
UC Berkeley
UC Berkeley Previously Published Works

Title
AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control

Permalink
https://escholarship.org/uc/item/9rh2t6tt

Authors
Peng, Xue Bin
Ma, Ze
Abbeel, Pieter
et al.

Publication Date
2021-04-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9rh2t6tt
https://escholarship.org/uc/item/9rh2t6tt#author
https://escholarship.org
http://www.cdlib.org/

AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control

XUE BIN PENG†, University of California, Berkeley

ZE MA†, Shanghai Jiao Tong University
PIETER ABBEEL, University of California, Berkeley

SERGEY LEVINE, University of California, Berkeley

ANGJOO KANAZAWA, University of California, Berkeley

Fig. 1. Our framework enables physically simulated character to solve challenging tasks while adopting stylistic behaviors specified by unstructured motion

data. Le�: A character learns to traverse an obstacles course using a variety of locomotion skills. Right: A character learns to walk to and punch a target.

Synthesizing graceful and life-like behaviors for physically simulated charac-

ters has been a fundamental challenge in computer animation. Data-driven

methods that leverage motion tracking are a prominent class of techniques

for producing high �delity motions for a wide range of behaviors. However,

the e�ectiveness of these tracking-based methods often hinges on carefully

designed objective functions, and when applied to large and diverse motion

datasets, these methods require signi�cant additional machinery to select the

appropriate motion for the character to track in a given scenario. In this work,

we propose to obviate the need to manually design imitation objectives and

mechanisms for motion selection by utilizing a fully automated approach

based on adversarial imitation learning. High-level task objectives that the

character should perform can be speci�ed by relatively simple reward func-

tions, while the low-level style of the character’s behaviors can be speci�ed

by a dataset of unstructured motion clips, without any explicit clip selection

or sequencing. For example, a character traversing an obstacle course might

utilize a task-reward that only considers forward progress, while the dataset

contains clips of relevant behaviors such as running, jumping, and rolling.

These motion clips are used to train an adversarial motion prior, which spec-

i�es style-rewards for training the character through reinforcement learning

(RL). The adversarial RL procedure automatically selects which motion to

perform, dynamically interpolating and generalizing from the dataset. Our

system produces high-quality motions that are comparable to those achieved

by state-of-the-art tracking-based techniques, while also being able to easily

accommodate large datasets of unstructured motion clips. Composition of

disparate skills emerges automatically from the motion prior, without re-

quiring a high-level motion planner or other task-speci�c annotations of

the motion clips. We demonstrate the e�ectiveness of our framework on

a diverse cast of complex simulated characters and a challenging suite of

motor control tasks.

Authors’ addresses: Xue Bin Peng† , University of California, Berkeley; ZeMa† , Shanghai
Jiao Tong University; Pieter Abbeel, University of California, Berkeley; Sergey Levine,
University of California, Berkeley; Angjoo Kanazawa, University of California, Berkeley.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The de�nitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459670.

CCS Concepts: • Computing methodologies→ Procedural animation;

Adversarial learning; Control methods.

Additional Key Words and Phrases: Wireless sensor networks, media access

control, multi-channel, radio interference, time synchronization

ACM Reference Format:

Xue Bin Peng†, Ze Ma†, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa.

2021. AMP: Adversarial Motion Priors for Stylized Physics-Based Character

Control. ACM Trans. Graph. 40, 4, Article 1 (August 2021), 20 pages. https:

//doi.org/10.1145/3450626.3459670

1 INTRODUCTION

Synthesizing natural and life-like motions for virtual characters

is a crucial element for breathing life into immersive experiences,

such as �lms and games. The demand for realistic motions becomes

even more apparent for VR applications, where users are provided

with rich modalities through which to interact with virtual agents.

Developing control strategies that are able to replicate the properties

of naturalistic behaviors is also of interest for robotic systems, as

natural motions implicitly encode important properties, such as

safety and energy e�ciency, which are vital for e�ective operation

of robots in the real world. While examples of natural motions

are commonplace, identifying the underlying characteristics that

constitute these behaviors is nonetheless challenging, and more

di�cult still to replicate in a controller.

So what are the characteristics that constitute natural and life-

like behaviors? Devising quantitative metrics of the naturalness of

motions has been a fundamental challenge for optimization-based

character animation techniques [Al Borno et al. 2013; Wampler et al.

2014; Wang et al. 2009]. Heuristics such as symmetry, stability, and

e�ort minimization can improve the realism of motions produced by

physically simulated characters [Grochow et al. 2004; Mordatch et al.

2012, 2013; Yu et al. 2018]. But these strategies may not be broadly

applicable to all behaviors of interest. E�ective applications of these

† Joint �rst authors.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

ar
X

iv
:2

10
4.

02
18

0v
1

 [
cs

.G
R

]
 5

 A
pr

 2
02

1

https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3450626.3459670

1:2 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

heuristics often require careful balancing of the various objectives,

a tuning process that may need to be repeated for each task. Data-

driven methods are able to mitigate some of these challenges by

leveraging motion clips recorded from real-life actors to guide the

behaviors of simulated characters [Da Silva et al. 2008; Liu et al.

2010; Muico et al. 2009; Sok et al. 2007]. A common instantiation

of this approach is to utilize a tracking objective that encourages a

character to follow particular reference trajectories relevant for a

given task. These tracking-based methods can produce high-quality

motions for a large repertoire skills. But extending these techniques

to e�ectively leverage large unstructured motion datasets remains

challenging, since a suitable motion clip needs to be selected for

the character to track at each time step. This selection process is

typically performed by a motion planner, which generates reference

trajectories for solving a particular task [Bergamin et al. 2019; Park

et al. 2019; Peng et al. 2017]. However, constructing an e�ective

motion planner can itself be a challenging endeavour, and entails

signi�cant overhead to annotate and organize the motion clips

for a desired task. For many applications, it is not imperative to

exactly track a particular reference motion. Since a dataset typically

provides only a limited collection of example motions, a character

will inevitably need to deviate from the reference motions in order

to e�ectively perform a given task. Therefore, the intent is often not

for the character to closely track a particular motion, but to adopt

general behavioral characteristics depicted in the dataset. We refer

to these behavioral characteristics as a style.

In this work, we aim to develop a system where users can specify

high-level task objectives for a character to perform, while the low-

level style of a character’s movements can be controlled through

examples provided in the form of unstructured motion clips. To

control the style of a character’s motions, we propose adversarial

motion priors (AMP), a method for imitating behaviors from raw

motion clips without requiring any task-speci�c annotations or

organization of the dataset. Given a set of reference motions that

constitutes a desired motion style, the motion prior is modeled as

an adversarial discriminator, trained to di�erentiate between behav-

iors depicted in the dataset from those produced by the character.

The motion prior therefore acts as a general measure of similarity

between the motions produced by a character and the motions in

the dataset. By incorporating the motion prior in a goal-conditioned

reinforcement learning framework, our system is able to train physi-

cally simulated characters to perform challenging tasks with natural

and life-like behaviors. Composition of diverse behaviors emerges

automatically from the motion prior, without the need for a motion

planner or other mechanism for selecting which clip to imitate.

The central contribution of this work is an adversarial learning

approach for physics-based character animation that combines goal-

conditioned reinforcement with an adversarial motion prior, which

enables the style of a character’s movements to be controlled via

example motion clips, while the task is speci�ed through a simple

reward function. We present one of the �rst adversarial learning

systems that is able to produce high-quality full-body motions for

physically simulated characters. By combining the motion prior

with additional task objectives, our system provides a convenient

interface through which users can specify high-level directions for

controlling a character’s behaviors. These task objectives allow our

characters to acquire more complex skills than those demonstrated

in the original motion clips.While our system is built on well-known

adversarial imitation learning techniques, we propose a number of

important design decisions that lead to substantially higher quality

results than those achieved by prior work, enabling our characters

to learn highly dynamic and diverse motors skills from unstructured

motion data.

