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Abstract. Hofmann and Jost have presented a heap space analysis [1]
that finds linear space bounds for many functional programs. It uses an
amortised analysis: assigning hypothetical amounts of free space (called
potential) to data structures in proportion to their sizes using type an-
notations. Constraints on these annotations in the type system ensure
that the total potential assigned to the input is an upper bound on the
total memory required to satisfy all allocations.
We describe a related system for bounding the stack space requirements
which uses the depth of data structures, by expressing potential in terms
of maxima as well as sums. This is achieved by adding extra structure to
typing contexts (inspired by O’Hearn’s bunched typing [2]) to describe
the form of the bounds. We will also present the extra steps that must
be taken to construct a typing during the analysis.

Obtaining bounds on the resource requirements of programs can be crucial
for ensuring that they enjoy reliability and security properties, particularly for
use in constrained systems such as mobile phones, smartcards and embedded
systems. Hofmann and Jost have presented a type-based amortised analysis for
finding upper bounds on the heap memory required for programs in a simple
functional programming language [1]. The form of these bounds is limited to
linear functions with respect to the size of the program’s input. Fortunately, this
is sufficient for a wide variety of interesting programs. Moreover, the analysis was
successfully used to certify such bounds in a Proof Carrying Code system [3].

However, it is also important to bound the stack space requirements, espe-
cially for functional programs where it is easy to cause excessive stack usage
by accident. The Hofmann-Jost analysis has previously been adapted to mea-
sure stack space [4, 5], but the form of the bounds was again limited to linear
functions in terms of the total size of the input.

In this work we present a similar analysis where bounds are given as max-
plus expressions on the depth of data structures. This is far more precise for
programs operating on tree-structured data.

Like Hofmann-Jost, our analysis consists of two parts: a type-system which
certifies that a given bound really is an upper bound on the stack memory
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requirements, and an inference procedure based on Linear Programming for that
type system. In our type system we impose extra structure on the typing contexts
to represent the form of the bounds (where to take the maximum and where to
add), and hence we use extra structural typing rules to manipulate the context.
We also add an extra stage to the inference to determine where these structural
rules should be used.

We begin by presenting the programming language and its metered opera-
tional semantics, then in Section 2 give details of the type system and consider
some examples of typings in Section 3. We prove that the type system correctly
certifies bounds in Section 4 before presenting the inference procedure in Sec-
tion 5. In Section 6 we discuss some limitations when analysing programs with
nested datatypes. Finally we describe some extensions to the analysis (Section 7)
and related work (Section 8).

1 Language and operational semantics

We consider a simple first-order call-by-value functional programming language.
The syntax of the language is presented in Figure 1, where programs P are given
as a sequence of function definitions D with expressions e. For brevity’s sake we
only consider computations on units (∗), booleans, pairs, sums and binary trees.
The syntax requires programs to be in a ‘let-normal’ form which makes the
evaluation order explicit by requiring variables rather than subexpressions in
various places. We will discuss extensions to the language in Section 7.

P := let D | let D P

D := f(x1, . . . , xp) = ef

e := ∗ | true | false | x | f(x1, . . . , xp) | let x = e1 in e2 | if x then et else ef

| (x1, x2) | match x with (x1, x2) → e

| inl(x) | inr(x) | match x with inl(xl) → el p inr(xr) → er

| leaf | node(xl, xr, xv) | match x with leaf → e1 p node(xl, xr, xv) → e2

Fig. 1. Syntax

We have a large step operational semantics for the language, which includes
metering of the free stack space. Values in the language are units, booleans,
pairs, sums and heap locations for trees, with a distinguished location null which
represents leaf. A selection of the rules for the operational semantics appear in
Figure 2. The judgements have the form

m,S, σ ` e v, σ′

meaning that with m units of stack space, an environment S mapping variable
names to values and a store σ mapping non-null locations to binary tree triplets,



