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Abstract Adenosinemonophosphate-activated protein kinase
(AMPK) is a crucial regulator of energymetabolic homeostasis
and thus a major survival factor in a variety of metabolic
stresses and also in the aging process. Metabolic syndrome is
associated with a low-grade, chronic inflammation, primarily
in adipose tissue. A low-level of inflammation is also present
in the aging process. There are emerging results indicating that
AMPK signaling can inhibit the inflammatory responses
induced by the nuclear factor-κB (NF-κB) system. The NF-
κB subunits are not direct phosphorylation targets of AMPK,
but the inhibition of NF-κB signaling is mediated by several
downstream targets of AMPK, e.g., SIRT1, PGC-1α, p53, and
Forkhead box O (FoxO) factors. AMPK signaling seems to
enhance energy metabolism while it can repress inflammatory
responses linked to chronic stress, e.g., in nutritional overload

and during the aging process. AMPK can inhibit endoplasmic
reticulum and oxidative stresses which are involved in
metabolic disorders and the aging process. Interestingly, many
target proteins of AMPK are so-called longevity factors, e.g.,
SIRT1, p53, and FoxOs, which not only can increase the stress
resistance and extend the lifespan of many organisms but also
inhibit the inflammatory responses. The activation capacity of
AMPK declines in metabolic stress and with aging which
could augment the metabolic diseases and accelerate the aging
process. We will review the AMPK pathways involved in the
inhibition of NF-κB signaling and suppression of inflamma-
tion. We also emphasize that the capacity of AMPK to repress
inflammatory responses can have a significant impact on both
healthspan and lifespan.
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Introduction

The AMP-activated protein kinase (AMPK) is a crucial
regulator of energy metabolic homeostasis at the cellular
and whole organism levels [1–3]. AMPK is a serine/
threonine kinase which has been highly conserved during
evolution. AMPK consists of a heterotrimeric complex
including a catalytic α subunit and regulatory β and γ
units. There are two isoforms of α (α1 and α2) and β (β1
and β2) and three γ subunits (γ1-3) which are differently
expressed in mammalian tissues. AMPK is activated via
allosteric regulation of increased AMP concentration and
by the phosphorylation of α subunit (Thr172) via the
upstream kinases serine/threonine kinase 11 (LKB1), Ca2+/
calmodulin-dependent protein kinase kinase β (CaMKKβ),
and transforming growth factor-β-activated kinase 1.
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AMPK has a wide array of downstream substrates; these
are typically energy metabolic enzymes and proteins
involved in transcriptional regulation. One major role of
AMPK signaling is to respond to metabolic requirements
either by stimulating energy production including glucose
and lipid catabolism or by inhibiting energy consuming
pathways, e.g., synthesis of protein, fatty acids, and
cholesterol. Impaired AMPK activity can induce insulin
resistance in many tissues [3, 4]. It is not surprising that
there are several observations linking deficiency in AMPK
signaling to the appearance of the metabolic syndrome
including obesity, diabetes, and cardiovascular diseases [2].
Currently, AMPK is an exciting research topic and the
focus of intensive drug discovery projects. Several phar-
macological AMPK activators have been identified, e.g., 5-
aminoimidazole-4-carboxamide riboside (AICAR), metfor-
min, statins, thiazolidinediones, and several natural plant
products [2, 5, 6].

The AMPK signaling system plays a key role in cellular
and organismal survival during stress by its ability to
maintain metabolic homeostasis. Chronic nutrient overload
and positive energy balance induce stress in adipose tissue.
Accumulation of lipids in adipocytes as well as the ectopic
storage of fat in liver, muscles, and pancreas stimulate the
innate immunity defense leading to the secretion of
proinflammatory cytokines and subsequently to recruitment
of monocytes, especially into the adipose tissue [7–9].
There are several studies indicating that a low-grade,
chronic inflammation has a crucial role in the development
of the metabolic syndrome. Interestingly, there is emerging
evidence that through its signaling network, AMPK can
suppress the activation of nuclear factor-κB (NF-κB)
system, a key regulator of innate immunity and inflamma-
tion. We will review the signaling pathways of AMPK
which are involved in the inhibition of NF-κB signaling
and the suppression of inflammatory responses. We will
emphasize that the capacity of AMPK to repress the
appearance of a proinflammatory phenotype can has a
major impact on both healthspan and lifespan.