2 RELATED WORK

Developing systems that can synthesize natural motions for vir-

tual characters is one of the fundamental challenges of computer

animation. These procedural animation techniques can be broadly

categorized as kinematic methods and physics-based methods. Kine-

matic methods generally do not explicitly utilize the equations of

motion for motion synthesis. Instead, these methods often lever-

age datasets of motion clips to generate motions for a character

[Lee et al. 2002, 2010b]. Given a motion dataset, controllers can be

constructed to select an appropriate motion clip to play back for

a particular scenario [Agrawal and van de Panne 2016; Safonova

and Hodgins 2007; Treuille et al. 2007]. Data-driven methods using

generative models, such as Gaussian processes [Levine et al. 2012;

Ye and Liu 2010] and neural networks [Holden et al. 2017; Ling et al.

2020; Zhang et al. 2018], have also been applied to synthesize mo-

tions online. When provided with su�ciently large and high-quality

datasets, kinematic methods are able to produce realistic motions

for a large variety of sophisticated skills [Agrawal and van de Panne

2016; Lee et al. 2018, 2010b; Levine et al. 2011; Starke et al. 2019].

However, their ability to synthesize motions for novel situations

can be limited by the availability of data. For complex tasks and

environments, it can be di�cult to collect a su�cient amount of data

to cover all possible behaviors that a character may need to perform.

This is particularly challenging for nonhuman and �ctional crea-

tures, where motion data can be scarce. In this work, we combine

data-driven techniques with physics-based animation methods to

develop characters that produce realistic and responsive behaviors

to novel tasks and environments.

Physics-Based Methods: Physics-based methods address some of

the limitations of kinematic methods by synthesizing motions from

�rst principles. These methods typically leverage a physics sim-

ulation, or more general knowledge of the equations of motion,

to generate motions for a character [Raibert and Hodgins 1991;

Wampler et al. 2014]. Optimization techniques, such as trajectory

optimization and reinforcement learning, play a pivotal role in many

physics-based methods, where controllers that drive a character’s

motions are produced by optimizing an objective function [Mor-

datch et al. 2012; Tan et al. 2014; van de Panne et al. 1994]. While

these methods are able to synthesize physically plausible motions

for novel scenarios, even in the absence of motion data, designing ef-

fective objectives that lead to natural behaviors can be exceptionally

di�cult. Heuristics derived from prior knowledge of the character-

istics of natural motions are commonly included into the objective

function, such as symmetry, stability, e�ort minimization, and many

more [Mordatch et al. 2012; Wang et al. 2009; Yu et al. 2018]. Simu-

lating more biologically accurate actuators can also improve motion

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:3

quality [Geijtenbeek et al. 2013; Jiang et al. 2019; Wang et al. 2012],

but may nonetheless yield unnatural behaviors.

Imitation Learning: The challenges of designing objective func-

tions that lead to natural motions have spurred the adoption of

data-driven physics-based animation techniques [Da Silva et al.

2008; Kwon and Hodgins 2017; Lee et al. 2010a; Sharon and van de

Panne 2005; Zordan and Hodgins 2002], which utilizes reference

motion data to improve motion quality. Reference motions are typi-

cally incorporated through an imitation objective that encourages a

character to imitate motions in the dataset. The imitation objective

is commonly implemented as a tracking objective, which attempts

to minimize the pose error between the simulated character and

target poses from a reference motion [Lee et al. 2010a; Liu et al.

2016, 2010; Peng et al. 2018a; Sok et al. 2007]. Since the pose error is

generally computed with respect to a single target pose at a time,

some care is required to select an appropriate target pose from the

dataset. A simple strategy is to synchronize the simulated character

with a given reference motion using a phase variable [Lee et al.

2019; Peng et al. 2018a,b], which is provided as an additional input

to the controller. The target pose at each time step can then be

conveniently determined by selecting the target pose according to

the phase. This strategy has been e�ective for imitating individual

motion clips, but it can be di�cult to scale to datasets containing

multiple disparate motions, as it may not be possible to synchronize

and align multiple reference motions according to a single-phase

variable. Recent methods have extended these tracking-based tech-

niques to larger motion datasets by explicitly providing target poses

from the reference motion that is being tracked as inputs to the con-

troller [Bergamin et al. 2019; Chentanez et al. 2018; Park et al. 2019;

Won et al. 2020]. This then allows a controller to imitate di�erent

motions depending on the input target poses. However, selecting the

appropriate motion for a character to imitate in a given scenario can

still entail signi�cant algorithmic overhead. These methods often

require a high-level motion planner that selects which motion clip

the character should imitate for a given task [Bergamin et al. 2019;

Park et al. 2019; Peng et al. 2017]. The character’s performance on a

particular task can therefore be constrained by the performance of

the motion planner.

Another major limitation of tracking-based imitation techniques

is the need for a pose error metric when computing the tracking

objective [Liu et al. 2010; Peng et al. 2018a; Sharon and van de Panne

2005]. These errormetrics are oftenmanually-designed, and it can be

challenging to construct and tune a common metric that is e�ective

across all skills that a character is to imitate. Adversarial imitation

learning provides an appealing alternative [Abbeel and Ng 2004;

Ho and Ermon 2016; Ziebart et al. 2008], where instead of using a

manually-designed imitation objective, these algorithms train an ad-

versarial discriminator to di�erentiate between behaviors generated

by an agent from behaviors depicted in the demonstration data (e.g.

reference motions). The discriminator then serves as the objective

function for training a control policy to imitate the demonstrations.

While these methods have shown promising results for motion imi-

tation tasks [Merel et al. 2017; Wang et al. 2017], adversarial learning

algorithms can be notoriously unstable and the resulting motion

quality still falls well behind what has been achieved with state-of-

the-art tracking-based techniques. Peng et al. [2019b] was able to

able to produce substantially more realistic motions by regularizing

the discriminator with an information bottleneck. However, their

method still requires a phase variable to synchronize the policy and

discriminator with the reference motion. Therefore, their results are

limited to imitating a single motion per policy, and thus not suitable

for learning from large diverse motion datasets. In this work, we

propose an adversarial method for learning general motion priors

from large unstructured datasets that contain diverse motion clips.

Our approach does not necessitate any synchronization between

the policy and reference motion. Furthermore, our approach does

not require a motion planner, or any task-speci�c annotation and

segmentation of the motion clips [Bergamin et al. 2019; Park et al.

2019; Peng et al. 2017]. Instead, composition of multiple motions

in furtherance of a task objective emerges automatically through

the motion prior. We also present a number of design decisions for

stabilizing the adversarial training process, leading to consistent

and high-quality results.

Latent Space Models: Latent space models can also act as a form

of motion prior that leads to more life-like behaviors. These mod-

els specify controls through a learned latent representation, which

is then mapped to controls for the underlying system [Burgard

et al. 2008; Florensa et al. 2017; Hausman et al. 2018; Heess et al.

2016]. The latent representation is typically learned through a pre-

training phase using supervised learning or reinforcement learning

techniques to encode a diverse range of behaviors into a latent rep-

resentation. Once trained, this latent representation can be used to

build a control hierarchy, where the latent space model acts as a

low-level controller, and a separate high-level controller is trained to

specify controls via the latent space [Florensa et al. 2017; Haarnoja

et al. 2018; Lynch et al. 2020]. For motion control of simulated char-

acters, the latent representation can be trained to encode behaviors

from reference motion clips, which then constrains the behavior

of a character to be similar to those observed in the motion data,

therefore leading to more natural behaviors for downstream tasks

[Merel et al. 2019; Peng et al. 2019a]. However, since the realism

of the character’s motions is enforced implicitly through the latent

representation, rather than explicitly through an objective function,

it is still possible for the high-level controller to specify latent encod-

ings that produce unnatural behaviors [Merel et al. 2020; Peng et al.