S(x1) = v1 . . . S(xp) = vp m, [y1 7→ v1, . . . , yp 7→ vp], σ ` ef  v, σ′

the yi are the symbolic arguments in the definition of f

m + stack(f), S, σ ` f(x1, . . . , xp) v, σ′ E-Fun

m, S, σ ` e1  v0, σ0 m, S[x 7→ v0], σ0 ` e2  v, σ′

m, S, σ ` let x = e1 in e2  v, σ′ E-Let

m, S, σ ` leaf  null, σ
E-Leaf

σ′ = σ[l 7→ 〈S(xl), S(xr), S(xv)〉] l 6∈ dom(σ)

m, S, σ ` node(xl, xr, xv) l, σ′ E-Node

S(x) = 〈vl, vr, vv〉 m, S[xl 7→ vl, xr 7→ vr, xv 7→ vv], σ ` e2  v, σ′

m, S, σ ` match x with leaf → e1 p node(xl, xr, xv) → e2  v, σ′ E-MatchNode

Fig. 2. Sample rules from the operational semantics

the expression e can evaluate to the value v with the new store σ′. We do not
need to include the amount of stack space afterwards because the stack discipline
will ensure that it is m again (this is easily checked in the full set of rules).

Note that we assume that stack space is allocated one frame at a time on
function entry, and released on exit. We denote the size of frame required by
function f by stack(f). We expect that our techniques could also be applied to
more fine grained stack machines. Indeed, a simpler Hofmann-Jost style stack
space analysis has been applied to a stack machine cost model for the Hume
language [4].

We will also need to mention an unmetered form of the operational semantics.
For this we simply drop the m part of each judgement.

Example 1. The andtrees function computes the point-wise boolean ‘and’ of two
binary trees with boolean values at the nodes:

let andtrees(t1,t2) =
match t1 with leaf → leaf p node(l1,r1,v1) →
match t2 with leaf → leaf p node(l2,r2,v2) →

let l = andtrees(l1,l2) in
let r = andtrees(r1,r2) in
let v = if v1 then v2 else false in

node(l,r,v)

This function requires at most stack(andtrees) × (min{|t1|d, |t2|d} + 1) units
of stack space to run (where depth | · |d is defined by |null|d = 0 and |l|d =
1 + max{|l1|d, |l2|d} when σ(l) = 〈l1, l2, v〉).



2 Type system

We now describe the type system that can be used to provide certified bounds.
The key notion in the type system is that the function from input size to the
stack space bound is encoded by annotations in the types and the structure of
the typing context. This is similar to the ‘physicist’s view’ of amortised analysis
described by Tarjan [6]. Following Tarjan, we call this assignment potential.

The types and contexts are given by

T := 1 | bool | T1 ⊗ T2 | (T1, k1) + (T2, k2) | tree(T, k).
Γ := · | x : T | k | Γ1, Γ2 | Γ1;Γ2.

where the annotations k are positive rational numbers. For sum types the anno-
tations represent different contributions to the bound depending upon the choice,
and for trees the annotations represent a requirement of k times the depth of the
tree (not counting the leaves). Fractional amounts are allowed; for instance, a
tree with annotation of one half corresponds to one unit of stack space for every
second level of the tree.

The typing contexts have two context formers: one for summing the contri-
bution of the subcontexts (,) and one for taking the maximum (;). For example,
the context

(x : tree(bool, 5); y : tree(bool, 3)) , 6

represents the bound
max{5× |x|d, 3× |y|d}+ 6.

Thus our typing contexts take the form of trees. To allow a greater range of
bounding functions to be represented we also allow variables to appear several
times in the context, so long as the underlying types (but not necessarily the
annotations) are the same. We will implicitly take ‘,’ and ‘;’ to be associative
throughout.

The formal encoding of this potential in types and typing contexts is given
as the Υt and Υc functions in Figure 3.