AMPK: repressor of inflammation

Innate and adaptive immunity are the major host defense
mechanisms which not only can provoke inflammation in
order to protect organism against invading pathogens but
also repair tissue injuries and alert the immune system from
jeopardizing cellular damage. Inflammation is a crucial
survival mechanism but it can be dangerous if it becomes
overwhelming or if it is converted to a chronic state.
Several metabolic disorders, e.g., obesity, type 2 diabetes,
and atherosclerosis, trigger immune defense mechanisms
and induce chronic inflammation which in turn aggravates

the symptoms of the disease [7, 10, 11]. The endoplasmic
reticulum (ER) is a sensitive nutrient sensor, e.g., unfolded
protein response (UPR) becomes activated in response to
hyperglycemia and fatty acid overload [12]. ER stress can
generate an inflammatory response via different signaling
pathways [10, 13, 14]. Hotamisligil [10] has recently
reviewed the role of ER stress in the induction of low-
grade, chronic inflammation associated with metabolic
diseases. Oxidative stress is another major stress condition
present in the metabolic syndrome [15] and aging [16]
which can stimulate inflammatory responses [17].

There is an extensive literature describing how the
activation of AMPK can inhibit inflammatory response
induced by different stimulating insults whereas a decrease
in AMPK activity is associated with increased inflamma-
tion. Several studies have demonstrated that the activation
of AMPK by AICAR can inhibit, e.g., acute and chronic
colitis [18], autoimmune encephalomyelitis [19], inflam-
mation in cystic fibrosis [20], and proinflammatory effects
after lung injury [21]. It has also been observed that the
therapeutic drug which is an AMPK agonist, metformin,
can reduce the systemic inflammation by decreasing the
level of C-reactive protein and interleukin-6 (IL-6) in mild
metabolic syndrome [22]. Metformin can also lower plasma
macrophage migration inhibitory factor concentrations in
obese patients [23]. Many in vitro experiments have
demonstrated that the lipopolysaccharide (LPS)-induced
inflammatory response can be inhibited by activating
AMPK with AICAR [18, 21, 24]. However, some recent
observations imply that AICAR can also inhibit inflamma-
tory responses via AMPK-independent pathways [25].

Several studies have revealed a close link between the
reduced AMPK activity and inflammation, e.g., in adipose
tissue and macrophages [26–29]. Steinberg et al. [30]
observed that tumor necrosis factor-α (TNF-α) suppressed
the activity of AMPK by upregulating the expression of
protein phosphatase 2C, an inhibitor of AMPK signaling.
The reduced AMPK activity decreased fatty acid oxidation,
increased diacylglycerol accumulation, and induced insulin
resistance in skeletal muscle [30]. Ko et al. [28] demon-
strated that nutrient stress induced by high-fat feeding
reduced cardiac AMPK activity and triggered inflammation
reflected in an increased number of macrophages and
upregulation of IL-6 levels in the mouse heart. In addition,
they revealed that acute infusion of IL-6 profoundly
decreased the activity of AMPK, reduced the myocardial
glucose uptake, and triggered inflammation in the heart.
They also observed that diet-induced cardiac insulin
resistance and the level of inflammation were attenuated
in IL-6-deficient mice [28]. However, there are observa-
tions that IL-6 knockout mice can develop mature-onset
obesity [31] and display an enhanced formation of diet-
induced atherosclerosis [32]. This could be linked to the
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reduced AMPK activity in IL-6 knockout mice [33], but
there may be tissue-specific changes in diet-induced
responses between heart and adipose/vascular tissues, in
particular, in chronic knockout conditions. Yang et al. [27]
demonstrated that inflammatory stimuli and a fatty acid
rich-diet decreased the expression and activity of α1AMPK
in mouse adipose tissue and macrophages and triggered
TNF-α expression. The AICAR treatment could reverse the
LPS and diet-induced inflammation. Sag et al. [29]
observed that IL-10 and transforming growth factor-β
(TGF-β), two anti-inflammatory cytokines, stimulated a
rapid phosphorylation and activation of AMPK whereas a
proinflammatory insult with LPS decreased the AMPK
activity in mouse and human macrophages. These experi-
ments indicate that the activity of AMPK regulates the
inflammatory responses and consequently can induce
insulin resistance in different tissues.