2019a]. Luo et al. [2020] proposed an adversarial domain confusion

loss to prevent the high-level controller from specifying encodings

that are di�erent from those observed during pre-training. However,

since this adversarial objective is applied in the latent space, rather

than on the actual motions produced by the character, the model is

nonetheless prone to generating unnatural behaviors. Our proposed

motion prior directly enforces similarity between the motions pro-

duced by the character and those in the reference motion dataset,

which enables our method to produce higher �delity motions than

what has been demonstrated by latent space models. Our motion

prior also does not require a separate pre-training phase, and instead,

can be trained jointly with the policy.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:4 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

3 OVERVIEW

Given a dataset of referencemotions and a task objective de�ned by a

reward function, our system synthesizes a control policy that enables

a character to achieve the task objective in a physically simulated

environment, while utilizing behaviors that resemble the motions

in the dataset. Crucially, the character’s behaviors need not exactly

match any speci�c motion in the dataset, instead its movements

need only to adopt more general characteristics exhibited by the

corpus of reference motions. These reference motions collectively

provide an example-based de�nition of a behavioral style, and by

providing the system with di�erent motion datasets, the character

can then be trained to perform a task in a variety of distinct styles.

Figure 2 provides a schematic overview of the system. The motion

datasetM consists of a collection of reference motions, where each

motionm8
= {q̂8C } is represented as a sequence of poses q̂

8
C . The mo-

tion clips may be collected from the mocap of real-life actors or from

artist-authored keyframe animations. Unlike previous frameworks,

our system can be applied directly on raw motion data, without

requiring task-speci�c annotations or segmentation of a clip into

individual skills. The motion of the simulated character is controlled

by a policy c (aC |sC , g) that maps the state of the character sC and

a given goal g to a distribution over actions aC . The actions from

the policy specify target positions for proportional-derivative (PD)

controllers positioned at each of the character’s joints, which in

turn produce control forces that drive the motion of the character.

The goal g speci�es a task reward function A�C = A� (sC , aC , sC+1, g),

which de�nes high-level objectives for the character to satisfy (e.g.

walking in a target direction or punching a target). The style objec-

tive A(C = A((sC , sC+1) is speci�ed by an adversarial discriminator,

trained to di�erentiate between motions depicted in the dataset

from motions produced by the character. The style objective there-

fore acts as a task-agnostic motion prior that provides an a-priori

estimate of the naturalness or style of a given motion, independent

of a speci�c task. The style objective then encourages the policy to

produce motions that resemble behaviors depicted in the dataset.

4 BACKGROUND

Our system combines techniques from goal-conditioned reinforce-

ment learning and generative adversarial imitation learning to train

control policies that enable simulated characters to perform chal-

lenging tasks in a desired behavioral style. In this section, we provide

a brief review of these techniques.

4.1 Goal-Conditioned Reinforcement Learning

Our characters are trained through a goal-conditioned reinforce-

ment learning framework, where an agent interacts with an envi-

ronment according to a policy c in order to ful�ll a given goal g ∈ G

sampled according to a goal distribution g ∼ ? (g). At each time step

C , the agent observes the state sC ∈ S of the system, then samples

an action aC ∈ A from a policy aC ∼ c (aC |sC , g). The agent then

applies that action, which results in a new state sC+1, as well as a

scalar reward AC = A (sC , aC , sC+1, g). The agent’s objective is to learn

a policy that maximizes its expected discounted return � (c),

� (c) = E? (g)E? (g |c,g)

[
)−1∑

C=0

WCAC

]

, (1)

Fig. 2. Schematic overview of the system. Given a motion dataset defining a

desired motion style for the character, the system trains a motion prior that

specifies style-rewards A(C for the policy during training. These style-rewards

are combined with task-rewards A�C and used to train a policy that enables

a simulated character to satisfy task-specific goals g, while also adopting

behaviors that resemble the reference motions in the dataset.

where ? (g |c, g) = ? (s0)
∏)−1
C=0 ? (sC+1 |sC , aC)c (aC |sC , g) represents

the likelihood of a trajectory g = {(sC , aC , AC)
)−1
C=0 , s) } under a policy

c for a goal g. ? (s0) is the initial state distribution, and ? (sC+1 |sC , aC)

represents the dynamics of the environment.) denotes the time

horizon of a trajectory, and W ∈ [0, 1) is a discount factor.

4.2 Generative Adversarial Imitation Learning

Generative adversarial imitation learning (GAIL) [Ho and Ermon

2016] adapts techniques developed for generative adversarial net-

works (GAN) [Goodfellow et al. 2014] to the domain of imitation

learning. In the interest of brevity, we exclude the goal g from

the notation, but the following discussion readily generalizes to

goal-conditioned settings. Given a dataset of demonstrationsM =

{(s8 , a8)}, containing states s8 and actions a8 recorded from an un-

known demonstration policy, the objective is to train a policy c (a|s)

that imitates the behaviors of the demonstrator. Behavioral cloning

can be used to directly �t a policy to map from states observed inM

to their corresponding actions using supervised learning [Bojarski

et al. 2016; Pomerleau 1988]. However, if only a small amount of

demonstrations are available, then behavioral cloning techniques

are prone to drift [Ross et al. 2011]. Furthermore, behavioral cloning

is not directly applicable in settings where the demonstration actions

are not observable (e.g. reference motion data).

GAIL addresses some of the limitations of behavioral cloning by

learning an objective function that measures the similarity between

the policy and the demonstrations, and then updating c via rein-

forcement learning to optimize the learned objective. The objective

is modeled as a discriminator � (s, a), trained to predict whether a

given state s and action a is sampled from the demonstrationsM

or generated by running the policy c ,

arg min
�

−E3M (s,a) [log (� (s, a))] − E3c (s,a) [log (1 − � (s, a))] .

(2)

3M (s, a) and 3c (s, a) denote the state-action distribution of the

dataset and policy respectively. The policy is then trained using the

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:5

RL objective detailed in Equation 1, with rewards speci�ed by,

AC = −log (1 − � (sC , aC)) . (3)

This adversarial training procedure can be interpreted as training a

policy to produce states and actions that appear to the discrimina-

tor as being indistinguishable from the demonstrations. It can be

shown that this objective minimizes the Jensen-Shannon divergence

between 3M (s, a) and 3c (s, a) [Ke et al. 2019; Nowozin et al. 2016].

5 ADVERSARIAL MOTION PRIOR

In this work, we consider reward functions that consist of two

components specifying: 1) what task a character should perform,

and 2) how the character should go about performing that task,

A (sC , aC , sC+1, g) = F
�A� (sC , aC , sC , g) +F

(A((sC , sC+1) . (4)

The what is represented by a task-speci�c reward A� (sC , aC , sC , g),

which de�nes high-level objectives that a character should satisfy

(e.g. moving to a target location). The how is represented through

a learned task-agnostic style-reward A((sC , sC+1), which speci�es

low-level details of the behaviors that the character should adopt

when performing the task (e.g., walking vs. running to a target). The

two reward terms are combined linearly with weightsF� andF(.

The task-reward A� can be relatively intuitive and simple to design.

However, it can be exceptionally di�cult to design a style-reward A(

that leads a character to learn naturalistic behaviors, or behaviors

that conform to a particular style. Learning e�ective style objectives

will therefore be the primary focus of this work.

