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Abstract

Gradient descent is an important class of iterative algorithms for minimizing convex
functions. Classically, gradient descent has been a sequential and synchronous process.
Distributed and asynchronous variants of gradient descent have been studied since the
1980s, and they have been experiencing a resurgence due to demand from large-scale
machine learning problems running on multi-core processors.

We provide a version of asynchronous gradient descent (AGD) in which communication
between cores is minimal and for which there is little synchronization overhead. We also
propose a new timing model for its analysis. With this model, we give the first amortized
analysis of AGD on convex functions. The amortization allows for bad updates (updates
that increase the value of the convex function); in contrast, most prior work makes the
strong assumption that every update must be significantly improving.

Typically, the step sizes used in AGD are smaller than those used in its synchronous
counterpart. We provide a method to determine the step sizes in AGD based on the
Hessian entries for the convex function. In certain circumstances, the resulting step sizes
are a constant fraction of those used in the corresponding synchronous algorithm, enabling
the overall performance of AGD to improve linearly with the number of cores.

We give two applications of our amortized analysis:

• We show that our AGD algorithm can be applied to two classes of problems which
have huge problem sizes in applications and consequently can benefit substantially
from parallelism. The first class of problems is to solve linear systems Ap = b, where
the A are symmetric and positive definite matrices. The second class of problems
is to minimize convex functions of the form

∑n
i=1 fi(pi) +

1
2‖Ap− b‖2, where the fi

are convex differentiable univariate functions.

• We show that a version of asynchronous tatonnement, a simple distributed price
update dynamic, converges toward the market equilibrium in Fisher markets with
buyers having complementary-CES or Leontief utility functions.

∗Most of the work done while at Courant Institute, NYU.
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1 Introduction

Gradient descent, an important class of iterative algorithms for minimizing convex functions,
is a key subroutine in many computational problems. Broadly speaking, gradient descent pro-
ceeds by iteratively moving in the direction of the negative gradient of the convex function.
Classically, gradient descent is a sequential and synchronous process. Distributed and asyn-
chronous variants have also been studied, starting with the work of Tsitsiklis et al. [17] in
the 1980s; more recent results include [2, 3]. Distributed and asynchronous gradient descent
has been experiencing a resurgence of attention, particularly in computational learning the-
ory [12, 15], due to recent advances in multi-core parallel processing technology and a strong
demand for speeding-up large-scale gradient descent problems via parallelism.

Gradient descent proceeds by repeatedly updating the coordinates of the argument to the
convex function. A few key common issues arise in any distributed and asynchronous iterative
implementation and their improper handling may lead to performance-destroying overhead
costs.

• In some implementations (e.g. [15]), different cores1 may update the same component.
Without proper coordination, the progress made by one core can be overwritten, and if
such overwriting persists, in the worst case the system can fail to reach the desired result.

This difficulty can be avoided by block component descent – each coordinate is updated
by exactly one core. This is the approach we use in our Asynchronous Gradient Descent
(AGD) algorithm. The approach has been used previously in a round-robin manner [12],
but our AGD algorithm does not require the updates to proceed in any particular order.

• The cores need to follow a communication protocol in order to communicate/broadcast
their updates. Communication is often relatively slow compared to computation, so
reducing the need for communication can lead to a significant improvement in system
performance. Also, when there is delay in communication, cores may use outdated infor-
mation for the next update, which is a critical issue for asynchronous systems.

One common approach is to assume that the system has bounded asynchrony, i.e. the
delay in communication is bounded by a positive constant. Typically, there is a need to
wait for updates from the other cores, and the bounded asynchrony simply bounds the
waiting time. We will use the bounded asynchrony assumption, but our AGD algorithm
will have no waiting : updates will always be based on the information at hand; bounded
asynchrony just guarantees that it is not too dated.

• Often, the computation of one core needs the results computed by another core, implying
the computations of the different cores must be in a correct order to ensure correctness
and to reduce core waiting time. Typically this is achieved via a synchronization protocol,
which often requires that all cores follow a global clock. However, such protocols can be
costly and even impractical in some circumstances.

As we shall see, our AGD algorithm needs essentially no synchronization apart from an
initial synchronization to align the starting times of all cores.

1These observations apply to any multi-processor system.
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Broadly speaking, most prior work follows the asynchrony model proposed in [17], in which
time is discretized. Our AGD algorithm allows each core to proceed at its own pace. This
allows for varying loads, for different updates having varied costs, for interruptions, and more
generally for variations in the completion times of updates. To support this, in our model,
time is continuous. To ensure progress, we require that each component be updated at least
once in each time unit, but do not impose an upper bound on the frequency of updates. A
more formal description of our model will be given in Section 2.

We consider a robust family of AGD algorithms, and using our timing model, we give a
new amortized analysis which shows each algorithm converges to the minimal value of the
underlying function. Most prior work made the strong assumption that each update yields a
significant improvement. Our analysis, however, allows for bad individual updates (updates
that increase the value of the convex function), which seem to be unavoidable in general. In
our AGD algorithm, every update leads to errors in subsequent gradient measurements at
other cores. A natural question to ask is whether such errors can propagate and be persistent
and whether they might, in the worst case, prohibit convergence toward a minimal point.
Our amortized analysis shows that this will not happen when the step sizes used in the AGD
algorithm are suitably bounded. The following observation forms a key part of the analysis: if
there is a bad update to one component, it can only be due to some recent good updates to
other components, or to chaining of this effect. We use a carefully designed potential function,
which saves a portion of the gains due to good updates, to pay for the bad updates. The
amortized analysis will be presented in Section 3.

Typically the step sizes used in AGD are smaller than those used in its synchronous coun-
terpart. Our AGD algorithm determines the step sizes based on the Hessian of the underlying
function. In certain circumstances, the step sizes in our AGD can be a constant fraction of those
used in its synchronous counterpart, ensuring that the number of rounds of updates performed
by the AGD algorithm is within a constant of the analogous upper bound for the synchronous
version. Note that AGD avoids the synchronization costs of its synchronous counterpart, which
are a practical concern [15].

Application: Solving Matrix Systems in Parallel We begin by considering two problems
in which bad updates are possible in an asynchronous setting. A linear system is the problem
of finding p ∈ R

n that satisfies Ap = b, where A ∈ R
m×n and b ∈ R

m are the inputs. As
is well-known, if A is a symmetric and positive definite matrix, solving the linear system is
equivalent to finding the minimum point of a strongly convex function, so our AGD algorithm
can be applied.

Nesterov [14] discusses the following class of optimization problems: minimizing convex
functions of the form

∑n
i=1 fi(pi)+

1
2
‖Ap−b‖2, where the fi are convex differentiable univariate

functions. The size of such problems can be huge in practice, and input/data can be distributed
in space and time, so time synchronization is costly and even impractical. One important
feature of our AGD algorithm is to allow the use of data that are variously dated. As we will
see, this hugely reduces the need for synchronization. More details are given in Section 4.

Application: Asynchronous Tatonnement in Fisher Markets We show that an asyn-
chronous tatonnement converges toward the market equilibrium in two classes of Fisher mar-
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kets.

The concept of a market equilibrium was first proposed by Walras [19]. Walras also proposed
an algorithmic approach for finding equilibrium prices, namely to adjust prices by tatonnement:
upward if there is too much demand and downward if too little. Since then, the study of market
equilibria and tatonnement have received much attention in economics, operations research,
and most recently in computer science [1, 18, 8, 16]. Underlying many of these works is the
issue of what are plausible price adjustment mechanisms and in what types of markets they
attain a market equilibrium.

The tatonnements studied in prior work have mostly been continuous, or discrete and syn-
chronous. Observing that real-world market dynamics are highly distributed and hence pre-
sumably asynchronous, Cole and Fleischer [10] initiated the study of asynchronous tatonnement
with their Ongoing market model, a market model incorporating update dynamics.

Cheung, Cole and Devanur [6] showed that tatonnement is equivalent to gradient descent
on a convex function for several classes of Fisher markets, and consequently that a suitable
synchronous tatonnement converges toward the market equilibrium in two classes of markets:
complementary-CES Fisher markets and Leontief Fisher markets. This equivalence also enables
us to apply our amortized analysis to show that the corresponding asynchronous version of
tatonnement converges toward the market equilibrium in these two classes of markets. More
details are given in Section 5. We note that the tatonnement for Leontief Fisher markets that
was analysed in [6] has an unrealistic constraint on the step sizes; our analysis removes that
constraint, and works for both synchronous and asynchronous tatonnement.

2 Asynchronous Gradient Descent Model

We consider the following unconstrained optimization problem: given a convex function φ:
R
n → R, find its minimal point. In our model, time, denoted by t, is continuous. The gradient

descent process starts at t = 0 from an initial point p0 = (p01, p
0
2 · · · , p

0
n). For simplicity, we

assume that there are n cores, and pj is updated by the j-th core.2 After each update, the
updating core broadcasts it; the other cores receive the message, possibly with a delay.

Notational Convention When there is an update at time t which updates the value of one
or more variables, for each such variable �, we let both �

t− and �
t denote its value just before

the update, and �
t+ its value right after the update.

We define pt ≡ pt−, the current point at time t, to comprise the most recently updated
values for each coordinate. However, any particular core may have out-of-date values for one
or more coordinates, but not too much out-of-date, as we specify next.

Let t1 and t2 be the times of successive updates to pj. Then, at time t2, the j-th core will
have values for each of the other coordinates that were current at time t1 or later. In other
words, the time taken to communicate an update is no larger than t2 − t1. Effectively, this is
the constraint on how much parallelism is possible. Informally speaking, the information which
the core holds is at most one “round” out of date w.r.t. its updates. In fact, it seems likely that
we could extend our analysis to allow for any fixed constant number of rounds of datedness,
but as this would entail a proportionate reduction in the step sizes, it does not seem useful.

2If there are fewer cores it suffices to cluster coordinates.
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However, there is no requirement that updates occur at a similar rate, although we imagine
that this would be the typical case. It may be natural in some settings for coordinates to adjust
with different frequencies, e.g. prices of different goods in a broad enough market. Accordingly,
we define a rather general update rule, as follows. Each core has the freedom to determine the
time at which it updates its coordinate. To proceed, it will be helpful to define the following
rectangular subsets of coordinate values.

Definition 1. P̃
[t1,t2]
j (sj) comprises the rectangular box with pj = sj and, for k 6= j, spanning

the range of values pk that occur over the time interval [t1, t2].

Let τj be the time at which the last update to pj occurred, and let t be the time of the
current update to pj . To update pj , the j-th core computes ∇jφ(p̃), where p̃ is an arbitrary

point in P̃
[τj ,t]
j

(
ptj
)
. This flexibility allows different coordinates at the j-th core to be variously

dated, under the constraint that they are all no older than time τj . The general form of an
update is

pj ← pj + Fj(p̃,∇jφ(p̃), t) · (t− τj),

where Fj is a function such that Fj(p̃,∇jφ(p̃), t) has the same sign as −∇jφ(p̃).

The term t − τj is somewhat unusual. It is needed because we impose no bound on the
frequency of updates. Without this multiplier, a core, the k-th core say, could perform many
updates in the time interval [τj , t], potentially making a cumulatively large update to pk, which
could lead to an unbounded difference between ∇jφ(p̃) and ∇jφ(p

t). This appears to preclude
the usual approaches to a proof of convergence, and even calls convergence into question in
general. If, in fact, t− τj = Θ(1) always, then this term can be omitted.

Note that the sign of Fj(p̃,∇φ(p̃), t) can be opposite to that of Fj(p
t,∇jφ(p

t), t); when this
occurs, an update will increase the value of φ, i.e. we have a bad update!

We do not require any further coordination between the cores. We just require a minimal
amount of communication to ensure that the cores know an approximation of the current point
so that they can compute a useful gradient.

3 Amortized Analysis

Let φ : Rn → R be a twice-differentiable convex function. Our AGD algorithm solves the
problem of finding (or approximating) a minimal point of φ, which we denote by p∗. WLOG,
we assume that φ∗ := φ(p∗) = 0. We assume that no two updates occur at the same time.3

By default, each core possesses the most up-to-date entry for the coordinate it updates.
However, due to communication delay, it may have outdated entries for coordinates updated
by other cores. Recall that pt denotes the most up-to-date entries at time t; let p̃j,tk denote the

entry for pk that the j-th core possesses at time t. Note that p̃j,t ∈ P̃
[τj ,t]
j

(
ptj
)
.

We now consider an update to pj at time t given by

p′j ← pj −
g̃j(t)

γtj
∆tj , (1)

3If two or more updates do occur at the same time, our analysis remains valid by making infinitesimal
perturbations to their update times.
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where g̃j(t) = ∇jφ(p̃
j,t), ∆tj = t − τj , and 1/γtj is the step size, which will be determined by

a rule we specify later. We assume that ∆tj ≤ 1 always, i.e. two consecutive updates to the
same coordinate occur at most one time unit apart. We note that Rule (1) is quite general for
it allows both additive and multiplicative updates, depending on the choice of the γtj. As we
shall see, our analysis handles applications of both types.

For any S ⊂ R
n, let Hkℓ(S) := maxp′∈S

∣
∣
∣

∂2φ
∂pk∂pℓ

(p′)
∣
∣
∣. We will use the shorthand H

[t1,t2]
kℓ (sℓ)

for Hkℓ

(

P̃
[t1,t2]
ℓ (sℓ)

)

. In order to show our convergence results, the γtj need to be suitably

constrained and the Hessian entries need to be sufficiently bounded. We capture this in our
definition of controlled γtj and Hjk, given right after Theorem 1 below.