There are several physiological inducers of AMPK
activity including many hormones, e.g., adiponectin and
leptin [34], dietary phytochemicals, e.g. resveratrol, curcu-
min, and berberine [35], and physical exercise [36] (Fig. 1).
Interestingly, many of these stimuli are linked to the
inhibition of inflammatory responses. For instance, adipo-
nectin has many anti-inflammatory, antiatherogenic, and
antidiabetic properties [37]. Aggarwal [38] has reviewed
the anti-inflammatory effects of curcumin and its capacity
to reverse insulin resistance, hyperglycemia, and hyperlip-
idemia linked to obesity. Resveratrol is also a potent anti-
inflammatory compound [39] activating AMPK-SIRT1
(silent information regulator 1) pathway (see below).

AMPK inhibits NF-κB signaling via several pathways

The NF-κB signaling system is the principal pathway
which is involved in the activation of both the innate and
adaptive immune systems [40]. A plethora of studies have
demonstrated that the activation of AMPK signaling
downregulates the function of NF-κB system [18, 27, 29,
41–43]. AMPK has several direct phosphorylation targets
[1], but it seems that AMPK suppresses NF-κB signaling
indirectly via its downstream mediators, e.g., SIRT1,
Forkhead box O (FoxO) family, and peroxisome
proliferator-activated receptor γ co-activator 1α (PGC-
1α), which can subsequently repress the expression of
inflammatory factors (Fig. 1). Moreover, there is an
extensive literature indicating that activation of AMPK
inhibits the NF-κB-mediated proinflammatory signaling
whereas it can activate the NF-κB system in order to
stimulate the expression of antiapoptotic proteins, e.g., Bcl-2
and survivin [44]. Cacicedo et al. [45] observed that AMPK
activation inhibits NF-κB transactivation induced by TNF-α
and fatty acid palmitate in endothelial cells. In addition,

calcium entry into endothelial cells stimulates CaMKKβ,
one of the upstream activators of AMPK [1], and
subsequently, AMPK activates the NF-κB system via
protein kinase Cδ and p38MAPK signaling [46]. These
observations indicate that there are multiple downstream
signaling pathways through which AMPK can regulate a
number of different gene arrays, e.g., those regulating
metabolic events, cell cycle and differentiation, and inflam-
matory responses.

Although AICAR and metformin are not specific AMPK
activators, these compounds have been used in many
inflammatory studies to demonstrate that AMPK can inhibit
NF-κB signaling. However, there are a number of studies in
which the AMPK subunits have been specifically inhibited
by short hairpin RNA knockdown technique or expression of
dominant-negative AMPK components. For instance, Huang
et al. [47] demonstrated that the knockdown of α1AMPK
abolished the anti-inflammatory effect of metformin. Yang et
al. [27] revealed that the constitutively active α1AMPK
suppressed the NF-κB signaling and fatty acid-induced
inflammation in macrophages and that dominant-negative

Fig. 1 Schematic illustration of the functional connections of AMPK
linked to the inhibition of NF-κB signaling and suppression of inflamma-
tion. Green arrows show the activating pathways and red arrows are the
inhibitory connections. Several hormones and phytochemicals, physical
exercise, and some drugs, e.g., AICAR and metformin, activate AMPK.
In contrast, obesity and hyperglycemia inhibit the expression of AMPK.
On the downstream, AMPK stimulates SIRT1, PGC-1α, p53, and FoxO
factors which can inhibit the NF-κB signaling with different mechanisms.
AMPK inhibits the appearance of ER and oxidative stresses which can
trigger NF-κB signaling. NF-κB is the key inducer of inflammatory
responses which affect the healthspan and lifespan
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α1AMPK could reverse the inhibition. Katerelos et al. [48]
have observed that the overexpression of α1AMPK reduced
NF-κB signaling in aortic endothelial cells. AICAR induced
similar effects as the activation of α1AMPK. Wang et al.
[41] demonstrated that the NF-κB signaling was activated in
the aortic endothelial cells isolated from AMPKα2 knockout
mice whereas AMPK activation by AICAR and constitu-
tively active AMPKα2 had an opposite effect.