Using structured contexts in this way was inspired by O’Hearn’s Bunched
Typing [2], where a typical application of the structure was to denote heap
separation of data structures with one context former, and possible sharing of
heap data with the other.

We represent function signatures as a map Σ from function names to a
signature Γ → T, k where Γ is a context containing each parameter once, T
is the result type and k the fixed amount of potential to add to that from T .

The type system has two groups of rules. The syntax-directed rules feature
side conditions which ensure that the potential of the context is a sufficient
amount of stack space to evaluate the expression, and that there is enough
potential in the context to account for all of the potential in the result type
(we will make this more formal in Theorem 1, below). The latter requirement is
needed to translate bounds for subsequent parts of the program — the typing
of these later parts may give a bound in terms of the size of the result of this



Υt(σ, ∗, 1) = Υt(σ, true, bool) = Υt(σ, false, bool) = 0

Υt(σ, (v′, v′′), T ′ ⊗ T ′′) = Υt(σ, v′, T ′) + Υt(σ, v′′, T ′′),

Υt(σ, inl(v), (T ′, k′) + (T ′′, k′′)) = k′ + Υt(σ, v, T ′),

Υt(σ, inr(v), (T ′, k′) + (T ′′, k′′)) = k′′ + Υt(σ, v, T ′′),

Υt(σ, null, tree(T, k)) = 0

Υt(σ, l, tree(T, k)) = max{Υt(σ,vl, tree(T, k)), Υt(σ, vr, tree(T, k)), Υt(σ, vv, T )}+ k

where σ(l) = 〈vl, vr, vv〉.

Υc(σ, S, ·) = 0,

Υc(σ, S, x : T ) = Υt(σ, S(x), T ),

Υc(σ, S, k) = k,

Υc(σ, S, (Γ, ∆)) = Υc(σ, S, Γ ) + Υc(σ, S, ∆),

Υc(σ, S, (Γ ; ∆)) = max{Υc(σ, S, Γ ), Υc(σ, S, ∆)}.

Fig. 3. Assignment of potential to values and environments according to their types
and contexts

expression, and we wish to translate it into a bound with respect to the size of
the input values only. Thanks to this translation we do not need a separate size
analysis to give a relationship between the size of the intermediate values and
the input.

However, the syntax-directed rules require the typing context to have a spe-
cific structure. To manipulate the context structure to fulfil these requirements
we also have a set of structural rules.

A representative sample of the syntax-directed rules is given in Figure 4 and
all of the structural rules are given in Figure 5. The typing judgements take the
form

Γ ` e : T, k′

meaning that in the context Γ the expression e can be given type T , and the
potential assigned to the result is given by the annotations in T plus the fixed
amount k′. In some places we use Γ () to denote a context with a hole, and Γ (∆)
when that hole is filled by ∆. We write q×Γ to denote the context Γ with every
annotation k replaced by qk.

The Var and Leaf rules are the simplest: evaluation of the expressions
requires no stack space and we only need to ensure that the potential of the
result, k′, is accounted for by a fixed amount in the context, k. Note that the
annotation for the leaf’s type, k1, can be anything because we consider the depth
of a leaf to be zero. The Node rule’s side condition requires an extra k1 units
because the resulting tree is one level deeper than the larger subtree.

The Fun rule has two side conditions. The first ensures that there is enough
potential in the context to account for the allocation of a stack frame for the



k ≥ k′

x : T, k ` x : T, k′ Var
k ≥ k′

·, k ` leaf : tree(T, k1), k
′ Leaf

k ≥ stack(f) k + k′
1 ≥ k′ Σ(f) = Γ → T, k′

1 (y1, . . . , yp) = names(Γ )

Γ [x1/y1, . . . , xp/yp], k ` f(x1, . . . , xp) : T, k′ Fun

∆ ` e1 : T0, k0 Γ (x : T0, k0) ` e2 : T, k′

Γ (∆) ` let x = e1 in e2 : T, k′ Let

k ≥ k1 + k′

(xl : tree(T, k1); xr : tree(T, k1); xv : T ), k ` node(xl, xr, xv) : tree(T, k1), k
′ Node

