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Abstract

Gradient descent is an important class of iterative algorithms for minimizing convex
functions. Classically, gradient descent has been a sequential and synchronous process.
Distributed and asynchronous variants of gradient descent have been studied since the
1980s, and they have been experiencing a resurgence due to demand from large-scale
machine learning problems running on multi-core processors.

We provide a version of asynchronous gradient descent (AGD) in which communication
between cores is minimal and for which there is little synchronization overhead. We also
propose a new timing model for its analysis. With this model, we give the first amortized
analysis of AGD on convex functions. The amortization allows for bad updates (updates
that increase the value of the convex function); in contrast, most prior work makes the
strong assumption that every update must be significantly improving.

Typically, the step sizes used in AGD are smaller than those used in its synchronous
counterpart. We provide a method to determine the step sizes in AGD based on the
Hessian entries for the convex function. In certain circumstances, the resulting step sizes
are a constant fraction of those used in the corresponding synchronous algorithm, enabling
the overall performance of AGD to improve linearly with the number of cores.

We give two applications of our amortized analysis:

e We show that our AGD algorithm can be applied to two classes of problems which
have huge problem sizes in applications and consequently can benefit substantially
from parallelism. The first class of problems is to solve linear systems Ap = b, where
the A are symmetric and positive definite matrices. The second class of problems
is to minimize convex functions of the form " | fi(p;) + 3|/ Ap — b||?, where the f;
are convex differentiable univariate functions.

e We show that a version of asynchronous tatonnement, a simple distributed price
update dynamic, converges toward the market equilibrium in Fisher markets with
buyers having complementary-CES or Leontief utility functions.

*Most of the work done while at Courant Institute, NYU.
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1 Introduction

Gradient descent, an important class of iterative algorithms for minimizing convex functions,
is a key subroutine in many computational problems. Broadly speaking, gradient descent pro-
ceeds by iteratively moving in the direction of the negative gradient of the convex function.
Classically, gradient descent is a sequential and synchronous process. Distributed and asyn-
chronous variants have also been studied, starting with the work of Tsitsiklis et al. [I7] in
the 1980s; more recent results include [2, 3]. Distributed and asynchronous gradient descent
has been experiencing a resurgence of attention, particularly in computational learning the-
ory [12 [T5], due to recent advances in multi-core parallel processing technology and a strong
demand for speeding-up large-scale gradient descent problems via parallelism.

Gradient descent proceeds by repeatedly updating the coordinates of the argument to the
convex function. A few key common issues arise in any distributed and asynchronous iterative
implementation and their improper handling may lead to performance-destroying overhead
costs.

e In some implementations (e.g. [15]), different cored] may update the same component.
Without proper coordination, the progress made by one core can be overwritten, and if
such overwriting persists, in the worst case the system can fail to reach the desired result.

This difficulty can be avoided by block component descent — each coordinate is updated
by exactly one core. This is the approach we use in our Asynchronous Gradient Descent
(AGD) algorithm. The approach has been used previously in a round-robin manner [12],
but our AGD algorithm does not require the updates to proceed in any particular order.

e The cores need to follow a communication protocol in order to communicate/broadcast
their updates. Communication is often relatively slow compared to computation, so
reducing the need for communication can lead to a significant improvement in system
performance. Also, when there is delay in communication, cores may use outdated infor-
mation for the next update, which is a critical issue for asynchronous systems.

One common approach is to assume that the system has bounded asynchrony, i.e. the
delay in communication is bounded by a positive constant. Typically, there is a need to
wait for updates from the other cores, and the bounded asynchrony simply bounds the
waiting time. We will use the bounded asynchrony assumption, but our AGD algorithm
will have no waiting: updates will always be based on the information at hand; bounded
asynchrony just guarantees that it is not too dated.

e Often, the computation of one core needs the results computed by another core, implying
the computations of the different cores must be in a correct order to ensure correctness
and to reduce core waiting time. Typically this is achieved via a synchronization protocol,
which often requires that all cores follow a global clock. However, such protocols can be
costly and even impractical in some circumstances.

As we shall see, our AGD algorithm needs essentially no synchronization apart from an
initial synchronization to align the starting times of all cores.

IThese observations apply to any multi-processor system.



Broadly speaking, most prior work follows the asynchrony model proposed in [I7], in which
time is discretized. Our AGD algorithm allows each core to proceed at its own pace. This
allows for varying loads, for different updates having varied costs, for interruptions, and more
generally for variations in the completion times of updates. To support this, in our model,
time is continuous. To ensure progress, we require that each component be updated at least
once in each time unit, but do not impose an upper bound on the frequency of updates. A
more formal description of our model will be given in Section [2

We consider a robust family of AGD algorithms, and using our timing model, we give a
new amortized analysis which shows each algorithm converges to the minimal value of the
underlying function. Most prior work made the strong assumption that each update yields a
significant improvement. Our analysis, however, allows for bad individual updates (updates
that increase the value of the convex function), which seem to be unavoidable in general. In
our AGD algorithm, every update leads to errors in subsequent gradient measurements at
other cores. A natural question to ask is whether such errors can propagate and be persistent
and whether they might, in the worst case, prohibit convergence toward a minimal point.
Our amortized analysis shows that this will not happen when the step sizes used in the AGD
algorithm are suitably bounded. The following observation forms a key part of the analysis: if
there is a bad update to one component, it can only be due to some recent good updates to
other components, or to chaining of this effect. We use a carefully designed potential function,
which saves a portion of the gains due to good updates, to pay for the bad updates. The
amortized analysis will be presented in Section

Typically the step sizes used in AGD are smaller than those used in its synchronous coun-
terpart. Our AGD algorithm determines the step sizes based on the Hessian of the underlying
function. In certain circumstances, the step sizes in our AGD can be a constant fraction of those
used in its synchronous counterpart, ensuring that the number of rounds of updates performed
by the AGD algorithm is within a constant of the analogous upper bound for the synchronous
version. Note that AGD avoids the synchronization costs of its synchronous counterpart, which
are a practical concern [15].

Application: Solving Matrix Systems in Parallel We begin by considering two problems
in which bad updates are possible in an asynchronous setting. A linear system is the problem
of finding p € R" that satisfies Ap = b, where A € R™" and b € R™ are the inputs. As
is well-known, if A is a symmetric and positive definite matrix, solving the linear system is
equivalent to finding the minimum point of a strongly convex function, so our AGD algorithm
can be applied.

Nesterov [14] discusses the following class of optimization problems: minimizing convex
functions of the form Y7, fi(p;) + 1[|Ap—b]||?, where the f; are convex differentiable univariate
functions. The size of such problems can be huge in practice, and input/data can be distributed
in space and time, so time synchronization is costly and even impractical. One important
feature of our AGD algorithm is to allow the use of data that are variously dated. As we will
see, this hugely reduces the need for synchronization. More details are given in Section @l

Application: Asynchronous Tatonnement in Fisher Markets We show that an asyn-
chronous tatonnement converges toward the market equilibrium in two classes of Fisher mar-



kets.

The concept of a market equilibrium was first proposed by Walras [19]. Walras also proposed
an algorithmic approach for finding equilibrium prices, namely to adjust prices by tatonnement:
upward if there is too much demand and downward if too little. Since then, the study of market
equilibria and tatonnement have received much attention in economics, operations research,
and most recently in computer science [I], I8 8, [16]. Underlying many of these works is the
issue of what are plausible price adjustment mechanisms and in what types of markets they
attain a market equilibrium.

The tatonnements studied in prior work have mostly been continuous, or discrete and syn-
chronous. Observing that real-world market dynamics are highly distributed and hence pre-
sumably asynchronous, Cole and Fleischer [10] initiated the study of asynchronous tatonnement
with their Ongoing market model, a market model incorporating update dynamics.

Cheung, Cole and Devanur [6] showed that tatonnement is equivalent to gradient descent
on a convex function for several classes of Fisher markets, and consequently that a suitable
synchronous tatonnement converges toward the market equilibrium in two classes of markets:
complementary-CES Fisher markets and Leontief Fisher markets. This equivalence also enables
us to apply our amortized analysis to show that the corresponding asynchronous version of
tatonnement converges toward the market equilibrium in these two classes of markets. More
details are given in Section Al We note that the tatonnement for Leontief Fisher markets that
was analysed in [6] has an unrealistic constraint on the step sizes; our analysis removes that
constraint, and works for both synchronous and asynchronous tatonnement.

2 Asynchronous Gradient Descent Model

We consider the following unconstrained optimization problem: given a convex function ¢:
R™ — R, find its minimal point. In our model, time, denoted by t, is continuous. The gradient
descent process starts at ¢ = 0 from an initial point p® = (p?,pJ --- ,p?). For simplicity, we
assume that there are n cores, and p; is updated by the j-th core After each update, the
updating core broadcasts it; the other cores receive the message, possibly with a delay.

Notational Convention When there is an update at time ¢ which updates the value of one
or more variables, for each such variable O, we let both (0~ and (I’ denote its value just before
the update, and CJF its value right after the update.

We define pt = p'~, the current point at time ¢, to comprise the most recently updated
values for each coordinate. However, any particular core may have out-of-date values for one
or more coordinates, but not too much out-of-date, as we specify next.

Let t; and ty be the times of successive updates to p;. Then, at time 5, the j-th core will
have values for each of the other coordinates that were current at time ¢; or later. In other
words, the time taken to communicate an update is no larger than t5 — t;. Effectively, this is
the constraint on how much parallelism is possible. Informally speaking, the information which
the core holds is at most one “round” out of date w.r.t. its updates. In fact, it seems likely that
we could extend our analysis to allow for any fixed constant number of rounds of datedness,
but as this would entail a proportionate reduction in the step sizes, it does not seem useful.

2If there are fewer cores it suffices to cluster coordinates.



However, there is no requirement that updates occur at a similar rate, although we imagine
that this would be the typical case. It may be natural in some settings for coordinates to adjust
with different frequencies, e.g. prices of different goods in a broad enough market. Accordingly,
we define a rather general update rule, as follows. Each core has the freedom to determine the
time at which it updates its coordinate. To proceed, it will be helpful to define the following
rectangular subsets of coordinate values.

Definition 1. ]Sj[tl’tﬂ (sj) comprises the rectangular box with p; = s; and, for k # j, spanning
the range of values py, that occur over the time interval [ty, t5].

Let 7; be the time at which the last update to p; occurred, and let ¢ be the time of the
current update to p;. To update p;, the j-th core computes V;¢(p), where p is an arbitrary

point in f’j[Tj’t] (pz) This flexibility allows different coordinates at the j-th core to be variously
dated, under the constraint that they are all no older than time 7;. The general form of an
update is

pj < pj + Fi(p, Vo). 1) - (t — 75),
where F} is a function such that F;(p, V;¢(p),t) has the same sign as —V,;¢(p).

