
AMP: Adaptive Multi-stream Prefetching in a Shared Cache

Binny S. Gill and Luis Angel D. Bathen
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

Emails: binnyg@us.ibm.com, lbathen@uci.edu

Abstract— Prefetching is a widely used technique in mod-
ern data storage systems. We study the most widely used class
of prefetching algorithms known as sequential prefetching.
There are two problems that plague the state-of-the-art sequen-
tial prefetching algorithms: (i) cache pollution, which occurs
when prefetched data replaces more useful prefetched or
demand-paged data, and (ii) prefetch wastage, which happens
when prefetched data is evicted from the cache before it can
be used.

A sequential prefetching algorithm can have a fixed or
adaptive degree of prefetch and can be either synchronous
(when it can prefetch only on a miss), or asynchronous
(when it can also prefetch on a hit). To capture these dis-
tinctions we define four classes of prefetching algorithms:
Fixed Synchronous (FS), Fixed Asynchronous (FA), Adaptive
Synchronous (AS), and Adaptive Asynchronous (AA). We find
that the relatively unexplored class of AA algorithms is in fact
the most promising for sequential prefetching. We provide
a first formal analysis of the criteria necessary for optimal
throughput when using an AA algorithm in a cache shared
by multiple steady sequential streams. We then provide a
simple implementation called AMP, which adapts accordingly
leading to near optimal performance for any kind of sequential
workload and cache size.

Our experimental set-up consisted of an IBM xSeries
345 dual processor server running Linux using five SCSI
disks. We observe that AMP convincingly outperforms all
the contending members of the FA, FS, and AS classes
for any number of streams, and over all cache sizes. As
anecdotal evidence, in an experiment with 100 concurrent
sequential streams and varying cache sizes, AMP beats the
FA, FS, and AS algorithms by 29-172%, 12-24%, and 21-
210% respectively while outperforming OBL by a factor of
8. Even for complex workloads like SPC1-Read, AMP is
consistently the best performing algorithm. For the SPC2
Video-on-Demand workload, AMP can sustain at least 25%
more streams than the next best algorithm. Finally, for a
workload consisting of short sequences, where optimality
is more elusive, AMP is able to outperform all the other
contenders in overall performance.

I. INTRODUCTION

Over the last several decades, we have witnessed
remarkable improvements in the information processing
capabilities of computing systems. A large number of
data storage technologies have also been developed with
diverse speeds, capacities, reliability and affordability
characteristics. We often find that cost considerations
force us to design systems with a data storage compo-
nent which runs significantly slower than the processing
unit. To bridge this gap between the data supplier and

the data consumer, faster data caches are placed between
the two. Since caches are expensive, they can typically
keep only a subset of the entire data-set. Consequently,
it is extremely important to manage the cache wisely in
order to maximize its performance. The cornerstone of
read cache management is to keep recently requested
data in the cache in the hope that such data will be
requested again in the near future. Data is placed in the
cache only when requested by the consumer (demand-
paging). Another, and rather competing method, is to
fetch into the cache data that is predicted to be requested
in the near future (prefetching).

A. Where is Prefetching Applied

The technique of prefetching dates as far back as
the mid-sixties when multiple words were prefetched
in processors in the form of a cache line. It was
soon realized that increasing the size of the cache
line can decrease performance due to false sharing.
So, numerous hardware-initiated prefetching techniques
were introduced in both uniprocessor and multiproces-
sor architectures [1], [2], [3]. Subsequently, software-
initiated methods for prefetching were introduced where
applications disclosed access patterns to the hardware
or controlled prefetching directly [4], [5]. For other
applications, compiler techniques were used to predict
access patterns and insert fetch requests in the compiled
executables [6], [7]. Compiler-assisted prefetching was
also extended for pointer-based accesses [8], [9], [10].

Today prefetching is ubiquitously applied in web
servers and clients [11], databases [12], file servers [13],
[14], on-disk caches [15], and multimedia servers [16].

B. When is Prefetching Useful

The goal of prefetching is to make data available in
the cache before the data consumer places its request,
thereby masking the latency of the slower data source
below the cache. However, prefetching is not without
cost. It requires (i) cache space to keep the prefetched
data; (ii) network bandwidth to transfer the data to the
cache; (iii) data source bandwidth to read the data;
and (iv) processing power to carry out the prefetch.
If the prefetched data is not subsequently used by the
data consumer, the extra cost of prefetching normally
reduces performance. Only in over-provisioned systems,

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 185

can prefetching with low predictive accuracy improve
performance. However, the data cache is obviously
under-provisioned as it can keep only a subset of the
data-set. The prefetched data typically shares the cache
space with demand-paged data. Therefore, the utility of
the prefetched data should not be lower than the utility
of the demand-paged data it replaces. To maximize
the performance, the marginal utility of both kinds
of data should be equalized [17]. Since the utility
of prefetched data that is not subsequently used is
zero, it is extremely important to prefetch judiciously,
keeping the number of wasted prefetches to a minimum.
Furthermore, any prefetching algorithm needs to be able
to predict accesses sufficiently in advance to allow for
the time it takes to prefetch the data. As a rule of thumb,
prefetching is useful when the long-term prediction
accuracy of access patterns is high.

C. What to Prefetch

The most common prefetching approach is to perform
sequential readahead. The simplest form is One Block
Lookahead (OBL), where we prefetch one block beyond
the requested block [18]. OBL can be of three types:
(i) always prefetch – prefetch the next block on each
reference, (ii) prefetch on miss – prefetch the next block
only on a miss, (iii) tagged prefetch – prefetch the next
block only if the referenced block is accessed for the
first time. P-Block Lookahead extends the idea of OBL
by prefetching P blocks instead of one, where P is
also referred to as the degree of prefetch. Dahlgren [19]
proposed a version of the P-Block Lookahead algorithm
which dynamically adapts the degree of prefetch for the
workload. Tcheun [20] suggested a per stream scheme
which selects the appropriate degree of prefetch on each
miss based on a prefetch degree selector (PDS) table.
For the case where cache is abundant, Infinite-Block
Lookahead has also been studied [21].

Stride-based prefetching has also been studied mainly
for processor caches where strides are detected based
on information provided by the application [22], a
lookahead into the instruction stream [23], or a reference
prediction table indexed by the program counter [24].
Dahlgren [25] found that sequential prefetching is a
better choice because most strides lie within the block
size and it can also exploit locality.

History-based prefetching has been proposed in var-
ious forms. Grimsrud [26] uses a history-based table
to predict the next pages to prefetch. Prefetching using
Markov predictors has been studied in [27], wherein
multiple memory predictions are prefetched at the same
time. Data compression techniques have also been
applied to predict future access patterns [12]. Vitter
[28] provided an optimal (in terms of the miss ratio)
prefetching technique based on the Lempel-Ziv algo-

rithm. Lei [29] suggested a file prefetching technique
based on historical access correlations maintained in the
form of access trees.

The fact is, most commercial data storage systems
use very simple prefetching schemes like sequential
prefetching. This is because only sequential prefetching
can achieve a high long-term predictive accuracy in
data servers. Strides that cross page or track boundaries
are uncommon in workloads and therefore not worth
implementing. History-based prefetching suffers from
low predictive accuracy and the associated cost of the
extra reads on an already bottlenecked I/O system.
The data storage system cannot use most hardware-
initiated or software-initiated prefetching techniques as
the applications typically run on external hardware.
Further, offline algorithms [30], [31], [32], [33] are not
applicable as they require knowledge of future data
accesses.