Γ (·) ` e1 : T, k′ Γ ((xl : tree(T, k1); xr : tree(T, k1); xv : T ), k1) ` e2 : T, k′

Γ (x : tree(T, k1)) ` match x with leaf → e1 p node(xl, xr, xv) → e2 : T, k′ Match

Fig. 4. Sample syntax-directed typing rules

callee, and the second gives the two possible sources for ‘translating’ k′, either
from the potential k used to show that we can allocate the stack frame, or from
the amount k′

1 given by the result of the callee (which must ultimately have
come from somewhere in Γ ).

The Let rule is more subtle. Intuitively, we can just take the maximum of
the stack space bounds for e1 and e2, but we must also consider how to translate
the parts of e2’s bound that are expressed in terms of the size of the value of
the bound variable x. Hence we locally replace the part of the context used for
e1 with x, which allows for both the stack allocation required for e1 and the
translation of subsequent requirements in e2 given in terms of the size of x. To
be sound this requires that all of the allocations that we consider respect the
stack discipline; that is, all allocations in e1 are deallocated before the evaluation
of e1 is complete. If we consider memory allocations in e1 that may persist into
e2 (such as heap memory) then we may not have the free memory ‘promised’ by
the annotations in the surrounding context, Γ ().

The Match rule uses a similar local replacement, but this is simply an
unfolding of the tree structure into the context and does not require the stack
discipline for soundness.

The structural rules allow the manipulation of contexts to fit the requirements
of the syntax-directed rules. The two weakening rules remove sections of the
context and unnecessary potential. The context equivalence rule ≡ replaces part
of the typing context with one whose contents and potential are identical, using
any of the equivalences from Figure 6. Note that all of these equivalences are
reversible.

The plus-contract case of ≡ illustrates an important difference from the
Hofmann-Jost heap analysis. In that system contraction treated the annota-
tions of nested types (such as tree(tree(bool, 3), 2)) independently. Here we can
only uniformly scale the entire context. This restriction is necessary because we



Γ (∆) ` e : T, k′

Γ (Γ ′(∆)) ` e : T, k′ Weaken

Γ (x : T [k1/k]) ` e : T ′, k′ k ≥ k1

Γ (x : T ) ` e : T ′, k′ WeakenA

Γ (∆′) ` e : T, k′ ∆ ∼= ∆′

Γ (∆) ` e : T, k′ ≡

Γ (q ×∆, (1− q)×∆′) ` e : T, k′ q ∈ [0, 1]

Γ (∆; ∆′) ` e : T, k′ Split

Fig. 5. Structural typing rules

are measuring the depth of the entire data structure weighted by the annotations
and treating the annotations independently can change the ratio of the weight-
ings and hence may alter which path through the data structure is the ‘deepest’.
Uniform scaling maintains the deepest path, ensuring that the potential does
not change as a result of applying the typing rule.

Γ, ∆ ∼= ∆, Γ (plus-commute)

Γ, (∆; ∆′) ∼= (Γ, ∆); (Γ, ∆′) (distribute)

Γ ∼= Γ, · (plus-empty)

Γ ∼= Γ, 0 (plus-zero)

Γ ∼= ∆ if ∆ ∼= Γ (symmetry)

Γ ; ∆ ∼= ∆; Γ (max-commute)

Γ ∼= Γ ; Γ (max-contract)

Γ ∼= Γ ; · (max-empty)

Γ ∼= Γ ; 0 (max-zero)

Γ ∼= q × Γ, (1− q)× Γ for q ∈ [0, 1] (plus-contract)

Fig. 6. Equivalent contexts (for the ≡ typing rule)

Split is the typing rule of last resort — it approximates a bound given as
a sum by a bound given as a maximum. For example, when q = 1/2 and the
potential of ∆ and ∆′ is given by x and y, Split corresponds to the fact that

∀x, y ∈ Q+, max{x, y} ≥ x/2 + y/2,

where Q+ is the set of rationals greater than or equal to zero. The set of in-
equalities corresponding to Split are the best we can give without requiring
extra information about x and y. Split is useful in two places; during inference
when conflicting structural requirements force the approximation, and when one
of the subcontexts can be ignored for the purposes of giving a bound (for ex-
ample, because it is a boolean). In the latter case q is 0 or 1 and there is no
approximation.



