
l
S
r
t
t
t
c
t
O
V
i
t
a
s
a
a
f
w
o
f
c
a

a
t
t
o

0. Discussion

Our experiments applied AMon to two real-world CPS. We
reated adaptive monitoring rules and generated monitoring code
or four use cases and two technologies (i.e., Java and Python
sing ROS). Our findings indicate that AMon can be used in
eterogeneous environments. We could describe states relevant
or adaptive monitoring in a state transition diagram and identify
ystem events and data needed for checking runtime constraints.
ur evaluation further demonstrates that the amount of data
ent to the central monitoring server was significantly reduced
ompared to a non-adaptive monitoring environment, and that
Mon scales to a large number of events and rules. The proposed
un-time adaptation of monitoring rules facilitated by our DSL
an support context-specific changes to the monitoring behavior.
he effort and level of granularity, to a certain extent, depends
n the level of detail a developer wants to specify properties
t for each state. For example, if no specific period is defined
hen the default value or the one from the previous state is used.
hile adaptive monitoring work has focused, e.g., on adaptive

ampling, our contributions focus on adjusting the monitoring
ehavior to the contexts of a system. Furthermore, the findings
rom our user study indicate that the DSL is easy to understand
nd can be used with little effort to clearly specify what and how
arts of a system should be monitored. Based on these empirical
indings, we summarize four lessons learned and avenues for
urther extensions.
Automation Support for Rule Creation and Maintenance: As-
umptions for constraints, which are currently created manually
rom the constraints in our prototype implementation, provide
urther automation potential. During the study, specifying default
alues and corresponding assumptions was regarded as some-
hat tedious by participants. Additionally, we observed that all
articipants extensively used a copy&paste approach combined
ith the auto-completion features to write new rules and spec-

fy monitoring behavior. One participant commented that ‘‘[...]
ntroducing prefilled templates’’ could significantly contribute to
educing the effort one has to put into writing rules for a system.
ne approach to tackle this issue could be to provide a combined
raphical drag&drop editor, e.g., Google Blockly (Yamashita et al.,
017; Culic et al., 2015; Mao et al., 2019) that allows writing
ules in our DSL and at the same time provides a graphical user
nterface for different users.
Additional Combination Features for Rules: Our dual ap-

roach of combining rule triggers and selecting rules based on a
rioritization algorithm, allowed us to define arbitrary combina-
ions of ubiquitous events and to account for different situations.
n our evaluation, we observed situations that would result in
onflicting monitoring needs, e.g., when a low battery level raises
he need to reduce monitoring whilst close proximity to other
AVs requires precise location data to be collected to avoid
ollisions. In these situations, and to reduce the burden on the
ser specifying monitoring periods manually for each state, an
dditional cost–benefit analysis could help to identify optimal
onitoring rules or a combination of rules. Previous work has in-
orporated cost factors in cost-aware logging mechanisms (Ding
t al., 2015) and leveraged cost–benefit analysis in the context of
elf-adaptive systems (Van Der Donckt et al., 2018).
Extended Operations for Describing Monitors and Assump-

ions: Our DSL provides several options for describing monitors
nd assumptions. These include turning monitoring on and off,
etting monitoring periods, and changing between local and cen-
ral monitoring. However, in certain situations, the relatively
implistic rules might not be sufficient. For example, for a mon-
toring adaptation rule related to proximity to other UAVs, the
onitoring period could be calculated based on the number of
13
AVs in the air and a scaled factor associated with the actual dis-
ances. This would not only allow adaptation of the period based
n a state and a given value, but to continuously update that
alue based on the given formula. Therefore, defining additional
ggregation functions, or temporal properties as part of the DSL
dds additional flexibility for configuring monitors.
Runtime Reconfiguration of Monitors: Depending on the na-

ure of the system, one aspect that would further enhance adap-
ive monitoring capabilities is the ‘‘adaptation of the adaptation
ules’’ at runtime. As pointed out by a study participant, ‘‘[...] the
perator of the drone system might also want to adapt monitoring
ehavior [during a mission]’’. With our approach, this could be
asily supported, for example, in the context of a highly config-
rable ROS-based system. Not only would this allow adaptation
f the monitoring behavior based on the predefined rules, but
t would further enable a human to (temporarily) modify the
daptive monitoring behavior.