D. The Problem of Cache Pollution

In the context of prefetching, cache pollution is said
to occur when prefetched data replaces more useful data
(demand-paged or prefetched) from the cache. There
have been attempts to reduce cache pollution by restrict-
ing the amount of cache the prefetched data can occupy
[34], or via software hints [35]. The SARC algorithm
[17] provides an adaptive and autonomous solution to
limit this problem by allocating cache space so as to
equalize the marginal utility of the demand paged and
prefetched data. However, we are not aware of any
prior online solution for minimizing cache pollution that
occurs when new prefetched data replaces more useful
prefetched data from the cache.

E. The Problem of Wasted Prefetches

In data storage systems, the disks are typically the
bottleneck. If pages are prefetched speculatively and are
not subsequently used, then not only does this cause
cache pollution and increase in the backend bandwidth
usage, but more importantly, it causes additional I/O
load on the disks. This additional load can lead to
degradation in performance, defeating the purpose of
prefetching. This is the reason why most history-based
prefetching schemes which do not have high prediction
accuracy are not used in commercial systems.

F. Our Contributions

A prefetching algorithm can have a fixed or adaptive
degree of prefetch and can be either asynchronous
(when it can prefetch on a hit) or synchronous (when it
can prefetch only on a miss). This naturally leads to four
classes which we call Fixed Synchronous (FS), Fixed
Asynchronous (FA), Adaptive Synchronous (AS), and
Adaptive Asynchronous (AA).

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association186

Although sequential and non-sequential data typically
occupy the same cache, it is worthwhile to examine
the prefetched data alone as most known prefetching
algorithms suffer from cache pollution and prefetch
wastage, and thus, can be improved.

We examine the case where an LRU (Least Recently
Used) cache houses prefetched data for multiple concur-
rent sequential streams. We provide a theoretical analy-
sis and prove the sufficient conditions for optimal online
cache management for steady-state sequential streams.
We also provide a simple implementation called AMP,
the first member of the AA class which optimally adapts
both the degree of prefetch and the timing thereof
according to the workload and cache size constraints.

With a theoretically optimal design, AMP mini-
mizes prefetch wastage and cache pollution within
the prefetched data while maximizing the aggregate
throughput achieved by the sequential streams. To
demonstrate the effectiveness of AMP, we compare it
with 9 other prefetching algorithms including the best
representatives from the FA, FS, and AS classes, over
a wide range of cache sizes, request rates, request sizes,
number of concurrent streams, and workloads.

We observe that AMP convincingly outperforms all
the FA, FS, and AS algorithms for any number of
streams, and over all cache sizes. In an experiment
with a 100 concurrent sequential streams and varying
cache sizes, AMP beats the FA, FS, and AS algorithms
by 29-172%, 12-24%, and 21-210% respectively while
outperforming no prefetching and OBL by a factor of
8. AMP is consistently the best performing algorithm in
both the small cache and large cache scenarios, even for
complex workloads like SPC1-Read. For SPC2 Video-
on-Demand workload, AMP can support at least 25%
more streams than the next best algorithm. For streams
with short sequences, as well, for which optimality is
more elusive, AMP surpasses all the other contenders
in its overall performance.

G. Outline of the Paper

In Section II, we suggest a useful classification of
sequential prefetching algorithms and examine each in
detail. In Section III, we provide a formal analysis and
proof for the conditions necessary for optimal sequential
prefetching. We also provide an implementation called
AMP. In Section IV, we describe the workloads used in
this paper. In Section V, we delineate the experimental
setup used for our experiments. In Section VI, we
present the experimental results and conclude with our
findings in Section VII.

II. Sequential Prefetching
A. Rules of engagement

The cost of caching an entity is equal to the size of the
entity multiplied by the amount of time for which it is
present in the cache. The benefit of caching an entity,
on the other hand, is the number of hits it produces.
We define two self-evident rules that any prefetching
algorithm should follow:

• Avoid Wastage Rule: Do not prefetch any page
that will be evicted before it is requested by the
workload.

• Avoid Cache Pollution Rule: Do not prefetch any
page that will evict other prefetched pages without
providing any net gain in performance.

B. Synchronous Vs. Asynchronous Prefetching

(G)

PREFETCH DEGREE (P)
TRIGGER

UNACCESSEDACCESSED

DISTANCE

Fig. 1. Asynchronous Prefetching

There are two kinds of prefetch requests: (i) syn-
chronous prefetch, and (ii) asynchronous prefetch. A
synchronous prefetch is when on a miss on page x, we
prefetch p extra pages beyond page x. It merely extends
the extent of the client’s read request to include more
pages. On the other hand, an asynchronous prefetch is
when on a cache hit on a page x, we create a new read
request to prefetch p pages beyond those already in the
cache. In each set of p prefetched pages, a trigger page
is identified at a trigger distance of g from the end of
the prefetched set of pages (Figure 1). When g = 0,
the trigger is set on the last page of the prefetched set.
When a trigger page is hit, an asynchronous prefetch is
requested for the next set of p sequential pages. Unlike
synchronous prefetching, asynchronous prefetching en-
ables us to always stay ahead of sequential read requests
and for suitable values of p and g, never incur a read
miss after the initial miss for a sequential stream [17].
Asynchronous prefetching is always used in conjunction
with some form of synchronous prefetching to prefetch
the initial set of pages.

Notice that asynchronous prefetching creates new
read requests on its own and, therefore, in cases where
prefetches are wasted, asynchronous prefetching will
have more disk seeks on the backend for the same
workload than synchronous prefetching. However, for
larger prefetches on data striped across disks, even
synchronous prefetches will result in new read requests.

As a guideline, asynchronous prefetching should be
avoided in cases where prefetch wastage is high.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 187

C. A Classification of Prefetching Algorithms

Sequential prefetching is the most promising and
widely deployed prefetching technique for data servers.
It has a high predictive accuracy and is extremely
simple to implement. Simple methods are used to isolate
the sequential components of workloads [17], upon
which prefetching is applied. We can classify the known
sequential prefetching techniques as follows:

• Fixed Synchronous (FS) prefetching: The simplest
form of sequential prefetching is where we prefetch
the next page on a miss (OBL [18]). Another
variant is where a fixed number of pages (p) are
prefetched on every miss.

• Adaptive Synchronous (AS) prefetching: This is
a popular form of sequential prefetching where
the number of pages prefetched on every miss
(p) is gradually increased as the length of the
sequence referenced becomes longer. The degree
of prefetch, p starts with 1 and is either linearly
incremented on every miss [20] (Linear-AS) or
exponentially incremented (Exp-AS). Usually, there
is a predefined upper limit for incrementing p.
Although Exp-AS adapts faster than the Linear-AS
method, it is prone to more wastage in workloads
with many short sequences or when cache space is
limited.