The term ¢t — 7; is somewhat unusual. It is needed because we impose no bound on the
frequency of updates. Without this multiplier, a core, the k-th core say, could perform many
updates in the time interval [7;, t|, potentially making a cumulatively large update to pj, which
could lead to an unbounded difference between V;¢(p) and V;¢(p'). This appears to preclude
the usual approaches to a proof of convergence, and even calls convergence into question in
general. If, in fact, t — 7; = O(1) always, then this term can be omitted.

Note that the sign of F;(p, V¢(p),t) can be opposite to that of Fj(p', V;é(p'),t); when this
occurs, an update will increase the value of ¢, i.e. we have a bad update!

We do not require any further coordination between the cores. We just require a minimal
amount of communication to ensure that the cores know an approximation of the current point
so that they can compute a useful gradient.

3 Amortized Analysis

Let ¢ : R — R be a twice-differentiable convex function. Our AGD algorithm solves the
problem of finding (or approximating) a minimal point of ¢, which we denote by p*. WLOG,
we assume that ¢* := ¢(p*) = 0. We assume that no two updates occur at the same time

By default, each core possesses the most up-to-date entry for the coordinate it updates.
However, due to communication delay, it may have outdated entries for coordinates updated
by other cores. Recall that p' denotes the most up-to-date entries at time ¢; let ﬁi’t denote the

entry for p, that the j-th core possesses at time ¢. Note that p’! € ]5][”"5} (pz)

We now consider an update to p; at time ¢ given by

g;(t)
P pj — Zo= A, (1)
J

3If two or more updates do occur at the same time, our analysis remains valid by making infinitesimal
perturbations to their update times.



where §;(t) = V;06(p"), At; = ¢ — 75, and 1/+4 is the step size, which will be determined by
a rule we specify later. We assume that At; < 1 always, i.e. two consecutive updates to the
same coordinate occur at most one time unit apart. We note that Rule (I is quite general for
it allows both additive and multiplicative updates, depending on the choice of the fyj». As we
shall see, our analysis handles applications of both types.

For any S C R", let Hyy(S) := maxyes We will use the shorthand H,Ltg’tﬂ (s¢)

(1) |-
for Hyy (]55[“@] (s@)>. In order to show our convergence results, the 4} need to be suitably
constrained and the Hessian entries need to be sufficiently bounded. We capture this in our
definition of controlled 75» and Hj, given right after Theorem [ below.

Theorem 1. Suppose that all updates are made according to update rule (). Let 5 = max;, 7;..
If the variables 75» and Hjj, are controlled, then

(a) Suppose the set {p' | d(p') < 2¢(p°)} is bounded with diameter B. Let M(B) := ©(B?%).
Then, if ¢(p°) < M(B), ¢(p') = O <@>; and otherwise, fort <t = O <log —¢(p0)>,

M(B)
¢(p") = 0 (27U (p")), and fort > ', ¢(p') = O <Af_(f))-

t
(b) If ¢ is strongly convex with parameter cl then o(ph) < (1 -0 (%)) - o(p?).

Definition 2. The variables % and Hjj, are said to be controlled if there are constants o > 2,
€, €5 > 0, with - =+ 265+ 26, < 1, cmd for each j and time t at which p; is updated, there are
positive numbers {& Yerzj, such that:

Al. (Local Lipschitz bound.)Let S; = Span {p;_,p?r}. For any p" € p'; x S;,

o(p) — o(0") — Vi00) - (0 — 1) < —J(p] —ph)%.

A2. (Upper bound on fyj) For each j, there exists a finite positive number 7; such that for
all t at which an update to p; occurs, 7;- <7;. Welet7:=max;7;.

tUk] ( Tk-i-)

A3. (Bound on nearby future Hessian entries.) >, ;& - H D

is the time of the next update to py;

< €5, where oy >t

AJ. (Bound on recent past Hessian entries.) Zk# (maxi:kik 5]%2) -H[T]’} (pj) < EB%, where

the index i runs over all updates to coordinate k between times 7; and t, and [3; is the
time at which each such update occurs (this notation is defined precisely in Lemmal3).

If the updates used fully up-to-date gradients, i.e. if Ap; = ;, rearranging Con-

dition A1 would give the following lower bound on the progress (cf. iemma below):

s o (1 ) B,

7j

“i.e. for any pi,p2 in its domain, ¢(p2) > ¢(p1) + Vo (p1) - (p2 — p1) + 5lp2 — 1|

>



The remaining conditions are present to cope with the lack of synchrony. Conditions A3 and A4
ensure that the “errors’ in the gradients we use for the updates are not too large cumulatively.
Basically, they will reduce the multiplier in the progress from (1 — 1) to (1 — 1 — 2¢, — 2e).
Recall that the lack of synchrony may result in bad updates. To hide the resulting temporary
lack of progress and to show continued long-term progress, we use an amortized analysis which
employs the following potential function.

d(pt,t,7) = —C Z/ g] dt/ + Z Zfﬁl H[ﬁ“%] ( P; ) 7(%/!:) 2 —co(t — 5y)],
(2)

where g;(t') = V;¢ (pt/) and o; > 7; is the time of the next update to p;; for each j, the
index ¢ runs over all updates, between times 7; and ¢, to coordinates other than j; ¢; and c;
are positive constants whose values we will determine later. {ff '} are the positive numbers
in Conditions A3 and A4; note that these variables are indexed by ¢ but not by the update
coordinate k;, so for any 7, §f“ may be different from §f12, even if k;, = k.

The integral in the above potential function reflects the ideal progress were there a continuous
synchronized updating of the prices, and the additional terms are present to account for the
attenuation of progress due to asynchrony.

Our method of analysis is to show that dq’ < —,®? for a suitable constant 3; > 0 whenever
there is no price update, and that only decreases when there is a price update; this then
yields Theorem [[(a). Theorem [(b) follows from a stronger bound on the derivative, namely
that ‘gf < —[9®, where 8, > 0. This general approach for asynchrony analysis was used
previously by Cheung et al. [7] for a result in the style of (b), but for a quite different potential

function.

It is straightforward to show that when there is no update,

- Apy,)”
%:_012 Zzgﬁz HP J]<] )(AZZZ,)' 3)

J

Lemma [2] below bounds the change to ¢ when there is an update. Lemma [3] states some
useful bounds on the maximum change that can occur to the gradient between two updates to
the same coordinate. Lemma [4] below bounds the change to ® when there is an update.

Lemma 2. Suppose there is an update to p; at time t according to rule ([l), with 7} satisfying
Condition A1. Let ¢~ and ¢+ denote, respectively, the convex function values just before and
just after the update. Let gj = V,0(p") and §; = §;(t). Let Ap; be the change to p; made by
At Then

the update, i.e. Ap; :=

1 7%;(Ap;)°
—_dt> 1= 2 ) I g — gl AL
¢ o = ( a) At, 195 — il - [Ap]
Lemma 3. Suppose that between times 7; and t, there are updates to the sequence of coor-
dinates ki, ko, - -+, ky, which may include repetitions, but include no update to coordinate j.

Let By, B, -, Bm denote the times at which these updates occur. Let §jmax and Gjmin denote,

6



respectively, the mazimum and minimum values of V;(p'), where p' € ﬁj[Tj’ﬂ (pz) For any
positive numbers {n; }i=1..m, for each k # j, let T := min;.x,—x ;. Then for any real number p,

[+ t] Bist] [t (Apk‘i)Q
‘,U| (g]max g]mln <2,u ;nkajj p] _'_;?71 kij (pﬂ) Atkl <4)

and

~ ~ . iy Apk §
(Gjmax — Fjamin)” < 8 <Z m B () Aty ) (Z H[ A ) | ?

i=1

Lemma 4. Suppose that there is an update to p; at time t. Suppose that fy} 1 chosen so that
Conditions A1, A3 and A4 hold. Let ®~ and ®T, respectively, denote the values of ® just
before and just after the update. Then

1
(I)f_q)JrZ (1———263—01(1+4€B)_26F
(6%

Vi(Ap;)?
At

+(1—CQ—01<2+863))Z£B2~ B, (p]) M

i=1 Atk’

Proof: By Lemma 2 and the fact (t — ;) < (t — 1) < 1,

- 0T =g ¢ - /_( dt+Z£ﬁl~ 1l (vp )—(AAZZ)QD_@@—@)]

o T Ap,
_22519 tk k+)<£[j>
J

k#j
1\ 7;(Ap;)? " " (g;(t)?
> (12 ) 222 g — a.l - |Aps| — 2MINTTT At
_( a) At 19; ngH pil q/ﬁ_ 7,
1 E
Apk t (Ap‘)z
- s g m( ) . oul () \8RI)
N E‘g >

We bound Fi, Fy and E5 below. We will be applying (@) and (&) with n; = @Bl Let

1

min;.,— &'

- Ap.. )2
7t () and zsﬂz- HP (pt) o)

Vii= Aty

k#j

Note that by Condition A4, V; < ery;., By @), Fy < 2(Ap;)*Vi +V, < 2637§(Apj)2 v



To bound E, first note that for any ¢’ € (7;,t], p’ € ~J-[Tj’t] (pz) Then

;1)) (9 _ (g(t) —3)* @(~.

— —— = - g; — g;(t
L = I g, — )
() — §.)?2 il 8 4(5.)2
< M +ol|%). 19; —g9;(t)] < =WV + (_g])Z Vi + 2V, (by Equs. ([B) and (@)
Y j Y (7]‘)
Sepyt de~E(G:)? den (5:)2
< _B% Vo + sz(g ) + 2V, < GB_(gJ) + (2 + 8e;) V3 (by Condition A2) (7)
Y (’Yj) Y
Hence (gjgff))Q <(1+ 45B)(%J'_)2 + (2 + 8¢5) V2, and then as At; <1,
J J
t ) f;/ 2 ~. QAt'
By, < 01/ @dt’ < Cl<1+463)<g])77]+61(2+86}3)‘/2 (8)
7j J J

. " t (Ap;)?
Finally, by Condition A3, F3 < 2€p7; AL
Combining the above bounds on Ey, Fs, F5 yields

1 LHAD:)? )2 AL
T -0 > (1~ wen)y [26575(Ap;)* + Va] — [er(1 + 463)(9&7] + ¢1(2 4 8ep) Vs
(Ap;)?
+ (2 - CQ)VQ - 2€F7§‘ At]j .
As Ap; = —gi/(t_t) At; and At; <1, the result follows. 0
J

Lemma 5. If 2 — ¢y > ¢1(2 4 8e¢p), then ®(p',t,7) > [1 — 2¢1(1 + 4ep)] d(ph).