1. Related work

The need for adaptive monitoring relates to the importance
f balancing the CPU resource consumption with the freshness
f collected data, so that analyses could be effectively performed
Moui et al., 2012).

Existing monitored data has been used to reason about the
ystem state in order to adapt the monitoring infrastructure
nd reduce the number of required monitors (Casanova et al.,
014). Brand and Giese proposed a generic adaptive monitor-
ng approach based on analyzing queries on a runtime model
nd adjusting periodic or event-driven monitoring tasks (Brand
nd Giese, 2019); however, they require an existing architec-
ure and implementation of a self-adaptive system on which to
xecute queries. In contrast, AMon is intended for use on any
ystem regardless of its use of runtime models, and it generates
ode for diverse target systems. To support continuous adaptive
onitoring, Brand and Giese also suggested requirements for a

untime model language (Brand and Giese, 2018, 2019). In their
nvisioned approach, runtime models include information about
onitorable properties, as well as their results at run time, to al-

ow the analysis of information needs and monitoring adaptation.
akizloglou et al.’s approach (Sakizloglou et al., 2020) leverages
untime models to check for conditions of adaptation rules with
emporal requirements. They aim to reduce the amount of moni-
oring information to a minimum by pruning the runtime model
o only those parts needed for analysis. Their approach could be
ombined with AMon to also explicitly capture information about
he contexts in which certain monitoring information is needed.
ur work is more related to DYNAMICO (Tamura et al., 2013;
illegas Machado, 2013) which provides a separate monitoring
nfrastructure and supports users in defining monitoring proper-
ies and metrics. However, AMon goes beyond the scope of these
daptive monitoring approaches by integrating on-site vs. off-
ite monitoring. In the context of distributed CPS, we are not
ware of other approaches that explicitly consider these aspects
nd enable users to specify adaptation rules in a lightweight
ashion. The importance of monitoring self-adaptive applications
ithin edge computing frameworks has been stressed in a state-
f-the-art review (Taherizadeh et al., 2018), albeit with a strong
ocus on cloud applications. Given the increasing prevalence of
omputations performed on edge devices, we saw the need to
ddress these issues in AMon.
Several monitoring approaches have been proposed for CPS

nd large-scale systems. For example, a task planning and execu-
ion monitoring framework uses temporal action logic to specify
he behavior of the system (Doherty et al., 2009). For monitoring
f UAVs, the ReMinDs framework has been developed (Vierhauser

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

e
i
s
t
t
b
t
m
a
(
H
c

p
b
p
t
e
A
p
s
i
o
s
s
2
c
c
c
o
s

i
b
c
i
n
r
t
r
a
w
r
t

1

f
i
s
v
d
t
m
m
s
s
s
c
c
w
u
f
D
a

w
a
t
w
C

D

c
t

D

2

A

L
t
b
g
t

R

A

A

A

B

B

B

B

C

C

C

C

C

C

C

D

t al., 2018). Other related approaches focus on synthesizing mon-
tored autonomous systems (Machin et al., 2014). However, while
ome of these approaches facilitate system adaptation, none of
hem consider the effects of different states and conditions on
he monitoring environment itself. Kieker (Ehlers and Hassel-
ring, 2011) provides capabilities for inserting probes to intercept
he execution of system interface operations, application-level
onitoring, system-level measurements, and CPU usage of an
pplication. It also supports adaptation of monitoring rules for
de-)activating probes relevant to the current monitoring task.
iFi (Al-Shaer, 1999) uses programmable agents and filters to
onfigure the infrastructure at run time and adapt agents.
To collect runtime data from a system, various adaptive sam-