We propose to model the style-reward with a learned discrimi-

nator, which we refer to as an adversarial motion prior (AMP), by

analogy to the adversarial pose priors that were previously pro-

posed for vision-based pose estimation tasks [Kanazawa et al. 2018].

Unlike standard tracking objectives, which measure pose similarity

with respect to a speci�c reference motion, the motion prior returns

a general score indicating the similarity of the character’s motion

to the motions depicted in the dataset, without explicitly compar-

ing to a particular motion clip. Given a motion dataset, the motion

prior is trained using the GAIL framework to predict whether a

state transition (sC , sC+1) is a real sample from the dataset or a fake

sample produced by the character. The motion prior is independent

of the task-speci�c goal g, therefore a single motion prior can be

applied to multiple tasks, and di�erent motion priors can be applied

to train policies that perform the same task but in di�erent styles. By

combining GAIL with additional task objectives, our approach de-

couples task speci�cation from style speci�cation, thereby enabling

our characters to perform tasks that may not be depicted in the

original demonstrations. However, adversarial RL techniques are

known to be highly unstable. In the following sections, we discuss

a number of design decisions to stabilize the training process and

produce higher �delity results.

5.1 Imitation from Observations

The original formulation of GAIL requires access to the demonstra-

tor’s actions [Ho and Ermon 2016]. However, when the demonstra-

tions are provided in the form of motion clips, the actions taken by

the demonstrator are unknown, and only states are observed in the

data. To extend GAIL to settings with state-only demonstrations,

the discriminator can be trained on state transitions � (s, s′) instead

of state-action pairs � (s, a) [Torabi et al. 2018],

arg min
�

− E3M (s,s′)
[
log

(
� (s, s′)

)]
− E3c (s,s′)

[
log

(
1 − � (s, s′)

)]
.

(5)

3M (s, s′) and 3c (s, s′) denote the likelihood of observing a state

transition from s to s′ in the datasetM and by following policy

c respectively. Note that if the demonstrator is di�erent from the

agent (e.g. a human actor), the observed state transitions may not be

physically consistent for the agent, and therefore impossible for the

agent to perfectly reproduce. Despite this discrepancy, we show that

the discriminator still provides an e�ective objective for imitating a

wide range of behaviors.

5.2 Least-Squares Discriminator

The standard GAN objective detailed in Equation 5 typically uses

a sigmoid cross-entropy loss function. However, this loss tends to

lead to optimization challenges due to vanishing gradients as the

sigmoid function saturates, which can hamper training of the policy

[Arjovsky et al. 2017]. A myriad of techniques have been proposed

to address these optimization challenges [Arjovsky et al. 2017; Berth-

elot et al. 2017; Gulrajani et al. 2017; Karras et al. 2017; Kodali et al.

2017; Mescheder et al. 2018; Radford et al. 2015; Salimans et al. 2016].

In this work, we adopt the loss function proposed for least-squares

GAN (LSGAN) [Mao et al. 2017], which has demonstrated more

stable training and higher quality results for image synthesis tasks.

The following objective is used to train the discriminator,

arg min
�

E3M (s,s′)

[(
� (s, s′) − 1

)2]
+ E3c (s,s′)

[(
� (s, s′) + 1

)2]
.

(6)

The discriminator is trained by solving a least-squares regression

problem to predict a score of 1 for samples from the dataset and

−1 for samples recorded from the policy. The reward function for

training the policy is then given by

A (sC , sC+1) = max
[
0, 1 − 0.25(� (sC , sC+1) − 1)

2
]
. (7)

The additional o�set, scaling, and clipping are applied to bound the

reward between [0, 1], as is common practice in previous RL frame-

works [Peng et al. 2018a, 2016; Tassa et al. 2018]. Mao et al. [2017]

showed that this least-squares objective minimizes the Pearson j2

divergence between 3M (s, s′) and 3c (s, s′).

5.3 Discriminator Observations

Since the discriminator speci�es rewards for training the policy,

selecting an appropriate set of features for use by the discriminator

when making its predictions is vital to provide the policy with e�ec-

tive feedback. As such, before a state transition is provided as input

to the discriminator, we �rst apply an observation map Φ(sC) that

extracts a set of features relevant for determining the characteristics

of a given motion. The resulting features are then used as inputs to

the discriminator � (Φ(s),Φ(s′)). The set of features include:

• Linear velocity and angular velocity of the root, represented

in the character’s local coordinate frame.

• Local rotation of each joint.

• Local velocity of each joint.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:6 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

• 3D positions of the end-e�ectors (e.g. hands and feet), repre-

sented in the character’s local coordinate frame.

The root is designated to be the character’s pelvis. The character’s

local coordinate frame is de�ned with the origin located at the

root, the x-axis oriented along the root link’s facing direction, and

the y-axis aligned with the global up vector. The 3D rotation of

each spherical joint is encoded using two 3D vectors corresponding

to the normal and tangent in the coordinate frame. This rotation

encoding provides a smooth and unique representation of a given

rotation. This set of observation features for the discriminator is

selected to provide a compact representation of the motion across

a single state transition. The observations also do not include any

task-speci�c features, thus enabling the motion prior to be trained

without requiring task-speci�c annotation of the reference motions,

and allowing motion priors trained with the same dataset to be used

for di�erent tasks.

5.4 Gradient Penalty

The interplay between the discriminator and generator in a GAN

often results in unstable training dynamics. One source of instability

is due to function approximation errors in the discriminator, where

the discriminator may assign nonzero gradients on the manifold of

real data samples [Mescheder et al. 2018]. These nonzero gradients

can cause the generator to overshoot and move o� the data manifold,

instead of converging to the manifold, leading to oscillations and

instability during training. To mitigate this phenomenon, a gradient

penalty can be applied to penalize nonzero gradients on samples

from the dataset [Gulrajani et al. 2017; Kodali et al. 2017; Mescheder

et al. 2018]. We incorporate this technique to improve training

stability. The discriminator objective is then given by:

arg min
�

E3M (s,s′)

[(
� (Φ(s),Φ(s′)) − 1

)2]

+ E3c (s,s′)

[(
�
(
Φ(s),Φ(s′)

)
+ 1

)2]

+
Fgp

2
E3M (s,s′)

[���
���∇q� (q)

���q=(Φ(s),Φ(s′))
���
���
2
]
, (8)

where Fgp is a manually-speci�ed coe�cient. Note, the gradient

penalty is calculated with respect to the observation features q =

(Φ(s),Φ(s′)), not the full set of state features (s, s′). As we show in

our experiments, the gradient penalty is crucial for stable training

and e�ective performance.

6 MODEL REPRESENTATION

Given a high-level task objective and a dataset of reference motions,

the agent is responsible for learning a control policy that ful�lls the

task objectives, while utilizing behaviors that resemble the motions

depicted in the dataset. In this section, we detail the design of various

components of the learning framework.

6.1 States and Actions

The state sC consists of a set of features that describes the con�gura-

tion of the character’s body. The features are similar to those used by

Peng et al. [2018a], which include the relative positions of each link

with respective to the root, the rotation of each link as represented

using the 6D normal-tangent encoding, along with the link’s linear

ALGORITHM 1: Training with AMP

1: inputM: dataset of reference motions

2: � ← initialize discriminator

3: c ← initialize policy

4: + ← initialize value function

5: B ← ∅ initialize reply bu�er

6: while not done do

7: for trajectory 8 = 1, ...,< do

8: g8 ← {(sC , aC , A
�
C)
)−1
C=0

, s�
)
, g} collect trajectory with c

9: for time step C = 0, ...,) − 1 do

10: 3C ← � (Φ(sC),Φ(sC+1))

11: A(C ← calculate style reward according to Equation 7 using 3C
12: AC ← F�A�C + F

(A(C
13: record AC in g

8

14: end for

15: store g8 in B

16: end for

17: for update step = 1, ..., = do

18: 1M ← sample batch of transitions {(s9 , s
′
9
) }
9=1

fromM

19: 1c ← sample batch of transitions {(s9 , s
′
9
) }
9=1

from B

20: update � according to Equation 8 using 1M and 1c

21: end for

22: update+ and c using data from trajectories {g8 }<
8=1

23: end while

and angular velocities. All features are recorded in the character’s lo-

cal coordinate system. Unlike previous systems, which synchronize

the policy with a particular reference motion by including additional

phase information in the state, such as scalar phase variables [Lee

et al. 2019; Peng et al. 2018a] or target poses [Bergamin et al. 2019;

Chentanez et al. 2018; Won et al. 2020], our policies are not trained

to explicitly imitate any speci�c motion from the dataset. Therefore,

no such synchronization or phase information is necessary.