• Fixed Asynchronous (FA) prefetching: In this class,
a hit on a trigger page causes a prefetch. Tagged
prefetching [18], a variant of OBL, is the earliest
example of asynchronous prefetching where the
degree of prefetch was 1 and the trigger distance
was 0. Subsequently, the idea has been extended
to any pair of fixed values of p and g [17]. Unlike
synchronous prefetching methods, this class of
algorithms can achieve zero misses for a workload
when the chosen values of p and g are adequate.
However, since the algorithm is hand-tuned and not
adaptive, it does not work well for all workloads.

• Adaptive Asynchronous (AA) prefetching: To the
best of our knowledge, there is no published
work that dynamically adapts both the degree of
prefetch (p) and the trigger distance (g). This is
the most promising class of prefetching algorithms.
The only algorithm that comes close is the one
proposed by Dalhgren [19] where the degree of
prefetch is the same for all streams and every
page is a trigger page. It is not truly applica-
ble in the context of data servers because it is
wasteful. As each page is a trigger page it ineffi-
ciently prefetches one page at a time for sequential
streams. It also requires some amount of prefetch
wastage to adapt p which is blindly applied for all
sequential streams.

D. Interaction between demand-paged and prefetched
data

Since demand-paged data, prefetched data, and some-
times modified data, share the same cache in most data
server architectures, we normally would require a way
to divide the cache between the various types, and
manage each portion optimally, so as to maximize the
overall performance of the system. While a large num-
ber of demand-paging cache replacement algorithms
have been devised (for example, LRU, CLOCK, FBR,
2Q, LRFU, LIRS, MQ, and ARC), surprisingly, and to
the best of our knowledge, there has been no research
towards an online optimal cache replacement policy for
prefetched data.

In this paper, we provide this missing link and present
a provably optimal algorithm for multiple sequential
streams sharing a cache and a very simple practical
implementation thereof. We believe that much of the
work on understanding the interactions between various
types of cached data ([4], [17], [30], [33]) will benefit
from and incorporate our algorithm and analysis.

III. AMP
A. Replacement Policy for Prefetched data

The most widely used data structure for cache re-
placement policy is LRU, mainly because of its sim-
plicity. This policy leverages temporal locality in the
workload to improve cache hit ratios. Even within
sequentially prefetched data, it is possible to have non-
sequential accesses that exhibit temporal locality. This
has encouraged most commercial systems to use the
LRU data structure and replacement policy even for
prefetched data rather than simply evicting prefetched
data immediately after use. In this paper, we improve
this LRU policy by making it aware of the difference be-
tween prefetched and demand-paged data. A prefetched
page is moved to the most recently used (MRU) position
only on repeated access and not on the first access.

B. Theoretical Analysis: Optimality Criteria

In this section we theoretically analyze the case when
an LRU cache is shared by prefetched data for multiple
steady sequential streams. We assume an AA algorithm
operating with a cache of size C. L is defined as the
average life of a page in the cache. Each stream has
a maximum request rate, r, which is achieved when
all read requests are hits in the cache. The aggregate
throughput, B, is the sum of individual stream through-
puts (B =

∑
i bi).

Observation III.1 p/t(p) is a monotonically non-
decreasing function, where t(p) is the average time to
prefetch p pages.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association188

Average Read Response Time Vs. Read Size

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Av
g.

Re
sp

on
se

Ti
m

e
(s

ec
on

d)

Number of blocks (512 bytes) in a read

Fig. 2. Starting at 3 ms, the average response time grows linearly
with the read size. We observed similar behavior for RAID-5 implying
that the optimality criteria in this paper apply to RAID as well.

Proof: From Figure 2 we observe that t(p) is of
the form kp + c. Hence, p/t(p) = p

kp+c
, and its slope

db

dp
=

c

(kp + c)2

is positive since c is positive.

Definition III.1 A stream is said to be satisfied at
(p, g), if it experiences no misses for the given p and g.

Lemma III.1 A stream is satisfied at (p, g) iff t(p) ≤
(g + 1)/r .

Proof: By definition, if a stream is satisfied at
(p, g) then it experiences no misses in the steady state.
That implies that the prefetch issued at the trigger
distance g completes before the g +1 pages are read by
the client. Therefore, t(p) ≤ (g + 1)/r, where r is the
request rate of the stream. The reverse is also true. If
the time it takes to prefetch p pages is not more than the
time it takes the client to read the g pages, then there
cannot be any misses in the steady state implying that
the stream is satisfied.

Observation III.2 The throughput of a satisfied stream
is equal to r, its request rate.

Proof: By definition, a satisfied stream experiences
no misses in the steady state. No misses implies no stall
time and the stream proceeds at its desired request rate
of r.

Lemma III.2 Cache Pollution occurs if (g + 1) > dr ·
t(p)e.

Proof: If g + 1 > dr · t(p)e then g ≥ r · t(p) or
t(p) ≤ g/r < (g + 1)/r.

By Lemma III.1, the stream is satisfied at the chosen
(p, g) but is also satisfied for g − 1 at (p, g − 1). By
Observation III.2, the throughput with g−1 will remain
the same as the stream will remain satisfied. However,
the cost of the case where a lower g is used is smaller
as the average number of pages that have to be kept in
the cache is smaller. Hence, cache space is being wasted
without any gain in throughput.

Lemma III.3 If there is no cache pollution, wastage
occurs iff p/r > L.

Proof: If there is no cache pollution, (g + 1) ≤
dr·t(p)e (Lemma III.2). By their definitions, p pages are
requested when g + 1 pages from the previous prefetch
are still unaccessed. The number of these pages that are
consumed in the time it takes to prefetch is r · t(p),
which is roughly all of the unaccessed pages. Hence, as
soon as the next p pages are prefetched, they begin to
be consumed at the request rate r. Therefore, the time
it takes for the p pages to be consumed after prefetch
is p/r. Now, if the average life (L) of pages in the
cache is less than p/r, then some of the prefetched pages
will be evicted before they are requested. Conversely,
if L is greater than p/r then all the p pages will be
requested before they reach the LRU end of the list and
face eviction.

Lemma III.4 If there is no cache pollution, throughput
of a stream (b) = min(r, p

t(p) ,
r·L
t(p)).

Proof: The throughput of a stream cannot exceed
its request rate (r). Further, since we use a single
outstanding prefetch for a stream at any time, the
throughput cannot exceed the amount prefetched (p)
divided by the time it takes to prefetch that amount
t(p). In the case where p > r · L, wastage occurs
(Lemma III.3) and only r · L pages out of p will
be accessed before being evicted. In this case, the
throughput is limited by r · L/t(p).

Lemma III.5 If there is no wastage B · L = C

Proof: The life of the cache (L) is equal to the
time it takes to insert C new pages in the top end of
the cache. If there is no wastage, the rate of insertion
in the cache is equal to the aggregate read throughput
of all the streams (B). Therefore, C/B = L.

Lemma III.6 For a fixed choice of p1, p2, ..., pn, and
cache of size C, the aggregate throughput (B) is unique
when there is no wastage.

Proof: Suppose, the aggregate throughput(B) was
not unique. Without loss of generality, we would have

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 189

B′ > B, such that

B′ =
∑

i=1..n

min(ri, pi/t(pi), ri · L
′/t(pi))

B =
∑

i=1..n

min(ri, pi/t(pi), ri · L/t(pi))

Since there is no wastage, we have p ≤ r · L for
all streams. So, the only different term in the min
expression is not significant. Thus, B′ = B, which is
contrary to our assumption.