Proof of Theorem [di(a): Choose ¢; = (1 + 4¢)"! - min {1 — é — 2€5 — 265, i} and ¢y =
1 —¢;(2+ 8€g). Then the following hold: (i) ¢1,¢; > 0; (il) 1 — £ — 2e5 — 2¢p — ¢1(1 4 4€5) > 0;
(ili) 1 — o — ¢1(24 8e5) = 0; (iv) 2 — ¢2 > ¢1(2 4 8es); (v) ¢1(1 +4ep) < 1.

By (ii), (iii) and Lemma [, ® does not increase at any update.

By (iv), (v) and Lemma B, ®(p', t,7) > %pt). Thus, Vi > 0, ¢(p') < 20(p't,7) <
20(p°,0,0) = 2¢(p°), i.e. {p'}i=o is contained in the set {p'| d(p/) < 2¢(p°)}, which, by as-
sumption, has diameter at most B.

Note that at any time ¢, by the convexity of ¢, ¢(p') + >, g;(t) - (p; —p}) < ¢* = 0 and

hence
S g1 185 =5l = gi() - (0 — 1)) = (p') > 0.
J J

By the Cauchy-Schwarz inequality,

o) < 3 lo;(0)] - b — vl < (Z(gj(t)P) (Z@ —PW) < B [> (g;t)>

J



Then

By @),

@ SR e DTG ()

By @, 2!, 4,7) < 6(p) + 255, 5, B (v77) “;:;3’2. Let Xy = ¢(p') and X, ==
Z > Sﬁz : [BZ il <p;j+> (AAptiii)Q. Then ® < X; 4+ 2X, and dq’ < 7( 1)? — Xy, Let
M(B) = @(32 ). As ¢(p') < 2®(t), this guarantees that if gb( ) O(p ) M(B), then
o(p') =0 <M§3)>; and otherwise, for t <t = O (log M(B)>, o(p) ( pO)), and for
t>t, o(p') =0 (J‘ff?) O

Proof of Theorem [I[(b): If ¢ is strongly convex with parameter ¢, then, by definition,

0=0¢">o(p +Zgj pg—p])+§Z(p§—p§)2

—l—mm{Zgj )+2(p] p§)2}.

Computing the minimum point of the quadratic polynomial in (p; — p}) yields 0 > ¢(p") —
Z (gj(t .~ Then

(9;(1))* _ 1 2c
DT 22D (90 2 S,

j 7 75

As in Case (a), & < X; + 2Xy; and by (@), % < —@Xl — 3X5. This guarantees that

20(pt) < ®(t) < (1 —6(c))té(p®), where 6(c) = min{<t o O

504

4 Solving Matrix Systems

For any symmetric and positive definite (SPD) matrix A € R"*" and b,p € R", let fa,(p) =
%pTAp —p"b. It is well known that fa,(p) is a strictly convex function of p, and V f4,(p) =
Ap — b. Therefore, finding the minimum point of f4;,(p) is equivalent to solving the linear
system Ap = b, and hence one can solve the linear system by performing gradient descent on
fap(p).

The Hessian of fa,(p) is V2fas(p) = A, a constant matrix. This allows a simple rule to
determine a constant step size for each coordinate. By taking all the £ values to be 1, to
apply Theorem [} it suffices to have 7} = v; satisfy v; > A“a (for A1), % Zk# |Aj,| < 1— é

(combining A3, A4 and the bound + S+ 26 + 265 < 1), and a > 2. These imply it suffices that
g ) —1
the step size, 1/7;, be less than [max {w, Ajo .

9



Another application is given by the following class of optimization problems (see Nes-
terov [14]): minimizing F(p) := >_"", f;(pi) + 3/ Ap—b||?, where the f; are convex differentiable
univariate functions, A € R™*" is an r xn real matrix and b € R”. The Hessian of [ at pis A" A+
D, where D is the diagonal matrix with Dj; = f/(p;). If f/(p) is bounded by L;, again, it suf-
A4l o, %_ D i [(ATA) | < 1—2, and a > 2. These im-

fices to have v} = ; satisfy 7; > 5
35t LiH8 Yng; I(ATA

T ) -1
ply it suffices that the step size, 1/v;, be less than [max { (@74) 5 )i (ATA) + Ly }] .

Next, we discuss how V,;F(p) is computed by the j-th core. Let G(p) = Ap — b and
let A; denote the j-th column of the matrix A. Then V;F(p) = fi(p;) + (A;)"G(p). fi(p;) is
recomputed only when p; changes. For any k, when py, is changed by Apy, G(p+Apy) —G(p) =
Apy Ay, and hence (A4;)"G(p) changes by Apy(A;)"A,. Note that (A;)" Ay is a constant and
hence can be pre-calculated, so the above equation provides a quick way to update V;F(p)
once the j-th core receives the message with Apy.

Recall that our AGD algorithm allows different coordinate values to be variously dated,
under the constraint that they are all no older than the time of the last update. It is natural to
aim to have essentially the same frequency of update for each coordinate. Accordingly, at the
i-th round of updates, each core can simply ensure it has received the update for the previous
round from every other core. The update messages might arrive at different times, but the j-th
core needs not wait until it collects all such messages. It can simply compute the changes to
V;F(p) incrementally as it receives updates Apy, to p,. This avoids the need for any explicit
synchronization.

5 Tatonnement in Fisher Markets

A Fisher market comprises a set of n goods and two sets of agents, sellers and buyers. The
sellers bring the goods to market and the buyers bring money with which to buy the goods. The
trade is driven by a collection of non-negative prices {p;};=1..., one price per good. WLOG,
we assume that each seller brings one distinct good to the market, and she is the price-setter
for this good. By normalization, we may assume that each seller brings one unit of her good
to the market.

Each buyer i starts with e; money, and has a utility function w;(x;, 2, - - - , ;) expressing
her preferences: if she prefers bundle {z;};—1.., to bundle {z};};_1..,,, then w;({zf;};-1..) >
ui({a?;}j=1.n). At any given prices {p;};—1..., each buyer i seeks to purchase a maximum
utility bundle of goods costing at most e;. The demand for good j, denoted by z;, is the total
quantity of the good sought by all buyers. The supply of good j is the quantity of good j its
seller brings to the market, which we have assumed to be 1. The excess demand for good j,
denoted by z;, is the demand for the good minus its supply, i.e. z; = x; — 1. Prices {p;f}jzl...n
are said to form a market equilibrium if, for any good j with p; > 0, z; = 0, and for any good
J with p7 =0, z; <0.

The following two classes of utility functions are commonly used in market models. The
first class is the Constant Elasticity of Substitution (CES) utility function:

Wi (T, Tigy -+ 3 Tin) = (ain(x)? + @z (T0)" + - + am(ﬂfm)pi)l/pi ;

where p; < 1 and Vj, a;; > 0. 6; := p;/(pi — 1) is a parameter which will be used in the
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analysis. In this paper we focus on the cases p; < 0, in which goods are complements and
hence the utility function is called a complementary-CES utility function. It is easy to extend
our analysis to the cases p; > 0, which had been analysed in [10, [IT]. The second class is the
Leontief utility function:

Uj; (ﬂfﬂ, Tigy - ,SUm) = min {bz'jfb’z’j} )
jES

where S is a non-empty subset of the goods in the market, and Vj € S, b;; > 0.

Cheung, Cole and Devanur [6] showed that tatonnement is equivalent to gradient descent
on a convex function ¢ for Fisher markets with buyers having complementary-CES or Leontief
utility functions (defined in the appendix). To be specific, V,;¢(p) = —z;(p), and the convex
function ¢ is ¢(p) = >_; p;+ >, Ui(p), where @;(p) is the optimal utility that buyer i can attain
at prices p. The corresponding update rule is

py =p;- (1+A-min{Z;, 1} - (t = 73)), (9)

where Z; is a value between the minimum and maximum excess demands during the time
interval (7;,¢], and A > 0 is a suitable constant. As the update rule is multiplicative, we
assume that the initial prices are positive.

Note that v} = W As we will see, it suffices that A < =, In comparison, in the
y .
. 6 1,2¢ .
synchronous version, fy} > %ZJ}, so the step sizes of the asynchronous tatonnement are a
J

constant fraction of those used in its synchronous counterpart.

Theorem 6. For A\ < ﬁ, asynchronous tatonnement price updates using rule (@) converge

toward the market equilibrium in any complementary-CES or Leontief Fisher market.

In a Fisher market with buyers having complementary-CES utility functions, Properties 1
and 2 below are well-known. Property 3 was proved in [6] and implies that Condition A1 holds
when a = 6 and 7§ > 9.5z,(p") /p-

1. Let x;(p) denote the buyer i’s demand for good ¢ at prices p. Then for k # j,

p
Op;Opy,

e

B Z 0, (P)iffik(p) < Z %ﬁlk(m

2. Given positive prices p, for any 0 < r; < ry, let p’ be prices such that for all j, rp; <
P < ropj. Then for all j, —a;(p) < x;(p) < ta4(p).

3. If 52 < 1/6, then ¢(p + Ap) — ¢(p) — V;0(p) - Ap; < 57 (Apy)*.

We outline the analysis for the complementary-CES case. As A < Tl%,, within one unit
of time, each price can vary by a factor between (9/10)* = 81/100 and (11/10)* = 121/100ﬁ

Hence, within one unit of time, the demand can vary by a factor between 100/121 and 100/81.

For each update to p; at time ¢, we choose &, := pj,/p}. Then the following lemma bounds
the sums in Conditions A3 and A4.

5These bounds are loose, but they suffice for our purpose.
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. . 53 (pt
Lemma 7. (a) Ek;ﬁ] .- H t d (pkﬁ) < 153 f(p );

pj

Tt 1.89z; (pt
(b) Zk# (maxq:qu g%q) .HIEJ? ] (pz) < pg(p )|
J

Proof:
2
[t7t+1] Tk;+ pk 8 ¢
gt - H; . max
; k gk ; » eP[t 1] ( -rk+> apjapk
y 100 £\) (100 ¢
< L P - max Z M < Z Z 81 120 (P )) (81 T (p ))
B e 2T @ T HE"E
1.53 prri(p') _ 153 1.532;(p")
S x@] t) Z ‘ >~ wa = 75
p] i k] ¢ i pj
And
B 2
1 T b 4 o
Z <max 3 ) HIEJ?’ﬂ () = Z w - max | ;
100 (100xl (pt)) (100xlk(pt))
S < ) 81 J 31
pj ; Z i
1.89 i 1.89 1.89z. (p*
< BT ayn T ) < B0 - MO,
P 5 K] Pi Pj

0

Proof of Theorem [6] for the CES case: By Property 3, Condition Al is satisfied by set-
ting v} > % and o = 6. By Lemma [[, Conditions A3 and A4 are satisfied by setting

eF—l/GandeB—1/5 andl———QEF 26321—10>0.