Each action aC speci�es target positions for PD controllers posi-

tioned at each of the character’s joints. For spherical joints, each

target is speci�ed in the form of a 3D exponential map q ∈ R3

[Grassia 1998], where the rotation axis v and rotation angle \ can

be determined according to:

v =

q

| |q| |2
, \ = | |q| |2 . (9)

This representation provides a more compact parameterization than

the 4D axis-angle or quaternion representations used in prior sys-

tems [Peng et al. 2018a; Won et al. 2020], while also avoiding gimbal

lock from parameterizations such as euler angles. Target rotations

for revolute joints are speci�ed as 1D rotation angles @ = \ .

6.2 Network Architecture

Each policy c is modeled by a neural network that maps a given state

sC and goal g to a Gaussian distribution over actions c (aC |sC , g) =

N (` (sC , g), Σ), with an input-dependent mean ` (sC , g) and a �xed

diagonal covariance matrix Σ. The mean is speci�ed by a fully-

connected network with two hidden layers, consisting of 1024 and

512 ReLU [Nair and Hinton 2010], followed by a linear output

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:7

layer. The values of the covariance matrix Σ = diag(f1, f2, ...) are

manually-speci�ed and kept �xed over the course of training. The

value function + (sC , g) and discriminator � (sC , sC+1) are modeled

by separate networks with a similar architecture as the policy.

6.3 Training

Our policies are trained using a combination of GAIL [Ho and

Ermon 2016] and proximal-policy optimization (PPO) [Schulman

et al. 2017].

Algorithm 1 provides an overview of the training process. At each

time step C , the agent receives a task-reward A�C = A� (sC , aC , sC+1, g)

from the environment, it then queries the motion prior for a style-

reward A(C = A((sC , sC+1), computed according to Equation 7. The

two rewards are combined according to Equation 4 to yield the

reward for the particular timstep. Following the approach proposed

by Peng et al. [2018a], we incorporate reference state initialization

and early termination. Reference state initialization is applied by

initializing the character to states sampled randomly from all motion

clips in the dataset. Early termination is triggered on most tasks

when any part of the character’s body, with exception of the feet,

makes contact with the ground. This termination criteria is disabled

for more contact-rich tasks, such as rolling or getting up after a fall.

Once a batch of data has been collected with the policy, the

recorded trajectories are used to update the policy and value func-

tion. The value function is updated with target values computed

using TD(_) [Sutton and Barto 1998]. The policy is updated using

advantages computed using GAE(_) [Schulman et al. 2015]. Each

trajectory recorded from the policy is also stored in a replay bu�er

B, containing trajectories from past training iterations. The dis-

criminator is updated according to Equation 8 using minibatches

of transitions (s, s′) sampled from the reference motion data setM

and transitions from the replay bu�er B. The replay bu�er helps to

stabilize training by preventing the discriminator from over�tting

to the most recent batch of trajectories from the policy.

7 TASKS

To evaluate AMP’s e�ectiveness for controlling the style of a char-

acter’s motions, we apply our framework to train complex 3D sim-

ulated characters to perform various motion control tasks using

di�erent motion styles. The characters include a 34 DoF humanoid, a

59 DoF T-Rex, and a 64 DoF dog. A summary of each task is provided

below. Please refer to Appendix A for a more in-depth description

of each task and their respective reward functions.

Target Heading: In this task, the character’s objective is to move

along a target heading direction d∗ at a target speed E∗. The goal

for the policy is speci�ed as gC = (d̃
∗
C , E
∗), with d̃∗C being the target

direction in the character’s local coordinate frame. The target speed

is selected randomly between E∗ ∈ [1, 5]m/s. For slower moving

styles, such as Zombie and Stealthy, the target speed is �xed at 1m/s.

Target Location: In this task, the character’s objective is to move

to a target location x∗. The goal gC = x̃∗C records the target location

in the character’s local coordinate frame.

Dribbling: To evaluate our system on more complex object ma-

nipulation tasks, we train policies for a dribbling task, where the

character’s objective is to dribble a soccer ball to a target location.

The goal gC = x̃∗C records the relative position of the target loca-

tion with respect to the character. The state sC is augmented with

additional features that describe the state of the ball, including the

position x̃ballC , orientation q̃ballC , linear velocity ¤̃xballC , and angular

velocity ¤̃qballC of the ball in the character’s local coordinate frame.

Strike: To demonstrate AMP’s ability to compose diverse behav-

iors, we consider a task where the character’s objective is to strike

a target using a designated end-e�ector (e.g. hands). The target may

be located at various distances from the character. Therefore, the

character must �rst move close to the target before striking it. These

distinct phases entail di�erent optimal behaviors, and thus require

the policy to compose and transition between the appropriate skills.

The goal gC = (x̃
∗
C , ℎC) records the location of the target x̃∗C in the

character’s local coordinate frame, along with an indicator variable

ℎC that speci�es if the target has already been hit.

Obstacles: Finally, we consider tasks that involve visual percep-

tion and interaction with more complex environments, where the

character’s objective is to traverse an obstacle-�lled terrain, while

maintaining a target speed. Policies are trained for two types of envi-

ronments: 1) An environment containing a combination of obstacles

include gaps, steps, and overhead obstructions that the character

must duck under. 2) An environment containing narrow stepping

stones that requires more precise contact planning. Examples of the

environments are available in Figure 1 and 3. In order for the policy

to perceive the upcoming obstacles, the state is augmented with a

1D height-�eld of the upcoming terrain.

8 RESULTS

We evaluate our framework’s e�ectiveness on a suite of challenging

motion control tasks with complex simulated characters. First, we

demonstrate that our approach can readily scale to large unstruc-

tured datasets containing diverse motion clips, which then enables

our characters to perform challenging tasks in a natural and life-like

manner by imitating behaviors from the dataset. The characters

automatically learn to compose and generalize di�erent skills from

the motion data in order to ful�ll high-level task objectives, without

requiring mechanisms for explicit motion selection. We then evalu-

ate AMP on a single-clip imitation task, and show that our method

is able to closely imitate a diverse corpus of dynamic and acrobatic

skills, producing motions that are nearly indistinguishable from

reference motions recorded from human actors. Behaviors learned

by the characters can be viewed in the supplementary video.