Theorem 1. Suppose that all updates are made according to update rule (1). Let γ = maxj,t γ
t
j.

If the variables γtj and Hjk are controlled, then

(a) Suppose the set {p′ | φ(p′) ≤ 2φ(p0)} is bounded with diameter B. Let M(B) := Θ(B2γ).

Then, if φ(p0) ≤ M(B), φ(pt) = O
(
M(B)
t

)

; and otherwise, for t ≤ t′ = O
(

log φ(p0)
M(B)

)

,

φ(pt) = O
(
2−Θ(t)φ(p0)

)
, and for t > t′, φ(pt) = O

(
M(B)
t−t′

)

.

(b) If φ is strongly convex with parameter c,4 then φ(pt) ≤
(

1−Θ
(
c
γ

))t

· φ(p0).

Definition 2. The variables γtj and Hjk are said to be controlled if there are constants α ≥ 2,
ǫF, ǫB > 0, with 1

α
+ 2ǫB + 2ǫF < 1, and for each j and time t at which pj is updated, there are

positive numbers {ξtk}k 6=j, such that:

A1. (Local Lipschitz bound.)Let Sj = Span
{
pt−j , p

t+
j

}
. For any p′ ∈ pt−j × Sj,

φ(p′)− φ(pt)−∇jφ(p
t) · (p′j − p

t
j) ≤

γtj
α
(p′j − p

t
j)

2.

A2. (Upper bound on γtj.) For each j, there exists a finite positive number γj such that for
all t at which an update to pj occurs, γ

t
j ≤ γj. We let γ := maxj γj.

A3. (Bound on nearby future Hessian entries.)
∑

k 6=j ξ
t
k · H

[t,σk]
jk

(
pτk+k

)
≤ ǫFγ

t
j, where σk > t

is the time of the next update to pk;

A4. (Bound on recent past Hessian entries.)
∑

k 6=j

(

maxi:ki=k
1

ξ
βi
j

)

·H
[τj ,t]
kj

(
ptj
)
≤ ǫBγ

t
j, where

the index i runs over all updates to coordinate k between times τj and t, and βi is the
time at which each such update occurs (this notation is defined precisely in Lemma 3).

If the updates used fully up-to-date gradients, i.e. if ∆pj = −
∇jφ(p

t)

γtj
∆tj , rearranging Con-

dition A1 would give the following lower bound on the progress (cf. Lemma 2 below):

φ(pt−)− φ(pt+) ≥
∑

j

1

γtj
(∇jφ(p

t))2∆tj −
1

αγtj
(∇jφ(p

t))2∆t2j ≥
∑

j

(

1−
1

α

)
(∇jφ(p

t))2∆tj
γtj

.

4i.e. for any p1, p2 in its domain, φ(p2) ≥ φ(p1) +∇φ(p1) · (p2 − p1) +
c
2
‖p2 − p1‖

2.

5



The remaining conditions are present to cope with the lack of synchrony. Conditions A3 and A4
ensure that the “errors’ in the gradients we use for the updates are not too large cumulatively.
Basically, they will reduce the multiplier in the progress from (1 − 1

α
) to (1 − 1

α
− 2ǫF − 2ǫB).

Recall that the lack of synchrony may result in bad updates. To hide the resulting temporary
lack of progress and to show continued long-term progress, we use an amortized analysis which
employs the following potential function.

Φ(pt, t, τ) = φ(pt)− c1
∑

j

∫ t

τj

(gj(t
′))2

γj
dt′ +

∑

j

∑

i

ξβij ·H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
[2− c2(t− βi)] ,

(2)
where gj(t

′) := ∇jφ
(
pt

′)
and σj > τj is the time of the next update to pj ; for each j, the

index i runs over all updates, between times τj and t, to coordinates other than j; c1 and c2

are positive constants whose values we will determine later.
{

ξβij

}

are the positive numbers

in Conditions A3 and A4; note that these variables are indexed by i but not by the update

coordinate ki, so for any j, ξ
βi1
j may be different from ξ

βi2
j , even if ki1 = ki2.

The integral in the above potential function reflects the ideal progress were there a continuous
synchronized updating of the prices, and the additional terms are present to account for the
attenuation of progress due to asynchrony.

Our method of analysis is to show that dΦ
dt
≤ −β1Φ

2 for a suitable constant β1 > 0 whenever
there is no price update, and that Φ only decreases when there is a price update; this then
yields Theorem 1(a). Theorem 1(b) follows from a stronger bound on the derivative, namely
that dΦ

dt
≤ −β2Φ, where β2 > 0. This general approach for asynchrony analysis was used

previously by Cheung et al. [7] for a result in the style of (b), but for a quite different potential
function.

It is straightforward to show that when there is no update,

dΦ

dt
= −c1

∑

j

(gj(t))
2

γj
− c2

∑

j

∑

i

ξβij ·H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
. (3)

Lemma 2 below bounds the change to φ when there is an update. Lemma 3 states some
useful bounds on the maximum change that can occur to the gradient between two updates to
the same coordinate. Lemma 4 below bounds the change to Φ when there is an update.

Lemma 2. Suppose there is an update to pj at time t according to rule (1), with γtj satisfying
Condition A1. Let φ− and φ+ denote, respectively, the convex function values just before and
just after the update. Let gj := ∇jφ(p

t) and g̃j ≡ g̃j(t). Let ∆pj be the change to pj made by

the update, i.e. ∆pj := −
g̃j(t)

γtj
∆tj. Then

φ− − φ+ ≥

(

1−
1

α

)
γtj(∆pj)

2

∆tj
− |gj − g̃j | · |∆pj |.

Lemma 3. Suppose that between times τj and t, there are updates to the sequence of coor-
dinates k1, k2, · · · , km, which may include repetitions, but include no update to coordinate j.
Let β1, β2, · · · , βm denote the times at which these updates occur. Let g̃j,max and g̃j,min denote,
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respectively, the maximum and minimum values of ∇j(p
′), where p′ ∈ P̃

[τj ,t]
j

(
ptj
)
. For any

positive numbers {ηi}i=1···m, for each k 6= j, let η̄k := mini:ki=k ηi. Then for any real number µ,

|µ| · (g̃j,max − g̃j,min) ≤ 2µ2
∑

k 6=j

1

η̄k
H

[τj ,t]
kj

(
ptj
)
+

m∑

i=1

ηi ·H
[βi,t]
kij

(
ptj
) (∆pki)

2

∆tki
(4)

and

(g̃j,max − g̃j,min)
2 ≤ 8

(
m∑

i=1

ηi ·H
[βi,t]
kij

(
ptj
) (∆pki)

2

∆tki

)(
∑

k 6=j

1

η̄k
H

[τj ,t]
kj

(
ptj
)

)

. (5)

Lemma 4. Suppose that there is an update to pj at time t. Suppose that γtj is chosen so that
Conditions A1, A3 and A4 hold. Let Φ− and Φ+, respectively, denote the values of Φ just
before and just after the update. Then

Φ− − Φ+ ≥

(

1−
1

α
− 2ǫB − c1(1 + 4ǫB)− 2ǫF

)
γtj(∆pj)

2

∆tj

+ (1− c2 − c1(2 + 8ǫB))
m∑

i=1

ξβij ·H
[βi,t]
kij

(
ptj
) (∆pki)

2

∆tki
.

Proof: By Lemma 2 and the fact (t− βi) ≤ (t− τj) ≤ 1,

Φ− − Φ+ = φ− − φ+ − c1

∫ t

τj

(gj(t
′))2

γj
dt′ +

∑

i

ξβij ·H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
[2− c2(t− βi)]

− 2
∑

k 6=j

ξtk ·H
[t,σk]
jk

(
pτk+k

) (∆pj)
2

∆tj

≥

(

1−
1

α

)
γtj(∆pj)

2

∆tj
− |gj − g̃j| · |∆pj|
︸ ︷︷ ︸

E1

− c1

∫ t

τj

(gj(t
′))2

γj
dt′

︸ ︷︷ ︸

E2

+ (2− c2)
∑

i

ξβij ·H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
− 2

∑

k 6=j

ξtk ·H
[t,σk]
jk

(
pτk+k

) (∆pj)
2

∆tj
︸ ︷︷ ︸

E3

.

(6)

We bound E1, E2 and E3 below. We will be applying (4) and (5) with ηi = ξβij . Let

V1 :=
∑

k 6=j

1

mini:ki=k ξ
βi
j

H
[τj ,t]
kj

(
ptj
)

and V2 :=
m∑

i=1

ξβij ·H
[βi,t]
kij

(
ptj
) (∆pki)

2

∆tki
.

Note that by Condition A4, V1 ≤ ǫBγ
t
j. By (4), E1 ≤ 2(∆pj)

2V1 + V2 ≤ 2ǫBγ
t
j(∆pj)

2 + V2.
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To bound E2, first note that for any t′ ∈ (τj , t], p
t′ ∈ P̃

[τj,t]
j

(
ptj
)
. Then

(gj(t
′))2

γj
−

(g̃j)
2

γj
=

(gj(t
′)− g̃j)

2

γj
−

2g̃j
γj

(g̃j − gj(t
′))

≤
(gj(t

′)− g̃j)
2

γj
+ 2

∣
∣
∣
∣

g̃j
γj

∣
∣
∣
∣
· |g̃j − gj(t

′)| ≤
8

γj
V2V1 +

4(g̃j)
2

(γj)
2
V1 + 2V2 (by Eqns. (5) and (4))

≤
8ǫBγ

t
j

γj
V2 +

4ǫBγ
t
j(g̃j)

2

(γj)
2

+ 2V2 ≤
4ǫB(g̃j)

2

γj
+ (2 + 8ǫB)V2 (by Condition A2) (7)

Hence
(gj(t

′))2

γj
≤ (1 + 4ǫB)

(g̃j)
2

γj
+ (2 + 8ǫB)V2, and then as ∆tj ≤ 1,

E2 ≤ c1

∫ t

τj

(gj(t
′))2

γj
dt′ ≤ c1(1 + 4ǫB)

(g̃j)
2∆tj
γj

+ c1(2 + 8ǫB)V2 (8)

Finally, by Condition A3, E3 ≤ 2ǫFγ
t
j
(∆pj)

2

∆tj
.

Combining the above bounds on E1, E2, E3 yields

Φ− − Φ+ ≥

(

1−
1

α

)
γtj(∆pj)

2

∆tj
−
[
2ǫBγ

t
j(∆pj)

2 + V2
]
−

[

c1(1 + 4ǫB)
(g̃j)

2∆tj
γj

+ c1(2 + 8ǫB)V2

]

+ (2− c2)V2 − 2ǫFγ
t
j

(∆pj)
2

∆tj
.

As ∆pj = −
g̃j(t)

γtj
∆tj and ∆tj ≤ 1, the result follows.

Lemma 5. If 2− c2 ≥ c1(2 + 8ǫB), then Φ(pt, t, τ) ≥ [1− 2c1(1 + 4ǫB)]φ(p
t).

Proof of Theorem 1(a): Choose c1 = (1 + 4ǫB)
−1 · min

{
1− 1

α
− 2ǫB − 2ǫF,

1
4

}
and c2 =

1− c1(2+ 8ǫB). Then the following hold: (i) c1, c2 > 0; (ii) 1− 1
α
− 2ǫB− 2ǫF− c1(1+ 4ǫB) ≥ 0;

(iii) 1− c2 − c1(2 + 8ǫB) = 0; (iv) 2− c2 ≥ c1(2 + 8ǫB); (v) c1(1 + 4ǫB) ≤
1
4
.

By (ii), (iii) and Lemma 4, Φ does not increase at any update.

By (iv), (v) and Lemma 5, Φ(pt, t, τ) ≥ φ(pt)
2

. Thus, ∀t ≥ 0, φ(pt) ≤ 2Φ(pt, t, τ) ≤

2Φ(p0, 0,~0) = 2φ(p0), i.e. {pt}t≥0 is contained in the set {p′ | φ(p′) ≤ 2φ(p0)}, which, by as-
sumption, has diameter at most B.

Note that at any time t, by the convexity of φ, φ(pt) +
∑

j gj(t) · (p
∗
j − p

t
j) ≤ φ∗ = 0 and

hence ∑

j

|gj(t)| · |p
t
j − p

∗
j | ≥

∑

j

gj(t) · (p
t
j − p

∗
j ) ≥ φ(pt) ≥ 0.

By the Cauchy-Schwarz inequality,

φ(pt) ≤
∑

j

|gj(t)| · |p
t
j − p

∗
j | ≤

√
√
√
√

(
∑

j

(gj(t))2

)(
∑

j

(ptj − p
∗
j)

2

)

≤ B

√
∑

j

(gj(t))2.
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Then
∑

j

(gj(t))
2

γj
≥

1

γ

∑

j

(gj(t))
2 ≥

1

γ

(
φ(pt)

B

)2

=
1

B2γ
φ(pt)2.

By (3),
dΦ

dt
≤ −

c1
B2γ

· φ(pt)2 − c2
∑

j

∑

i

ξβij ·H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.