ling techniques (Bartocci et al., 2012; Ding et al., 2015) have
een proposed. For example, an approach for weighted trace sam-
ling relies on the clustering of execution graphs, with the goal
o maximize the diversity of collected execution traces (Las-Casas
t al., 2018). (Narayanappa et al., 2010) proposed ‘‘Property-
ware Program Sampling’’, a profiling technique that uses
rogram slicing in the context of statistical sampling-based in-
trumentation. Similarly, GAMMA focuses on reducing monitor-
ng and instrumentation overhead (Orso et al., 2002). One aspect
f GAMME is the optimization of the placement of probes and
plitting the monitoring tasks across different instances of the
oftware. Similar to our approach, TigrisDSL (Mertz and Nunes,
021) has been proposed, which is a domain-specific language for
reating monitoring filters. While these approaches focus on data
ollection rather than on a fully-fledged monitoring solution, they
ould be a valuable starting point for automating the specification
f monitoring frequencies, reducing the burden on the user to
pecify all properties manually in the DSL.
A model-based architecture for interactive run-time monitor-

ng has been proposed (Hili et al., 2020) that leverages model-
ased techniques, model-to-model transformation, and automated
ode generation. Its focus lies on supporting runtime monitor-
ng activities for real-time and embedded systems and it does
ot adapt monitors based on different states of the system. A
elated approach for tracking the behavior of self-adaptive sys-
ems (Reynolds et al., 2020) relies on provenance graphs and a
untime model to analyze and explain the runtime behavior of
system. In the domain of robot systems, a model-based frame-
ork (Corbato et al., 2020) adapts robot control architectures at
untime. It targets ROS-based systems and uses the MAPE-K loop
o trigger reconfigurations of the system.

2. Conclusion

In this paper, we have presented a model-based approach
or adaptive monitoring of distributed CPS deployed in increas-
ngly heterogeneous environments. AMon consists of a DSL for
pecifying monitoring adaptation rules, mechanisms to statically
alidate those rules, and automated code generation for easy
eployment and use of monitors. Our DSL supports the defini-
ion of monitoring behavior, taking both local and centralized
onitoring into account, and helps users to specify consistent
onitoring rules. Our evaluation using a UAV and a TurtleBot
ystem indicates that the DSL is sufficiently expressive to de-
cribe realistic use cases with reasonable time and effort. Our
imulations demonstrated that the monitoring framework can
onsiderably reduce the number of events that are sent to the
entralized monitoring system. As part of our future work, we
ill further improve the DSL and provide additional graphical
ser interface support for rule creation. Additionally, we plan to
urther extend AMon by adding additional functionality to the
SL for defining aggregation functions and temporal properties
nd facilitating the runtime adaptation of the adaptation rules.
14
CRediT authorship contribution statement

Michael Vierhauser: Conceptualization, Methodology, Soft-
are, Investigation, Resources, Writing – original draft, Project
dministration. Rebekka Wohlrab: Conceptualization, Investiga-
ion, Resources, Writing – original draft. Marco Stadler: Soft-
are, Verification, Investigation, Writing – review & editing. Jane
leland-Huang: Verification, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Supplementary material can be found in our repository: (Anon,
022b) and Zenodo: http://dx.doi.org/10.5281/zenodo.6860667.

cknowledgments

The work in this paper has been partially supported by the
inz Institute of Technology (LIT-2019-7-INC-316), the US Na-
ional Science Foundation (NSF) under Grant #CNS-1931962, and
y the Wallenberg AI, Autonomous Systems and Software Pro-
ram (WASP) funded by the Knut and Alice Wallenberg Founda-
ion.

eferences

l-Shaer, E.S., 1999. Programmable agents for active distributed monitoring. In:
Proc. of the Int’L WS on Distributed Systems: Operations and Management.
Springer, pp. 19–32.

Mon, 2022. AMon GitHub repository. https://github.com/LIT-Rumors/amon-
public. (Accessed 01 July 2022).

rduPilot, 2022. Ardupilot software in the loop simulation. https://ardupilot.org/
dev/docs/sitl-simulator-software-in-the-loop.html. (Accessed 01 July 2022).

aresi, L., Pasquale, L., Spoletini, P., 2010. Fuzzy goals for requirements-driven
adaptation. In: Proc. of the 18th IEEE Int’L Requirements Engineering Conf..
IEEE, pp. 125–134.

artocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,
Seyster, J., 2012. Adaptive runtime verification. In: Proc. of the Int’L Conf.
on Runtime Verification. Springer, pp. 168–182.

rand, T., Giese, H., 2018. Towards software architecture runtime models
for continuous adaptive monitoring. In: Proc. of the 13th Int’l WS on
Models@run.time. pp. 72–77.