AMPK–SIRT1–NF-κB signaling

AMPK and SIRT1 are evolutionary conserved partners which
have similar functions in metabolism and cellular survival
[49]. Canto et al. [50] demonstrated that AMPK can activate
SIRT1 deacetylase by increasing cellular NAD+ levels.
SIRT1, type III deacetylase, has several target proteins
which regulate many host defense functions. Conversely,
SIRT1 can stimulate the activity of LKB1, which subse-
quently activates AMPK [51]. This represents a positive
feedback loop to enhance cellular survival during energy
deficiency. Yeung et al. [52] were the first researchers who
demonstrated that SIRT1 could interact with the RelA/p65
subunit of NF-κB complex and consequently deacetylates
the p65 protein at lysine 310. The acetylation of p65
enhances the transactivation capacity of the NF-κB complex,
and thus, SIRT1-induced deacetylation inhibits NF-κB
signaling (Fig. 1). Recently, Yang et al. [53] observed that
the deacetylation of lysine 310 at p65 component enhanced
the Set9-mediated methylation of lysines 314 and 315 and
triggered the ubiquitination and degradation of the p65
subunit of NF-κB. There are many reports that SIRT1 can
repress inflammatory responses via inhibition of NF-κB
signaling [27, 54, 55]. Several dietary polyphenols can
activate AMPK and SIRT1, and it seems that their anti-
inflammatory effects are mediated via the AMPK/SIRT1-
induced p65 deacetylation [56]. We have recently reviewed
the role of SIRT1–NF-κB signaling pathway in the suppres-
sion of immune responses, e.g., in human immunodeficiency
virus-1 infection [57].

AMPK–NF-κB/PGC-1α signaling

PGC-1α is one of the key regulators of energy metabolism,
e.g., enhancing glycolysis and mitochondrial biogenesis [58].
AMPK phosphorylates PGC-1α protein which triggers
SIRT1-mediated deacetylation and activation of PGC-1α.
Alvarez-Guardia et al. [59] demonstrated that PGC-1α could
bind to the p65 subunit of NF-κB in human cardiac cells and
mouse heart. They also observed that the activation of NF-
κB signaling increased the interaction between p65 and
PGC-1α which consequently reduced the expression of
PGC-1α protein. This is an important observation since it
may explain why activation of NF-κB system, e.g., via

inflammatory cytokines, has such profound effects on
metabolism promoting the appearance of metabolic disor-
ders. Moreover, Morari et al. [60] observed that fatty acids
can induce the association of PGC1α factor with the p50
component of NF-κB complex in hepatocytes. They also
detected that PGC-1α and p50 could bind to the IL-10
promoter and induce the expression of IL-10 cytokine. IL-10
is the protective cytokine against diet-induced liver inflam-
mation. These first two studies imply that the physical
interaction of PGC-1α and NF-κB complexes may be
situated at crossroads in the regulation of energy metabolism
and inflammation although the reciprocal regulation of PGC-
1α and NF-κB system still needs to be confirmed. Kim et al.
[61] demonstrated that the increased expression of PGC-
1α could inhibit the NF-κB activity and the proinflam-
matory response induced by TNF-α in human aortic
smooth muscle and endothelial cells (Fig. 1). Palomer et
al. [62] observed that the cardiac-specific overexpression
of TNF-α in the transgenic mouse significantly down-
regulated PGC-1α expression and induced cardiomyopathy.
There are cell culture experiments demonstrating a crucial
decrease in PGC-1α expression being mediated by NF-κB
and p38MAPK signaling [62].

AMPK–p53/FoxO signaling

The FoxO family and p53 are evolutionary conserved
transcription factors which are involved in a variety of
different functions including the regulation of energy
metabolism [63, 64] and inflammation [65, 66]. Jones et
al. [67] demonstrated that AMPK phosphorylated p53
protein at serine 15 a modification which could trigger
AMPK-dependent cell cycle arrest. The p53 and NF-kB
signaling have many antagonistic functions, e.g., p53 can
inhibit NF-κB signaling [68, 69]. It is known that p53 is a
potent inhibitor of glycolysis whereas it increases aerobic
respiration [63]. Kawauchi et al. [70] observed that the lack
of p53 protein expression clearly increased the rate of
glycolysis and significantly stimulated the activity of NF-κB
signaling. Increased glycolytic activity promotes the O
glycosylation of IκB kinase-beta (IKKβ) at serine 733. This
modification blocks the inactivating feedback phosphoryla-
tion site at IKKβ and in that way it can enhance the activity
of IKKβ which accordingly triggers NF-κB signaling [71]. It
seems that glycolysis is not the only connection which links
p53 to the inhibition of inflammation (Fig. 1). Komarova et
al. [66] have demonstrated that the functional activities of
NF-κB were increased in the p53-null mice including the
potentiated responses to inflammatory insults. AMPK can
target the serine 15 and 20 sites in the transactivation domain
of p53 protein [67, 72]. Both of these phosphorylation sites
are linked to the inflammation [73] and aging processes [72]
though the exact molecular mechanisms need to be clarified.