By (2), Φ(pt, t, τ) ≤ φ(pt) + 2
∑

j

∑

i ξ
βi
j ·H

[βi,σj ]
kij

(

p
τj+
j

)
(∆pki)

2

∆tki
. Let X1 := φ(pt) and X2 :=

∑

j

∑

i ξ
βi
j · H

[βi,σj ]
kij

(

p
τj+
j

)
(∆pki)

2

∆tki
. Then Φ ≤ X1 + 2X2 and dΦ

dt
≤ − c1

B2γ
(X1)

2 − c2X2. Let

M(B) := Θ(B2γ). As φ(pt) ≤ 2Φ(t), this guarantees that if φ(p0) = Φ(p0) ≤ M(B), then

φ(pt) = O
(
M(B)
t

)

; and otherwise, for t ≤ t′ = O
(

log φ(p0)
M(B)

)

, φ(pt) = O
(
2−Θ(t)φ(p0)

)
, and for

t > t′, φ(pt) = O
(
M(B)
t−t′

)

.

Proof of Theorem 1(b): If φ is strongly convex with parameter c, then, by definition,

0 = φ∗ ≥ φ(pt) +
∑

j

gj(t) · (p
∗
j − p

t
j) +

c

2

∑

j

(p∗j − p
t
j)

2

≥ φ(pt) + min
p′

{
∑

j

gj(t) · (p
′
j − p

t
j) +

c

2
(p′j − p

t
j)

2

}

.

Computing the minimum point of the quadratic polynomial in (p′j − ptj) yields 0 ≥ φ(pt) −
∑

j
(gj(t))

2

2c
. Then

∑

j

(gj(t))
2

γj
≥

1

γ

∑

j

(gj(t))
2 ≥

2c

γ
φ(pt).

As in Case (a), Φ ≤ X1 + 2X2; and by (3), dΦ
dt
≤ −2cc1

γ
X1 − c2X2. This guarantees that

2φ(pt) ≤ Φ(t) ≤ (1− δ(c))tφ(p0), where δ(c) = min{ cc1
γ
, c2

4
}.

4 Solving Matrix Systems

For any symmetric and positive definite (SPD) matrix A ∈ R
n×n and b, p ∈ R

n, let fA,b(p) =
1
2
pTAp − pTb. It is well known that fA,b(p) is a strictly convex function of p, and ∇fA,b(p) =
Ap − b. Therefore, finding the minimum point of fA,b(p) is equivalent to solving the linear
system Ap = b, and hence one can solve the linear system by performing gradient descent on
fA,b(p).

The Hessian of fA,b(p) is ∇2fA,b(p) = A, a constant matrix. This allows a simple rule to
determine a constant step size for each coordinate. By taking all the ξ values to be 1, to
apply Theorem 1, it suffices to have γtj = γj satisfy γj ≥

Ajj

2
α (for A1), 4

γj

∑

k 6=j |Ajk| < 1− 1
α

(combining A3, A4 and the bound 1
α
+ 2ǫF + 2ǫB < 1), and α ≥ 2. These imply it suffices that

the step size, 1/γj, be less than
[

max
{
Ajj+8

∑

k 6=j |Akj |

2
, Ajj

}]−1

.
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Another application is given by the following class of optimization problems (see Nes-
terov [14]): minimizing F (p) :=

∑n
i=1 fi(pi)+

1
2
‖Ap−b‖2, where the fi are convex differentiable

univariate functions, A ∈ R
r×n is an r×n real matrix and b ∈ R

r. The Hessian of F at p isATA+
D, where D is the diagonal matrix with Djj = f ′′

j (pj). If f
′′
j (p) is bounded by Lj , again, it suf-

fices to have γtj = γj satisfy γj ≥
(ATA)jj+Lj

2
α, 4

γj

∑

k 6=j |(A
TA)jk| < 1− 1

α
, and α ≥ 2. These im-

ply it suffices that the step size, 1/γj, be less than
[

max
{

(ATA)jj+Lj+8
∑

k 6=j |(A
TA)kj |

2
, (ATA)jj + Lj

}]−1

.

Next, we discuss how ∇jF (p) is computed by the j-th core. Let G(p) = Ap − b and
let Aj denote the j-th column of the matrix A. Then ∇jF (p) = f ′

j(pj) + (Aj)
TG(p). f ′

j(pj) is
recomputed only when pj changes. For any k, when pk is changed by ∆pk, G(p+∆pk)−G(p) =
∆pkAk, and hence (Aj)

TG(p) changes by ∆pk(Aj)
TAk. Note that (Aj)

TAk is a constant and
hence can be pre-calculated, so the above equation provides a quick way to update ∇jF (p)
once the j-th core receives the message with ∆pk.

Recall that our AGD algorithm allows different coordinate values to be variously dated,
under the constraint that they are all no older than the time of the last update. It is natural to
aim to have essentially the same frequency of update for each coordinate. Accordingly, at the
i-th round of updates, each core can simply ensure it has received the update for the previous
round from every other core. The update messages might arrive at different times, but the j-th
core needs not wait until it collects all such messages. It can simply compute the changes to
∇jF (p) incrementally as it receives updates ∆pk to pk. This avoids the need for any explicit
synchronization.

5 Tatonnement in Fisher Markets

A Fisher market comprises a set of n goods and two sets of agents, sellers and buyers. The
sellers bring the goods to market and the buyers bring money with which to buy the goods. The
trade is driven by a collection of non-negative prices {pj}j=1···n, one price per good. WLOG,
we assume that each seller brings one distinct good to the market, and she is the price-setter
for this good. By normalization, we may assume that each seller brings one unit of her good
to the market.

Each buyer i starts with ei money, and has a utility function ui(xi1, xi2, · · · , xin) expressing
her preferences: if she prefers bundle {xaij}j=1···n to bundle {xbij}j=1···n, then ui({x

a
ij}j=1···n) >

ui({x
b
ij}j=1···n). At any given prices {pj}j=1···n, each buyer i seeks to purchase a maximum

utility bundle of goods costing at most ei. The demand for good j, denoted by xj , is the total
quantity of the good sought by all buyers. The supply of good j is the quantity of good j its
seller brings to the market, which we have assumed to be 1. The excess demand for good j,
denoted by zj , is the demand for the good minus its supply, i.e. zj = xj − 1. Prices {p∗j}j=1···n

are said to form a market equilibrium if, for any good j with p∗j > 0, zj = 0, and for any good
j with p∗j = 0, zj ≤ 0.

The following two classes of utility functions are commonly used in market models. The
first class is the Constant Elasticity of Substitution (CES) utility function:

ui (xi1, xi2, · · · , xin) = (ai1(xi1)
ρi + ai2(xi2)

ρi + · · ·+ ain(xin)
ρi)1/ρi ,

where ρi ≤ 1 and ∀j, aij ≥ 0. θi := ρi/(ρi − 1) is a parameter which will be used in the

10



analysis. In this paper we focus on the cases ρi ≤ 0, in which goods are complements and
hence the utility function is called a complementary-CES utility function. It is easy to extend
our analysis to the cases ρi ≥ 0, which had been analysed in [10, 11]. The second class is the
Leontief utility function:

ui (xi1, xi2, · · · , xin) = min
j∈S
{bijxij} ,

where S is a non-empty subset of the goods in the market, and ∀j ∈ S, bij > 0.

Cheung, Cole and Devanur [6] showed that tatonnement is equivalent to gradient descent
on a convex function φ for Fisher markets with buyers having complementary-CES or Leontief
utility functions (defined in the appendix). To be specific, ∇jφ(p) = −zj(p), and the convex
function φ is φ(p) =

∑

j pj+
∑

i ûi(p), where ûi(p) is the optimal utility that buyer i can attain
at prices p. The corresponding update rule is

p′j = pj · (1 + λ ·min{z̃j , 1} · (t− τj)) , (9)

where z̃j is a value between the minimum and maximum excess demands during the time
interval (τj, t], and λ > 0 is a suitable constant. As the update rule is multiplicative, we
assume that the initial prices are positive.

Note that γtj =
max{1,z̃j}

λpj
. As we will see, it suffices that λ ≤ 1

23.46
. In comparison, in the

synchronous version, γtj ≥
6max{1,ztj}

pj
, so the step sizes of the asynchronous tatonnement are a

constant fraction of those used in its synchronous counterpart.

Theorem 6. For λ ≤ 1
23.46

, asynchronous tatonnement price updates using rule (9) converge
toward the market equilibrium in any complementary-CES or Leontief Fisher market.

In a Fisher market with buyers having complementary-CES utility functions, Properties 1
and 2 below are well-known. Property 3 was proved in [6] and implies that Condition A1 holds
when α = 6 and γtj ≥ 9.5xj(p

t)/ptj.

1. Let xiℓ(p) denote the buyer i’s demand for good ℓ at prices p. Then for k 6= j,

∣
∣
∣
∣

∂2φ

∂pj∂pk

∣
∣
∣
∣
=
∑

i

θixij(p)xik(p)

ei
≤
∑

i

xij(p)xik(p)

ei
.

2. Given positive prices p, for any 0 < r1 < r2, let p
′ be prices such that for all j, r1pj ≤

p′j ≤ r2pj. Then for all j, 1
r2
xj(p) ≤ xj(p

′) ≤ 1
r1
xj(p).

3. If
∆pj
pj
≤ 1/6, then φ(p+∆p)− φ(p)−∇jφ(p) ·∆pj ≤

1.5xj
pj

(∆pj)
2.

We outline the analysis for the complementary-CES case. As λ ≤ 1
23.46

, within one unit
of time, each price can vary by a factor between (9/10)2 = 81/100 and (11/10)2 = 121/100.5

Hence, within one unit of time, the demand can vary by a factor between 100/121 and 100/81.

For each update to pj at time t, we choose ξtk := ptk/p
t
j. Then the following lemma bounds

the sums in Conditions A3 and A4.

5These bounds are loose, but they suffice for our purpose.
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Lemma 7. (a)
∑

k 6=j ξ
t
k ·H

[t,σj ]
jk

(
pτk+k

)
≤

1.53xj(pt)

ptj
;

(b)
∑

k 6=j

(

maxq:kq=k
1

ξ
βq
j

)

·H
[τj ,t]
kj

(
ptj
)
≤

1.89xj(pt)

ptj
.

Proof:

∑

k 6=j

ξtk ·H
[t,t+1]
jk

(
pτk+k

)
=
∑

k 6=j

ptk
ptj
· max
p′∈P̃

[t,t+1]
k

(

p
τk+

k

)

∣
∣
∣
∣

∂2φ

∂pj∂pk

∣
∣
∣
∣

≤
1

ptj

∑

k 6=j

ptk · max
p′∈P̃

[t,t+1]
j

(

p
τk+

k

)

∑

i

xij(p
′)xik(p

′)

ei
≤

1

ptj

∑

k 6=j

ptk
∑

i

(
100
81
xij(p

t)
) (

100
81
xik(p

t)
)

ei

≤
1.53

ptj

∑

i

xij(p
t)
∑

k 6=j

ptkxik(p
t)

ei
≤

1.53

ptj

∑

i

xij(p
t) =

1.53xj(p
t)

ptj
.

And

∑

k 6=j

(

max
q:kq=k

1

ξ
βq
j

)

·H
[τj ,t]
kj

(
ptj
)

=
∑

k 6=j

maxq:kq=k p
βq
k

ptj
· max
p′∈P̃

[τj,t]

j (ptj)

∣
∣
∣
∣

∂2φ

∂pj∂pk

∣
∣
∣
∣

≤
1

ptj

∑

k 6=j

(
100

81
ptk

)
∑

i

(
100
81
xij(p

t)
) (

100
81
xik(p

t)
)

ei

≤
1.89

ptj

∑

i

xij(p
t)
∑

k 6=j

ptkxik(p
t)

ei
≤

1.89

ptj

∑

i

xij(p
t) =

1.89xj(p
t)

ptj
.

Proof of Theorem 6 for the CES case: By Property 3, Condition A1 is satisfied by set-

ting γtj ≥
9.5xj(p

t)

ptj
and α = 6. By Lemma 7, Conditions A3 and A4 are satisfied by setting

ǫF = 1/6 and ǫB = 1/5, and 1− 1
α
− 2ǫF − 2ǫB = 1

10
> 0.

As discussed in [10], the seller might know only x̃j but not xj . As x̃j ≥
81
100
xj , it would be

more natural to use γtj ≥
11.73x̃j
pj

, or the even weaker (but still more natural) γtj ≥
23.46max{1,z̃j}

pj
,

which yields update rule (9).

[6] proved that prices in tatonnement cannot get arbitrarily close to zero and hence demands
cannot increase indefinitely, so γj, as defined in Condition A2, is finite. [6] also showed that φ
is strongly convex. The result follows from Theorem 1(b).

Ongoing Complementary-CES Fisher Markets Cole and Fleischer’s Ongoing market
model [10] incorporates asynchronous tatonnement and warehouses to form a self-contained
dynamic market model. The price update rule is designed to achieve two goals simultaneously:
convergence toward the market equilibrium and warehouse “balance”. As in [7], we modify the
price update rule (9) to achieve both targets. Analysing its convergence entails the design of a
significantly more involved potential function; the details are given in the appendix.
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Leontief Fisher Markets It is well-known that Leontief utility functions can be considered
as the “limit” of CES utility functions as ρ→ −∞. Our analysis for CES Fisher markets can
be reused, with no modification needed, to show that in any Leontief Fisher market, Φ(pt, t, τ)
decreases with t. However, as an equilibrium price in a Leontief Fisher market can be zero, it
is unavoidable that the chosen step size γtj may tend to infinity (as γtj = Ω(1/pj)), violating
Condition A2; thus Theorem 1 cannot be applied directly.