rand, T., Giese, H., 2019. Generic adaptive monitoring based on executed
architecture runtime model queries and events. In: Proc. of the 13th Int’L
Conf. on Self-Adaptive and Self-Organizing Systems. IEEE, pp. 17–22.

abot, J., Gogolla, M., 2012. Object constraint language (OCL): A definitive guide.
In: Formal Methods for Model-Driven Engineering: 12th Int’L School on
Formal Methods for the Design of Computer, Communication, and Software
Systems. Springer, pp. 58–90.

asanova, P., Garlan, D., Schmerl, B., Abreu, R., 2014. Diagnosing unobserved
components in self-adaptive systems. In: Proc. of the 9th Int’L Symp. on
Software Engineering for Adaptive and Self-Managing Systems.

leland-Huang, J., Agrawal, A., Islam, M.N.A., Tsai, E., Van Speybroeck, M., Vier-
hauser, M., 2020. Requirements-driven configuration of emergency response
missions with small aerial vehicles. In: Proc. of the 24th ACM Systems and
Software Product Line Conf.. pp. 1–12.

leland-Huang, J., Vierhauser, M., Bayley, S., 2018. Dronology: An incubator for
cyber-physical systems research. In: Proc. of the 40th Int’L Conf. on Software
Engineering: New Ideas and Emerging Results Track.

ockburn, A., 2000. Writing Effective Use Cases, first ed. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

orbato, C.H., Bozhinoski, D., Oviedo, M.G., van der Hoorn, G., Garcia, N.H.,
Deshpande, H., Tjerngren, J., Wasowski, A., 2020. MROS: Runtime adaptation
for robot control architectures. arXiv:2010.09145.

ulic, I., Radovici, A., Vasilescu, L.M., 2015. Auto-generating google blockly visual
programming elements for peripheral hardware. In: Proc. of the 14th Int’L
Conf. in Education and Research. IEEE, pp. 94–98.

ing, R., Zhou, H., Lou, J.-G., Zhang, H., Lin, Q., Fu, Q., Zhang, D., Xie, T., 2015.
Log2: A cost-aware logging mechanism for performance diagnosis. In: Proc.
of the 2015 USENIX Technical Conference. pp. 139–150.

http://dx.doi.org/10.5281/zenodo.6860667
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb1
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb1
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb1
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb1
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb1
https://github.com/LIT-Rumors/amon-public
https://github.com/LIT-Rumors/amon-public
https://github.com/LIT-Rumors/amon-public
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb4
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb4
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb4
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb4
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb4
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb5
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb5
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb5
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb5
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb5
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb6
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb6
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb6
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb6
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb6
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb7
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb7
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb7
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb7
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb7
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb8
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb8
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb8
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb8
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb8
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb8
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb8
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb9
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb9
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb9
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb9
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb9
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb10
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb10
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb10
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb10
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb10
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb10
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb10
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb11
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb11
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb11
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb11
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb11
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb12
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb12
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb12
http://arxiv.org/abs/2010.09145
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb14
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb14
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb14
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb14
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb14
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb15
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb15
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb15
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb15
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb15

M. Vierhauser, R. Wohlrab, M. Stadler et al. The Journal of Systems & Software 195 (2023) 111507

D

E

E

E

E

H

H

K

L

L

L

M

M

M

M

M

M

M

N

O

P

P

R

R

R
R

R

S

S

s

oherty, P., Kvarnström, J., Heintz, F., 2009. A temporal logic-based planning
and execution monitoring framework for unmanned aircraft systems. Auton.
Agents Multi-Agent Syst. 19 (3), 332–377.

clipse Foundation, 2021. Eclipse Xtext - language engineering framework. https:
//www.eclipse.org/Xtext. (Accessed 01 April 2021).

clipse Foundation, 2022. Eclipse XTend. https://www.eclipse.org/xtend. (Ac-
cessed 01 July 2022).

hlers, J., Hasselbring, W., 2011. A self-adaptive monitoring framework for
component-based software systems. In: Proc. of the European Conf. on
Software Architecture. Springer, pp. 278–286.