670 J Mol Med (2011) 89:667–676



The mammalian FoxO family consists of FOXO1,
FOXO3a, FOXO4, and FOXO6 transcription factors which
can regulate several processes, e.g., stress resistance,
glucose metabolism, and inflammation [64, 65]. In Caeno-
rhabditis elegans, the AMPK–FoxO pathway has a crucial
role in the caloric restriction induced lifespan extension
[74]. Greer et al. [75] demonstrated that the mammalian
AMPK can phosphorylate FOXO3a at six regulatory sites
and this will activate the transcription of a specific set of
genes. Currently, it is not known whether there are
differences in the activation levels of separate FoxO factors,
in particular, in different tissues. However, Lin et al. [76]
revealed that the FOXO3a deficiency in mice induced
inflammatory responses in several tissues and lymphoid
proliferation. Helper T cells were hyperactivated and
produced more Th1 and Th2 cytokines than their wild-
type counterparts. They also observed that FOXO3
inhibited the NF-κB activity in T cells and the lack of
FOXO3a generated the autoinflammatory condition in these
mice. Zhou et al. [77] demonstrated that also FOXO4 was
an endogenous inhibitor of NF-κB and a deficiency of
FOXO4 could induce colonic inflammation and injury in
mice. Interestingly, mammalian SIRT1 bound to FOXO4
and increased its transactivation capacity by NAD-
dependent deacetylation [78]. These results indicate that
AMPK can regulate the function of FoxO factors either by
direct phosphorylation or indirectly via the SIRT1-induced
activation.

AMPK inhibits ER and oxidative stresses

There are several studies indicating that the activation of
AMPK represses the oxidative stress triggered by different
insults, e.g., hyperglycemia and fatty acids [41, 79–81]
(Fig. 1). Xie et al. [80] observed that AMPK signaling
induced the expression of mitochondrial uncoupling protein-
2 (UCP-2) and in that way clearly reduced the production of
superoxide radicals in hyperglycemic endothelial cells. It is
known that UCP-2 is able to inhibit the mitochondrial
reactive oxygen species (ROS) production. Moreover, Wang
et al. [41] demonstrated using different techniques that
AMPKα2 is the physiological suppressor of the ROS
produced via NAD(P)H oxidase. Their results support the
mechanism whereby AMPK inhibits the NF-κB signaling
and thus downregulates the expression of different NAD(P)H
oxidase subunits and thus alleviates oxidative stress. Recently,
Li et al. [79] revealed that AMPK signaling via the AMPK–
FOXO3 pathway induced the expression of thioredoxin
(Trx), a disulfide reductase which protects cellular proteins
against cysteine oxidation. The function of Trx can be
inhibited in cells by binding of the thioredoxin-interacting
protein (Txnip). Oxidative stress, e.g., such as that occurring
in hyperglycemia, is a potent inducer of the expression of

Txnip which subsequently inhibits the activity of Trx and
exposes cells to the effects of oxidative stress [81].
Interestingly, Zhou et al. [17] demonstrated that Txnip could
interact with inflammasomal receptor Nod-like receptor
protein 3 (NLRP3). Oxidative stress dissociated the complex
between Trx and Txnip which subsequently could bind to the
NLRP3 receptor and in that way activate the inflammasomal
multiprotein complex. Inflammasomes cleave the pro-IL-1β
and pro-IL-18 precursors to the active cytokines which can
trigger the expression of a variety of inflammatory factors.
Increased expression of Trx via the AMPK signaling can
prevent the inflammasomal activity which is increased in
many metabolic diseases.