Theorem III.1 The aggregate throughput of n streams
sharing a cache of size C with average cache life L, is
maximized if ∀i, pi = bri · Lc.

Proof: Given n streams with request rates of
r1, r2, ...rn and a cache of size C, let the throughput
obtained by the choice: ∀i, pT

i = bri · Lc be BT .
The theorem claims that BT is the maximum aggregate
bandwidth obtainable (Bmax) through any choice of pT

i .
We will prove by contradiction. Let us assume that

BT < Bmax. Therefore, there exists some choice of
p1, p2, ..., pn such that the aggregate bandwidth of all
streams is Bmax.

Since wastage and cache pollution can never increase
aggregate throughput, we assume, without loss of gen-
erality, that Bmax is free from these inefficiencies.

If the choice of pi is the same as that specified by
this theorem, then by Lemma III.6, BT = Bmax, which
is contrary to our assumption.

∴ ∃i : pi 6= bri · Lc (1)

By Lemma III.3, it must be the case for Bmax that

∀i, pi ≤ bri · Lc (2)

If follows from (1) and (2), without loss of generality,
that p1 < br1 · Lc.

Let us define a new set: p1
1, p

1
2, ..., p

1
n, where p1

1 =
bri · L

1c, and ∀i 6= 1, p1
i = pi. L1 and B1 are the new

cache life and aggregate throughput values.
Since B1 ≤ Bmax (by defn. of Bmax), L1 ≥ L

(Lemma III.5). By Lemma III.4, ∀i 6= 1, b1
i ≥ bi as p1

i =
pi and L1 ≥ L. By Observation III.1 and Lemma III.4,
b1
1 ≥ b1 as p1

1 > pi.

∴ B1 =
∑

b1
i ≥

∑
bi = Bmax

Since B1 ≤ Bmax, it follows that B1 = Bmax.
By repeating the above procedure for every stream

with pi < bri ·Lc, we will arrive at a set pn
1 , pn

2 , ..., pn
n,

where ∀i, pn
i = bri · L

nc and Bn = Bmax.
Since, the choice of p for each stream will then be

the same for Bn and BT , Bn = BT by Lemma III.6.

∴ Bn = Bmax = BT

which contradicts our assumption that BT < Bmax.

C. AMP Algorithm

The AMP algorithm, which adapts to achieve the
optimality criteria set in the previous section, is outlined
in Figures 3 and 4. We now draw attention to the
important portions of the algorithm and the logic behind
the choices we have made.

We make a conscious effort to avoid a separate data
structure to track the adapted values of p and g for each
detected sequential stream. We store the value of p and
g in the page data structure. This removes any restriction
on the number of streams that can be tracked.

Lines 20-23 implement the synchronous prefetching
component of the algorithm. The number of pages to
be prefetched on a read miss is not fixed (as in FS
algorithms) but is the adapted value of p stored in the
metadata of the previous page.

Whenever the current p is greater than the Asyn-
chronous Prefetch Threshold (APT), asynchronous
prefetching is activated. APT is set to an empirically
reasonable value of 4. A page at a distance of APT/2
from the last page prefetched is chosen as the prefetch
trigger page and the tag is set (Lines 41, 49). When
there is a hit on a tag page, the tag is reset and
an asynchronous prefetch is initiated for p pages as
specified in the last page of the current set (Lines 27-
30).

Adapting the degree of prefetch (p): As per Theo-
rem III.1, we desire to operate at a point where p = r·L.
If p is more than this optimal value, the last page in
a prefetched set will reach the LRU end unaccessed.
We give such a page another chance by moving it to
the MRU position and setting the old flag (Line 53).
Whenever an unaccessed page is moved to the MRU
position in this way, it is an indication that the current
value of p is too high, and therefore, we reduce the value
of p (Line 56). In Lines 31-35, p is incremented by the
readsize (the size of read request is pages) whenever
there is a hit on the last page of a read set (pages read
in the same I/O) which is also not marked old.

Adapting the trigger distance (g): The main idea is to
increment g if on the completion of a prefetch we find
that a read is already waiting for the first page within the
prefetch set (readWaiting()). If g was larger, the prefetch
would have been issued earlier, reducing or eliminating
the stall time for the read. Thus, we increment g in Line
47. However, we also need to decrement g when p itself
is being decremented (Line 57). This keeps g = r · t(p)
as per Lemmas III.1, III.2.

Whenever we adapt the value of p and g we store
the updated values in the last page that has been read
into the cache for the sequence. This is located by the
lastInSequence(x) method in Lines 11-19. The method
simply returns the last page of the set that x belongs
to, or if the next set of pages has also been prefetched,

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association190

DATA STRUCTURE AND FUNCTIONS:

struct page {
off t addr; // addr of the page
off t Laddr; // addr of the last page in read set
bool accessed; // whether page has been accessed
bool tag; // if page hit will initiate prefetch
bool old; // if page was given another chance
short int p; // prefetch degree
short int g; // trigger distance

}

lookup(off t addr)
1: if (page addr is present in cache)
2: return page
3: endif
4: return null

#define prev(x) lookup(x→addr − 1)
#define last(x) lookup(x→Laddr)
#define isLast(x) (x→addr == x→Laddr)

createPages(page[] s, page ** last, page ** prev)
5: *prev = prev(first page in s)
6: *last = the last page in s
7: foreach x in s; do
8: create page x in cache
9: x→Laddr = (∗last)→addr
10: done

lastInSequence(page * x)
11: l1 = last(x)
12: if (!l1)
13: return null
14: endif
15: if (!lookup(x→Laddr + 1))
16: return l1
17: elsif (l2 = lookup(x→Laddr + l1→p))
18: return l2
19: endif

Fig. 3. AMP: Data structures and support functions

it returns the last page of the next set. The logic is to
keep the adapted values of p and g in the page that
is most recently added to the cache and is thus most
likely to stay in the cache for the longest time. In the
unlikely case where the adapted values of p and g are
forgotten because of page evictions, we set p to the
current prefetch size, and set g to half of p.

Since AMP adapts to discover the optimal values of p
and g, it incurs a minor cost of adaptation which quickly
becomes negligible and allows it achieve near optimal
performance.

In the eviction part of the algorithm (Lines 50-59),
pages that are old or accessed are evicted from the LRU
end. Finally, we always make sure that p ≥ g+1 (Lines
44, 57) and p ≤ p threshold (a reasonable 256 pages
for all algorithms).