rdelj, M., Natalizio, E., Chowdhury, K.R., Akyildiz, I.F., 2017. Help from the sky:
Leveraging UAVs for disaster management. IEEE Pervasive Comput. 16 (1),
24–32.

ili, N., Bagherzadeh, M., Jahed, K., Dingel, J., 2020. A model-based architecture
for interactive run-time monitoring. Softw. Syst. Model. 1–23.

offman, R.R., Mueller, S.T., Klein, G., Litman, J., 2019. Metrics for explainable
AI: Challenges and prospects. arXiv:1812.04608.

ephart, J.O., Chess, D.M., 2003. The vision of autonomic computing. Computer
36 (1), 41–50.

anusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P., Schneken-
burger, R., Dubois, H., Terrier, F., 2009. Papyrus UML: An open source toolset
for MDA. In: Proc. of the 5th Europ. Conf. on Model-Driven Architecture
Foundations and Applications. Citeseer, pp. 1–4.

as-Casas, P., Mace, J., Guedes, D., Fonseca, R., 2018. Weighted sampling of
execution traces: Capturing more needles and less hay. In: Proc. of the ACM
Symp. on Cloud Computing. pp. 326–332.

i, K., Tu, H., 2021. Design and implementation of autonomous mobility al-
gorithm for home service robot based on turtlebot. In: Proc. of the 5th
Information Technology, Networking, Electronic and Automation Control
Conf., Vol. 5. pp. 1095–1099.

achin, M., Dufossé, F., Blanquart, J.-P., Guiochet, J., Powell, D., Waeselynck, H.,
2014. Specifying safety monitors for autonomous systems using model-
checking. In: Proc. of the Int’L Conf. on Computer Safety, Reliability, and
Security. Springer, pp. 262–277.

ainampati, M., Chandrasekaran, B., 2021. Implementation of human in the
loop on the TurtleBot using reinforced learning methods and robot operating
system (ROS). In: Proc. of the 12th Information Technology, Electronics and
Mobile Communication Conf.. pp. 0448–0452.

allozzi, P., Nuzzo, P., Pelliccione, P., Schneider, G., 2020. CROME: Contract-
based robotic mission specification. In: Proc. of the 18th Int’L Conf. on Formal
Methods and Models for System Design. IEEE, pp. 1–11.

ao, D., Wang, F., Wang, Y., Hao, Z., 2019. Visual and user-defined smart contract
designing system based on automatic coding. IEEE Access 7, 73131–73143.

ertz, J., Nunes, I., 2021. Tigris: A DSL and framework for monitoring software
systems at runtime. J. Syst. Softw. 177, 110963.

oui, A., Desprats, T., Lavinal, E., Sibilla, M., 2012. A CIM-based framework to
manage monitoring adaptability. In: Proc. of the 8th Int’L Conf. on Network
and Service Management. pp. 261–265.

uccini, H., Sharaf, M., Weyns, D., 2016. Self-adaptation for cyber-physical
systems: A systematic literature review. In: Proc. of the 11th Int’L Symp. on
Software Engineering for Adaptive and Self-Managing Systems. pp. 75–81.

arayanappa, H., Bansal, M.S., Rajan, H., 2010. Property-aware program sampling.
In: Proc. of the 9th ACM SIGPLAN-SIGSOFT WS on Program Analysis for
Software Tools and Engineering. pp. 45–52.

rso, A., Liang, D., Harrold, M.J., Lipton, R., 2002. Gamma system: Continuous
evolution of software after deployment. In: Proc. of the ACM Int’L Symp on
Software Testing and Analysis. pp. 65–69.

ark, D., Son, W., 2021. ROBOTIS e-manual. ROBOTIS E-Manual, https://emanual.
robotis.com/docs/en/platform. (Accessed 01 July 2022).

ereira, E., Bencatel, R., Correia, J., Félix, L., Gonçalves, G., Morgado, J., Sousa, J.,
2009. Unmanned air vehicles for coastal and environmental research. J. Coast.
Res. 1557–1561.

abiser, R., Guinea, S., Vierhauser, M., Baresi, L., Grünbacher, P., 2017. A
comparison framework for runtime monitoring approaches. J. Syst. Softw.
125, 309–321.

abiser, R., Schmid, K., Eichelberger, H., Vierhauser, M., Guinea, S., Grünbacher, P.,
2019. A domain analysis of resource and requirements monitoring: Towards
a comprehensive model of the software monitoring domain. Inf. Softw.
Technol. 111, 86–109.

ed Hat, 2022. Drools. https://www.drools.org. (Accessed 01 July 2022).
eynolds, O., García-Domínguez, A., Bencomo, N., 2020. Towards automated

provenance collection for runtime models to record system history. In: Proc.
of the 12th System Analysis and Modelling Conf.. pp. 12–21.