8.1 Experimental Setup

All environments are simulated using the Bullet physics engine [Coumans

et al. 2013], with a simulation frequency of 1.2kHz. The policy is

queried at 30Hz, and each action speci�es target positions for PD

controllers positioned at the character’s joints. All neural networks

are implemented using Tensor�ow [Abadi et al. 2015]. The gradient

penalty coe�cient is set to Fgp
= 10. Detailed hyperparameter

settings are available in Appendix B. Reference motion clips are

collected from a combination of public mocap libraries, custom

recorded mocap clips, and artist-authored keyframe animations

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:8 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

(a) Humanoid: Target Location (Locomotion) (b) Humanoid: Target Location (Zombie)

(c) Humanoid: Target Heading (Locomotion + Getup)

(d) Humanoid: Dribble (Locomotion) (e) Humanoid: Strike (Walk + Punch)

(f) Humanoid: Obstacles (Run + Leap + Roll)

(g) Humanoid: Stepping Stones (Cartwheel) (h) Humanoid: Stepping Stones (Jump)

Fig. 3. The motion prior can be trained with large datasets of diverse motions, enabling simulated characters to perform complex tasks by composing a wider

range of skills. Each environment is denoted by "Character: Task (Dataset)".

[CMU [n.d.]; SFU [n.d.]; Zhang et al. 2018]. Depending on the task

and character, each policy is trained with 100-300 million samples,

requiring approximately 30-140 hours on 16 CPU cores. Code for

our system will be released upon publication of this paper.

8.2 Tasks

In this section, we demonstrate AMP’s e�ectiveness for controlling

the style of a character’s motions as it performs other high-level

tasks. The weights for the task-reward and style-reward are set to

F� = 0.5 andF(= 0.5 for all tasks. The character can be trained

to perform tasks in a variety of distinct styles by providing the

motion prior with di�erent datasets. Figure 3 illustrates behaviors

learned by the Humanoid on various tasks. Table 1 records the

performance of the policies with respect to the normalized task

return, and summary statistics of the di�erent datasets used to train

the motion priors are available in Table 2. AMP can accommodate

large unstructured datasets, with the largest dataset containing 56

clips from 8 di�erent human actors, for a total of 434s of motion data.

In the case of the Target Heading task, a motion prior trained using

a locomotion dataset, containing walking, running, and jogging

motions, leads to a policy that executes di�erent locomotion gaits

depending on the target speed. Transitions between various gaits

emerge automatically through the motion prior, with the character

adopting walking gaits at slow speeds (∼ 1m/s), switching to jogging

gaits at faster speeds (∼ 2.5m/s), and breaking into a fast run as the

target speed approaches (∼ 4.5m/s). The motion prior also leads to

other human-like strategies, such as banking into turns, and slowing

down before large changes in direction. The policies develop similar

behaviors for the Target Location task. When the target is near the

character, the policy adopts slower walking gaits. But when the

target is further away, the character automatically transitions into

a run. These intricate behaviors arise naturally from the motion

prior, without requiring a motion planner to explicitly select which

motion the character should execute in a given scenario, such as

those used in prior systems [Bergamin et al. 2019; Luo et al. 2020;

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:9

Table 1. Performance statistics of combining AMP with additional task

objectives. Performance is recorded as the average normalized task return,

with 0 being the minimum possible return per episode and 1 being the

maximum possible return. The return is averaged across 3 models initialized

with di�erent random seeds, with 32 episodes recorded per model. The

motion prior can be trained with di�erent datasets to produce policies that

adopt distinct stylistic behaviors when performing a particular task.

Character Task Dataset Task Return

Humanoid Target Locomotion 0.90 ± 0.01

Heading Walk 0.46 ± 0.01

Run 0.63 ± 0.01

Stealthy 0.89 ± 0.02

Zombie 0.94 ± 0.00

Target Locomotion 0.63 ± 0.01

Location Zombie 0.50 ± 0.00

Obstacles Run + Leap + Roll 0.27 ± 0.10

Stepping Cartwheel 0.43 ± 0.03

Stones Jump 0.56 ± 0.12

Dribble Locomotion 0.78 ± 0.05

Zombie 0.60 ± 0.04

Strike Walk + Punch 0.73 ± 0.02

T-Rex
Target

Location Locomotion 0.36 ± 0.03

Peng et al. 2017]. In addition to standard locomotion gaits, the

motion prior can also be trained for more stylistic behaviors, such

as walking like a shambling zombie or walking in a stealthy manner.

Our framework enables the character to acquire these distinct styles

by simply providing the motion prior with di�erent unstructured

motion datasets.

To determine whether the transitions between distinct gaits are a

product of the motion prior or a result of the task objective, we train

policies to perform the Target Heading task using limited datasets

containing only walking or running data. Figure 4 compares the

performance of policies trainedwith these di�erent datasets. Policies

trained with only walking motions learn to perform only walking

gaits, and do not show any transitions to faster running gaits even at

faster target speeds. As a result, these policies are not able to achieve

the faster target speeds. Similarly, policies trained with only running

motions are not able to match slower target speeds. Training the

motion prior with a diverse dataset results in more �exible and

optimal policies that are able to achieve a wider range of target

speeds. This indicates that the diversity of behaviors exhibited by

our policies can in large part be attributed to the motion prior, and

is not solely a result of the task objective.

To further illustrate AMP’s ability to compose disparate skills,

we introduce additional reference motions into the dataset for get-

ting up from the ground in various con�gurations. These additional

motion clips then enable our character to recover from a fall and

continue to perform a given task (Figure 3(c)). The policy also dis-

covers novel recovery behaviors that are not present in the dataset.

When the character falls forward, it tucks its body into a roll during

the fall in order to more quickly transition into a getup behavior.

While this particular behavior is not present in the motion clips,

the policy is able to generalize behaviors observed in the dataset to

produce novel and naturalistic strategies for new scenarios.

Table 2. Summary statistics of the di�erent datasets used to train themotion

priors. We record the total length of motion clips in each dataset, along

with the number of clips, and the number of subjects (e.g. human actors)

that the clips were recorded from.

Character Dataset Size (s) Clips Subjects

Humanoid Cartwheel 13.6 3 1

Jump 28.6 10 4

Locomotion 434.1 56 8

Run 204.4 47 3

Run + Leap + Roll 22.1 10 7

Stealthy 136.5 3 1

Walk 229.6 9 5

Walk + Punch 247.8 15 9

Zombie 18.3 1 1

T-Rex Locomotion 10.5 5 1

Fig. 4. Performance of Target Heading policies trained with di�erent

datasets. Le�: Learning curves comparing the normalized task returns

of policies trained with a large dataset of diverse locomotion clips to policies

trained with only walking or running reference motions. Three models are

trained using each dataset. Right: Comparison of the target speed with the

average speed achieved by the di�erent policies. Policies trained using the

larger Locomotion dataset is able to more closely follow the various target

speeds by imitating di�erent gaits.

For the Strike task (Figure 1), the motion prior is trained using a

collection of walking motion clips and punching motion clips. The

resulting policy learns to walk to the target when it is far away, and

then transition to a punching motion once it is within range to hit

the target. Note that the motion clips in the dataset contain strictly

walking-only motions or punching-only motion, and none of the

clips show an actor walking to and punching a target. Instead, the

policy learns to temporally sequence these di�erent behaviors in

order to ful�ll the high-level task objectives. Again, this composition

of di�erent skills emerges automatically from the motion prior,

without requiring a motion planner or other mechanisms for motion

selection.

Finally, our system can also train visuomotor policies for travers-

ing obstacle-�lled environments. By providing themotion prior with

a collection of locomotion clips and rolling clips, the character learns

to utilize these diverse behaviors to traverse the di�erent obstacles.

The character learns to leap over obstacles such as gaps. But as it

approaches the overhead obstructions, the character transitions into

a rolling behavior in order to pass underneath the obstacles. Previ-

ous systems that have demonstrated similar composition of diverse

maneuvers for clearing obstacle have typically required a separate

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:10 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

Fig. 5. Learning curves comparing the task performance of AMP to latent

space models (Latent Space) and policies trained from scratch without

motion data (No Data). Our method achieves comparable performance

across the various tasks, while also producing higher fidelity motions.

motion planner or manual annotations [Liu et al. 2012; Park et al.