On top of the result that Φ(pt, t, τ) decreases with t, we provide additional arguments to
show that tatonnement with update rule (9) still converges toward the market equilibrium
in Leontief Fisher markets. The proof is given in the appendix. However, this result does
not provide a bound on the rate of convergence, which appears to preclude incorporating
warehouses into the analysis.

Further Discussion of Asynchronous Dynamics Computer science has long been con-
cerned with the organization and manipulation of information in the form of well-defined
problems with a clear intended outcome. But in the last 15 years, computer science has gained
a new dimension, in which outcomes are predicted or described, rather than designed. Exam-
ples include bird flocking [4], influence systems [5], spread of information memes across the
Internet [13] and market economies [10]. Many of these problems fall into the broad category
of analysing dynamic systems. Dynamic systems are a staple of the physical sciences; often
the dynamics are captured via a neat, deterministic set of rules (e.g. Newton’s law of motion,
Maxwell’s equations for electrodynamics). The modeling of dynamic systems with intelligent
agents presents new challenges because agent behavior may not be wholly consistent or sys-
tematic. One issue that has received little attention is the timing of agents’ actions. Typically,
a fixed schedule has been assumed (e.g. synchronous or round robin), perhaps because it was
more readily analysed.

This work provides a second demonstration (the first demonstration is in [11, 7]) and further
development of a method for analysing asynchronous dynamics, here for dynamics which are
equivalent to gradient descent. This methodology may be of wider interest.
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A Missing Proofs in Section 3

Proof of Lemma 2: By Condition A1, φ+ − φ− − gj∆pj ≤
γtj
α
(∆pj)

2. Then

φ− − φ+ ≥ −[g̃j + (gj − g̃j)]∆pj −
γtj
α
(∆pj)

2

≥
γtj∆pj

∆tj
·∆pj −

1

α
·
γtj(∆pj)

2

∆tj
− |gj − g̃j| · |∆pj| (as ∆tj ≤ 1)

=

(

1−
1

α

)
γtj(∆pj)

2

∆tj
− |gj − g̃j| · |∆pj|.

Proof of Lemma 3: We begin by showing

g̃j,max − g̃j,min ≤ 2
m∑

i=1

H
[βi,t]
kij

(
ptj
)
· |∆pki|. (10)

First of all, we define a few useful notations. Let p̃max and p̃min, respectively, denote the
p̃-values at which ∇jφ(p̃) yields g̃j,max and g̃j,min. Let p

(t1,t]
k,min := mint′∈(t1,t] p

t′

k and p
(t1,t]
k,max :=

maxt′∈(t1,t] p
t′

k . Let β0 := τj .

To prove (10), we first construct a path P that connects p̃max and p̃min, with each edge in P
corresponding to a price update between times τj and t. The construction builds two paths, P s,

starting at p̃max, and P
e, starting at p̃min. Note that p̃max, p̃min ∈ P̃

[τj ,t]
j

(
ptj
)
, and for all k 6= j,

(p̃max)k, (p̃min)k ∈
[

p
(β0,t]
k,min, p

(β0,t]
k,max

]

. P s and P e will be constructed in m steps that correspond

to the m price updates at times β1, β2, · · · , βm. By the end of the ℓ-th step, our construction
ensures that the end points of P s and P e are in the set P̃

[βℓ,t]
j

(
ptj
)
. Hence, by the end of the

m-th step, the end points of P s and P e are in the set P̃
[βm,t]
j

(
ptj
)
, which is a singleton, so the

two end points must be equal. This allows P s and P e to be concatenated at their end points
to form the path P . The specifics of the construction are as follows:

1. Let p̊s and p̊e, respectively, denote the end points of P s and P e, i.e. initially, p̊s = p̃max

and p̊e = p̃min.

2. For i = 1 · · ·m, do:

• Suppose span
{
p̊ski , p̊

e
ki

}
= [li, ri]. WLOG, suppose that p̊ski = li.

6

Note that by the end of the last step, the construction ensures that li, ri ∈
[

p
(βi−1,t]
ki,min , p

(βi−1,t]
ki,max

]

.

Also, note that at most one of the strict inequalities p
(βi,t]
ki,min > p

(βi−1,t]
ki,min and p

(βi,t]
ki,max <

p
(βi−1,t]
ki,max holds, and hence li < p

(βi,t]
ki,min < p

(βi,t]
ki,max < ri is not possible.

• For any p, let p′ = (p−k, x) be the vector such that p′k = x, and for all h 6= k, p′h = ph.

Depending on the values of li, ri, p
(βi,t]
ki,min, p

(βi,t]
ki,max, there are five cases.

6If p̊eki
= li, swap the roles of P s and P e in the current for loop.
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(a) If p
(βi,t]
ki,min ≤ li ≤ ri ≤ p

(βi,t]
ki,max, do nothing.

(b) If li < p
(βi,t]
ki,min ≤ ri ≤ p

(βi,t]
ki,max, let p̊

′ =
(

p̊s−ki, p
(βi,t]
ki,min

)

; in P s, connect p̊s to p̊′, and

update p̊s to p̊′.

(c) If li ≤ ri < p
(βi,t]
ki,min ≤ p

(βi,t]
ki,max,

- let p̊′ =
(

p̊s−ki, p
(βi,t]
ki,min

)

; in P s, connect p̊s to p̊′, and update p̊s to p̊′.

- let p̊′′ =
(

p̊e−ki, p
(βi,t]
ki,min

)

; in P e, connect p̊e to p̊′′, and update p̊e to p̊′′.

(d) If p
(βi,t]
ki,min ≤ li ≤ p

(βi,t]
ki,max < ri, let p̊

′ =
(

p̊e−ki , p
(βi,t]
ki,max

)

; in P e, connect p̊e to p̊′, and

update p̊e to p̊′.

(e) If p
(βi,t]
ki,min ≤ p

(βi,t]
ki,max < li ≤ ri,

- let p̊′ =
(

p̊s−ki, p
(βi,t]
ki,max

)

; in P s, connect p̊s to p̊′, and update p̊s to p̊′.

- let p̊′′ =
(

p̊e−ki, p
(βi,t]
ki,max

)

; in P e, connect p̊e to p̊′′, and update p̊e to p̊′′.

3. Concatenate P s and P e at p̊s = p̊e to form the path P .

There are at most 2m edges in the path P , with at most two edges added in each of the m
steps. Note that the length of each edge added in the i-th step is at most |∆pki|, so by simple

calculus, the change to ∇j(p
′) along each such edge is at most H

[βi,t]
kij

(
ptj
)
· |∆pki|. This yields

(10).

To prove (4) and (5), first note that since P̃
[βi,t]
j

(
ptj
)
⊂ P̃

[τj ,t]
j

(
ptj
)
, H

[βi,t]
kij

(
ptj
)
≤ H

[τj ,t]
kij

(
ptj
)
.

Then
m∑

i=1

1

ηi
H

[βi,t]
kij

(
ptj
)
∆tki ≤

m∑

i=1

1

ηi
H

[τj ,t]
kij

(
ptj
)
∆tki ≤

∑

k 6=j

1

η̄k
H

[τj ,t]
kj

(
ptj
) ∑

i:ki=k

∆tki

≤ 2
∑

k 6=j

1

η̄k
H

[τj ,t]
kj

(
ptj
)
. (11)

The last inequality holds since
∑

i:ki=k
∆tki ≤ 1 + (t− τj) ≤ 2.

The proof of (4):

|µ| · (g̃j,max − g̃j,min) ≤ 2

m∑

i=1

H
[βi,t]
kij

(
ptj
)
· |∆pki| · |µ| (by Eqn. (10))

≤
m∑

i=1

H
[βi,t]
kij

(
ptj
)
·

[
µ2∆tki
ηi

+
ηi(∆pki)

2

∆tki

]

(AM-GM ineq.)

≤ 2µ2
∑

k 6=j

1

η̄k
H

[τj ,t]
kj

(
ptj
)
+

m∑

i=1

ηi ·H
[βi,t]
kij

(
ptj
) (∆pki)

2

∆tki
. (by Eqn. (11))
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The proof of (5):

(g̃j,max − g̃j,min)
2

≤ 4
m∑

i1=1

m∑

i2=1

H
[βi1 ,t]

ki1 j

(
ptj
)
·H

[βi2 ,t]

ki2j

(
ptj
)
·
∣
∣∆pki1

∣
∣ ·
∣
∣∆pki2

∣
∣ (by Eqn. (10))

≤ 2

m∑

i1=1

m∑

i2=1

H
[βi1 ,t]

ki1 j

(
ptj
)
·H

[βi2 ,t]

ki2j

(
ptj
)
·

[(
∆pki1

)2
ηi1∆tki2

ηi2∆tki1
+

(
∆pki2

)2
ηi2∆tki1

ηi1∆tki2

]

(AM-GM ineq.)

= 2

m∑

i1=1

m∑

i2=1

H
[βi1 ,t]

ki1 j

(
ptj
)
·H

[βi2 ,t]

ki2 j

(
ptj
)
·

(
∆pki1

)2
ηi1∆tki2

ηi2∆tki1

+ 2

m∑

i2=1

m∑

i1=1

H
[βi2 ,t]

ki2 j

(
ptj
)
·H

[βi1 ,t]

ki1 j

(
ptj
)
·

(
∆pki1

)2
ηi1∆tki2

ηi2∆tki1

(swap the indices i1 and i2 in the second double-summation)

= 4

m∑

i1=1

m∑

i2=1

H
[βi1 ,t]

ki1 j

(
ptj
)
·H

[βi2 ,t]

ki2 j

(
ptj
)
·

(
∆pki1

)2
ηi1∆tki2

ηi2∆tki1

= 4

(
m∑

i1=1

ηi1 ·H
[βi1 ,t]

ki1j

(
ptj
)
·

(
∆pki1

)2

∆tki1

)(
m∑

i2=1

1

ηi2
H

[βi2 ,t]

ki2j

(
ptj
)
∆tki2

)

≤ 8

(
m∑

i=1

ηi ·H
[βi,t]
kij

(
ptj
)
·
(∆pki)

2

∆tki

)(
∑

k 6=j

1

η̄k
H

[τj ,t]
kj

(
ptj
)

)

. (by Eqn. (11))

Proof of Lemma 5: First, we bound the integral terms in Φ(pt, t, τ) (see Eqn. (2)). Follow-
ing the derivations of (7) and (8), with g̃j replaced by gj , yields

c1

∫ t

τj

(gj(t
′))2

γj
dt′ ≤ c1(1 + 4ǫB)

(gj)
2∆tj
γj

+ c1(2 + 8ǫB)
m∑

i=1

ξβij ·H
[βi,t]
kij

(
ptj
) (∆pki)

2

∆tki

and hence

∑

j

c1

∫ t

τj

(gj(t
′))2

γj
dt′ ≤ c1(1 + 4ǫB)

∑

j

(gj)
2∆tj
γj

+ c1(2 + 8ǫB)
∑

j

∑

i

ξβij ·H
[βi,t]
kij

(
ptj
) (∆pki)

2

∆tki
.

When 2 − c2 ≥ c1(2 + 8ǫB), as p
t
j = p

τj+
j , the double summation in the above inequality is no

larger than the double summation in Φ(pt, t, τ). Thus Φ(pt, t, τ) ≥ φ(pt)−c1(1+4ǫB)
∑

j
(gj)

2∆tj
γj

.

Next, we bound the sum
∑

j
(gj)2∆tj

γj
. Suppose there are hypothetical updates to all the

coordinates at time t, and pj is updated with the most up-to-date gradient g̃j = gj and step

size 1/γj. By Lemma 2 and Condition A2, φ− − φ+ ≥ 1
2

∑

j
(gj)2∆tj

γj
≥ 1

2

∑

j
(gj)2∆tj

γj
. Here

φ− = φ(pt). Thus φ− − φ+ ≤ φ(pt)− φ∗ = φ(pt), and hence
∑

j
(gj)

2∆tj
γj

≤ 2φ(pt).
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B Leontief Fisher Markets

Lemma 8. Let τj , t be the times at which two consecutive updates to pj occur. If γ
t
j is controlled

and c2 ≤ 1, then Φτj+ − Φt+ ≥
(
1− 1

α
− 2ǫB − 2ǫF

) γtj(∆pj)
2

∆tj
.

Proof: This lemma can be proved by slightly modifying the proof of Lemma 4; we will use
the notations defined therein.

By Lemma 4, Φ does not increase at the updates made in the time interval (τj , t). By (3),

Φτj+ − Φt− ≥ c1

∫ t

τj

(gj(t
′))2

γj
dt′ = E2.

By (6),

Φt− − Φt+ ≥

(

1−
1

α

)
γtj(∆pj)

2

∆tj
−E1 − E2 + (2− c2)

∑

i

ξβij ·H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
−E3.

Combining the two inequalities above yields

Φτj+ − Φt+ =
(
Φτj+ − Φt−

)
+
(
Φt− − Φt+

)

≥

(

1−
1

α

)
γtj(∆pj)

2

∆tj
+ (2− c2)

∑

i

ξβij ·H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
−E1 − E3.

The result follows on noting that p
τj+
j = ptj and by applying the bounds on E1 and E3 in the

proof of Lemma 4.

Let U = max
{
maxj{p

0
j}, 2

∑

i ei
}
be an upper bound on the prices throughout the taton-

nement process [6].