ON HIT OR MISS:

A read request of readsize pages is processed one page
at a time as follows:

On read miss on page x
20: read page x along with
21: (a) remaining pages in read request
22: (b) if (prev(x))
23: prev(x)→p pages beyond the read request

On read hit on page x
24: if (x→accessed)
25: moveToMRUPosition(x)
26: endif
27: if (x→tag)
28: prefetch [x→Laddr + 1, x→Laddr + last(x)→p]
29: x→tag = 0
30: endif
31: if (isLast(x) && !x→old)
32: if (y = lastInSequence(x))
33: y→p = y→p + readsize
34: endif
35: endif

On reading page x (after hit or miss)
36: x→accessed = 1

ON DISK READ COMPLETION:

When a read completes for a set (s) of pages
37: createPages(s, &last, &prev)
38: last→p = (prev ? prev→p : 0) + readsize
39: if (last→p ≥ APT)
40: last→g = APT/2
41: (lookup(last→addr − APT/2))→tag = 1
42: endif

When prefetch completes for a set (s) of pages
43: createPages(s, &last, &prev)
44: last→p = max(prev→p, last→g + 1)
45: last→g = prev→g
46: if (readWaiting())
47: last→g = last→g + readsize
48: endif
49: (lookup(last→addr − prev→g))→tag = 1

EVICTION ALGORITHM:

When page x reaches the LRU end
50: if (x→old || x→accessed)
51: evict page x from cache
52: else
53: x→old = 1
54: moveToMRUPosition(x)
55: if (y = lastInSequence(x))
56: y→p = y→p − 1
57: y→g = min(y→g − 1, y→p − 1)
58: endif
59: endif

Fig. 4. AMP: Main algorithm

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 191

IV. WORKLOADS

A. Which workloads to use

The study of caching algorithms using traces is popu-
lar as it simplifies the experimental setup while allowing
to simulate a real-life workload scenario. Another ap-
proach is to use synthetic workload generators which are
flexible and can simulate a large number of scenarios for
which it is not practical to obtain real-life traces. When
the algorithms being tested involve prefetching, using
traces is not a good choice. Firstly, the timing of the
I/Os is crucial in the context of prefetching algorithms.
A read can be a miss or hit depending on the amount
of time that passed between consecutive requests. This
is not the case with pure demand-paging algorithms
where we will get the same hit ratio independent of
the timing between the read requests. To ensure that we
are faithful to the timing information in the traces we
need to run the trace preferably on the same hardware
that generated it in the first place. For example, it
is impossible to run a trace from a data server with
hundreds of disks on a setup with only a few disks.
This requires us to either simulate the original hardware
on which the trace was collected, or scale the speed of
the trace based on the disparity of the two systems.
When using older traces, we may also need to factor
in the improvement of disk access times. Therefore,
using traces for comparison of prefetching algorithms
is extremely difficult and an approximation at best. We
favor using versatile workload generators which can
simulate both simple workloads and complex workloads
like OLTP and Video-on-Demand.

B. Sequential Streams

This workload comprises of a continuous series of
read requests on consecutive pages with a specified time
(thinktime) between the requests. Each request is for
the specified number of pages (readsize). We examine
both single stream and multiple stream cases.

C. Short Sequences

Each stream of this kind generates read requests for
consecutive pages for the specified sequence length.
Once the sequence length is read, the stream randomly
selects a new location to start reading another short
sequence with the specified thinktime and readsize.

D. SPC1-Read workload

SPC-1 ([36], [17]) is a widely used commercial
benchmark provided by the Storage Performance Coun-
cil. It uses a sophisticated workload that simulates busi-
ness critical environments like OLTP systems, database
systems and mail server applications. We use a pro-
totype implementation of the SPC-1 benchmark called
SPC1-Read, that matches the specifications of the read

component of the SPC1 workload([37]), which com-
prises uniform random (10%), hierarchical reuse ran-
dom (65%), and incremental sequential (25%) access
patterns. The thinktime and readsize of the con-
stituent workloads are continuously varied according
to the probability distribution prescribed by the bench-
mark. The impact that the write component has on
concurrent reads depends on the choice of the size of
the write cache, the order of destages as well as the
timing of the destages([38]). It serves us well to ignore
the write component of the workload so as to clearly
appreciate the relative performance of the prefetching
algorithms without diluting the results with writes.

E. SPC2-VOD workload

The SPC-2 benchmark is designed to demonstrate
the performance of a storage subsystem when running
business critical applications that require the large-scale,
sequential movement of data. It is comprised of tests
that simulate applications characterized by large I/Os.
One such test which is purely reads (and hence of
interest to us), is the Video on Demand test which sim-
ulates individualized video entertainment provided to a
community of subscribers, by drawing from a digital
film library [39]. The workload creates the specified
number of sequential streams that read 256 KB on each
I/O with a thinktime of 333.3 ms.

V. EXPERIMENTAL SET-UP

A. The Basic Hardware Set-up

We use an IBM xSeries 345 machine equipped with
two Intel Xeon 2 GHz processors, 4 GB DDR, and six
10K RPM SCSI disks (IBM, 06P5759, U160) of 36.4
GB each. A Linux kernel (version 2.6.11) runs on this
machine hosting all our workload generators and cache
simulation framework. We employ five SCSI disks for
the purposes of our experiments, and the remaining one
for the operating system, our software, and workloads.

B. Software Setup

We implemented a framework, called WorkGen as
shown in Figure 5, which allows us to benchmark
various algorithms across a large range of cache sizes,
varying page sizes, and consumption rates. WorkGen is
divided into three layers. The first layer consists of the
workload modules, which can simulate any number of
parallel streams consisting of sequential, short sequen-
tial, SPC1-Read, or SPC2-VOD workloads. The second
layer consists of the prefetching modules, which allows
us to select any of the prefetching algorithms that we
implemented. Each algorithm module has access to the
LRU data structure as well as the read(), and prefetch()
methods used to perform demand reads and prefetches
respectively. The third layer consists of the disk backend
which is the target for all the I/Os.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association192

Fig. 5. WorkGen Architecture

C. The Competitors

We implemented prefetching algorithms that repre-
sent the FS, FA, and AS classes.

Within the FS and FA classes we pick members with
small, medium and large p. In Figure 6, we observe that
for the FA algorithms there is no optimal fixed value
for g that works for all workloads. We have chosen
g to be half of p as that works best for the widest
variety of workloads. For AS algorithms, we chose two
popular variants, which adapt p linearly (ASLinear) and
exponentially (ASExp). We also compare with OBL and
the case with no prefetching.

Effect of trigger distance (g) in FA algorithms.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250 300

Re
ad

Th
ro

ug
hp

ut
(IO

PS
)

Prefetch Trigger Distance (G)

5 streams, Thinktime = 0.2ms
100 streams, Thinktime = 10ms

Fig. 6. On x-axis we vary the trigger distance (g) in an FA algorithm
with p = 256. On the y-axis we show the throughput when using a
120 MB cache. When using five fast streams we get higher throughput
with higher values of g, whereas, with a hundred slower streams, a
smaller g performs better.

D. Measuring success

The ultimate goal of any cache management algo-
rithm is to improve the shape of the throughput-response
time curve for the system by lowering the response
times and increasing the throughput across all work-
loads. Most caching research has focused on minimizing
miss ratios (or maximizing hit ratios) which at best is a
good heuristic for improving performance of a system.
To be fair it is not just the miss ratio but also the average
cost of misses that impacts the aggregate response time.
For example, an aggressive prefetching algorithm can
potentially reduce the miss ratio but suffer a severe
increase in the average cost of misses as it overloads
the disks. In fact, with prefetching, the concept of a
read miss itself is nebulous because a read that happens
after a prefetch request for the page has been issued
and before the prefetch actually completes is somewhere
between a hit and a miss, but technically neither. Even
in the absence of prefetching, some disks might be less
busy than others leading to smaller miss penalties on
those disks. Even on a single disk reading from an
area that is not visited often by the disk head tends
to be more expensive. In short, it is prudent to measure
performance in terms of aggregate read response times
and throughput whenever possible.