The endoplasmic reticulum (ER) is a sensitive stress
sensor in the maintenance of cellular protein quality and
nutrient balance [12, 82]. Oxidative stress impairs
homeostasis in ER and leads to protein misfolding in ER
and calcium release into the cytoplasm. ER stress triggers
a set of transducer proteins that stimulate the unfolded
protein response (UPR) [82]. Recent studies have revealed
that the UPR involves the activation of NF-κB system
which can trigger a low-grade inflammatory response [10,
13, 14]. Several studies have reported that AMPK activity
can attenuate the ER stress, e.g., in oxidized LDL-exposed
aortic endothelial cells [83] and in hypoxic cardiomyo-
cytes [84]. Dong et al. [85] demonstrated that the deletion
of AMPKα2 increased ER stress in endothelial cells and
caused aortic lesions in the knockout mice. They also
noted that several antioxidants were able to suppress the
appearance of ER stress. This indicates that ER stress is
provoked by oxidative stress induced by the deletion of
AMPKα2.

Significance of anti-inflammatory potency of AMPK

Current lifestyle including caloric overload and minimal
level of physical exercise has created an epidemic of
obesity and metabolic syndrome. A plethora of studies
have revealed that nutritional excess is linked to a low-
grade, metabolic inflammation, particularly in the adipose
tissue, and there is clear evidence that inflammation has a
key role in the progression of metabolic diseases [7–9].
AMPK is the master regulator of energy homeostasis, and it
can also inhibit the NF-κB signaling and thus prevent the
appearance of a proinflammatory phenotype during aging
process itself and in several age-related diseases (Fig. 1).
There are extensive reviews concerning the role of AMPK
in type II diabetes and metabolic syndrome [86, 87],
cardiovascular diseases [88, 89], and cancer [90]. All of
these diseases involve the presence of inflammation, but
currently, the role of AMPK in the prevention of inflam-
matory responses needs to be clarified.
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The overload of adipose tissue with fatty acids induces a
stress response in adipocytes, i.e., oxidative stress and ER
stress, which can trigger inflammatory reactions via the NF-
κB signaling and inflammasomal activation [10, 17].
Moreover, the increased fatty acid concentration can inhibit
the AMPK activity by stimulating protein phosphatase 2A
[91]. Hyperglycemia can also generate oxidative stress and
activate NF-κB signaling. As described above, AMPK
signaling can repress ROS production [41] and increase the
expression of thioredoxin which is a potent inhibitor of
inflammasomal activation [17, 79]. AMPK activity can also
reduce the level of ER stress and thus suppress inflamma-
tory responses and improve healthspan [83–85]. AMPK can
also repress inflammatory responses via SIRT1 [27, 55],
PGC-1α [61, 62], and FoxO [76, 77] signaling (see above).
Emerging results in mouse models indicate that the
activation of SIRT1 can effectively prevent the appearance
of age-related pathologies [92]. In addition, the LKB1–
AMPK signaling is a powerful tumor suppressor pathway,
and there are therapeutic implications that AMPK agonists
could be potent cancer drugs [90, 93].

AMPK activity can support the adaptive capabilities of cells
by enhancing the biogenesis of mitochondria [94]. Mitochon-
drial dysfunction is associated with the aging process and
age-related degenerative diseases. For instance, impaired
mitochondria release damage-associated molecules which
can stimulate systemic inflammatory response [95]. Zhang
et al. [96] demonstrated that the LPS-induced systemic
inflammation was linked to a fast and strong downregulation
of the AMPK expression in blood leukocytes and liver.
Recently, Zhou et al. [97] observed that mitochondria are the
source of ROS release that stimulates inflammasomes and
triggers the secretion of IL-1β and IL-18. Inflammasomes are
activated in several obesity-related diseases, e.g., type II
diabetes and cardiovascular diseases [98, 99]. It seems that
AMPK can regulate inflammasomal activation by (1)
stimulating autophagy and cleansing dysfunctional mitochon-
dria [100] or (2) inhibiting NF-κB activation which is a
priming phase in the activation of inflammasomes [101].