We also give the following two derived rules to manipulate fixed amounts of
potential:

Γ (k1, k2) ` e : T, k′ k = k1 + k2

Γ (k) ` e : T, k′ ContractA

Γ (k) ` e : T, k′ k = k1 + k2

Γ (k1, k2) ` e : T, k′ ContractA′

These two contraction rules replace most of the cases of plus-contract where the
factor q is not known. Thus if we fix a value for q in the remaining cases and
the uses of Split we will only have linear equalities and inequalities as side
conditions, which will allow us to use Linear Programming during the inference.

3 Examples of typing derivations

Before proving the soundness of the type system we consider some examples.

Example 1 (Continued). The precise bound given in Section 1 contained a min-
imum, whereas we only consider max-plus bounds. Hence we hope to show that

stack(andtrees)× (1 + |t1|d) and stack(andtrees)× (1 + |t2|d)

are bounds on the stack space required. These correspond to the following two
type signatures:

t1 : tree(bool, stack(andtrees)), t2 : tree(bool, 0) → tree(bool, stack(andtrees)), 0
t1 : tree(bool, 0), t2 : tree(bool, stack(andtrees)) → tree(bool, stack(andtrees)), 0

Note that these signatures do not include the last stack(andtrees) units of space;
this is added by the typing of the function call in the caller. The annotation on
the result says that the bound is also at least stack(andtrees) times the depth
of the result, too.

We can obtain either of these signatures with a type derivation of the struc-
ture shown in Figure 7, where k1 = stack(andtrees), k2 = 0 for the first bound,
and vice versa for the second. The only non-trivial side condition in this typing
is k1 + k2 = k from ContractA′. Note that the uses of Let in the deriva-
tion focus in on exactly the subcontext required for the recursive calls and the
calculation of v.

Example 2. Using maxima in the potential also allows more precise bounds to
be derived than plain Hofmann-Jost is able to. Consider the following function:

let maybeleft(t,b) =
match t with leaf → leaf p node(l,r,v) →

if b then l else t



≡

Leaf

t2, 0

t2

Leaf

(l1; r1; v1), k1

Fun

l1, l2, k

Fun

r1, r2, k

If

Var

v2, k

Bool

v2, k

v1, v2, k

Node

(l; r; v), k

(l, k); (r, k); (v, k)
≡

(l, k); (r, k); (v1, v2, k)
Let

(l, k); (r1, r2, k); (v1, v2, k)
Let

(l1, l2, k); (r1, r2, k); (v1, v2, k)
Let

(l1, (l2; r2; v2), k); (r1, (l2; r2; v2), k); (v1, (l2; r2; v2), k)
Weaken

(l1; r1; v1), (l2; r2; v2), k
≡

(l1; r1; v1), k1, (l2; r2; v2), k2
ContractA′

(l1; r1; v1), k1, t2
Match

t1, t2
Match

Fig. 7. Typing derivation structure and contexts for andtrees example

While the function itself only requires a constant amount of stack space, its
typing is used to translate bounds in terms of its result’s size into bounds in
terms of t. In the present system we can obtain the signature

tree(T, k); bool → tree(T, k), 0

indicating that the size of t is an upper bound on the size of the result. The
key part of the typing is that we can use the max-contract form of the ≡ rule
to take the maximum of the two branches of the if expression. However, other
Hofmann-Jost analyses can only sum the potential for the branches of the if,
which doubles the part of the bound expressed in terms of t’s size.