As discussed in [10], the seller might know only Z; but not z;. As ; > 2Lz, it would be

= 100
1.73 23.46 max{1

more natural to use 75 > ===, or the even weaker (but still more natural) v} > W,
Pj J

which yields update rule ().

[6] proved that prices in tatonnement cannot get arbitrarily close to zero and hence demands
cannot increase indefinitely, so 7;, as defined in Condition A2, is finite. [6] also showed that ¢
is strongly convex. The result follows from Theorem [[I(b). 0

Ongoing Complementary-CES Fisher Markets Cole and Fleischer’s Ongoing market
model [I0] incorporates asynchronous tatonnement and warehouses to form a self-contained
dynamic market model. The price update rule is designed to achieve two goals simultaneously:
convergence toward the market equilibrium and warehouse “balance”. As in [7], we modify the
price update rule (@) to achieve both targets. Analysing its convergence entails the design of a
significantly more involved potential function; the details are given in the appendix.
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Leontief Fisher Markets [t is well-known that Leontief utility functions can be considered
as the “limit” of CES utility functions as p — —o0. Our analysis for CES Fisher markets can
be reused, with no modification needed, to show that in any Leontief Fisher market, ®(p', ¢, 7)
decreases with t. However, as an equilibrium price in a Leontief Fisher market can be zero, it
is unavoidable that the chosen step size 7; may tend to infinity (as 75 = €(1/p;)), violating
Condition A2; thus Theorem [Il cannot be applied directly.

On top of the result that ®(p',¢,7) decreases with ¢, we provide additional arguments to
show that tatonnement with update rule (@) still converges toward the market equilibrium
in Leontief Fisher markets. The proof is given in the appendix. However, this result does
not provide a bound on the rate of convergence, which appears to preclude incorporating
warehouses into the analysis.

Further Discussion of Asynchronous Dynamics Computer science has long been con-
cerned with the organization and manipulation of information in the form of well-defined
problems with a clear intended outcome. But in the last 15 years, computer science has gained
a new dimension, in which outcomes are predicted or described, rather than designed. Exam-
ples include bird flocking [4], influence systems [5], spread of information memes across the
Internet [I3] and market economies [I0]. Many of these problems fall into the broad category
of analysing dynamic systems. Dynamic systems are a staple of the physical sciences; often
the dynamics are captured via a neat, deterministic set of rules (e.g. Newton’s law of motion,
Maxwell’s equations for electrodynamics). The modeling of dynamic systems with intelligent
agents presents new challenges because agent behavior may not be wholly consistent or sys-
tematic. One issue that has received little attention is the timing of agents’ actions. Typically,
a fixed schedule has been assumed (e.g. synchronous or round robin), perhaps because it was
more readily analysed.

This work provides a second demonstration (the first demonstration is in [I1], [7]) and further
development of a method for analysing asynchronous dynamics, here for dynamics which are
equivalent to gradient descent. This methodology may be of wider interest.
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A Missing Proofs in Section

Proof of Lemma By Condition Al, ¢T — ¢~ — g;Ap; < %;(Apj)? Then

) ) _ g/
¢ =" > —[g; + (g5 — 3;)]Ap; — EJ(APJ')Q
t t 2
Ap, 1 {(Ap)) i
Sy = 1 LB g gl 1an] (s Ay <)

1 7;(Ap;)° )
(1= 1) 25 -l

>

O
Proof of Lemma We begin by showing
gj,max - gj,min S 2 Z H]Ef]ht} (pz) . |Apk1| (10)

First of all, we define a few useful notations. Let ﬁmaf( a]nd Pmin, Tespectively, der(lot? the
t1,t t1,t

p-values at which V;¢(p) yields §jmax and gjmin. Let py 1y, = minge, g pb and Phomax *=
maXy e(t, 4] pg. Let By := ;.

To prove (I0), we first construct a path P that connects pyax and puin, with each edge in P
corresponding to a price update between times 7; and ¢. The construction builds two paths, P?,
starting at puax, and P¢, starting at pupi,. Note that prax, Pmin € 15]»[Tj ¥ (pﬁ), and for all k& # j,
(Pmax)k> (Pmin)k € [pfﬁ;ﬂl, pl(f glgx} P? and P¢ will be constructed in m steps that correspond
to the m price updates at times i, B2, -, B. By the end of the (-th step, our construction
ensures that the end points of P® and P¢ are in the set Pj[B o] (pz) Hence, by the end of the

m-th step, the end points of P® and P¢ are in the set pj[ﬁm,t] (pz), which is a singleton, so the
two end points must be equal. This allows P® and P¢ to be concatenated at their end points
to form the path P. The specifics of the construction are as follows:

1. Let p® and p°, respectively, denote the end points of P® and P¢, i.e. initially, p° = Pax
and ﬁe = Dmin-

2. Fori=1---m, do:

e Suppose span {p; , 5, } = [li,r:]. WLOG, suppose that p; = 1,8

Note that by the end of the last step, the construction ensures that [;, r; € [péfﬂ;h’f] , pl(f ir;l;’)f]

Also, note that at most one of the strict inequalities p,(ff ol p,(ff 1l and p

p,(fj I;;f] holds, and hence [; < p,(f ’nﬂn < pgfj Zn?ax < r; is not possible.

(Bist]

ki,max

<

e For any p, let p’ = (p_k, x) be the vector such that p} = x, and for all h # k, p}, = pp.
Bist]  (Bist]

ki,min’ plﬂ,max’

Depending on the values of I;, r;, p there are five cases.

6Tf Pg, = li, swap the roles of P° and P¢ in the current for loop.
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(a) It plPf <1 <, < plPfl " do nothing.

ki,min ki,max>’

(b) If I; < p,flr’ﬁ]m <r < p,(ffr;]gx, let p’ = (p ks ,p/,(flr’n}m>7 in P*, connect p* to p/, and
update p® to p'.
(¢) Tl <73 < Pyl < i

-let pf = (p ks ,péﬁlrﬁ]m) in P*, connect p*® to p/, and update p* to p'.
- let p" = (p K, ,p/,(f'r’n}m>7 in P¢, connect p° to p”, and update p° to p”.

(d) If pkﬁ'r’ﬁ]m <Il; < pgﬂm <1, let pf = (p K, ,péﬁ'r’ngx) in P¢, connect p° to p’, and
update p° to p'.
(€) Tt i < Pl < 1 <7
-let pf = <p ks ,p,(flrﬁgx), in P?, connect p® to p’, and update p°® to p'.
- let p" = (p K, ,péﬁlr’nLX» in P¢, connect p¢ to p”, and update p° to p”.
3. Concatenate P* and P¢ at p® = p° to form the path P.

There are at most 2m edges in the path P, with at most two edges added in each of the m
steps. Note that the length of each edge added in the i-th step is at most |Apy,|,

calculus, the change to V;(p’) along each such edge is at most H,[f; (pj) |Apg,|. This yields

@m).

To prove (@) and (H), first note that since ]5[ 3 (') Z5J[Tj’t] (ph). H,f;’t] (ph) < gl (p').

kij
Then Z H,f;’ (0 Aty, <Z HTJ’ ) Aty, <§ H,Zf’t] () Y A,
k+#j itk =k
< 22 H,;J’ p). (11)
k#]

The last inequality holds since » ;. _, Aty, <14 (t —75) < 2.
The proof of ({):

|:u‘ (g]max gjmm <QZH[5Z7t] ) ‘Apk

=1

2A4, (Ap. )2
< Z H[ﬁz,t] |:/~L 7 + ’fh(Af’m) :| (AM-GM ineq.)
py i ki

7

[ (by Eqn. (I0))

2 [75.t] - [Birt] (Apk¢)2
< 2 Z Pl (p5) + > _mi HG () “ap, (v B @D)
k;é] =1 v
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The proof of ([):
(gj,max - gj,min)Q

) 1Biy 1]
<4y > H () - R (0))

(by Eqn. (I0))

i1=112=1
m m 2 2
Bl oy gl oy | (BPry) 0 Aty (Api, ) 1At ,
SQ;;H]%} (pj) - Hy,y (0) — + M Ay, (AM-GM ineq.)
o i1 ; Apg, 27h‘ Aty,
=230l )l ) )
i1=112=1 12 i1

e iz ; Apy, 27h‘ Aty,
2303 ufl ) -l ) B A,

io=1141=1

(swap the indices 7; and 75 in the second double-summation)

2
- - [ﬁll [612 ] (Apkzl) ThlAtsz
=4 > H, ()

i1=1402=1 £ j kZQJ ni2Atki1
m 2 m
85,4 (Aps,) ()
=4 (anl .Hzlj (p]) ) At ) ( . Hk;, jt (p]) Ath)
i1=1 ki in=1 Mia
m A 1 _
8 (Zm ( Apt‘:) ) (Z —H( 3)) (by Equ. ()
‘ k#j

O

Proof of Lemma First, we bound the integral terms in ®(p', ¢, 7) (see Eqn. ([2)). Follow-
ing the derivations of () and (8)), with g, replaced by g;, yields

m

t ‘t/ 2 QAt ) . A ,2
o [ 0 < i1+ 46) LR 0 se) SOl (o) L5
Tj J J i=1 ki

and hence
t . t/
S GO g < ey(1 4 4eg) 3 19V AL
J RN J

When 2 — ¢3 > ¢1(2 + 8¢3), as p§~ = p;j * the double summation in the above inequality is no

larger than the double summation in ®(p*, ¢, 7). Thus ®(p',¢,7) > ¢(p') —c1(1+4e5) 3, %.
J

2
+Cl 2"—86}3 ZZ&BI : [ﬁl t] ]) (Apkl) .

7 Atki

Next, we bound the sum 3 (G

coordinates at time ¢, and p; is updzjxted with the most up-to-date gradient g; = g; and step
size 1/7;. By Lemma [ and Condition A2, ¢~ — ¢* > lzj % > %Zﬂ %. Here
J J

6" = 6(p). Thus ¢~ — 6" < G(p') — 6" = $(p"), and hence 3=, LLEL < 20(p"). 0

Suppose there are hypothetical updates to all the
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B Leontief Fisher Markets

Lemma 8. Let 7;,t be the times at which two consecutive updates to p; occur. Iffy§ 15 controlled

t )2
and ¢y < 1, then @7 — & > (1 — L —2¢, — 2¢,) Vj(ﬁ:]) :
J

Proof: This lemma can be proved by slightly modifying the proof of Lemma [ we will use
the notations defined therein.