Another quantity which is useful is the stall time.
It is the total time for which application had to wait
because the requested data was not present in the cache.
This is very closely related to the aggregate throughput
as a lower stall time results in correspondingly higher
throughput. We however choose to report in terms
of throughput as it is more immediately relevant to
performance.

VI. RESULTS

A. Single Sequential Stream

Our goal is to create an intimate understanding of the
behavior of various sequential prefetching algorithms.
We implemented 9 prefetching algorithms and com-
pared them with AMP. In Figure 7, we examine the ac-
tual throughput achieved as a function of the requested
rate by a single sequential stream when assisted by
various prefetching algorithms.

As expected, we observe the lowest throughput for no
prefetch. The One Block Lookahead (OBL) algorithm
performs about the same because we prefetch only one
page and the request size is 2 pages. A two or more
block lookahead algorithm would have worked better
by reducing the amount of misses. This is precisely
the intent of the Fixed Synchronous (FS) class of
algorithms which have a fixed degree of prefetch (p).

FA algorithms are superior to the FS algorithms
because they can start a prefetch on a hit thereby
avoiding more misses than the FS algorithms. Both the

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 193

Single Sequential Stream with varying request rates

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000

Ac
hi

ev
ed

Th
ro

ug
hp

ut
(IO

PS
)

Requested Throughput (IOPS)

AMP
No Prefetch

OBL
FS8

FS64
FS256

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000

Ac
hi

ev
ed

Th
ro

ug
hp

ut
(IO

PS
)

Requested Throughput (IOPS)

AMP
ASLinear

ASExp
FA8/3

FA64/31
FA256/127

Fig. 7. We show the achieved throughput as a function of the requested throughput for 8 KB reads using a 100 MB cache and one SCSI
disk. For clarity, we split the comparison with AMP into two panels. AMP keeps up with the requested throughput and outperforms all other
algorithms.

Multiple Sequential Streams with varying cache sizes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5000 10000 15000 20000 25000 30000

Re
ad

Th
ro

ug
hp

ut
(IO

PS
)

Cache Size (4KB pages)

0

10

20

30

40

50

60

70

80

0 5000 10000 15000 20000 25000 30000

W
as

ta
ge

(%
)

Cache Size (4KB pages)

AMP
No Prefetch

OBL
FS8

FS64
FS256

ASLinear
ASExp
FA8/3

FA64/31
FA256/127

Fig. 8. On the left panel, we show the average achieved throughput over a period of two minutes as a function of the cache size for 100

concurrent streams reading from five SCSI disks with thinktime = 10 ms and readsize = 8 KB. On the right panel, we show the corresponding
wastage percentage (unaccessed pages evicted / total pages evicted * 100%).

FS and FA algorithm results seem to indicate that the
larger the p, the better the performance. This is true
for a single sequential stream where the cache is abun-
dantly available. In multiple stream experiments which
compete for cache space, we will better appreciate the
need for a careful choice of p.

We also measure the performance of the adaptive
synchronous algorithms. ASLinear and ASExp increase
p as the detected sequence becomes longer. For all
the adaptive algorithms in this paper we uniformly
use a maximum degree of prefetch of 256 for a fair
comparison. Both AS variants perform roughly the same
as they adapt and reach this maximum value of p during
the first few seconds on the experiment.

AMP being able to adapt not only p but also g
convincingly outperforms the FA algorithms by 2-50%,
the AS algorithms by 37%, the FS algorithms by 37-

52% and no prefetching and OBL by 88%. AMP closely
followed by FA256/127 was able to satisfy the request rate
throughout the single stream experiment.

B. Multiple Sequential Streams: varying cache size

It is extremely important to examine the common
case where a limited cache is used by prefetching
algorithms to cater to multiple sequential streams. In
Figure 8, we depict the aggregate throughput achieved
by a hundred parallel sequential streams with a think-
time of 10 ms. The key observation is that different
algorithms are suitable for different cache sizes, while
AMP is universally the best, closely enveloping all the
other plots.

Out of the FS algorithms, FS8 is the best at very
low cache sizes, while FS64 is much better at the higher
cache sizes. In FA algorithms, FA8/3 is again the best

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association194

Varying number of Sequential Streams

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250 300 350 400 450

Re
ad

Th
ro

ug
hp

ut
(IO

PS
)

Concurrent Sequential Streams

AMP
No Prefetch

OBL
FS8

FS64
FS256

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250 300 350 400 450

Re
ad

Th
ro

ug
hp

ut
(IO

PS
)

Concurrent Sequential Streams

AMP
ASLinear

ASExp
FA8/3

FA64/31
FA256/127

Fig. 9. We show the average achieved throughput over a period of two minutes as a function of the number of concurrent sequential streams
reading from five SCSI disks with thinktime = 30 ms, readsize = 8 KB, and a 100 MB cache.

at low cache sizes, while FA256/127 is much superior at
the higher cache sizes. As a rule of thumb, a lower
prefetch degree performs better at lower cache sizes
as high values of p create prefetch wastage in smaller
caches. This is in contrast to the single stream case,
where a higher p was always a better choice. This
leads us to the adaptive synchronous algorithms. ASExp

increases p exponentially, reaching higher values of p
quickly creating significant prefetch wastage for lower
cache sizes. ASLinear , being slower in its adaptation,
usually performs better than ASExp at lower cache sizes
while the reverse is true at higher cache sizes. The
only algorithm that truly adapts the value of p so as
to minimize prefetch wastage is AMP. As a rough
measure of the overall performance of each algorithm,
we compute the average throughput across all cache
sizes in Figure 8. We find that AMP outperforms the FA
algorithms by 29-172%, the AS algorithms by 12-24%,
the FS algorithms by 21-210% and no prefetching and
OBL by a factor of 8. This is also a testimonial to the
fact that AMP algorithm closely follows the optimality
criteria derived in Section III-B.

In the right panel of Figure 8 we plot wastage, which
is the percentage of evicted pages that were evicted
before they could be accessed. We observe that the
prefetching algorithms that have a high p or aggressively
increase p suffer from the most prefetch wastage, and
that wastage is larger for smaller cache sizes. The
prefetch wastage in the case of AMP is always less than
0.1%, while on an average, FA, FS, and AS algorithms
waste up to 60%, 41%, and 11% respectively.

C. Multiple Sequential Streams: varying number of
streams

In Figure 9, we study the aggregate streaming
throughput of various prefetching algorithms when we

increase the number of concurrent sequential streams
while keeping the cache size constant. We observe that
most algorithms saturate at some throughput beyond
which increasing the number of streams does not im-
prove the aggregate throughput. Algorithms that issue
fewer but larger disk reads and at the same time waste
little generally do better. We observe that no prefetching
and OBL have the lowest throughput as they have a
large number of small read requests. Somewhat better
are the FA8/3 and FS8 algorithms as they create fewer
read requests than OBL. Interestingly, FA256/127 and
FS256 algorithms also have similarly low performance in
spite of large prefetch degree. This is because the large
prefetch degree leads to significant prefetch wastage.
The FS64 and FA64/31 perform the best in their respective
classes as they strike a balance and have large reads but
do not waste as much. The ASLinear and ASExp are gen-
erally good performers because they adapt the degree
the prefetch. However, since these algorithms lack the
ability to detect and avoid wastage, the more aggressive
ASExp fares worse than its linear counterpart. AMP
being an asynchronous adaptive algorithm discovers the
right prefetch degree for each stream thus avoiding
wastage and achieving the best possible performance.