2019]. Our approach provides a uni�ed framework where the same

underlying algorithm is able to learn how to perform the various

skills and which skill to execute in a given scenario. Furthermore,

the character can also be trained to traverse obstacles in distinct

styles by providing the motion prior with di�erent motion clips,

such as jumping or cartwheeling across stepping stones (Figure 3).

8.3 Comparisons

An alternative approach for learning a motion prior from unstruc-

tured motion data is to build a latent space model [Heess et al. 2016;

Lynch et al. 2020; Merel et al. 2020; Peng et al. 2019a]. Unlike AMP,

which encourages a character to adopt a desiredmotion style directly

through an optimization objective, a latent space model enforces a

particular motion style indirectly, by using a latent representation

to constrain the policy’s actions to those that produce motions of

the desired style. To compare AMP to these latent space models,

we �rst pre-train a low-level controller using a motion tracking

objective to imitate the same set of reference motions that are used

to train the motion prior. The learned low-level controller is then

used to train separate high-level controllers for each downstream

task. Note that reference motions are used only during pre-training,

and the high-level controllers are trained to optimize only the task

objectives. A more in-depth description of the experimental setup

for the latent space model is available in Appendix C.

A qualitative comparison of the behaviors learned using AMP and

the latent space model is available in the supplementary video. Fig-

ure 5 compares the task performance of the di�erent models, along

with a baseline model trained from scratch for each task without

leveraging any motion data. Both AMP and the latent space models

are able to produce substantially more life-like behaviors than the

baseline models. For the latent space models, since the low-level

Fig. 6. Snapshots of behaviors learned by the Humanoid on the single-clip

imitation tasks. Top-to-bo�om: back-flip, side-flip, cartwheel, spin, spin-

kick, roll. AMP enables the character to closely imitate a diverse corpus of

highly dynamic and acrobatic skills.

and high-level controllers are trained separately, it is possible for

the distribution of encodings speci�ed by the high-level controller

to be di�erent than the distribution of encodings observed by the

low-level controller during pre-training [Luo et al. 2020]. This in

turn can result in unnatural motions that deviate from the behav-

iors depicted in the original dataset. AMP enforces a motion style

directly through the reward function, and is therefore able to better

mitigate some of these artifacts. The more structured exploration

behaviors from the latent space model enable the policies to solve

downstream tasks more quickly. However, the pre-training stage

used to construct the low-level controller can itself be sample inten-

sive. In our experiments, the low-level controllers are trained using

300 million samples before being transferred to downstream tasks.

With AMP, no such pre-training is necessary, and the motion prior

can be trained jointly with the policy.

8.4 Single-Clip Imitation

Although our goal is to train characters with large motion datasets,

to evaluate the e�ectiveness of our framework for imitating behav-

iors from motion clips, we consider a single-clip imitation task. In

this setting, the character’s objective is to imitate a single motion

clip at a time, without additional task objectives. Therefore, the

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:11

(a) T-Rex (Walk)

(b) Dog (Trot)

(c) Dog (Canter)

Fig. 7. AMP can be used to train complex non-humanoid characters, such as a 59 DoF T-Rex and a 64 DoF dog. By providing the motion prior with di�erent

reference motion clips, the characters can be trained to perform various locomotion gaits, such as tro�ing and cantering.

policy is trained solely to maximize the style-reward A(C from the

motion prior. Unlike previous motion tracking methods, our ap-

proach does not require a manually designed tracking objective or a

phase-based synchronization of the reference motion and the policy

Peng et al. [2018a]. Table 3 summarizes the performance of policies

trained using AMP to imitate a diverse corpus of motions. Figure 6

and 7 illustrate examples of motions learned by the characters. Per-

formance is evaluated using the average pose error, where the pose

error 4
pose
C at each time step C is computed between the pose of

the simulated character and the reference motion using the relative

positions of each joint with respect to the root (in units of meters),

4
pose
C =

1

joint

∑

9 ∈joints

���
���(x9C − x

root
C) − (x̂

9
C − x̂

root
C)

���
���
2
. (10)

x
9
C and x̂

9
C denote the 3D Cartesian position of joint 9 from the

simulated character and the reference motion, and # joint is the total

number of joints in the character’s body. This method of evaluating

motion similarity has previously been reported to better conform

to human perception of motion similarity [Harada et al. 2004; Tang

et al. 2008]. Since AMP does not use a phase variable to synchronize

the policy with the reference motion, the motions may progress at

di�erent rates, resulting in de-synchronization that can lead to large

pose errors even when the overall motions are similar. To better

evaluate the similarity of the motions, we �rst apply dynamic time

warping (DTW) to align the reference motion with the motion of

the simulated character [Sakoe and Chiba 1978], before computing

the pose error between the two aligned motions. DTW is applied

using Equation 10 as the cost function.

AMP is able to closely imitate a large variety of highly dynamic

skills, while also avoiding many of the visual artifacts exhibited

by prior adversarial motion imitation systems [Merel et al. 2017;

Wang et al. 2017]. We compare the performance of our system to

results produced by the motion tracking approach from Peng et al.

[2018a], which uses a manually designed reward function and re-

quires synchronization of the policy with a reference motion via

a phase variable. Figure 8 compares the learning curves of the dif-

ferent methods. Since the tracking-based policies are synchronized

with their respective reference motions, they are generally able to

learn faster and achieve lower errors than policies trained with AMP.

Nonetheless, our method is able to produce results of comparable

quality without the need to manually design or tune reward func-

tions for di�erent motions. However, for some motions, such as the

Front-Flip, AMP is prone to converging to locally optimal behaviors,

where instead of performing a �ip, the character learns to simply

shu�e forwards in order to avoid falling. Tracking-based methods

can mitigate these local optima by terminating an episode early

if the character’s pose deviates too far from the reference motion

[Peng et al. 2018a; Won et al. 2020]. However, this strategy is not

directly applicable to AMP, since the policy is not synchronized

with the reference motion. But as shown in the previous sections,

this lack of synchronization is precisely what allows AMP to eas-

ily leverage large datasets of diverse motion clips to solve more

complex tasks.

8.5 Ablations

Our system is able to produce substantially higher �delity motions

than prior adversarial learning frameworks for physics-based char-

acter control [Merel et al. 2017; Wang et al. 2017]. In this section, we

identify critical design decisions that lead to more stable training

and higher quality results. Figure 8 compares learning curves of

policies trained on the single-clip imitation tasks with di�erent com-

ponents of the system disabled. Gradient penalty proves to be the

most vital component. Models trained without this regularization

tend to exhibit large performance �uctuations over the course of the

training, and lead to noticeable visual artifacts in the �nal policies,

as shown in the supplementary video. The addition of the gradient

penalty not only improves stability during training, but also leads

to substantially faster learning across a large set of skills. The inclu-

sion of velocity features in the discriminator’s observations is also

an important component for imitating some motions. In principle,

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:12 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

Table 3. Performance statistics of imitating individual motion clips without

task objectives. "Dataset Size" records the total length of motion data used

for each skill. Performance is recorded as the average pose error (in units of

meters) between the time-warped trajectories from the referencemotion and

simulated character. The pose error is averaged across 3 models initialized

with di�erent random seeds, with 32 episodes recorded per model. Each

episode has a maximum length of 20s. We compare our method (AMP) with

the motion tracking approach proposed by Peng et al. [2018a]. AMP is able

to closely imitate a diverse repertoire of complex motions, without manual

reward engineering.