By Lemma ] ® does not increase at the updates made in the time interval (7;,¢). By (@),

/
ot — ol 201/ G1G)

J 7]

By @),

- 1 2 (Ap)* (Apy,)?
O — @t > (1- =)L g F (2 i g /m( ) ) g
> ( a) A, 1=+ (22— Zf p; Al 3

Combining the two inequalities above yields

q)Tj-i- o (I)t-‘r _ ((I)Tj+ o q)t—) + ((I)t_ o (bt-i-)
L) 25(Ap,)° b gt (Dpi,)?
Z(l—a)th+(2_c2)Z§ ) (p] > Ay, — By — Es.

The result follows on noting that p;j t = p§~ and by applying the bounds on F; and Fj5 in the

proof of Lemma [4] O

Let U = max {maxj{pj} 2>, ez} be an upper bound on the prices throughout the taton-
nement process [6].

Lemma 9. Let § =1 — l — 2e5 — 2¢€x. Suppose that there are consecutive updates to p; at
times To < T1 < --- < Tm, where Y,, — Yo < 2. If ’pn* pf"”’ > €, where € < 1, then
PYot — Tmt > 2. mm{Q, D

Proof: Forgq=1,2,---,m,let Ap;, be the change to p, at the update timed T, and let 2,

be the Z-value used for the update, i.e. fyfq = M and Ap;, = )\p] ~min{1, Z; .} - At,.
p]
We will use Lemma [§ to give a lower bound on the decrease to ® between times Yo+ and

T,.+. If Z;,, <1, then

Tq
7 (Apj,q>2 _ 1 (Apj,q>2 > 1 (Apj,q)2
)\p}q Aty — AU Aty

If Z;, > 1, then

Yo Ap. )2 5. 2
7 ( pm) _ Zj,q )2 <pffq) Atq _ )\p;fqij,thq > |Apj,q|-
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By Lemma [

m m Ty 2
Yo+ _ pTmt — Z (@qul'i‘ B ©Tq+) > 52 7 ;Apjvq)
q=1 q=1 tq
Y (Ap] q
> 0 A
“NU < At, + Z |Apjql-
q:2j,q<1 q:Zjq>1

By the assumption |pT°Jr p}m+| > 6, )i [Apjgl > e Let o i=¢! Zngj’qﬂ |Apj,|. Then
Zq:Zj <1 |Ap; 4| > max{0, (1 — o0)e}. By the Cauchy-Schwarz inequality,

2 2
Ap;
max{0,(1—o)e}]* < [ D [Apll | = Y |[=2L|- VA,
q:zj,q<1 q:Zjq<1 |V Atq
(Apjq)°
|2 )| 2 A
q:zj,q<1 q:zj,q<1
<3 Y pr ,
q:zj,q<1
e Y,e o B2k > Limax{0, (1 — 0)e}]”. Then
PTot _ pTmt > 0 [max{0, (1 — 0)e}]* + doe.
—3\U ’
The minimum value of the right hand side is at least de? - min {%, ﬁ} O

Corollary 10. For any e > 0, there exists a finite time I, such that for any good j, anyt > T,
and any 0 < At <1, |p — HA’f| <e.

Proof of Theorem [6] for the Leontief case: The proof comprises four steps. We need the
following definitions: for any two price vectors p? and p?, let d(p ,p?) denote the L; norm
distance between the two price vectors, i.e. d(p?, p?) = > p] —p; B|. For any two sets of price

vectors P4 and PP, let d(P*, PP) :=inf acpa yzcpe d(p?, pP).

Step 1. Let € be the set of limit points of a tatonnement process. We show that € is
non-empty and connected.

Since all prices remain bounded by U throughout the tatonnement process, €2 is non-empty.

Suppose €2 is not connected. Let 2, denote a connected component of €2, and let 2, = Q\€,.
Suppose d(2q,, ) = ¢ > 0. By the definition of limit points, there exists a finite time T such
that thereafter the prices in the tatonnement process are always within an €’/4-neighborhood
of either Q, or €,. This forces an infinite number of updates, each separated by at least one
time unit, such that each update makes a change to a price by at least at least €¢’/2. This
contradicts Corollary
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Step 2. Recall that a market equilibrium is a price vector p* at which for each j, pj > 0
implies z;(p*) = 0 and p; = 0 implies z;(p*) < 0. We define a pseudo-equilibrium: a price
vector p is a pseudo-equilibrium if for each j, p; > 0 implies z;(p) = 0. Note that every market
equilibrium is a pseudo-equilibrium. We show that all limit points in {2 are pseudo-equilibria.

Suppose not. Let p’ € € be a price vector which is not a pseudo-equilibrium, i.e. there exists
Jj such that p/; > 0 but z;(p’) # 0. Let € be a positive number such that for any price vector p
in the e-neighborhood of p, p; > p;/2 and |2;(p)| > |z;(p')/2|. By the definition of limit points,
the tatonnement process enters the (€/2)-neighborhood of p’ infinitely often. By Corollary [I0,
there exists a finite time such that subsequently, every time the tatonnement process enters
the e¢/2-neighborhood of p/, it stays in the e-neighborhood of p’ for at least one time unit. By
Eqn. @), ® drops by at least A(p}/2)(z;(p')/2)? during each such stay in the e-neighborhood
of p’. This is a contradiction since ® is positive throughout and hence cannot drop by at least
A(P;/2)(z;(p')/2)? infinitely often.

Step 3. We show that the excess demands at all limit points in €2 are identical.

For every subset of goods S, let Qg = {p' € Q|p}, > 0 < k € S}. For each buyer, there are
two cases:

e if the buyer wants at least one good in S, say good /:

Observe that by the definition of pseudo-equilibrium and Step 2, every price vector in g,
excluding the zero prices in the price vector, is a market equilibrium for the sub-Leontief-
market comprising the goods in S. Codenotti and Varadarajan [9] pointed out that the
demands for the goods in S of each buyer are identical at every market equilibrium of
the sub-Leontief market, and hence also in the original Leontief market. So the buyer
demands the same positive but finite amount of good ¢ at every price vector in (g in
the original market. Also note that the buyer always demands the goods in the original
market in a fixed proportion. This forces the demands for the goods not in S of the buyer
are also identical at every price vector in (2g.

e if the buyer wants no good in S:
Then the buyer demands infinite amount of each good that she wants, and demands zero
amount of each good that she does not want.

In either case, the buyer’s demands for each good at every price vector in {25 are identical, and
hence also the total demand for each good.

Then consider a graph GG with each vertex corresponding to a subset of goods S such that
Qg is non-empty, and two vertices Si, Sz being adjacent if and only if d (Qg,,{s,) = 0. Since
excess demands are a continuous function] of prices, if S; and S5 are adjacent, then the excess
demands for all goods at every price vector in S; U Sy are identical. By Step 1, the graph G is
connected, thus the excess demands at all limit points in €2 are identical.

Step 4. We show that every limit point in € is indeed a market equilibrium.

"The range of the excess demand functions is the extended real line R U {4+oc}; continuity of the excess
demand function is w.r.t. the usual topology on the extended real line. To be specific, if zp(p) = 400 for some
p and k, then for any M € R, there exists an ej; > 0 such that zx(p) > M in the ejr-neighborhood of p.
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Suppose not, i.e. there exists a limit point p’ in € which is a pseudo-equilibrium but not
a market equilibrium, i.e. there exists k such that p, = 0 but z;(p’) > 0. By Step 3, z is
positive at every limit point in §2, and hence every p; at every limit point must be zero. By
the definition of limit points, for any ¢ > 0, beyond a finite time, the tatonnement process
must stay within the e-neighborhood of €2 thereafter. By choosing a sufficiently small €, 2 is
bounded away from zero in the e-neighborhood of €2, and hence p; increase indefinitely and
eventually pr becomes so large that the tatonnement process must leave the e-neighborhood of
(), a contradiction. O
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C Ongoing Complementary-CES Fisher Markets

The tatonnement process which we described in Section [l is a two-stage process. In the first
stage, the buyers repeatedly report their demands to sellers according to the current prices,
then the sellers update the prices with the reported demands. The first stage continues until
the market reaches a market equilibrium, and then trades occur in the second stage. Clearly,
this is not a plausible real-world market dynamic.

In order to have a more realistic setting for a price adjustment algorithm, it would appear
that out-of-equilibrium trade must be allowed, so as to generate the demand imbalances that
then induce price adjustments. In an attempt to build a more realistic market model, Cole and
Fleischer [10] introduced the Ongoing market model. In an ongoing Fisher market, the market
repeats over an unbounded number of time intervals called days. Each day, the seller of each
good receives one new unit of the good, and each buyer 7 is given e; amount of money. In that
day, each buyer ¢ purchases a utility-maximizing bundle of goods of cost at most e;.

But then there needs to be a way for seller to handle excess supply /demand. To this end, for
each good j there is a warehouse of finite capacity x; which can meet excess demand and store
excess supply. When there is surplus (supply exceeds demand), it is stored in the warehouse;
when there is excess demand (demand exceeds supply), good is taken from the warehouse to
meet the excess demand. The sellers change prices as needed to ensure their warehouses neither
overfill nor run out of goods.

Given initial prices p°, initial warehouses stocks v°, where 0 < v;-) < x; for each good 7,
and ideal warehouse stocks v*, the task is to repeatedly adjust prices so as to converge to a
market equilibrium with the warehouse stocks converging to their ideal values; for simplicity,
we suppose that v; = x;/2 for each good j. v; will denote the difference between the content

of the warehouse of good j and v}; hence v; € [—x;/2, x;/2].

In an ongoing Fisher market, the sellers adjust the prices of their goods. In order to have
progress, the sellers are required to update prices at least once per day. However, there is no
upper bound on the frequency of price changes. This entails measuring demand on a finer scale
than day units. Accordingly, we assume that each buyer spends their money at a uniform rate
throughout the day, and hence instantaneous demand and instantaneous excess demand for
good j at any time t € R' can be readily defined; we denote them by :L‘; and z§ respectively.

In this section, we analyse ongoing complementary-CES Fisher markets. Recall that for
a complementary-CES Fisher market, tatonnement is equivalent to gradient descent on the
convex function ¢(p) = >, p; + >, 4i(p), where @;(p) is the optimal utility that buyer i
can attain at prices p. We will introduce new potential functions, which incorporate ¢ as a
component, for the ongoing market analysis.