At the maximum number of streams, AMP outper-
forms the FA algorithms by 41-350%, the AS algo-
rithms by 18-60%, the FS algorithms from nearly equal
to 252% and no prefetching and OBL by a factor of 12.

D. SPC1-Read workload

We study the impact of the various prefetching al-
gorithms on the performance of the cache when sub-
jected to the read component of the SPC1 benchmark
workload. In Figures 10, 11 we show the aggregate
response time as a function of the obtained throughput.
Lower plots indicate better performance as at the same

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 195

SPC1-Read in a small cache scenario

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

Ag
gr

Re
ad

Re
sp

on
se

Ti
m

e
(m

s)

Read Throughput (IOPS)

AMP
No Prefetch

OBL
FS8

FS64
FS256

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

Ag
gr

Re
ad

Re
sp

on
se

Ti
m

e
(m

s)

Read Throughput (IOPS)

AMP
ASLinear

ASExp
FA8/3

FA64/31
FA256/127

Fig. 10. We measure the aggregate read response time as a function of the achieved throughput when running the read portion of the SPC1
benchmark in a small cache scenario: 120 MB cache, backend=3.5 GB. The above graph also shows an example where no prefetching performs
better than aggressive prefetching algorithms like FS256 , FA256/127 and ASExp . This underscores the importance of wisely adapting p according
to the workload.

SPC1-Read in a large cache scenario

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000

Ag
gr

Re
ad

Re
sp

on
se

Ti
m

e
(m

s)

Read Throughput (IOPS)

AMP
No Prefetch

OBL
FS8

FS64
FS256

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000

Ag
gr

Re
ad

Re
sp

on
se

Ti
m

e
(m

s)

Read Throughput (IOPS)

AMP
ASLinear

ASExp
FA8/3

FA64/31
FA256/127

Fig. 11. We measure the aggregate read response time as a function of the achieved throughput when running the read portion of the SPC1
benchmark in a large cache scenario: 2 GB cache, backend = 35 GB

response time a higher throughput can be achieved.
Clearly, AMP is consistently the best performing algo-
rithm in both the small cache and large cache scenarios.
No other algorithm can perform well in both scenarios.
When the cache is large, the algorithms with a higher
prefetch degree seem to do better, while in the small
cache scenario, where the cache is precious, the algo-
rithms that are conservative in their prefetch degree tend
to perform much better as they incur lesser prefetch
wastage. AMP is able to quickly adapt to different
workloads and cache sizes, hence performing the best
among all the algorithms.

E. Short Sequences

In Section III-B, we derived the optimality criteria
for sequential prefetching in the steady state. We have
not discussed the behavior of the sequential prefetching
algorithms when the average length of sequences is

rather short. Apart from providing close to optimal
performance for long streams, AMP achieves the best
overall performance for short streams as well. Figure 12
shows the throughput of various algorithms as the length
of sequences go from 1 (effectively random) to 8192
read I/Os. The AS algorithms along with FS8 and FA8/3

perform well for short sequence lengths as they have a
smaller p and suffer from less prefetch wastage. As the
sequence lengths are increased, the FA256/127 becomes a
strong contender. The fact that AMP starts off with a
small p and adapts to make it larger if necessary makes
it perform reasonably well for short sequences. As the
length of sequences becomes larger, the adaptive power
of AMP allows it discover the right combination of p
and g. AMP is therefore not only provably optimal for
steady sequential streams but also has the best overall
performance for short sequences as well.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association196

Short Sequences

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 10 100 1000 10000

Re
ad

Th
ro

ug
hp

ut
(IO

PS
)

Average Sequence Length (pages)

AMP
No Prefetch

OBL
FS8

FS64
FS256

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 10 100 1000 10000

Re
ad

Th
ro

ug
hp

ut
(IO

PS
)

Average Sequence Length (pages)

AMP
ASLinear

ASExp
FA8/3

FA64/31
FA256/127

Fig. 12. We show the achieved throughput as a function of the average sequence length ranging from 1 I/O (essentially random) to 8192 I/Os.
We use a single stream with thinktime = 0.2 ms and a 100 MB cache.

SPC-2 Video-on-Demand with varying number of streams

500

550

600

650

700

750

800

0 20 40 60 80 100 120 140 160

Pe
rS

tre
am

Re
ad

Th
ro

ug
hp

ut
(K

Bp
s)

Number of concurrent streams

AMP
No Prefetch

OBL
FS8

FS64
FS256

500

550

600

650

700

750

800

0 20 40 60 80 100 120 140 160

Pe
rS

tre
am

Re
ad

Th
ro

ug
hp

ut
(K

Bp
s)

Number of concurrent streams

AMP
ASLinear

ASExp
FA8/3

FA64/31
FA256/127

Fig. 13. We measure the achieved throughput per stream as the number of concurrent video-on-demand streams increases using five SCSI
disks and a cache of 100 MB. The SPC2-VOD workload uses read size of 256 KB, thinktime = 333.3 ms.

F. SPC2-VOD workload

In Figure 13 we measure the performance for video-
on-demand workloads. The goal is to provide each
sequential stream its requisite bandwidth (768 KBps
in the case of SPC2-VOD workload) for the maximum
number of streams. We can easily observe that AMP is
able to entertain the most number of concurrent streams
(up to 125) at the desired bandwidth. FA64/31 starts
failing at about 100 streams and FA256/127 fails after 75
streams because of more severe prefetch wastage. None
of the other algorithms can match the demanded rate as
they incur expensive read misses which stall the client
and lower the throughput.

VII. CONCLUSIONS

Sequential prefetching is the most widely used
prefetching technique in storage subsystems. We have
argued the need for an algorithm that can adapt both
the prefetch degree and the trigger distance on a per

stream basis in response to evolving workloads. We have
provided a theoretical analysis and proved the sufficient
conditions for optimal online cache management for
steady-state sequential streams. We also presented a
novel, simple, adaptive and practical implementation
called AMP. We have demonstrated through a se-
ries of wide ranging experiments including realistic
benchmarks, that AMP provides the highest possible
aggregate throughput when a cache is shared among
multiple sequential streams. Even in scenarios where
the sequential streams are not steady, comprise of short
sequences, or are intermixed with random workloads (as
in SPC1-Read), we demonstrated that AMP convinc-
ingly outperforms all competing algorithms by wasting
the least amount of cache while providing the best
overall throughput.

We anticipate AMP to be widely applicable not only
in storage subsystems, but in any system that services
sequential workload.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 197

REFERENCES

[1] A. Rogers and K. Li, “Software support for speculative loads,”
in Proceedings of the 5th International Conference on Archi-
tectural Support for Programming Languages and Operating
System (ASPLOS), vol. 27(9), (New York, NY), pp. 38–50, ACM
Press, 1992.

[2] K. K. David Callahan and A. Porterfield, “Software prefetching,”
in ACM SIGARCH Computer Architecture News, vol. 19(2),
(New York, NY), pp. 40–52, ACM Press, 1991.

[3] C. Metcalf, “Data prefetching: a cost/performance analysis,”
1993.