Exercise is a potent activator of AMPK signaling, in
particular, in skeletal muscles and also in heart, liver, and
adipose tissue [36]. The activation of AMPK during exercise
is important for energy production, but it seems that several
beneficial effects of exercise on healthspan could be induced
by AMPK signaling pathways [36]. In addition, many
hormones, e.g., adiponectin and leptin [34], can stimulate
AMPK signaling (Fig. 1). Adiponectin, in particular, the high
molecular weight isoform of the hormone, is a potent
physiological activator of AMPK which inhibits NF-κB
signaling and inflammatory response in endothelial cells
[101]. These observations underline the significance of
AMPK in prevention in vivo against inflammation. Currently,
AMPK is an important drug design target in order to find

specific agonists [6]. Metformin is a clinically used AMPK
agonist against hyperglycemia in type II diabetes, and it is
also a potent anticancer drug in certain types of cancers
[102]. Metformin can inhibit NF-κB signaling and repress
inflammatory responses (see above) and thus also alleviate
the metabolic syndrome. Zhou et al. [87] have reviewed the
current status in the drug development of small molecule
AMPK activators.

Several research approaches have revealed that the aging
process is associated with a low-grade inflammation [103–
105]. The inflammatory phenotype is linked to the
activation of NF-κB system in several tissues during aging
[104–107]. Interestingly, many observations have indicated
that the activation capacity of AMPK declines with aging
which seems to be linked to the reduced stress resistance
[108–110]. Confirming the role of AMPK in the aging
process, many studies in C. elegans have demonstrated that
the AAK-2, the nematode analog of AMPK, is a crucial
factor involved in the lifespan extension induced by the
overexpression of SIR-2.1 (analog of SIRT1) and mito-
chondrial manipulation [111, 112]. AAK-2 also regulates
energy metabolism during the dauer state of C. elegans
[112]. Recently, Selman et al. [113] observed that the
extension of lifespan in ribosomal protein S6 kinase 1-
deficient mice was most likely linked to the increased
activation of AMPK since these mice displayed a strong
overlap in the gene expression patterns with those induced
by AICAR treatment. Several observations indicate that the
autophagic capacity declines during aging [114] which
could be caused by the reduced activation of AMPK [108–
110]. Interestingly, SIRT1 is a potent activator of autophagy
[115] and the activation of SIRT1, e.g., by resveratrol,
could stimulate autophagic uptake of damaged mitochon-
dria. Bauer et al. [116] demonstrated that resveratrol could
enhance the healthspan and extend the lifespan of mice
consuming a high-calorie diet. In conclusion, many
longevity factors, e.g., SIRT1, p53, and FoxOs, are
associated with the activation of AMPK signaling and
subsequently can inhibit inflammation [117] but, in
addition, activate autophagic housekeeping and maintain
cellular energy status, and in that way, AMPK signaling is
able to improve the healthspan, prevent age-related dis-
eases, and extend the lifespan.

Concluding remarks

Many studies have demonstrated that AMPK activity can
inhibit inflammatory responses in diverse types of cells and
tissues. The inhibition is mediated by several transcription
factors which are the downstream targets of AMPK signaling,
of these, SIRT1, PGC-1α, p53, and FoxOs are the best
characterized. AMPK can also repress inflammatory
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responses triggered by endoplasmic reticulum and oxidative
stresses. These studies indicate that AMPK can regulate both
the energy metabolism and inflammatory defense. Interest-
ingly, the AMPK activity is decreased in obesity and the
metabolic syndrome, and this may enhance the activation of
NF-κB signaling and the appearance of a low-grade,
metabolic inflammation, e.g., in the adipose tissue. Currently,
it is not known how ubiquitous this connection between the
AMPK activity and NF-κB inhibition will be since there are
different AMPK isoforms and the regulation clearly seems to
be tissue specific. The NF-κB signaling is an important
metabolic regulator in the hypothalamus and pancreatic beta
cells, but whether this is linked to AMPK activity in the
metabolic syndrome still needs to be clarified. A low-grade
inflammation is also observed during aging in several tissues.
However, it is not known whether the aging process and
overnutrition induce a similar proinflammatory phenotype.
Emerging evidence indicates that the overexpression of
AMPK can delay the aging process, and surprisingly, AMPK
can enhance the signaling of several longevity factors, e.g.,
SIRT1, p53, and FoxOs, which are involved in the inhibition
of AMPK-mediated inflammation. Moreover, the prevalence
of obesity and metabolic syndrome increases with aging
which could support the concept that a dysfunction of AMPK
is involved in aging and the metabolic syndrome.
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