We use the following price update rule, which is a variant of (d)), and which ensures conver-
gence to the ideal warehouse stocks as well as to the market equilibrium:

P, =p; - (14X -min{Z — ko5, 1} - Aty) (12)

1

where \;, r5; are small constants. Note that 7 = - - max{1, Z; — x;v;}.
27

Theorem 11. If \; < 1/60 for all j, then there exists k; > 0 such that price updates using
Rule [I2) converge toward the market equilibrium in any complementary-CES Fisher market,
with the warehouse stocks converging to their ideal values.
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First, we impose the following bounds on A; and &;.
BL. \; < 1/60;
B2. k;/A; < 1/10 (this, together with Condition B1, yields x; < 1/600);
B3. |k;v;| < 1/10 always (such k; exist since the warehouse sizes are bounded).

We will impose more bounds on &;, but eventually we will show that, given any fixed \;
satisfying Condition B1, for all j, there exist positive x; that satisfy all these bounds.

We need to be cautious with Condition B3, and also Condtion B4 which we will state later.
At this point, it is not clear that v; remains bounded throughout the tatonnement process, so
the two conditions might cease to hold no matter how small x; is set. We show that this never
happens in Section [C.3
Notations Let f > 1. A price vector p is f-bounded if, for all j, L <P

the set of all f-bounded price vectors.

. < f. Let R(f) denote

“I
SR

Our analysis comprises two phases. Phase 1 finishes when prices are guaranteed to be 1.9-
bounded thereafter, and then we proceed to Phase 2. We outline the analysis of the two phases
in Sections [C.I] and [C.2] respectively. We defer most proofs to Section [C.4]

One component of the potential functions we will use is (similar to) ® as defined in (2,
and we will use some results from Sections [l and Bl We deduce the values of €5, €z that satisfy
Conditions A3 and A4. Recall that by Property 3 of complementary-CES markets (see the
appendix on tatonnement), if AzTI;j < 1/6, then ¢(p+ Ap) — ¢(p) — V;0(p) - Ap; < li’jj (Ap;)?,
where z; = z; + 1. Let Z; = Z; + 1. Recall that x; < 100:5] < 1.24z;. Then

1.5z; 1 1.86z, Aj Zi +1 1.86 1 1
. B <1.86M — 2 <—22l<— <=, (13)
i p; max{Z;, — K;v;, 1} max{Z; —0.1,1} = 60 15 2
and hence Z—é > L 53&’ . By Lemma [7 plus Conditions (A3) and (A4), we can set
1.53 1
- =, _ =0 14
o 15 15 068 (14)
1.89 1
= — — = 0.084. 1
and € 15 1 0.08 (15)

Lemma 12. Suppose there is an update to p; at time t according to rule ([I2)). Suppose that
Conditions B1 and B3 hold. Let ¢~ and ¢+ denote, respectively, the convex function values
Just before and just after the update. Let z; = —V;p(p') and Z; = Z;(t). Let Ap; be the change
to p; made by the update, i.e. Ap; := \jp; - min{Z; — k;v;,1} - At;. Then

1(%)2At 1 (kjv5)°At;

¢~ — ¢t > PR > — |25 — Z| - |Apj] (16)
and t(A )2 ,
41 v:(Ap; K0 )2 AL; B
TR Lo ST LV S A TN ] (17)

B 60 Atj ’)/j
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C.1 Phase 1

For Phase 1, we use the potential function Z; = Z;(p*, v*, ¢, 7):

_ B 12/ zj dt +ZZ§&HW,U; (jn )%{2—@@—&)]

+Z d jv‘»’j 2y (18)
j J

1]

When there is no update, we show that
dE KI z Bz (<5 (Apkz)Q
B < s D e Tl () S

When there is an update, we show that

Lemma 13. Suppose that there is an update to p; at time t. Suppose that Conditions B1 and
B3 hold. Let 2] and =, respectively, denote the values of Z1 just before and just after the
update. Then

o 1 (Z,)%At; Bt (Apy,)?
.:1—.:1’—2(1—1.401)%4‘(1—02—2.701)256 B]<] )W
J =1 @
Thus, by setting ¢; = 5/28 and ¢, = 1/2, =; does not increase at any update.
Since ¢ is strongly convex, in the proof of Theorem [(b), we show that > (;’—)2 > Dy - ¢(ph)
J
for some positive constant D < 1/10. Let ¢ := Tlm ‘inf¢ra.9) @(p'). We impose an additional

condition on r;:

)2
“J UJ

B4. k; are sufficiently small such that E <5 7 51 ¢ always.

Lemma 14. [f Condition BJ holds and Z; > /2, then =L < —O(1) - Z4(1).

Proof: Let H(t) denote the sum >, >7" lfﬁ' [52 1 (pj ) (AAZZ?)Q at time t. By (I8) and
Condition B4, '

o)+ 2H(0) + gt = Tl0) > w2
Hence t . .
o(p') +2H(t) > (5 - m) (G (20)
and  ¢(p') +2H(t) > <1 - Wlﬁz) Z1(). (21)
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With our choices of ¢y, ¢o and Condition B4, (I9)) yields

=, 5 (24)? (rjv))° 1
Elc S (2w )+ Y (14 my) L — S H(
=~ (28 “J) e + : (1+5;) N ®)

J

1« (z)? 601 1 1
ST T A
Dy, 1 601 1
D 601, 1
< 5 (00") + 2H (1) + T (o) + 2H (1)) (by Ean. (20)
2 " 26/D1+4
D
<~y (60") +2H (1))
< D, 1 1 = (t by E
—_E'(_m)“l() (by Eqn. €1)
Dy _
<-4 Za(t). (22)

Lemma 15. If Z(t1) < /2 at some time tq, then =,(t) < /2 thereafter.

Proof: Suppose the contrary, i.e. at some time to > t1, =;(t2) > ¥/2. Let T, be the collection
of all such ty, and let ¢' be the infimum of 75. By Lemma and our choices of ¢; and ¢y,
=1 never increases at an update. Hence, for =; to exceed /2 after time ¢, it must be due

to continuous incrementing. This forces =;(t') = ¢/2 and %’ .y = 0. But these contradict
Lemma [T4] O

Following the proof of Lemma [, we obtain that Z; > ¢(p") — 2¢1(1 + 8¢p)d(p'), and as
c1(1 4 8¢) < i, = > %gb(pt) Thus if Z; < 9/2, then ¢(p")/2 < =; < +/2. This implies
P(p') < minyg¢p1.9) ¢(p') and thus p' € R(1.9). Lemma [I4 shows that Z; decreases linearly
until it drops below /2 at some time ¢;, and Lemma [I5] shows that =; remains below /2

thereafter. Hence, Vt > t1, p' € R(1.9) and we proceed to the analysis of Phase 2.
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C.2 Phase 2

Phase 2 starts when all prices are guaranteed to be 1.9-bounded thereafter. Then each demand
is between ﬁ and 1.9 and hence —0.5 < z;, z; < 0.9. Since |/<;jvj| < 0.1 always, in Phase 2 the
update rule (I2) is equivalent to

p; =p;- (L+ XN - (35 — Kjuy) - Aty) (23)

; t 1
ie v = .
VT s

In this phase, we will use a new potential function =5, which comprises two main components
® and W. ® reflects how far the current prices are from the market equilibrium, and W accounts
for the warehouse imbalances.

C.2.1 Component ¢

The first component of Z5, ® = ®(pf, ¢, 7), is
P = ¢<pt)—clz/tAjpj(zJ 2t +ZZ§52 1Y (p7) (AApt’Z) (6= st — 3] (24)
N '
When there is no update, it is straightforward to show that
Cfl—(f =—a ;Ajpj( —C2 ZzgﬁlH[ﬂl ! ( i ) % (25)

When there is an update, we show that

Lemma 16. Suppose that there is an update to p; at time t. Suppose that Conditions B1 and
B3 hold. Let ®~ and ®%, respectively, denote the values of ® just before and just after the
update. Then

o 1 (Ap;)? 19 2
o — P Z 2—0 — 1.401 )\]p]( ) At + 0. 039)\pAt - 2_0)‘jpj(/{jvj) At]
JEI=0
(Apkz)z

(5= ey = 2.7e0) 3o (07 Al

C.2.2 Component W

Let f; := In(p;/p;). The second component of Z5, W = W(p',v',t,7), is
W= Z)\ fj+)\v] 032)\]])] /-@]v] +22/{] ]p]/ v () z; () dt’.
When there is no update, we show that for any R; € R*,
— < —032 JA;p; (kv J ‘ot Z R+ 3, )ij] Z“Jpﬂ fﬂ : (26)
j
We will choose an appropriate value of R; at the end.
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Lemma 17. Suppose that there is an update to p; at time t. Suppose that Conditions B1-B3
hold. Let W~ and W™, respectively, denote the values of W just before and just after the
update. Then for any Ry € RT,

W_ - W+ Z (0858 — e ) )\jpj(/{jvj)QAtj — 00235)\]]9](2])2At]

1.9
Bi prlBisos] [ 75+ <Apki)2
—3.809253' hy (pj ) Aty,
Ap;)?
oo BB (Bn
R )\jijtj

We will choose an appropriate value of R, at the end.

C.2.3 Ultimate Potential Function =,
The ultimate potential function Z5 = Z5(p, v*, ¢, 7) is

k5 (f5)?

2

Hp =@+ 1.2W +0.1212 ) (t —1j).

From Lemmas [[6 and 7, we deduce that

(Z2)” — (E2)°

Ap;)? 12
> (0.039 — 2.304R,) A( ]”JA)t' +(0.0218 — 1.4¢y) Aip; (5)2 At + <0.0796 - 1—;3) Ajp; (v;) 2 At
PRl
o Apk)Q
4292 — ¢y — 2. Bi i /31 i) (Bpw)” 9
+ (04292 — 0y = 270) 3 €A () A (27)

From (23)), (26) and the fact that p; > p%/1.9, we deduce that
d=s 2.28kK;
R R [ e s

ol [ * Apy, 1.2 0.1212 .
—CzZZfBIH[BZ i} (]J ><AZZZ) + (E-i- 7 );ijj(fj)Q- (28)

We also show the following upper and lower bounds on =,.

If 2-— Cy Z 2.701, (29)

- 1 .
=y > (1—2.7¢1)p(ph) — 1. 22 )\—pj (f;)? 202/@] ipi(z)? Z (g — 1.2c3mj) kAP ()2,
(30)
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Also,

2.4 0.1212
Z2 < o(p +Z( TQ) k05 (f5) +2OZK’J iPi(2)°

Aj j

+1OZZ£& Bm’](] >(§Apz) +36Z/€] D v]). (31)

In the next lemma, we show that »°. p¥(f;)* = O(1) - 37, p;(z;)?, with the hidden constant
in O(1) depending on max; 6;, where 0; is the parameter of the CES utility function of buyer i.