4 Soundness

Our main result is that any amount of potential that we can assign to a typing
context and still type an expression using it is a sufficient amount of stack space
to evaluate that expression. For the induction, we also show that the potential
assigned to the result is at most the amount we began with and that any extra
space q is preserved.

Theorem 1. If an expression e in some well-typed program has a typing

Γ ` e : T, k′

and an evaluation S, σ ` e v, σ′ and Υc(σ, S, Γ ) is defined, then for any q ∈ Q+

and m ∈ N such that
m ≥ Υc(σ, S, Γ ) + q

m will be a sufficient amount of stack space for the execution to succeed,

m,S, σ ` e v, σ′,



and
m ≥ Υt(σ′, v, T ) + k′ + q.

Proof. (Sketch.) We proceed by simultaneous induction on the evaluation and
the typing derivations. First, note that whenever we use a value from S or σ
we can be sure that it has the expected form for its type because otherwise
Υc(σ, S, Γ ) would not be defined.

For the leaf evaluation rules (E-Leaf, E-Node and their unit, boolean, sum
and pair counterparts) no extra stack memory is required so the execution will
always succeed. It is then sufficient to check that Υc(σ, S, Γ ) plus the given side
condition is at least the potential assigned to the result.

The other rules need to use the induction hypothesis. The precondition on m
can be satisfied by showing that the original Υc(σ, S, Γ ) is larger than or equal to
its counterpart for the induction hypothesis. The result of the induction hypoth-
esis is sufficient for most of the rules, where the resulting value and type from the
induction hypothesis are also the value and type of the current expression. The
Fun rule is a little different due to the stack space used, and Let rule uses the
induction hypothesis twice. As these are the most interesting cases, we consider
them in a little more detail.

Fun. As the entire program is well-typed there must be a typing of the
function body:

Γ ` ef : T, k′
1.

Now we can check that m is sufficient for both the allocation and the induction
hypothesis (note that the side condition guarantees that q + k − stack(f) is
positive):

m ≥ Υc(σ, S, (Γ [x1/y1, . . . , xp/yp], k)) + q

= Υc(σ, [y1 7→ S(x1), . . . , yp 7→ S(xp)], Γ ) + k + q

≥ stack(f) + Υc(σ, [y1 7→ S(x1), . . . , yp 7→ S(xp)], Γ ) + (q + k − stack(f)).

From the induction hypothesis we also have

m ≥ stack(f) + Υt(σ′, v, T ) + k′
1 + (q + k − stack(f))

≥ Υt(σ′, v, T ) + k′ + q,

as required.
Let. It can be easily shown that Υc(σ, S, Γ (∆)) ≥ Υc(σ, S, ∆), which allows

us to apply the induction hypothesis to e1.
We can also use the induction hypothesis to deduce that the potential has

not increased. If we set m1 = dΥc(σ, S, ∆)e and q = m1 − Υc(σ, S, ∆) we can
see that m1 − q = Υc(σ, S, ∆), and from the induction hypothesis we know that
m1 − q ≥ Υt(σ0, v0, T0) + k0. Thus,

Υc(σ, S, ∆) ≥ Υt(σ0, v0, T0) + k0.

Thus we can also establish that m is sufficient to apply the induction hypothesis
to e2. ut



5 Checking and Inference

For type checking we assume that we are given the full typing derivation (in the
implementation we use an assignment of extra terms to uses of the structural
typing rules), including rational values for the annotations. It then remains to
check that each arithmetic side condition is satisfied.

Our inference procedure has three main steps:

1. Construct a plain (that is, unannotated) typing;
2. add the context structure and uses of the structural rules to obtain a typing

derivation in the system of Section 2, modulo side conditions; then
3. use standard Linear Programming techniques such as the Simplex method

to solve the side conditions and minimise the bound.