Lemma 9. Let δ = 1 − 1
α
− 2ǫB − 2ǫF. Suppose that there are consecutive updates to pj at

times Υ0 < Υ1 < · · · < Υm, where Υm − Υ0 ≤ 2. If
∣
∣pΥ0+
j − pΥm+

j

∣
∣ ≥ ǫ, where ǫ ≤ 1, then

ΦΥ0+ − ΦΥm+ ≥ δǫ2 ·min
{

1
2
, 1
3λU

}
.

Proof: For q = 1, 2, · · · , m, let ∆pj,q be the change to pj at the update timed Υq, and let z̃j,q
be the z̃-value used for the update, i.e. γ

Υq

j =
max{1,z̃j,q}

λp
Υq
j

and ∆pj,q = λp
Υq

j ·min{1, z̃j,q} ·∆tq.

We will use Lemma 8 to give a lower bound on the decrease to Φ between times Υ0+ and
Υm+. If z̃j,q < 1, then

γ
Υq

j (∆pj,q)
2

∆tq
=

1

λp
Υq

j

(∆pj,q)
2

∆tq
≥

1

λU

(∆pj,q)
2

∆tq
.

If z̃j,q ≥ 1, then

γ
Υq

j (∆pj,q)
2

∆tq
=

z̃j,q

λp
Υq

j

· λ2
(

p
Υq

j

)2

∆tq = λp
Υq

j z̃j,q∆tq ≥ |∆pj,q|.
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By Lemma 8,

ΦΥ0+ − ΦΥm+ =
m∑

q=1

(
ΦΥq−1+ − ΦΥq+

)
≥ δ

m∑

q=1

γ
Υq

j (∆pj,q)
2

∆tq

≥
δ

λU

∑

q:z̃j,q<1

(∆pj,q)
2

∆tq
+ δ

∑

q:z̃j,q≥1

|∆pj,q|.

By the assumption |pΥ0+
j −pΥm+

j | ≥ ǫ,
∑m

q=1 |∆pj,q| ≥ ǫ. Let σ := ǫ−1
∑

q:z̃j,q≥1 |∆pj,q|. Then∑

q:z̃j,q<1 |∆pj,q| ≥ max{0, (1− σ)ǫ}. By the Cauchy-Schwarz inequality,

[max{0, (1− σ)ǫ}]2 ≤




∑

q:z̃j,q<1

|∆pj,q|





2

=




∑

q:z̃j,q<1

∣
∣
∣
∣
∣

∆pj,q
√
∆tq

∣
∣
∣
∣
∣
·
√

∆tq





2

≤




∑

q:z̃j,q<1

(∆pj,q)
2

∆tq








∑

q:z̃j,q<1

∆tq





≤ 3
∑

q:z̃j,q<1

(∆pj,q)
2

∆tq
,

i.e.
∑

q:z̃j,q<1
(∆pj,q)2

∆tq
≥ 1

3
[max{0, (1− σ)ǫ}]2. Then

ΦΥ0+ − ΦΥm+ ≥
δ

3λU
[max{0, (1− σ)ǫ}]2 + δσǫ.

The minimum value of the right hand side is at least δǫ2 ·min
{

1
2
, 1
3λU

}
.

Corollary 10. For any ǫ > 0, there exists a finite time Tǫ such that for any good j, any t ≥ Tǫ,
and any 0 ≤ ∆t ≤ 1, |ptj − p

t+∆t
j | ≤ ǫ.

Proof of Theorem 6 for the Leontief case: The proof comprises four steps. We need the
following definitions: for any two price vectors pA and pB, let d(pA, pB) denote the L1 norm
distance between the two price vectors, i.e. d(pA, pB) =

∑

j |p
A
j − p

B
j |. For any two sets of price

vectors PA and PB, let d(PA, PB) := infpA∈PA,pB∈PB d(pA, pB).

Step 1. Let Ω be the set of limit points of a tatonnement process. We show that Ω is
non-empty and connected.

Since all prices remain bounded by U throughout the tatonnement process, Ω is non-empty.

Suppose Ω is not connected. Let Ωa denote a connected component of Ω, and let Ωb = Ω\Ωa.
Suppose d(Ωa,Ωb) = ǫ′ > 0. By the definition of limit points, there exists a finite time Υǫ′ such
that thereafter the prices in the tatonnement process are always within an ǫ′/4-neighborhood
of either Ωa or Ωb. This forces an infinite number of updates, each separated by at least one
time unit, such that each update makes a change to a price by at least at least ǫ′/2. This
contradicts Corollary 10.
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Step 2. Recall that a market equilibrium is a price vector p∗ at which for each j, p∗j > 0
implies zj(p

∗) = 0 and p∗j = 0 implies zj(p
∗) ≤ 0. We define a pseudo-equilibrium: a price

vector p̃ is a pseudo-equilibrium if for each j, p̃j > 0 implies zj(p̃) = 0. Note that every market
equilibrium is a pseudo-equilibrium. We show that all limit points in Ω are pseudo-equilibria.

Suppose not. Let p′ ∈ Ω be a price vector which is not a pseudo-equilibrium, i.e. there exists
j such that p′j > 0 but zj(p

′) 6= 0. Let ǫ be a positive number such that for any price vector p̀
in the ǫ-neighborhood of p′, p̀j ≥ p′j/2 and |zj(p̀)| ≥ |zj(p

′)/2|. By the definition of limit points,
the tatonnement process enters the (ǫ/2)-neighborhood of p′ infinitely often. By Corollary 10,
there exists a finite time such that subsequently, every time the tatonnement process enters
the ǫ/2-neighborhood of p′, it stays in the ǫ-neighborhood of p′ for at least one time unit. By
Eqn. (3), Φ drops by at least λ(p′j/2)(zj(p

′)/2)2 during each such stay in the ǫ-neighborhood
of p′. This is a contradiction since Φ is positive throughout and hence cannot drop by at least
λ(p′j/2)(zj(p

′)/2)2 infinitely often.

Step 3. We show that the excess demands at all limit points in Ω are identical.

For every subset of goods S, let ΩS = {p′ ∈ Ω | p′k > 0⇔ k ∈ S}. For each buyer, there are
two cases:

• if the buyer wants at least one good in S, say good ℓ:
Observe that by the definition of pseudo-equilibrium and Step 2, every price vector in ΩS ,
excluding the zero prices in the price vector, is a market equilibrium for the sub-Leontief-
market comprising the goods in S. Codenotti and Varadarajan [9] pointed out that the
demands for the goods in S of each buyer are identical at every market equilibrium of
the sub-Leontief market, and hence also in the original Leontief market. So the buyer
demands the same positive but finite amount of good ℓ at every price vector in ΩS in
the original market. Also note that the buyer always demands the goods in the original
market in a fixed proportion. This forces the demands for the goods not in S of the buyer
are also identical at every price vector in ΩS.

• if the buyer wants no good in S:
Then the buyer demands infinite amount of each good that she wants, and demands zero
amount of each good that she does not want.

In either case, the buyer’s demands for each good at every price vector in ΩS are identical, and
hence also the total demand for each good.

Then consider a graph G with each vertex corresponding to a subset of goods S such that
ΩS is non-empty, and two vertices S1, S2 being adjacent if and only if d (ΩS1 ,ΩS2) = 0. Since
excess demands are a continuous function7 of prices, if S1 and S2 are adjacent, then the excess
demands for all goods at every price vector in S1 ∪ S2 are identical. By Step 1, the graph G is
connected, thus the excess demands at all limit points in Ω are identical.

Step 4. We show that every limit point in Ω is indeed a market equilibrium.

7The range of the excess demand functions is the extended real line R ∪ {+∞}; continuity of the excess
demand function is w.r.t. the usual topology on the extended real line. To be specific, if zk(p) = +∞ for some
p and k, then for any M ∈ R, there exists an ǫM > 0 such that zk(p) ≥M in the ǫM -neighborhood of p.

21



Suppose not, i.e. there exists a limit point p′ in Ω which is a pseudo-equilibrium but not
a market equilibrium, i.e. there exists k such that p′k = 0 but zk(p

′) > 0. By Step 3, zk is
positive at every limit point in Ω, and hence every pk at every limit point must be zero. By
the definition of limit points, for any ǫ > 0, beyond a finite time, the tatonnement process
must stay within the ǫ-neighborhood of Ω thereafter. By choosing a sufficiently small ǫ, zk is
bounded away from zero in the ǫ-neighborhood of Ω, and hence pk increase indefinitely and
eventually pk becomes so large that the tatonnement process must leave the ǫ-neighborhood of
Ω, a contradiction.
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C Ongoing Complementary-CES Fisher Markets

The tatonnement process which we described in Section 5 is a two-stage process. In the first
stage, the buyers repeatedly report their demands to sellers according to the current prices,
then the sellers update the prices with the reported demands. The first stage continues until
the market reaches a market equilibrium, and then trades occur in the second stage. Clearly,
this is not a plausible real-world market dynamic.

In order to have a more realistic setting for a price adjustment algorithm, it would appear
that out-of-equilibrium trade must be allowed, so as to generate the demand imbalances that
then induce price adjustments. In an attempt to build a more realistic market model, Cole and
Fleischer [10] introduced the Ongoing market model. In an ongoing Fisher market, the market
repeats over an unbounded number of time intervals called days. Each day, the seller of each
good receives one new unit of the good, and each buyer i is given ei amount of money. In that
day, each buyer i purchases a utility-maximizing bundle of goods of cost at most ei.

But then there needs to be a way for seller to handle excess supply/demand. To this end, for
each good j there is a warehouse of finite capacity χj which can meet excess demand and store
excess supply. When there is surplus (supply exceeds demand), it is stored in the warehouse;
when there is excess demand (demand exceeds supply), good is taken from the warehouse to
meet the excess demand. The sellers change prices as needed to ensure their warehouses neither
overfill nor run out of goods.

Given initial prices p0, initial warehouses stocks v0, where 0 < v0j < χj for each good j,
and ideal warehouse stocks v∗, the task is to repeatedly adjust prices so as to converge to a
market equilibrium with the warehouse stocks converging to their ideal values; for simplicity,
we suppose that v∗j = χj/2 for each good j. vj will denote the difference between the content
of the warehouse of good j and v∗j ; hence vj ∈ [−χj/2, χj/2].

In an ongoing Fisher market, the sellers adjust the prices of their goods. In order to have
progress, the sellers are required to update prices at least once per day. However, there is no
upper bound on the frequency of price changes. This entails measuring demand on a finer scale
than day units. Accordingly, we assume that each buyer spends their money at a uniform rate
throughout the day, and hence instantaneous demand and instantaneous excess demand for
good j at any time t ∈ R

+ can be readily defined; we denote them by xtj and z
t
j respectively.

In this section, we analyse ongoing complementary-CES Fisher markets. Recall that for
a complementary-CES Fisher market, tatonnement is equivalent to gradient descent on the
convex function φ(p) =

∑

j pj +
∑

i ûi(p), where ûi(p) is the optimal utility that buyer i
can attain at prices p. We will introduce new potential functions, which incorporate φ as a
component, for the ongoing market analysis.

We use the following price update rule, which is a variant of (9), and which ensures conver-
gence to the ideal warehouse stocks as well as to the market equilibrium:

p′j = pj · (1 + λj ·min{z̃j − κjvj, 1} ·∆tj) , (12)

where λj, κj are small constants. Note that γtj =
1

pjλj
·max{1, z̃j − κjvj}.

Theorem 11. If λj ≤ 1/60 for all j, then there exists κj > 0 such that price updates using
Rule (12) converge toward the market equilibrium in any complementary-CES Fisher market,
with the warehouse stocks converging to their ideal values.
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First, we impose the following bounds on λj and κj .

B1. λj ≤ 1/60;

B2. κj/λj ≤ 1/10 (this, together with Condition B1, yields κj ≤ 1/600);

B3. |κjvj | ≤ 1/10 always (such κj exist since the warehouse sizes are bounded).

We will impose more bounds on κj, but eventually we will show that, given any fixed λj
satisfying Condition B1, for all j, there exist positive κj that satisfy all these bounds.

We need to be cautious with Condition B3, and also Condtion B4 which we will state later.
At this point, it is not clear that vj remains bounded throughout the tatonnement process, so
the two conditions might cease to hold no matter how small κj is set. We show that this never
happens in Section C.3.

Notations Let f ≥ 1. A price vector p is f -bounded if, for all j, 1
f
≤

pj
p∗j
≤ f . Let R(f) denote

the set of all f -bounded price vectors.

Our analysis comprises two phases. Phase 1 finishes when prices are guaranteed to be 1.9-
bounded thereafter, and then we proceed to Phase 2. We outline the analysis of the two phases
in Sections C.1 and C.2, respectively. We defer most proofs to Section C.4.