Lemma 18. Let R := {p/ ’Vj, %p; <pj < 1.9p§} and 0 = max; 0;.For all p' € R,

D_p () MY wh()
J J
— 1 _ -1
where M = (1— ) max {26.56 6640 (140 -27) }

Finally, we choose parameters Ri, R, c1, co, c3 such that =, never increases at an update,

and if there is no update, then % < —0O(1) - Z5. Set Ry = 39/2304, ¢; = % ~ 0.0156,

cy3 = % ~ 0.1260, ¢ = 0.3855 and R; = 1. By choosing sufficiently small «;, ([28) and
Lemma [T yield

d= . * 1,05] T 7Ap d i
_2 <-0(1 Z)\]p] -0 (mjln /‘fj)‘z kA5 (v)*—0 ZZfﬁZH[B ( Pj ) <Atl;) :
j 7
Also, by (BI), Lemma [I8 and the fact that ¢(p) < O(1) - >, p;j(2)* [6, Lemma 6.3] yield
vy t Bi [[3Z ol (7 (Apkz)2
=, < O(1 Zp] +0(1) - Y RAw; () + 225 Hy, ( Pi ) Aty,
j i

Thus =2 < —Q (min; ;) - Zs.
Further, (B0) and the fact that ¢(p) > O(1) - 3, p;(2;)* [6, Lemma 6.2] yield

E2 2 0(1) - 0(p") +O(1) - Z kiAD; (V)7 (32)

This implies that (gb(pt) + > i /-@j)\jp;(vj)Z) decreases linearly, and finishes the proof of Theo-

rem [[], except that we need to show Conditions B3 and B4 hold throughout the tatonnement
process.
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C.3 Warehouse Stocks Are Bounded

So far we need x; to satisfy Conditions B2, B3 and B4. Conditions B2 is satisfied so long as
r; is sufficiently small. However, we need to be cautious with Conditions B3 and B4 as it is
not immediately evident that v; remains bounded throughout the tatonnement process.

We begin with Phase 1. The initial value of =; decreases as k; decreases, and Phase 1 ends
when = is smaller than /2, which is independent of x;. By (22)), Z; drops linearly at a rate
that does not depend on x;. Hence, the length of Phase 1 is finitely bounded when the x; are
sufficiently small. The change to each warehouse j is upper bounded by

(The length of Phase 1) x (Maximum excess demand for good j in Phase 1),

which is also finitely bounded. This allows us to set x; sufficiently small to ensure that Con-
ditions B3 and B4 hold throughout Phase 1.

Next, we consider Phase 2, which starts at some time t5. At t5, which is the finishing time
of Phase 1, Conditions B3 and B4 hold. Let B := =y(t2). Note that by (B2]), when Conditions
B1-B4 hold, there exist constants C, Cy such that

Ea(t) > C1o(p') + Co Y kiAp} (v5)°. (33)
J
We impose two additional conditions on &;:

Copi),
101B °

B6. k; are sufficiently small such that for all j, x; < 2(26/%%.

B5. kj are sufficiently small such that for all j, x; <

Suppose that at some time ¢3 > t5, Condition B3 or B4 ceases to hold. By our analysis of
Phase 2, =5 decreases between times ty and t3, so Zs(t3) < B.
If Condition B3 ceases to hold at 3, as the warehouse contents change smoothly, there exists

a good ¢ with |keve| = 1/10, and for other goods Condition B3 remains valid. Thus we can
still apply ([B3]) with Condition B5 to yield

Co\ip; o Colpy
_ B
o [eve] 100k,

Zo(t3) > Corphepy(ve)? =
which is a contradiction.

If Condition B4 ceases to hold at 3, as the warehouse contents change smoothly, Zj piNi(Kjvi)? =
mw. Thus we can still apply ([B3]) with Condition B6 to yield

s Co !
Eo(t3) > C A (0))? > ———— A (r705)* > ' B
)= 2;HJ i) 2 1.9 max; K ;p] )= L.9x;  26/Dy +4¢ -7

which is a contradiction.

Thus, there does not exist t3 > t5 at which Condition B3 or B4 ceases to hold, i.e. the two
conditions hold throughout Phase 1 and Phase 2.
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C.4 Missing Proofs

Proof of Lemma We start with the proof of (If). By Result (3) about Complementary
CES markets (see the appendix on tatonnment):

1.5l‘j

¢ — 0" >[5+ (2 — 2)/(Apy) — —(Apy)°
J
. 1.5z; .
> Zi(Ap;) — ——*(Ap))* = |2 — Z| - |Ap;] (34)
j
(5 — kv AL 15z (5 — kv AL\ -
TP R Lol 'J P ISE ) s — 5 | Ap)
7j DPj T
(25— kv At 1(Z — kjv;) At .
> j(] th) j__(] th) ]—|Zj—zj"‘Apj‘ (By Eqn. (I3) and At; <1)
7j 2 7
1(2)2At 1 (kjv;)%At; _
= o = o — |z — Zi| - | Apyl.
2 Vi 2 Vi

Next, we give the proof of (I7). From (34):

1.5z, N
—L(Ap;)? = |z — | - |Aps| — k5] - | Apy]

t ) 2 t 2

%‘t? - Ap; — ijx]i; ‘7§(Apj)2 — |z — %] - | Apy| — % <2<Kjv% At; i %’Yj(ﬁt};j) )
(For the last term use the AM-GM ineq.)

) G 1) T (G ) U

- Ay 15 At o) 4 At T !

(For the second term use Eqn. ([I3]) and At; <1)

CAy(Ap)? (my)*AL Ap.
S 7 |zj — Z| - |Apj|.
60 Atj ’Yj

¢” =" > (5 — wjvy)(Aps) —

J

>
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Proof of Equation ([d): Note that dUJ = —zk.

=
—1

dt
B i by [510 2\ (Apr,)? (kv (k)08 25 (t — 7))
——01;—%—0225 H (o) Al +Z “ B Z : %o] :
<-a ZXWzW%]ﬂ%$+Z““ #2327 bl 1
j ' J
2 t)2 .
< ¢ ZZ&BZ 5103 ( ;—j ) (%l:) +Z (/{;ZJ]) +Z% [(njv§)2+(z§)2}
j : J J

i i
(For the last term use the AM-GM ineq.)

:—Z(a—/ﬁj)@JrZ(le K’J] . 2225& [BZU]]<J )%

j U j
]
Proof of Lemma
o 3 zi(t)) Apy,)?
= - =9 ¢+—q/'“ tﬁ+§:¢l 5 () G2l ey )
T; k;
[t,o%] T (Ap) (K“U') At;
_QZ&’;.ijk(pkk-‘r) At]j n J;t j
k#j J
1 (41795(Ap;)?*  (kv,)2At, _
> (= _\'Y Iy — 5. - | Aps Bv Ean.
3 (e 5= s3] | (By Ban. D)

1 1 (2]‘)2Atj 1 (K,jvj)QAtj ~
_ —_ — _ — L . A . Bv E .
v (P15 - sl lanl) By Eon D)

o [ S s oo S () e

J fY] i=1
, (Ap) | (At
_ 2Z€k [t k) ;;k‘i’) i) M jt j
At At; 7
41 v;(Apy)* 1 (%)*At; 8 "(m(t)?
> —\ I e — 2 | A, | — J dr'
=120 At; 4 A i /T T
F1 ~ ~ s
Fy
i ) i Apk' o T, Ap g
Fme) el () G -2 g ) S
; Aty At;
i=1 k#j
IS

Note that Fy, F5 and F3 are similar to the terms E;, Ey and Ej3 in the proof of Lemma [4 We
can bound F}, Fy, F5 similarly to the way we bounded Fy, Es, Fs.
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R m Bi rylBist] 7j+ (Apki)Q :
Recall from the proof of Lemma Ml that V, := > ") £ H P\ ) A We derive the

following bounds:
Fy < 2e7i(Ap;)* 4 Vi
AN
F<ea(l+ 463)('2])71&] + c1(2 + 8e) Vo
Y

(Ap]) .

J

Thus

o 41 Vi(Ap)® (1 (%)"At;
=212 (22 ) P (v ) B2

+ (1 —co—c1(2+ 8ep)) Va.

Note that by Eqns. (I&) and ([H), 26 + 2e5 = 0.304 < 55, 1+ 4e; < 1.4 and 2 + 8¢, < 2.7.
The result now follows. U

Proof of Lemma This proof is similar to the one of Lemma [I3} we only point out the
key steps.

- + - + t (v (N2 4 o Bi r7lBist] [ T+ (Apk'i)2
T -0 29" ="~ )‘Jp](zj(t)) dt+(6 CQ)ZSJ‘ Hkij p; .

Aty,

Ap;)?

—6 “fk pret (Ap))*
k#j

1

9 /41 (Ap-)2 )
=10 (@WJAQ — Aipj (R Aty — |25 = Z5] - |Apj] (By Eqn. (7))

L /1 1 )

t N2 g T s {4\ (Ap,)?
— 61/ )\jpj(zj( ))2 dt’ + (6 — CQ)foZH,f;’ﬂ (pj]+) 7( k)

i=1 Aty,
g T (Ap-)2
— 6 & H™ () At
k#j J
S 123 (Ap;)? 19 i
= 200 )\]ijAt A 5 (27 A = oA (K503) " Aty = |25 — 5| - |Apy)

-
"

! NV, S Bi rylBist] [, i+ (Apk?i)2
— o | Az )Pt 46— ) 3 & H (v] )Ttk
T. P i=1 i

s
Ap;)
-6 tUk Tk—f— ( \=2P5)
k#j )
B
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Then we apply the bounds on F}, Fy, F3 in the proof of Lemma 3H to show that

B 123 (Ap;)? 1 .
ootz <ﬁ — 265 — 6€F> (= — (1 +4e) ) \ips(5)*AL

)\jijtj 20
19
20

Note that 122 —2¢, — 66, = 0.039, 1+ 4e; < 1.4 and 2 + 8¢5 < 2.7; the lemma now follows. [

200

)\jpj(l*{j’l}j)QAtj + (5 — Cy — 01(2 + 863)) ‘/2

Proof of Equation (28): Note that % = = —2.

%;IEZP{%“L+AUM—&z) s (05)° + 23 (0525 (t = 73) + 265052 }

J
< 205 oIl = esds el + 2o s ]

< ij {m] (

- _’332 A5 (05)° + 3 (B + esh)rwy (2))° + Z“pr (f;)?