The first stage can be performed by standard unification methods. The mid-
dle stage is new to this analysis; previous Hofmann-Jost systems had relatively
little extra structure that might not be present in a plain typing (the exception to
this is contraction, which must be explicit in order to sum all the requirements).

To make the inference more tractable we assume that the user provides the
structure of the function signatures, but they need not give actual values for
the annotations. For instance, in the andtrees examples we could supply the
structure

t1, t2

without specifying the types or values for their annotations.
With the typing from the first stage and the structure for function signatures

we can derive a ‘desired’ typing context for each leaf in the typing derivation.
For example, the construction of the new node in the andtrees example has a
desired context of

(l : tree(bool, k1); r : tree(bool, k1); v : bool) , k

to match the Node rule. Note that k1 and k are just symbolic annotations;
the actual values are determined by the Linear Programming solver in the final
stage.

We then work outwards in the typing derivation until we have a ‘desired’
context for the entire function body. For example, if we have an expression
if x then e1 else e2 and desired contexts Γ1 and Γ2 for e1 and e2 respectively,
then we can take Γ1;Γ2;x (the maximum bound of the branches) as the desired
context for the entire expression. Note that we need to add a use of Weaken
to the typing derivations for e1 and e2 to remove the irrelevant subcontexts.

Binding constructs are more challenging. To simplify the problem we note
that we can use the ≡ typing rule to expand a context into a maximum of
sums form, and also contract an expanded context into its original form. Once
we have the contexts for the subexpressions in this form we can factor out the
bound variables and use ContractA′ to split any fixed amount k between the
part of the context changed by the expression’s typing rule and the surrounding
context (denoted Γ () in the typing rules). It is during this factoring that we



may need to introduce an approximation using Split. Finally, the expression’s
typing rule provides us with the desired typing context for the whole expression.

We must also add structural rules to bridge any gap between the desired con-
text inferred for the function body and the given function signature. Fortunately
this can be treated as an extreme form of binding construct, where every variable
is bound. Should the desired context have any symbolic annotation k without a
corresponding source in the function signature the plus-zero or max-zero cases
of ≡ can be used to fix k to be zero.

Finally, we gather the side conditions from the resulting typing and use a
Linear Programming solver to minimise the overall bound. This step may fail if
the resource usage is super-linear, or too subtle for the analysis (for example,
because it relies on some unmodelled invariant).

Applying the inference procedure to the examples in Section 3 yields the
same bounds as our manual use of the type system. However, the derivations are
more verbose, mostly due to the context expansion at every binding construct.

The extra stage in the inference also adds to the amount of work the inference
performs. In the worst case the expansion can be exponential with respect to
the context size, but in practice the execution times remain similar to earlier
Hofmann-Jost analyses [7, Appendix B].

6 Containers

Nested data structures such as trees of trees can present a problem for the
analysis. The limitation is that we always take the depth of the entire data
structure, including all nested contents. In a tree of trees this is the longest path
(weighted by the annotations) from the root of the outer tree to a leaf of the
inner trees. Hence when we move values around the outer tree (to sort it, for
example) we may change the overall depth despite leaving the depth of the outer
tree and each inner tree alone.

Ideally we would wish to express the overall ‘size’ of the data structures
differently; namely, as the depth of the outermost structure, plus the maximum
depth of the structures in the next layer, and so on for further nested layers:
essentially, the sum of the maximum depth of each layer. We conjecture that the
present type system could be extended in this direction by allowing constrained
movement of ‘contents’ variables in the context to mimic the corresponding
movement of values in their container. However, we leave this to future work.

For containers with simpler contents which carry no potential (units, booleans
and pairs thereof in the above language) we can adopt a simpler solution. As
these values are assigned no potential, there is no approximation involved in
using the Split rule with q = 0 to ‘lift’ these variables to the outermost level of
the context. Then the inference procedure described above is able to use them
wherever necessary.

We have successfully applied this technique to infer bounds on a functional
heap sort, and in particular it can show that the internal routines in the sort use
stack space proportional to the heap depth.