OBOTIS, 2022. TurtleBot E-manual. https://emanual.robotis.com/docs/en/
platform/turtlebot3/basic_examples. (Accessed 01 July 2022).

akizloglou, L., Ghahremani, S., Brand, T., Barkowsky, M., Giese, H., 2020. Towards
highly scalable runtime models with history. In: Proc. of the IEEE/ACM
15th Int’L Symp. on Software Engineering for Adaptive and Self-Managing
Systems. ACM, pp. 188–194.

tocco, A., Weiss, M., Calzana, M., Tonella, P., 2020. Misbehaviour prediction for
autonomous driving systems. In: Proc. of the ACM/IEEE 42nd Int’L Conf. on
Software Engineering. pp. 359–371.

UAS Use Cases, 2022. sUAS use case repository. https://github.com/SAREC-

Lab/sUAS-UseCases. (Accessed 01 July 2022).

15
Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V., 2018. Mon-
itoring self-adaptive applications within edge computing frameworks: A
state-of-the-art review. J. Syst. Softw. 136, 19–38.

Tamura, G., Villegas, N.M., Müller, H.A., Duchien, L., Seinturier, L., 2013. Im-
proving context-awareness in self-adaptation using the DYNAMICO reference
model. In: Proc. of the 8th Int’L Smyp. on Software Engineering for Adaptive
and Self-Managing Systems. pp. 153–162.

Van Der Donckt, M.J., Weyns, D., Iftikhar, M.U., Singh, R.K., 2018. Cost-benefit
analysis at runtime for self-adaptive systems applied to an Internet of Things
application. In: ENASE. pp. 478–490.

Vierhauser, M., Cleland-Huang, J., Bayley, S., Krismayer, T., Rabiser, R., Grün-
bacher, P., 2018. Monitoring CPS at runtime-A case study in the UAV domain.
In: Proc. of the 44th Euromicro Conf. on Software Engineering and Advanced
Applications. IEEE, pp. 73–80.

Villegas Machado, N.M., 2013. Context Management and Self-Adaptivity for
Situation-Aware Smart Software Systems (Ph.D. thesis). University of
Victoria, p. 346.

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J.,
Andersson, J., Giese, H., Göschka, K.M., 2013. On patterns for decentralized
control in self-adaptive systems. Lecture Notes in Comput. Sci. 7475 LNCS,
76–107.

Yamashita, S., Tsunoda, M., Yokogawa, T., 2017. Visual programming language
for model checkers based on google blockly. In: Proc. of the Int’L Conf. on
Product-Focused Software Process Improvement. Springer, pp. 597–601.

Zavala, E., Franch, X., Marco, J., 2019. Adaptive monitoring: A systematic
mapping. Inf. Softw. Technol. 105, 161–189.

Michael Vierhauser is a senior researcher at the LIT
Secure and Correct Systems Lab at the Johannes Kepler
University Linz, Austria. He holds a Master’s degree in
Software Engineering and Ph.D. in Computer Science
from the Johannes Kepler University Linz. His cur-
rent research interests include Cyber–Physical Systems,
Safety Assurance, and Runtime Monitoring.

Rebekka Wohlrab is an assistant professor at Chalmers
University of Technology in Sweden. She was pre-
viously with Carnegie Mellon University in the US
and received her Ph.D. from Chalmers University of
Technology. Her research interests include require-
ments engineering and software architecture, especially
in connection with human-on-the-loop self-adaptive
systems.

Marco Stadler is studying Business Informatics in the
master’s program at Johannes Kepler University Linz,
with a focus on Networks & Security and Software
Engineering. Prior to his time at JKU, he attended
the bachelor’s program in Business Informatics at the
University of Regensburg, Germany. Besides his studies,
Marco gained experience as a software developer in
the IT finance industry. His research interests focus on
runtime monitoring and Cyber–Physical Systems.