J

(24) ) 3N (k0% + eshjry [(k505)% + (zj»)ﬂ}

U
Proof of Lemma [I7t At the price update, f;* = f; +In (1 + X;(Z; — k;v;)At;). Note that

in Phase 2, |)\;(2; — Kkjv;) At < 1/60 and hence ln(l + N (25 — Kju))AL) = (14 x)A\(Z —
K05 AL; for some x with |x| < 1558 Then

W™ —W* =p; {% [(f; + A;)* = (fi + (L4 )N (F5 — K505 AL + Ajo;)?]
j

t
_CgAj(I{j'l}j)QAtj + 2K’j)‘j / ’Uj (t,)Z]‘ (t,) dt,

J

Let z; be the average excess demand for good j between times 7; and ¢, i.e. Z; := t; m ttf vt
Note that v;(7;) = v;(t) + 2z;At; and dv’ = —z;. We use integration by substitution to evaluate

the integral in the above formula:

t v;(t)
/ Uj<t/)2j<t/) dt/ = —/ ’Uj de =

j v;(75)

((73)? — (1) = vy, + 5 (2 (A)”

N | —

8There is one minor difference: 'y;” is replaced by 1/(Ajp;). Also, Fj is three times the value of Fj, so the

bound on F} is amplified accordingly.
"When |y| < &5, In(1+y) € [1 — 15,1 + 155] - ¥-
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By direct expansion and regrouping terms, we have

w- —wt

AL {2014 x) — (14 x)%RAt — ea] Ai(Rj0)? + [(7)" = (5)°] kj\AL
— (2x + X°)RA(Z) 2 At + 2X (75 — Z5)kRjv;
+ [(1 + x)*K; At — X} 220 Zik505 — 2(1 4+ X))k f(Z5 — /ijvj)}

> At Q201+ X) = (L4 X)°KA8 — es] A (505)" = K\1(2)” = ()7

G1

= [2x + 7| RN (5)? = 217 = Z - I\l

Ga Gs

= 2|(1 4+ x)?k Aty — xIN 3] - [rjos] = 201+ 0)m51 fy] - 125 = kv

G4 GS

Next, we bound the terms G4, Gy, G3, G4, G5. Recall the notations we use in the proof of

[75,1] m i Birt (Apr,)?
Lemma [l V; := Zk;éj mHk; (]93) and V3 := Ez’:l g_]ﬁ ’ ng'ij } (pz) ﬁ
ik = j 7

2
Aip

Jj

Gi < kA |(7— %) + \\ipiZil - |z — 5j|]

[ 2
S Hj)\j 8‘/1‘/2 + W (2()\]]7]2])2‘/1 -+ ‘/2)} (By Ean. (IH) and (@))
L J17)

[ 2
< KjA S;;VQ + 4des(Z)? + W‘/Q:| (as by Cond. (A2), Vi < e = e/ (Ajpy))
L AdPj iPj

= deptijAj(5)” +

To bound Gy, note that |x| < 1/100 and x; < 1/600 imply that r;]|2x + x*| < 0.0000335,
and hence G5 < 0.0000335);(Z;)%.

2,
Gz = —[z — %] - |\jpjkjv]
J
2
< = [2(pikv)* i+ Ve]  (By Eqn. @)
€
( JEI ]) \ip; 2
2
= 4€B)\j(/{jvj)2 + —‘/2
Dj
To bound Gy, note that | x| < 1/100, k; < 1/600 and At; < 1imply that [(14x)?k; At —x| <
0.0117. Then by AM-GM inequality, G4 < 0.0117);(2;)* + 0.0117);(k;jv;)%
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K -
Gs =2(1+ X)r;|fj| |Aipi (25 — Kj05)
71170
K, Ap;
=2(1 +X)r;|fj| : A—t]
71170 J
2101 k5 (i (f5)° N Ry(Ap;)?
— 100 A;p; Ry Kipj(At;)?

(by the AM-GM ineq.)

Combining all the above bounds yields

*

W™ = W* > [2(1+x) — (14 )58t — 5 — dey — 0.0117] 20 (j0,)2At,

J
j 24 2K, + 8egk;)p;
— (0.0118 + 4€Bﬁj)&)\jpj(2j)2Atj _ ( J B ])p]‘/Q
by D
101 ks 0y (R (f)°AL N Ry(Ap;)?
100 )\j Dj RQ /{jijtj '

Note the following:

e |x| < 1/100, k; < 1/600 and At; < 1 imply that 2(1 + x) — (1 + x)*k;At; > 1.9783.
Also, recall that €5 = 0.084. Thus [2(1+ x) — (14 x)*k;At; — c3 — 4eg — 0.0117] I;—; >
(1.6306 — ¢3)/1.9 > 0.858 — ¢3/1.9.

o 5 =0.084 and ; < 1/600 imply that (0.0118 + degr;)2 < 0.01236 x 1.9 < 0.0235.

(2—}—25]'

o ¢ = 0.084 and x; < 1/600 imply that 22 % <9 00446 x 1.9 < 3.800.

101 Pj
* - p—; < 1.92.

The lemma follows. O

In the proofs of Equations (B0) and (3I) below, we need the following bound on (z;)*:

(%) = (%)? = (55 — %)% = 22(2; — %))

1
< 8ViVa + B [10X;p;%51] - 2 — 7] (by Eqn. B)
7177
8¢ 1
< TI};VQ + By (200(\;p5)*(2)* Vi + Va) (as Vi < es/(Ajpj))
0.672 €n 0.2
< Vo + 40X\,p;(2,)°—— + — V&
i iP3(%) Np; o Aipy
0.872 ol [ e (Apg,)?
J— 2 61 [ﬁl?a ] Ti+ pkz
— 336(,2]) + m Zf] Hkij J <pjj ) Atkl
and hence (A )2
— i Z‘,O’j TJ‘ p i
\ipi(5)? < 4.360p;(2)? +0.872 Y & H <pj +> ﬁ (35)
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Proof of Equation (B0): By Lemmal[d if 2 — ¢y > 2.7¢;, then

' o) (e (Apg,)? .
_Cl;/Tj Nipi(z (1) dt! *ZZ@H[& il < Py )% 2= cot = Bi)] = (1-2.7c1)p(p').

Thus, ®, as defined in 24, satisfy

=00~ Z / Ajpi(2(¢) dt' + Z ZSBI 1l () 7%%5]:)2 (6 — es(t — 5]

> (1—2.7¢))6 +4ZZ€@ A ( v ) (Aﬁ:) .

w
t
K; / / /
:Z)\— (fj +A\jv)) —ng)\Jpj HJU]) (t—1j) +22/€J ]pj/ ()2 () dt
)\ ) . . B 1
Z Z )\—] ( J> (f])Q) — C3 Z )\jpj(/{jvj)Z + 2 Z K’j)‘jpj (Uij(t — Tj) + 5(2“])2(15 — Tj)Q)
] J
/{/ *
> 3 (5 o) V(o) - Bty
j
. 1 3 1, .
+2 Z KjiAjD; (—é(vj)Q - é(zj)Q(t — 1)+ §(zj)2(t - Tj)Q) (by the AM-GM ineq.)
J
1 ./
> Z <6 03/{]> AjKjD; v] Z )\ — ZZKj)\jpj(zj)Q
J J
]' * 2 "{] *
> G O3t Ajkip; (v5)" — pi(f;)?
J J

g Tj A i 2
- 3. 82/{] (4 36;p;j(z;)* +0. 8722561 BZ i} (pjﬁ) %) (by eqn. (33))

J

> Z <% — Czﬁj) Njtip; (v;)* = } /{] *(fg)

J
- Ap;. )2
—16.6 > miApi(2)? 3314§ & H (v )7( pt’:).

J

Recall that Zy = & +1.2W+0.1212 ), 7)(75 —1;) > ®+1.2W. With the two inequalities
above, the result follows. O

Proof of Equation (BI): It follows immediately from (24) that
B pl6e0] (Apy,)*
ooy 103 Sl )
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t
Z)\_J (f; + Xjv;) —032)\]]9] (K;v;) (t—Tj)‘FzZKJ‘j)\jp;/v v (t)z; () dt’
1
Z_p] (f3) +QZ“J ]p] () +QZ“J Jp] (UJZJ )+2(Zj)2(t_7'j)2)
Lo 1o 2, Lo 2
<2ZA (f5) +2ij 5 (1) +2ij 05 (5 + 5@ =)+ 5 (5 - 7))
<22—p] 1) +SZ,‘£J iDj (v)) +22/€J ]p] z]
SQZTPJ' fi) +3Z’1j iPj (v))*
i Y j
3.8 1360,p;(5)? + 0.872 Y e plml (o) (o) b
+ 9. Z’fj 36A;p;(2;)” + 0. ij kij p; N (by eqn. (33))
j i i

H' * *
<2 )\—;pj(fj)Q +3 Z kA5 (v;)?
J

J
2 : 2 § Bi r71Bisoj] Ti+ (Apk‘z)Q
-+ ].66 : /@j)\jpj(zj) +3314 : gj Hkij <pj ) Atkl .

Kk (£:)2 o
the two inequalities above, the result follows. D

To prove Lemma [I8, we need the following lemma.
Lemma 19. For all p' € R(1.9), ¢(p) > 5% Z pi(fi)*

Proof: Let z;;(p) be the demand for good j of buyer i at price p’. Note that

32¢ (p') _ Z (9z‘(~”€z'j<p/))2 + (1— Gi)fb’ij(pl)) and 82(15 _ Z 0; xza Nwa(p )

A(p;)? €i P Ip; 82%

Let A'(p') denote the matrix with A%, (p') = x4 (p")za(p'). Let B'(p') denote the diagonal
matrix with Bj,;(p') = i;(p)/p}. Then the Hessian of ¢ at p/, which we denote it by H(p'), is
> AP + 3,1 = 0)BU(Y).

There are two key observations: first that A’ is positive semi-definite and second that
>;(1—6;)Bi(p') majorizes (1 —0) >, B(p), where = max; 6;. Hence H(p') majorizes (1 —
7)2 B(p) == (1 —0)B(p'), where Bj;(p)) = x;(p))/p;. As p € R(1.9), z;(p') > 1/1.9 and

Py < 1.9p5. Hence Bj;(p') > 361110

Next, consider the function ¢(p) = é(p) — > 7122z (p; — p;)?. Observe that for all j,

99

B, (p*) = 0 and the Hessian of ¢ at every p’ € R majorizes the zero matrix; consequently, ¢
J
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is convex in R(1.9), and p* is its minimum point. Note that ¢(p*) = 0, so for all p’ € R(1.9),
O() 2 X 75 0 — 1)

I_o%\ 2 ’ _
Since (“5)" = 0.544 1% 2 = 0.544(f;)2, (1) = 0" = 15 32,05 (f5)°. 0

J

Proof of Lemma [I8 [0, Lemma 6.3 showed that for all p’ € R(1.9), ¢(p') < max {2, m}-

> P(2;)?. Combining this with Lemma [J yields the result. O
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