One component of the potential functions we will use is (similar to) Φ as defined in (2),
and we will use some results from Sections 3 and 5. We deduce the values of ǫB, ǫF that satisfy
Conditions A3 and A4. Recall that by Property 3 of complementary-CES markets (see the

appendix on tatonnement), if
∆pj
pj
≤ 1/6, then φ(p+∆p)− φ(p)−∇jφ(p) ·∆pj ≤

1.5xj
pj

(∆pj)
2,

where xj = zj + 1. Let x̃j = z̃j + 1. Recall that xj ≤
100
81
x̃j ≤ 1.24x̃j. Then

1.5xj
pj
·
1

γtj
≤

1.86x̃j
pj
·

pjλj
max{z̃j − κjvj , 1}

≤ 1.86λj ·
z̃j + 1

max{z̃j − 0.1, 1}
≤

1.86

60
·2.1 <

1

15
<

1

2
, (13)

and hence
γtj
15
>

1.5xj
pj

. By Lemma 7 plus Conditions (A3) and (A4), we can set

ǫF =
1.53

1.5
·
1

15
= 0.068 (14)

and ǫB =
1.89

1.5
·
1

15
= 0.084. (15)

Lemma 12. Suppose there is an update to pj at time t according to rule (12). Suppose that
Conditions B1 and B3 hold. Let φ− and φ+ denote, respectively, the convex function values
just before and just after the update. Let zj = −∇jφ(p

t) and z̃j ≡ z̃j(t). Let ∆pj be the change
to pj made by the update, i.e. ∆pj := λjpj ·min{z̃j − κjvj , 1} ·∆tj. Then

φ− − φ+ ≥
1

2

(z̃j)
2∆tj
γtj

−
1

2

(κjvj)
2∆tj

γtj
− |zj − z̃j | · |∆pj| (16)

and

φ− − φ+ ≥
41

60

γtj(∆pj)
2

∆tj
−

(κjvj)
2∆tj

γtj
− |zj − z̃j | · |∆pj|. (17)
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C.1 Phase 1

For Phase 1, we use the potential function Ξ1 ≡ Ξ1(p
t, vt, t, τ):

Ξ1 = φ(pt)− c1
∑

j

∫ t

τj

(zj(t
′))2

γ
σj
j

dt′ +
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
[2− c2(t− βi)]

+
∑

j

(κjv
t
j)

2(t− τj)

γ
σj
j

. (18)

When there is no update, we show that

dΞ1

dt
≤ −

∑

j

(c1 − κj)
(ztj)

2

γ
σj
j

+
∑

j

(1 + κj)
(κjv

t
j)

2

γ
σj
j

− c2
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
. (19)

When there is an update, we show that

Lemma 13. Suppose that there is an update to pj at time t. Suppose that Conditions B1 and
B3 hold. Let Ξ−

1 and Ξ+
1 , respectively, denote the values of Ξ1 just before and just after the

update. Then

Ξ−
1 − Ξ+

1 ≥

(
1

4
− 1.4c1

)
(z̃j)

2∆tj
γtj

+ (1− c2 − 2.7c1)
m∑

i=1

ξβij H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.

Thus, by setting c1 = 5/28 and c2 = 1/2, Ξ1 does not increase at any update.

Since φ is strongly convex, in the proof of Theorem 1(b), we show that
∑

j
(zj)

2

γj
≥ D1 ·φ(p

t)

for some positive constant D1 ≤ 1/10. Let ψ := 1
1.001
·infp′ /∈R(1.9) φ(p

′). We impose an additional
condition on κj:

B4. κj are sufficiently small such that
∑

j
(κjvj)2

γtj
≤ 1

26/D1+4
ψ always.

Lemma 14. If Condition B4 holds and Ξ1 ≥ ψ/2, then dΞ1

dt
≤ −Θ(1) · Ξ1(t).

Proof: Let H(t) denote the sum
∑

j

∑m
i=1 ξ

βi
j H

[βi,t]
kij

(

p
τj+
j

)
(∆pki)

2

∆tki
at time t. By (18) and

Condition B4,

φ(pt) + 2H(t) +
1

26/D1 + 4
ψ ≥ Ξ1(t) ≥ ψ/2.

Hence

φ(pt) + 2H(t) ≥

(
1

2
−

1

26/D1 + 4

)

ψ (20)

and φ(pt) + 2H(t) ≥

(

1−
1

13/D1 + 2

)

Ξ1(t). (21)
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With our choices of c1, c2 and Condition B4, (19) yields

dΞ1

dt
≤ −

∑

j

(
5

28
− κj

)
(ztj)

2

γ
σj
j

+
∑

j

(1 + κj)
(κjv

t
j)

2

γ
σj
j

−
1

2
H(t)

≤ −
1

6

∑

j

(ztj)
2

γ
σj
j

+
601

600
·

1

26/D1 + 4
ψ −

1

2
H(t)

≤ −
D1

6
· φ(pt)−

1

2
H(t) +

601

600
·

1

26/D1 + 4
ψ

≤ −
D1

6

(
φ(pt) + 2H(t)

)
+

601
600
· 1
26/D1+4

1
2
− 1

26/D1+4

(
φ(pt) + 2H(t)

)
(by Eqn. (20))

≤ −
D1

12

(
φ(pt) + 2H(t)

)

≤ −
D1

12
·

(

1−
1

13/D1 + 2

)

Ξ1(t) (by Eqn. (21))

≤ −
D1

13
· Ξ1(t). (22)

Lemma 15. If Ξ1(t1) < ψ/2 at some time t1, then Ξ1(t) ≤ ψ/2 thereafter.

Proof: Suppose the contrary, i.e. at some time t2 > t1, Ξ1(t2) > ψ/2. Let T2 be the collection
of all such t2, and let t′ be the infimum of T2. By Lemma 13 and our choices of c1 and c2,
Ξ1 never increases at an update. Hence, for Ξ1 to exceed ψ/2 after time t1, it must be due
to continuous incrementing. This forces Ξ1(t

′) = ψ/2 and dΞ1

dt

∣
∣
t=t′
≥ 0. But these contradict

Lemma 14.

Following the proof of Lemma 5, we obtain that Ξ1 ≥ φ(pt) − 2c1(1 + 8ǫB)φ(p
t), and as

c1(1 + 8ǫB) ≤
1
4
, Ξ1 ≥

1
2
φ(pt). Thus if Ξ1 ≤ ψ/2, then φ(pt)/2 ≤ Ξ1 ≤ ψ/2. This implies

φ(pt) < minp′ /∈R(1.9) φ(p
′) and thus pt ∈ R(1.9). Lemma 14 shows that Ξ1 decreases linearly

until it drops below ψ/2 at some time t1, and Lemma 15 shows that Ξ1 remains below ψ/2
thereafter. Hence, ∀t ≥ t1, p

t ∈ R(1.9) and we proceed to the analysis of Phase 2.
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C.2 Phase 2

Phase 2 starts when all prices are guaranteed to be 1.9-bounded thereafter. Then each demand
is between 1

1.9
and 1.9 and hence −0.5 ≤ zj , z̃j ≤ 0.9. Since |κjvj| ≤ 0.1 always, in Phase 2 the

update rule (12) is equivalent to

p′j = pj · (1 + λj · (z̃j − κjvj) ·∆tj) , (23)

i.e. γtj =
1

λjpj
.

In this phase, we will use a new potential function Ξ2, which comprises two main components
Φ andW. Φ reflects how far the current prices are from the market equilibrium, andW accounts
for the warehouse imbalances.

C.2.1 Component Φ

The first component of Ξ2, Φ ≡ Φ(pt, t, τ), is

Φ = φ(pt)− c1
∑

j

∫ t

τj

λjpj(zj(t
′))2 dt′+

∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
[6− c2(t− βi)] . (24)

When there is no update, it is straightforward to show that

dΦ

dt
= −c1

∑

j

λjpj(z
t
j)

2 − c2
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
. (25)

When there is an update, we show that

Lemma 16. Suppose that there is an update to pj at time t. Suppose that Conditions B1 and
B3 hold. Let Φ− and Φ+, respectively, denote the values of Φ just before and just after the
update. Then

Φ− − Φ+ ≥

(
1

20
− 1.4c1

)

λjpj(z̃j)
2∆tj + 0.039

(∆pj)
2

λjpj∆tj
−

19

20
λjpj(κjvj)

2∆tj

+ (5− c2 − 2.7c1)
∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.

C.2.2 Component W

Let fj := ln(pj/p
∗
j ). The second component of Ξ2, W ≡ W(pt, vt, t, τ), is

W =
∑

j

κj
λj
p∗j (fj + λjvj)

2 − c3
∑

j

λjp
∗
j(κjvj)

2(t− τj) + 2
∑

j

κjλjp
∗
j

∫ t

τj

vj(t
′)zj(t

′) dt′.

When there is no update, we show that for any R1 ∈ R
+,

dW

dt
≤ −c3

∑

j

(1− κj)λjp
∗
j(κjv

t
j)

2 +
∑

j

(R1 + c3λj)κjp
∗
j(z

t
j)

2 +
1

R1

∑

j

κjp
∗
j(fj)

2. (26)

We will choose an appropriate value of R1 at the end.
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Lemma 17. Suppose that there is an update to pj at time t. Suppose that Conditions B1–B3
hold. Let W− and W+, respectively, denote the values of W just before and just after the
update. Then for any R2 ∈ R

+,

W− −W+ ≥
(

0.858−
c3
1.9

)

λjpj(κjvj)
2∆tj − 0.0235λjpj(z̃j)

2∆tj

− 3.809
∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki

− 0.101κj
p∗j(fj)

2∆tj

R2

− 1.92R2
(∆pj)

2

λjpj∆tj
.

We will choose an appropriate value of R2 at the end.

C.2.3 Ultimate Potential Function Ξ2

The ultimate potential function Ξ2 ≡ Ξ2(p
t, vt, t, τ) is

Ξ2 := Φ + 1.2W + 0.1212
∑

j

κjp
∗
j(fj)

2

R2

(t− τj).

From Lemmas 16 and 17, we deduce that

(Ξ2)
− − (Ξ2)

+

≥ (0.039− 2.304R2)
(∆pj)

2

λjpj∆tj
+ (0.0218− 1.4c1)λjpj(z̃j)

2∆tj +

(

0.0796−
12c3
19

)

λjpj(κjvj)
2∆tj

+ (0.4292− c2 − 2.7c1)
∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
. (27)

From (25), (26) and the fact that pj ≥ p∗j/1.9, we deduce that

dΞ2

dt
≤
∑

j

[
2.28κj
λj

(R1 + c3λj)− c1

]

λjpj(z
t
j)

2 − 1.2c3
∑

j

(1− κj)λjp
∗
j(κjv

t
j)

2

− c2
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
+

(
1.2

R1
+

0.1212

R2

)
∑

j

κjp
∗
j(fj)

2. (28)

We also show the following upper and lower bounds on Ξ2.

If 2− c2 ≥ 2.7c1, (29)

Ξ2 ≥ (1− 2.7c1)φ(p
t)− 1.2

∑

j

κj
λj
p∗j (fj)

2− 20
∑

j

κjλjpj(zj)
2 +
∑

j

(
1

5
− 1.2c3κj

)

κjλjp
∗
j (vj)

2.

(30)
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Also,

Ξ2 ≤ φ(pt) +
∑

j

(
2.4

λj
+

0.1212

R2

)

κjp
∗
j(fj)

2 + 20
∑

j

κjλjpj(zj)
2

+ 10
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
+ 3.6

∑

j

κjλjp
∗
j(vj)

2. (31)

In the next lemma, we show that
∑

j p
∗
j (fj)

2 = O(1) ·
∑

j pj(zj)
2, with the hidden constant

in O(1) depending on maxi θi, where θi is the parameter of the CES utility function of buyer i.

Lemma 18. Let R :=
{
p′
∣
∣ ∀j, 1

1.9
p∗j ≤ p′j ≤ 1.9p∗j

}
and θ̄ = maxi θi.For all p

′ ∈ R,

∑

j

p∗j (fj)
2 ≤M

∑

j

p′j(zj)
2,

where M =
(
1− θ̄

)−1
max

{

26.56 , 6.64θ̄
(

1 + θ̄ − 2θ̄
)−1
}

.

Finally, we choose parameters R1, R2, c1, c2, c3 such that Ξ2 never increases at an update,
and if there is no update, then dΞ2

dt
≤ −Θ(1) · Ξ2. Set R2 = 39/2304, c1 = 0.0218

1.4
≈ 0.0156,

c3 = 19×0.0796
12

≈ 0.1260, c2 = 0.3855 and R1 = 1. By choosing sufficiently small κj , (28) and
Lemma 18 yield

dΞ2

dt
≤ −Θ(1)·

∑

j

λjpj(z
t
j)

2−Θ

(

min
j
κj

)

·
∑

j

κjλjp
∗
j(v

t
j)

2−Θ(1)·
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.

Also, by (31), Lemma 18 and the fact that φ(p) ≤ Θ(1) ·
∑

j pj(zj)
2 [6, Lemma 6.3] yield

Ξ2 ≤ Θ(1) ·
∑

j

pj(z
t
j)

2 +Θ(1) ·
∑

j

κjλjp
∗
j(v

t
j)

2 +Θ(1) ·
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.

Thus dΞ2

dt
≤ −Ω (minj κj) · Ξ2.

Further, (30) and the fact that φ(p) ≥ Θ(1) ·
∑

j pj(zj)
2 [6, Lemma 6.2] yield

Ξ2 ≥ Θ(1) · φ(pt) + Θ(1) ·
∑

j

κjλjp
∗
j(vj)

2. (32)

This implies that
(

φ(pt) +
∑

j κjλjp
∗
j(vj)

2
)

decreases linearly, and finishes the proof of Theo-

rem 11, except that we need to show Conditions B3 and B4 hold throughout the tatonnement
process.
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C.3 Warehouse Stocks Are Bounded

So far we need κj to satisfy Conditions B2, B3 and B4. Conditions B2 is satisfied so long as
κj is sufficiently small. However, we need to be cautious with Conditions B3 and B4 as it is
not immediately evident that vj remains bounded throughout the tatonnement process.