Jane Cleland-Huang is a Professor and Chair in the
Department of Computer Science and Engineering at
the University of Notre Dame. Her research inter-
ests focus upon Software and Systems Traceability
for Safety–Critical Systems with a particular emphasis
on the application of machine learning techniques to
solve large-scale software and requirements engineer-
ing problems. She is the lead PI of the DroneResponse
project, Chair of the IFIP 2.9 Working Group on Re-
quirements Engineering, and Associate Editor of the
Communications of the ACM. Recent organizational

roles have included Program Chair of the 2020 International Conference on
Software Engineering and General Chair of the 2021 International Requirements
Engineering Conference.

http://refhub.elsevier.com/S0164-1212(22)00183-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb16
https://www.eclipse.org/Xtext
https://www.eclipse.org/Xtext
https://www.eclipse.org/Xtext
https://www.eclipse.org/xtend
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb19
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb19
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb19
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb19
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb19
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb20
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb20
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb20
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb20
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb20
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb21
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb21
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb21
http://arxiv.org/abs/1812.04608
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb23
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb23
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb23
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb24
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb24
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb24
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb24
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb24
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb24
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb24
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb25
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb25
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb25
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb25
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb25
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb26
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb26
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb26
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb26
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb26
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb26
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb26
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb27
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb27
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb27
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb27
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb27
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb27
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb27
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb28
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb28
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb28
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb28
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb28
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb28
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb28
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb29
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb29
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb29
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb29
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb29
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb30
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb30
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb30
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb31
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb31
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb31
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb32
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb32
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb32
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb32
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb32
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb33
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb33
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb33
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb33
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb33
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb34
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb34
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb34
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb34
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb34
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb35
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb35
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb35
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb35
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb35
https://emanual.robotis.com/docs/en/platform
https://emanual.robotis.com/docs/en/platform
https://emanual.robotis.com/docs/en/platform
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb37
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb37
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb37
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb37
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb37
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb38
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb38
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb38
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb38
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb38
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb39
https://www.drools.org
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb41
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb41
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb41
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb41
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb41
https://emanual.robotis.com/docs/en/platform/turtlebot3/basic_examples
https://emanual.robotis.com/docs/en/platform/turtlebot3/basic_examples
https://emanual.robotis.com/docs/en/platform/turtlebot3/basic_examples
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb43
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb43
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb43
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb43
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb43
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb43
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb43
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb44
https://github.com/SAREC-Lab/sUAS-UseCases
https://github.com/SAREC-Lab/sUAS-UseCases
https://github.com/SAREC-Lab/sUAS-UseCases
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb46
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb46
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb46
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb46
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb46
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb47
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb47
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb47
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb47
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb47
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb47
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb47
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb48
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb48
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb48
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb48
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb48
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb49
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb49
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb49
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb49
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb49
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb49
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb49
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb50
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb50
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb50
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb50
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb50
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb51
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb51
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb51
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb51
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb51
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb51
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb51
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb52
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb52
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb52
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb52
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb52
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb53
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb53
http://refhub.elsevier.com/S0164-1212(22)00183-2/sb53

	AMon: A domain-specific language and framework for adaptive monitoring of Cyber–Physical Systems
	Introduction
	Motivating Example and Challenges
	The AMon Framework
	Scope of our Approach
	Framework Overview

	A Domain-Specific Language for Specifying Adaptive Monitors
	Rules
	Default Values and Assumptions

	Framework Implementation
	Generating Monitoring Components
	Prototype Implementation
	Static Validation

	Evaluation Objectives
	Experimental Evaluation (RQ1–RQ3)
	RQ1 – Expressiveness
	Specifying Monitoring Behavior
	Monitoring Code Generation
	Analysis of Results

	RQ2 – Efficient and Fine-grained Adaptation
	Evaluation Setup
	Results
	Analysis of Results

	RQ3 – Scalability
	Analysis of Results

	User Study (RQ4 and RQ5)
	Study Setup
	Study Results

	Threats to Validity
	Discussion
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