7 Extensions

The analysis can be extended in several ways. Algebraic datatypes can be in-
corporated by assigning structured contexts to constructors in a similar manner
to function signatures and generalising the typing rules for trees. These struc-
tures can be derived automatically to provide bounds with respect to depth, or
left to the user for greater flexibility. For example, two forms of product can
be defined using these datatypes: a plus-product that behaves as the product
presented above, and a max-product where the maximum of the potential of the
two values is taken.

The resource polymorphism extension hypothesised in the conclusions to Hof-
mann and Jost’s paper [1] can also be applied to allow different function signa-
tures to be inferred for different uses of a function, reflecting the local resource
requirements. Tail call optimisation can also be taken into account, and the
soundness proof can be extended to partial evaluations of non-terminating pro-
grams.

Details of these extensions, including a full soundness proof and formal details
of the inference procedure can be found in the author’s thesis [7, Chapters 6 and
7]. The extended type checker and inference procedures have been implemented
in Standard ML and are available online1 along with a small selection of example
programs.

8 Related work

We have already mentioned some of the recent work on Hofmann-Jost, notably
the extension to the Hume language in the Embounded project [4, 8]. Jost has
also worked on extensions for higher-order functions [9] and object oriented pro-
gramming and mutable references [10], although there is not currently an infer-
ence procedure for the latter. These features are largely orthogonal to our work,
as they change the language but only infer linear total size bounds. Indeed, one
possible avenue of future work is to apply our techniques to these analyses.

Most other analyses are based upon some form of sized-types. An early exam-
ple is Reistad and Gifford’s system for finding execution time estimates to assist
parallelisation [11], although they avoid detailed analysis of recursive functions
by providing fixed types for a small range of library functions such as map and
fold instead. Hughes and Pareto used their sized-types work to certify heap
and stack space bounds in a first-order ‘embedded ML’ language [12], but do
not provide any inference.

A strand of inference work on sized-types systems starts with Chin and
Khoo’s inference [13]. Like Pareto’s checker, the system is based on solving
systems of Presburger formulae. Their later work considers properties about
the values in containers [14], a language with references [15], space bounds for
object-oriented languages [16], and applying similar techniques to assembly pro-
grams [17]. Vasconcelos has also studied these inference systems in order to
1 http://homepages.inf.ed.ac.uk/bcampbe2/depth-analysis/



produce a sized types analysis and heap and stack space bounds for Hume [18].
One of the main advantages of a sized-types analysis over our approach is that
the size information can be reused for other analyses.

The use of Presburger solvers in these systems raises concerns about effi-
ciency, but it is unclear whether the generated constraints may include arbitrary
formulae, or if they are limited to some easily solved subset. The reports cited
above suggest that they are reasonable in practice. Similarly, certification us-
ing these systems may require the verifier to perform some constraint solving,
whereas for our system they need only perform some simple arithmetic after
reconstructing the typing using suitable hints.

A different approach which can yield non-linear bounds is to use recurrence
solvers to deal with recursive functions, such as Debray and Lin’s execution time
analysis for logic programs [19], and Vasconcelos and Hammond’s analysis [20].
The power of these analyses is dependent on the power of the recurrence solver
used. Recent work by Albert et al. has tackled this by producing a specialised
recurrence solver for dealing with cost equations [21].

9 Conclusions

We have presented a new stack space analysis similar in concept to the Hofmann-
Jost heap space analysis, but with more structure to enable richer, more precise
bounds.

Further work on the system could include enhancing the language (perhaps
using the existing Hofmann-Jost extensions mentioned above), removing the
need for users to provide the structure for type signatures and the contain-
ers extension outlined in Section 6. It would also be interesting to apply these
techniques to heap space by devising a suitable replacement for the Let rule,
especially as we may be able to regain the fine-grained form of plus-contraction
when considering total space bounds.
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