We begin with Phase 1. The initial value of Ξ1 decreases as κj decreases, and Phase 1 ends
when Ξ1 is smaller than ψ/2, which is independent of κj . By (22), Ξ1 drops linearly at a rate
that does not depend on κj . Hence, the length of Phase 1 is finitely bounded when the κj are
sufficiently small. The change to each warehouse j is upper bounded by

(The length of Phase 1) × (Maximum excess demand for good j in Phase 1),

which is also finitely bounded. This allows us to set κj sufficiently small to ensure that Con-
ditions B3 and B4 hold throughout Phase 1.

Next, we consider Phase 2, which starts at some time t2. At t2, which is the finishing time
of Phase 1, Conditions B3 and B4 hold. Let B := Ξ2(t2). Note that by (32), when Conditions
B1–B4 hold, there exist constants C1, C2 such that

Ξ2(t) ≥ C1φ(p
t) + C2

∑

j

κjλjp
∗
j (vj)

2. (33)

We impose two additional conditions on κj :

B5. κj are sufficiently small such that for all j, κj ≤
C2p∗jλj

101B
.

B6. κj are sufficiently small such that for all j, κj ≤
C2ψ

2(26/D1+4)B
.

Suppose that at some time t3 > t2, Condition B3 or B4 ceases to hold. By our analysis of
Phase 2, Ξ2 decreases between times t2 and t3, so Ξ2(t3) ≤ B.

If Condition B3 ceases to hold at t3, as the warehouse contents change smoothly, there exists
a good ℓ with |κℓvℓ| = 1/10, and for other goods Condition B3 remains valid. Thus we can
still apply (33) with Condition B5 to yield

Ξ2(t3) ≥ C2κℓλℓp
∗
ℓ(vℓ)

2 =
C2λℓp

∗
ℓ

κℓ
|κℓvℓ|

2 =
C2λℓp

∗
ℓ

100κℓ
> B,

which is a contradiction.

If Condition B4 ceases to hold at t3, as the warehouse contents change smoothly,
∑

j pjλj(κjvj)
2 =

1
26/D1+4

ψ. Thus we can still apply (33) with Condition B6 to yield

Ξ2(t3) ≥ C2

∑

j

κjλjp
∗
j (vj)

2 ≥
C2

1.9maxj κj

∑

j

pjλj(κjvj)
2 ≥

C2

1.9κj
·

1

26/D1 + 4
ψ > B,

which is a contradiction.

Thus, there does not exist t3 > t2 at which Condition B3 or B4 ceases to hold, i.e. the two
conditions hold throughout Phase 1 and Phase 2.
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C.4 Missing Proofs

Proof of Lemma 12: We start with the proof of (16). By Result (3) about Complementary
CES markets (see the appendix on tatonnment):

φ− − φ+ ≥ [z̃j + (zj − z̃j)](∆pj)−
1.5xj
pj

(∆pj)
2

≥ z̃j(∆pj)−
1.5xj
pj

(∆pj)
2 − |zj − z̃j| · |∆pj | (34)

= z̃j
(z̃j − κjvj)∆tj

γtj
−

1.5xj
pj

(
(z̃j − κjvj)∆tj

γtj

)2

− |zj − z̃j| · |∆pj |

≥ z̃j
(z̃j − κjvj)∆tj

γtj
−

1

2

(z̃j − κjvj)
2∆tj

γtj
− |zj − z̃j | · |∆pj| (By Eqn. (13) and ∆tj ≤ 1)

=
1

2

(z̃j)
2∆tj
γtj

−
1

2

(κjvj)
2∆tj

γtj
− |zj − z̃j | · |∆pj|.

Next, we give the proof of (17). From (34):

φ− − φ+ ≥ (z̃j − κjvj)(∆pj)−
1.5xj
pj

(∆pj)
2 − |zj − z̃j| · |∆pj| − |κjvj | · |∆pj|

≥
γtj∆pj

∆tj
·∆pj −

1.5xj
pj

1

γtj
· γtj(∆pj)

2 − |zj − z̃j | · |∆pj| −
1

2

(

2
(κjvj)

2∆tj
γtj

+
1

2

γtj(∆pj)
2

∆tj

)

(For the last term use the AM-GM ineq.)

≥
γtj(∆pj)

2

∆tj
−

1

15

γtj(∆pj)
2

∆tj
−

(κjvj)
2∆tj

γtj
−

1

4

γtj(∆pj)
2

∆tj
− |zj − z̃j | · |∆pj |

(For the second term use Eqn. (13) and ∆tj ≤ 1)

=
41

60

γtj(∆pj)
2

∆tj
−

(κjvj)
2∆tj

γtj
− |zj − z̃j | · |∆pj |.
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Proof of Equation (19): Note that
dvj
dt

= −ztj .

dΞ1

dt

= −c1
∑

j

(ztj)
2

γ
σj
j

− c2
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
+
∑

j

(κjv
t
j)

2

γ
σj
j

− 2
∑

j

(κj)
2vtjz

t
j(t− τj)

γ
σj
j

≤ −c1
∑

j

(ztj)
2

γ
σj
j

− c2
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
+
∑

j

(κjv
t
j)

2

γ
σj
j

+ 2
∑

j

κj
γ
σj
j

∣
∣κjv

t
j

∣
∣ · |ztj|

≤ −c1
∑

j

(ztj)
2

γ
σj
j

− c2
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
+
∑

j

(κjv
t
j)

2

γ
σj
j

+
∑

j

κj
γ
σj
j

[
(κjv

t
j)

2 + (ztj)
2
]

(For the last term use the AM-GM ineq.)

= −
∑

j

(c1 − κj)
(ztj)

2

γ
σj
j

+
∑

j

(1 + κj)
(κjv

t
j)

2

γ
σj
j

− c2
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.

Proof of Lemma 13:

Ξ−
1 − Ξ+

1 = φ− − φ+ − c1

∫ t

τj

(zj(t
′))2

γtj
dt′ +

∑

i

ξβij H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
[2− c2(t− βi)]

− 2
∑

k 6=j

ξtk ·H
[t,σk]
jk

(
pτk+k

) (∆pj)
2

∆tj
+

(κjvj)
2∆tj

γtj

≥
1

2

(
41

60

γtj(∆pj)
2

∆tj
−

(κjvj)
2∆tj

γtj
− |zj − z̃j| · |∆pj|

)

(By Eqn. (17))

+
1

2

(
1

2

(z̃j)
2∆tj
γtj

−
1

2

(κjvj)
2∆tj

γtj
− |zj − z̃j | · |∆pj |

)

(By Eqn. (16))

− c1

∫ t

τj

(zj(t
′))2

γtj
dt′ + (2− c2)

m∑

i=1

ξβij H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki

− 2
∑

k 6=j

ξtk ·H
[t,σk]
jk

(
pτk+k

) (∆pj)
2

∆tj
+

(κjvj)
2∆tj

γtj

≥
41

120

γtj(∆pj)
2

∆tj
+

1

4

(z̃j)
2∆tj
γtj

− |zj − z̃j | · |∆pj|
︸ ︷︷ ︸

F1

− c1

∫ t

τj

(zj(t
′))2

γtj
dt′

︸ ︷︷ ︸

F2

+ (2− c2)

m∑

i=1

ξβij H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
− 2

∑

k 6=j

ξtk ·H
[t,σk]
jk

(
pτk+k

) (∆pj)
2

∆tj
︸ ︷︷ ︸

F3

.

Note that F1, F2 and F3 are similar to the terms E1, E2 and E3 in the proof of Lemma 4. We
can bound F1, F2, F3 similarly to the way we bounded E1, E2, E3.

32



Recall from the proof of Lemma 4 that V2 :=
∑m

i=1 ξ
βi
j H

[βi,t]
kij

(

p
τj+
j

)
(∆pki)

2

∆tki
. We derive the

following bounds:

F1 ≤ 2ǫBγ
t
j(∆pj)

2 + V2;

F2 ≤ c1(1 + 4ǫB)
(z̃j)

2∆tj
γtj

+ c1(2 + 8ǫB)V2;

F3 ≤ 2ǫFγ
t
j

(∆pj)
2

∆tj
.

Thus

Ξ−
1 − Ξ+

1 ≥

(
41

120
− 2ǫB − 2ǫF

)
γtj(∆pj)

2

∆tj
+

(
1

4
− c1(1 + 4ǫB)

)
(z̃j)

2∆tj
γtj

+ (1− c2 − c1(2 + 8ǫB)) V2.

Note that by Eqns. (14) and (15), 2ǫF + 2ǫB = 0.304 < 41
120

, 1 + 4ǫB < 1.4 and 2 + 8ǫB < 2.7.
The result now follows.

Proof of Lemma 16: This proof is similar to the one of Lemma 13; we only point out the
key steps.

Φ− − Φ+ ≥ φ− − φ+ − c1

∫ t

τj

λjpj(zj(t
′))2 dt′ + (6− c2)

∑

i

ξβij H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki

− 6
∑

k 6=j

ξtk ·H
[t,σk]
jk

(
pτk+k

) (∆pj)
2

∆tj

≥
9

10

(
41

60

(∆pj)
2

λjpj∆tj
− λjpj(κjvj)

2∆tj − |zj − z̃j | · |∆pj |

)

(By Eqn. (17))

+
1

10

(
1

2
λjpj(z̃j)

2∆tj −
1

2
λjpj(κjvj)

2∆tj − |zj − z̃j | · |∆pj|

)

(By Eqn. (16))

− c1

∫ t

τj

λjpj(zj(t
′))2 dt′ + (6− c2)

m∑

i=1

ξβij H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki

− 6
∑

k 6=j

ξtk ·H
[t,σk]
jk

(
pτk+k

) (∆pj)
2

∆tj

≥
123

200

(∆pj)
2

λjpj∆tj
+

1

20
λjpj(z̃j)

2∆tj −
19

20
λjpj(κjvj)

2∆tj − |zj − z̃j | · |∆pj|
︸ ︷︷ ︸

F1

− c1

∫ t

τj

λjpj(zj(t
′))2 dt′

︸ ︷︷ ︸

F2

+(6− c2)
m∑

i=1

ξβij H
[βi,t]
kij

(

p
τj+
j

) (∆pki)
2

∆tki

− 6
∑

k 6=j

ξtk ·H
[t,σk]
jk

(
pτk+k

) (∆pj)
2

∆tj
︸ ︷︷ ︸

F ′
3

.
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Then we apply the bounds on F1, F2, F3 in the proof of Lemma 13.8 to show that

Φ− − Φ+ ≥

(
123

200
− 2ǫB − 6ǫF

)
(∆pj)

2

λjpj∆tj
+

(
1

20
− c1(1 + 4ǫB)

)

λjpj(z̃j)
2∆tj

−
19

20
λjpj(κjvj)

2∆tj + (5− c2 − c1(2 + 8ǫB)) V2.

Note that 123
200
− 2ǫB− 6ǫF = 0.039, 1+4ǫB < 1.4 and 2+8ǫB < 2.7; the lemma now follows.

Proof of Equation (26): Note that
dvj
dt

= −ztj .

dW

dt
=
∑

j

p∗j

[
2κj
λj

(fj + λjv
t
j)(−λjz

t
j)− c3λj(κjv

t
j)

2 + 2c3λj(κj)
2vtjz

t
j(t− τj) + 2κjλjv

t
jz
t
j

]

≤
∑

j

p∗j
[
2κj |fj||z

t
j| − c3λj(κjv

t
j)

2 + 2c3λjκj|κjv
t
j||z

t
j |
]

≤
∑

j

p∗j

[

κj

(
(fj)

2

R1
+R1(z

t
j)

2

)

− c3λj(κjv
t
j)

2 + c3λjκj
[
(κjv

t
j)

2 + (ztj)
2
]
]

= −c3
∑

j

(1− κj)λjp
∗
j (κjv

t
j)

2 +
∑

j

(R1 + c3λj)κjp
∗
j(z

t
j)

2 +
1

R1

∑

j

κjp
∗
j(fj)

2.

Proof of Lemma 17: At the price update, f+
j = f−

j + ln (1 + λj(z̃j − κjvj)∆tj). Note that
in Phase 2, |λj(z̃j − κjvj)∆tj | ≤ 1/60 and hence ln (1 + λj(z̃j − κjvj)∆tj) = (1 + χ)λj(z̃j −
κjvj)∆tj for some χ with |χ| ≤ 1

100
.9 Then

W− −W+ = p∗j

[
κj
λj

[
(fj + λjvj)

2 − (fj + (1 + χ)λj(z̃j − κjvj)∆tj + λjvj)
2
]

−c3λj(κjvj)
2∆tj + 2κjλj

∫ t

τj

vj(t
′)zj(t

′) dt′

]

Let z̄j be the average excess demand for good j between times τj and t, i.e. z̄j :=
1

t2−t1

∫ t2
t1
zt

′

j dt
′.

Note that vj(τj) = vj(t)+ z̄j∆tj and
dvj
dt

= −zj . We use integration by substitution to evaluate
the integral in the above formula:

∫ t

τj

vj(t
′)zj(t

′) dt′ = −

∫ vj(t)

vj(τj)

vj dvj =
1

2

(
vj(τj)

2 − vj(t)
2
)
= vj z̄j∆tj +

1

2
(z̄j)

2(∆tj)
2.