[4] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka, “Informed prefetching and caching,” in SOSP,
pp. 79–95, 1995.

[5] T. Mowry and A. Gupta, “Tolerating latency through software-
controlled prefetching in shared-memory multiprocessors,” Jour-
nal of Parallel and Distributed Computing, vol. 12, no. 2,
pp. 87–106, 1991.

[6] E. H. Gornish, E. D. Granston, and A. V. Veidenbaum,
“Compiler-directed data prefetching in multiprocessors with
memory hierarchies,” in Proceedings 1990 International Con-
ference on Supercomputing, ACM SIGARCH Computer Archi-
tecture News, vol. 18(3), pp. 354–368, 1990.

[7] T.-F. Chen and J.-L. Baer, “Reducing memory latency via non-
blocking and prefetching caches,” in Proceedings of the 5th
International Conference on Architectural Support for Program-
ming Languages and Operating System (ASPLOS), vol. 27(9),
(New York, NY), pp. 51–61, ACM Press, 1992.

[8] C.-K. Luk and T. C. Mowry, “Compiler-based prefetching for
recursive data structures,” in Architectural Support for Program-
ming Languages and Operating Systems, pp. 222–233, 1996.

[9] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based
prefetching for linked data structures,” ACM SIGPLAN Notices,
vol. 33, no. 11, pp. 115–126, 1998.

[10] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roediger,
“SPAID: Software prefetching in pointer- and call-intensive
environments,” in Proceedings of the 28th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 231–236,
1995.

[11] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring the
bounds of web latency reduction from caching and prefetching,”
in USENIX Symposium on Internet Technologies and Systems,
1997.

[12] K. M. Curewitz, P. Krishnan, and J. S. Vitter, “Practical prefetch-
ing via data compression,” pp. 257–266, 1993.

[13] J. Griffioen and R. Appleton, “Reducing file system latency
using a predictive approach,” in USENIX Summer, pp. 197–207,
1994.

[14] D. Kotz and C. S. Ellis, “Practical prefetching techniques for
parallel file systems,” in Proceedings of the First International
Conference on Parallel and Distributed Information Systems,
pp. 182–189, IEEE Computer Society Press, 1991.

[15] K. S. Grimsrud, J. K. Archibald, and B. E. Nelson, “Multiple
prefetch adaptive disk caching,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 5, no. 1, pp. 88–103, 1993.

[16] S. Harizopoulos, C. Harizakis, and P. Triantafillou, “Hierarchical
caching and prefetching for high performance continuous media
servers with smart disks,” IEEE Concurrency, vol. 8, no. 3,
pp. 16–22, 2000.

[17] B. S. Gill and D. S. Modha, “SARC: Sequential prefetching
in adaptive replacement cache,” in Proceedings of the USENIX
2005 Annual Technical Conference, pp. 293–308, 2005.

[18] A. J. Smith, “Cache memories,” ACM Computing Surveys,
vol. 14, no. 3, pp. 473–530, 1982.

[19] F. Dahlgren, M. Dubois, and P. Stenström, “Fixed and adaptive
sequential prefetching in shared memory multiprocessors.,” in
ICPP, pp. 56–63, 1993.

[20] M. K. Tcheun, H. Yoon, and S. R. Maeng, “An adaptive sequen-
tial prefetching scheme in shared-memory multiprocessors.,” in
ICPP, pp. 306–313, 1997.

[21] T. Cortes and J. Labarta, “Linear aggressive prefetching: A way
to increase the performance of cooperative caches,” in Proceed-
ings of the Joint International Parallel Processing Symposium
and IEEE Symposium on Parallel and Distributed Processing,
(San Juan, Puerto Rico), pp. 45–54, 1999.

[22] J. W. C. Fu and J. H. Patel, “Data prefetching in multiprocessor
vector cache memories,” in Proceedings of the 18th annual
international symposium on computer architecture, (Toronto,
Intario, Canada), pp. 54–63, 1991.

[23] R. L. Lee, P.-C. Yew, and D. H. Lawrie, “Data prefetching in
shared memory multiprocessors.,” in ICPP, pp. 28–31, 1987.

[24] T.-F. Chen and J.-L. Baer, “Effective hardware based data
prefetching for high-performance processors.,” IEEE Trans.
Computers, vol. 44, no. 5, pp. 609–623, 1995.

[25] F. Dahlgren and P. Stenström, “Evaluation of hardware-based
stride and sequential prefetching in shared-memory multiproces-
sors:,” IEEE Transactions on Parallel and Distributed Systems,
vol. 7, no. 4, pp. 385–398, 1996.

[26] K. S. Grimsrud, J. K. Archibald, and B. E. Nelson, “Multiple
prefetch adaptive disk caching.,” IEEE Trans. Knowl. Data Eng.,
vol. 5, no. 1, pp. 88–103, 1993.

[27] D. Joseph and D. Grunwald, “Prefetching using markov predic-
tors,” IEEE Transactions on Computers, vol. 48, no. 2, pp. 121–
133, 1999.

[28] J. S. Vitter and P. Krishnan, “Optimal prefetching via data
compression,” Journal of the ACM, vol. 43, no. 5, pp. 771–793,
1996.

[29] H. Lei and D. Duchamp, “An analytical approach to file
prefetching,” in 1997 USENIX Annual Technical Conference,
(Anaheim, California, USA), 1997.

[30] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A study of
integrated prefetching and caching strategies,” in Measurement
and Modeling of Computer Systems, pp. 188–197, 1995.

[31] M. Kallahalla and P. J. Varman, “Pc-opt: Optimal offline
prefetching and caching for parallel i/o systems.,” IEEE Trans.
Computers, vol. 51, no. 11, pp. 1333–1344, 2002.

[32] T. Kimbrel and A. R. Karlin, “Near-optimal parallel prefetching
and caching,” in IEEE Symposium on Foundations of Computer
Science, pp. 540–549, 1996.

[33] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad, P. Cao,
E. Felten, G. Gibson, A. R. Karlin, and K. Li, “A trace-driven
comparison of algorithms for parallel prefetching and caching,”
in Proceedings of the 1996 Symposium on Operating Systems
Design and Implementation, pp. 19–34, USENIX Association,
1996.

[34] P. Reungsang, S. K. Park, S.-W. Jeong, H.-L. Roh, and G. Lee,
“Reducing cache pollution of prefetching in a small data cache.,”
in ICCD, pp. 530–533, 2001.

[35] P. Jain, S. Devadas, and L. Rudolph, “Controlling cache pollu-
tion in prefetching with software-assisted cache replacement,”
Tech. Rep. CSG-462, M.I.T., 2001.

[36] B. McNutt and S. Johnson, “A standard test of I/O cache,” in
Proc. Comput. Measurements Group’s 2001 Int. Conf., 2001.

[37] Storage Performance Council, “SPC Benchmark-1: Specifica-
tion, version 1.10.1,” September 2006.

[38] B. S. Gill and D. S. Modha, “WOW: Wide ordering of writes -
combining spatial and temporal locality in non-volatile caches,”
in Proceedings of the 4th USENIX Conference on File and
Storage Technologies (FAST), pp. 129–142, 2005.

[39] Storage Performance Council, “SPC Benchmark-2: Specifica-
tion, version 1.2,” September 2006.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association198