8There is one minor difference: γ
σj

j is replaced by 1/(λjpj). Also, F ′

3
is three times the value of F3, so the

bound on F ′

3
is amplified accordingly.

9When |y| ≤ 1

60
, ln(1 + y) ∈

[
1− 1

100
, 1 + 1

100

]
· y.
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By direct expansion and regrouping terms, we have

W− −W+

= p∗j∆tj
{[
2(1 + χ)− (1 + χ)2κj∆tj − c3

]
λj(κjvj)

2 +
[
(z̄j)

2 − (z̃j)
2
]
κjλj∆tj

− (2χ+ χ2)κjλj(z̃j)
2∆tj + 2λj(z̄j − z̃j)κjvj

+
[
(1 + χ)2κj∆tj − χ

]
· 2λj z̃jκjvj − 2(1 + χ)κjfj(z̃j − κjvj)

}

≥ p∗j∆tj







[
2(1 + χ)− (1 + χ)2κj∆tj − c3

]
λj(κjvj)

2 − κjλj|(z̄j)
2 − (z̃j)

2|
︸ ︷︷ ︸

G1

− |2χ+ χ2| · κjλj(z̃j)
2

︸ ︷︷ ︸

G2

− 2|z̄j − z̃j | · |λjκjvj|
︸ ︷︷ ︸

G3

− 2|(1 + χ)2κj∆tj − χ|λj|z̃j| · |κjvj |
︸ ︷︷ ︸

G4

− 2(1 + χ)κj |fj| · |z̃j − κjvj|
︸ ︷︷ ︸

G5







Next, we bound the terms G1, G2, G3, G4, G5. Recall the notations we use in the proof of

Lemma 4 V1 :=
∑

k 6=j
1

mini:ki=k ξ
βi
j

H
[τj ,t]
kj

(
ptj
)
and V2 :=

∑m
i=1 ξ

βi
j ·H

[βi,t]
kij

(
ptj
) (∆pki)

2

∆tki
.

G1 ≤ κjλj

[

(z̄j − z̃j)
2 +

2

λjpj
|λjpj z̃j | · |z̄j − z̃j|

]

≤ κjλj

[

8V1V2 +
2

λjpj

(
2(λjpj z̃j)

2V1 + V2
)
]

(By Eqns. (5) and (4))

≤ κjλj

[

8
ǫB
λjpj

V2 + 4ǫB(z̃j)
2 +

2

λjpj
V2

]

(as by Cond. (A2), V1 ≤ ǫBγ
t
j = ǫB/(λjpj))

= 4ǫBκjλj(z̃j)
2 +

(2 + 8ǫB)κj
pj

V2.

To bound G2, note that |χ| ≤ 1/100 and κj ≤ 1/600 imply that κj|2χ + χ2| ≤ 0.0000335,
and hence G2 ≤ 0.0000335λj(z̃j)

2.

G3 =
2

pj
|z̄j − z̃j | · |λjpjκjvj|

≤
2

pj

[
2(λjpjκjvj)

2V1 + V2
]

(By Eqn. (4))

≤
2

pj

[

2(λjpjκjvj)
2 ǫB
λjpj

+ V2

]

= 4ǫBλj(κjvj)
2 +

2

pj
V2.

To boundG4, note that |χ| ≤ 1/100, κj ≤ 1/600 and ∆tj ≤ 1 imply that |(1+χ)2κj∆tj−χ| ≤
0.0117. Then by AM-GM inequality, G4 ≤ 0.0117λj(z̃j)

2 + 0.0117λj(κjvj)
2.
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G5 = 2(1 + χ)
κj
λjpj
|fj| · |λjpj(z̃j − κjvj)|

= 2(1 + χ)
κj
λjpj
|fj| ·

∣
∣
∣
∣

∆pj
∆tj

∣
∣
∣
∣

≤
101

100

κj
λjpj

(
κjpj(fj)

2

R2
+

R2(∆pj)
2

κjpj(∆tj)2

)

. (by the AM-GM ineq.)

Combining all the above bounds yields

W− −W+ ≥
[
2(1 + χ)− (1 + χ)2κj∆tj − c3 − 4ǫB − 0.0117

] p∗j
pj
λjpj(κjvj)

2∆tj

− (0.0118 + 4ǫBκj)
p∗j
pj
λjpj(z̃j)

2∆tj −
(2 + 2κj + 8ǫBκj)p

∗
j

pj
V2

−
101

100
·
κj
λj
·
p∗j
pj

(
κjpj(fj)

2∆tj
R2

+
R2(∆pj)

2

κjpj∆tj

)

.

Note the following:

• |χ| ≤ 1/100, κj ≤ 1/600 and ∆tj ≤ 1 imply that 2(1 + χ) − (1 + χ)2κj∆tj ≥ 1.9783.

Also, recall that ǫB = 0.084. Thus [2(1 + χ)− (1 + χ)2κj∆tj − c3 − 4ǫB − 0.0117]
p∗j
pj
≥

(1.6306− c3)/1.9 ≥ 0.858− c3/1.9.

• ǫB = 0.084 and κj ≤ 1/600 imply that (0.0118 + 4ǫBκj)
p∗j
pj
≤ 0.01236× 1.9 ≤ 0.0235.

• ǫB = 0.084 and κj ≤ 1/600 imply that
(2+2κj+8ǫBκj)p

∗
j

pj
≤ 2.00446× 1.9 ≤ 3.809.

• 101
100
·
p∗j
pj
≤ 1.92.

The lemma follows.

In the proofs of Equations (30) and (31) below, we need the following bound on (z̄j)
2:

(z̄j)
2 − (zj)

2 = (z̄j − zj)
2 − 2zj(zj − z̄j)

≤ 8V1V2 +
1

5λjpj
|10λjpjzj | · |zj − z̄j | (by Eqn. 5)

≤
8ǫB
λjpj

V2 +
1

5λjpj

(
200(λjpj)

2(zj)
2V1 + V2

)
(as V1 ≤ ǫB/(λjpj))

≤
0.672

λjpj
V2 + 40λjpj(zj)

2 ǫB
λjpj

+
0.2

λjpj
V2

= 3.36(zj)
2 +

0.872

λjpj

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki

and hence

λjpj(z̄j)
2 ≤ 4.36λjpj(zj)

2 + 0.872
∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
. (35)
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Proof of Equation (30): By Lemma 5, if 2− c2 ≥ 2.7c1, then

φ(pt)−c1
∑

j

∫ t

τj

λjpj(zj(t
′))2 dt′+

∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
[2− c2(t− βi)] ≥ (1−2.7c1)φ(p

t).

Thus, Φ, as defined in 24, satisfy

Φ = φ(pt)− c1
∑

j

∫ t

τj

λjpj(zj(t
′))2 dt′ +

∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
[6− c2(t− βi)]

≥ (1− 2.7c1)φ(p
t) + 4

∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.

W

=
∑

j

κj
λj
p∗j (fj + λjvj)

2 − c3
∑

j

λjp
∗
j(κjvj)

2(t− τj) + 2
∑

j

κjλjp
∗
j

∫ t

τj

vj(t
′)zj(t

′) dt′

≥
∑

j

κj
λj
p∗j

(
(λjvj)

2

2
− (fj)

2

)

− c3
∑

j

λjp
∗
j(κjvj)

2 + 2
∑

j

κjλjp
∗
j

(

vj z̄j(t− τj) +
1

2
(z̄j)

2(t− τj)
2

)

≥
∑

j

(
1

2
− c3κj

)

λjκjp
∗
j (vj)

2 −
∑

j

κj
λj
p∗j (fj)

2

+ 2
∑

j

κjλjp
∗
j

(

−
1

6
(vj)

2 −
3

2
(z̄j)

2(t− τj)
2 +

1

2
(z̄j)

2(t− τj)
2

)

(by the AM-GM ineq.)

≥
∑

j

(
1

6
− c3κj

)

λjκjp
∗
j (vj)

2 −
∑

j

κj
λj
p∗j (fj)

2 − 2
∑

j

κjλjp
∗
j (z̄j)

2

≥
∑

j

(
1

6
− c3κj

)

λjκjp
∗
j (vj)

2 −
∑

j

κj
λj
p∗j (fj)

2

− 3.8
∑

j

κj

(

4.36λjpj(zj)
2 + 0.872

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki

)

(by eqn. (35))

≥
∑

j

(
1

6
− c3κj

)

λjκjp
∗
j (vj)

2 −
∑

j

κj
λj
p∗j (fj)

2

− 16.6
∑

j

κjλjpj(zj)
2 − 3.314

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.

Recall that Ξ2 = Φ+1.2W+0.1212
∑

j

κjp∗j (fj)
2

R2
(t− τj) ≥ Φ+1.2W. With the two inequalities

above, the result follows.

Proof of Equation (31): It follows immediately from (24) that

Φ ≤ φ(pt) + 6
∑

j

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.
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W =
∑

j

κj
λj
p∗j (fj + λjvj)

2 − c3
∑

j

λjp
∗
j(κjvj)

2(t− τj) + 2
∑

j

κjλjp
∗
j

∫ t

τj

vj(t
′)zj(t

′) dt′

≤ 2
∑

j

κj
λj
p∗j(fj)

2 + 2
∑

j

κjλjp
∗
j (vj)

2 + 2
∑

j

κjλjp
∗
j

(

vj z̄j(t− τj) +
1

2
(z̄j)

2(t− τj)
2

)

≤ 2
∑

j

κj
λj
p∗j(fj)

2 + 2
∑

j

κjλjp
∗
j (vj)

2 + 2
∑

j

κjλjp
∗
j

(
1

2
(vj)

2 +
1

2
(z̄j)

2(t− τj)
2 +

1

2
(z̄j)

2(t− τj)
2

)

≤ 2
∑

j

κj
λj
p∗j(fj)

2 + 3
∑

j

κjλjp
∗
j (vj)

2 + 2
∑

j

κjλjp
∗
j(z̄j)

2

≤ 2
∑

j

κj
λj
p∗j(fj)

2 + 3
∑

j

κjλjp
∗
j (vj)

2

+ 3.8
∑

j

κj

(

4.36λjpj(zj)
2 + 0.872

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki

)

(by eqn. (35))

≤ 2
∑

j

κj
λj
p∗j(fj)

2 + 3
∑

j

κjλjp
∗
j (vj)

2

+ 16.6
∑

j

κjλjpj(zj)
2 + 3.314

∑

i

ξβij H
[βi,σj ]
kij

(

p
τj+
j

) (∆pki)
2

∆tki
.

Recall that Ξ2 = Φ+1.2W+0.1212
∑

j

κjp
∗
j (fj)

2

R2
(t− τj) ≤ Φ+1.2W+0.1212

∑

j

κjp
∗
j (fj)

2

R2
. With

the two inequalities above, the result follows.

To prove Lemma 18, we need the following lemma.

Lemma 19. For all p′ ∈ R(1.9), φ(p′) ≥ 1−θ̄
13.28

∑

j p
∗
j(fj)

2.

Proof: Let xij(p
′) be the demand for good j of buyer i at price p′. Note that

∂2φ

∂(pj)2
(p′) =

∑

i

(
θi(xij(p

′))2

ei
+

(1− θi)xij(p
′)

p′j

)

and
∂2φ

∂pj∂pk
(p′) =

∑

i

θixij(p
′)xik(p

′)

ei
.

Let Ai(p′) denote the matrix with Aijk(p
′) = xij(p

′)xik(p
′). Let Bi(p′) denote the diagonal

matrix with Bi
jj(p

′) = xij(p
′)/p′j. Then the Hessian of φ at p′, which we denote it by H(p′), is

∑

i
θi
ei
Ai(p′) +

∑

i(1− θi)B
i(p′).

There are two key observations: first that Ai is positive semi-definite and second that
∑

i(1 − θi)B
i(p′) majorizes (1 − θ̄)

∑

iB
i(p′), where θ̄ = maxi θi. Hence H(p′) majorizes (1 −

θ̄)
∑

iB
i(p′) := (1 − θ̄)B(p′), where Bjj(p

′) = xj(p
′)/p′j. As p′ ∈ R(1.9), xj(p

′) ≥ 1/1.9 and
p′j ≤ 1.9p∗j . Hence Bjj(p

′) ≥ 1
3.61p∗j

.

Next, consider the function φ̄(p) = φ(p) −
∑

j
1−θ̄

7.22p∗j
(pj − p∗j )

2. Observe that for all j,

∂φ̄
∂pj

(p∗) = 0 and the Hessian of φ̄ at every p′ ∈ R majorizes the zero matrix; consequently, φ̄
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is convex in R(1.9), and p∗ is its minimum point. Note that φ̄(p∗) = 0, so for all p′ ∈ R(1.9),
φ(p′) ≥

∑

j
1−θ̄

7.22p∗j
(p′j − p

∗
j)

2.

Since
(
p′j−p

∗
j

p∗j

)2

≥ 0.544 ln2
p′j
p∗j

= 0.544(fj)
2, φ(p′)− φ∗ ≥ 1−θ̄

13.28

∑

j p
∗
j(fj)

2.

Proof of Lemma 18: [6, Lemma 6.3] showed that for all p′ ∈ R(1.9), φ(p′) ≤ max

{

2, θ̄

2(1+θ̄−2θ̄)

}

·
∑

j p
′
j(zj)

2. Combining this with Lemma 19 yields the result.
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