Character Motion
Dataset
Size

Motion
Tracking

AMP
(Ours)

Humanoid Back-Flip 1.75s 0.076 ± 0.021 0.150 ± 0.028

Cartwheel 2.72s 0.039 ± 0.011 0.067 ± 0.014

Crawl 2.93s 0.044 ± 0.001 0.049 ± 0.007

Dance 1.62s 0.038 ± 0.001 0.055 ± 0.015

Front-Flip 1.65s 0.278 ± 0.040 0.425 ± 0.010

Jog 0.83s 0.029 ± 0.001 0.056 ± 0.001

Jump 1.77s 0.033 ± 0.001 0.083 ± 0.022

Roll 2.02s 0.072 ± 0.018 0.088 ± 0.008

Run 0.80s 0.028 ± 0.002 0.075 ± 0.015

Spin 1.00s 0.063 ± 0.022 0.047 ± 0.002

Side-Flip 2.44s 0.191 ± 0.043 0.124 ± 0.012

Spin-Kick 1.28s 0.042 ± 0.001 0.058 ± 0.012

Walk 1.30s 0.018 ± 0.005 0.030 ± 0.001

Zombie 1.68s 0.049 ± 0.013 0.058 ± 0.014

T-Rex Turn 2.13s 0.098 ± 0.011 0.284 ± 0.023

Walk 2.00s 0.069 ± 0.005 0.096 ± 0.027

Dog Canter 0.45s 0.026 ± 0.002 0.034 ± 0.002

Pace 0.63s 0.020 ± 0.001 0.024 ± 0.003

Spin 0.73s 0.026 ± 0.002 0.086 ± 0.008

Trot 0.52s 0.019 ± 0.001 0.026 ± 0.001

including consecutive poses as input to the discriminator should

provide some information that can be used to infer the joint veloci-

ties. But we found that this was insu�cient for some motions, such

as rolling. As shown in the supplementary video, in the absence of

velocity features, the character is prone to converging to a strat-

egy of holding a �xed pose on the ground, instead of performing

a roll. The additional velocity features are able to mitigate these

undesirable behaviors.

9 DISCUSSION AND LIMITATIONS

In this work, we presented an adversarial learning system for physics-

based character animation that enables characters to imitate diverse

behaviors from large unstructured datasets, without the need for

motion planners or other mechanisms for clip selection. Our system

allows users to specify high-level task objectives for controlling a

character’s behaviors, while the more granular low-level style of a

character’s motions can be controlled using a learned motion prior.

Composition of disparate skills in furtherance of a task objective

emerges automatically from the motion prior. The motion prior also

enables our characters to closely imitate a rich repertoire of highly

dynamic skills, and produces results that are on par with tracking-

based techniques, without requiring manual reward engineering or

synchronization between the controller and the reference motions.

Our system demonstrates that adversarial imitation learning tech-

niques can indeed produce high �delity motions for complex skills.

Fig. 8. Learning curves of various methods on the single-clip imitation

tasks. We compare AMP to the motion tracking approach proposed by Peng

et al. [2018a] (Motion Tracking), as well a version of AMP without velocity

features for the discriminator (AMP - No Vel), and AMPwithout the gradient

penalty regularizer (AMP - No GP). A comprehensive collection of learning

curves for all skills are available in the Appendix. AMP produces results

of comparable quality when compared to prior tracking-based methods,

without requiring a manually designed reward function or synchronization

between the policy and reference motion. Velocity features and gradient

penalty are vital for e�ective and consistent results on challenging skills.

However, like many other GAN-based techniques, AMP is suscepti-

ble to mode collapse. When provided with a large dataset of diverse

motion clips, the policy is prone to imitating only a small subset

of the example behaviors, ignoring other behaviors that may ulti-

mately be more optimal for a given task. The motion priors in our

experiments are also trained from scratch for each policy. But since

the motion prior is largely task-agnostic, it should in principle be

possible to transfer and reuse motion priors for di�erent policies

and tasks. Exploring techniques for developing general and trans-

ferable motion priors may lead to modular objective functions that

can be conveniently incorporated into downstream tasks, without

requiring retraining for each new task. While the motion prior does

not require direct access to task-speci�c information, the data used

to train the motion prior is generated by policies trained to perform

a particular task. This may introduce some task dependencies into

the motion prior, which can hinder its ability to be transferred to

other tasks. Training motion priors using data generated from larger

and more diverse repertoires of tasks may help to facilitate trans-

ferring the learned motion priors to new tasks. Our experiments

also focus primarily on tasks that involve temporal composition

of di�erent skills, which require the character to perform di�erent

behaviors at di�erent points in time. However, spatial composition

might also be vital for some tasks that require a character to perform

multiple skills simultaneously. Developing motion priors that are

more amenable to spatial composition of disparate skills may lead to

more �exible and sophisticated behaviors. Despite these limitations,

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:13

we hope this work provides a useful tool that enables physically

simulated characters to take advantage of the large motion datasets

that have been so e�ective for kinematic animation techniques,

and open exciting directions for future exploration in data-driven

physics-based character animation.

ACKNOWLEDGEMENTS

We thank Sony Interactive Entertainment for providing reference

motion data for this project, Bonny Ho for narrating the video,

the anonymous reviewers for their helpful feedback, and AWS for

providing computational resources. This research was funded by

an NSERC Postgraduate Scholarship, and a Berkeley Fellowship for

Graduate Study.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,MartinWattenberg,Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. http://tensor�ow.org/ Software available
from tensor�ow.org.

Pieter Abbeel and Andrew Y. Ng. 2004. Apprenticeship Learning via Inverse Rein-
forcement Learning. In Proceedings of the Twenty-First International Conference on
Machine Learning (Ban�, Alberta, Canada) (ICML ’04). Association for Computing
Machinery, New York, NY, USA, 1. https://doi.org/10.1145/1015330.1015430

Shailen Agrawal and Michiel van de Panne. 2016. Task-based Locomotion. ACM
Transactions on Graphics (Proc. SIGGRAPH 2016) 35, 4 (2016).

M. Al Borno, M. de Lasa, and A. Hertzmann. 2013. Trajectory Optimization for Full-
Body Movements with Complex Contacts. IEEE Transactions on Visualization and
Computer Graphics 19, 8 (2013), 1405–1414. https://doi.org/10.1109/TVCG.2012.325

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative
Adversarial Networks (Proceedings of Machine Learning Research, Vol. 70), Doina
Precup and Yee Whye Teh (Eds.). PMLR, International Convention Centre, Sydney,
Australia, 214–223. http://proceedings.mlr.press/v70/arjovsky17a.html

Kevin Bergamin, SimonClavet, Daniel Holden, and James Richard Forbes. 2019. DReCon:
Data-Driven Responsive Control of Physics-Based Characters. ACM Trans. Graph.
38, 6, Article 206 (Nov. 2019), 11 pages. https://doi.org/10.1145/3355089.3356536

David Berthelot, Tom Schumm, and Luke Metz. 2017. BEGAN: Boundary Equilibrium
Generative Adversarial Networks. CoRR abs/1703.10717 (2017). arXiv:1703.10717
http://arxiv.org/abs/1703.10717

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning for Self-Driving Cars.
CoRR abs/1604.07316 (2016). arXiv:1604.07316 http://arxiv.org/abs/1604.07316

W. Burgard, O. Brock, and C. Stachniss. 2008. Learning Omnidirectional Path Following
Using Dimensionality Reduction. 257–264.

Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk, and Stefan
Jeschke. 2018. Physics-Based Motion Capture Imitation with Deep Reinforcement
Learning. In Proceedings of the 11th Annual International Conference on Motion,
Interaction, and Games (Limassol, Cyprus) (MIG ’18). Association for Computing
Machinery, New York, NY, USA, Article 1, 10 pages. https://doi.org/10.1145/3274247.
3274506

CMU. [n.d.]. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu/.
Erwin Coumans et al. 2013. Bullet physics library. Open source: bulletphysics. org 15, 49

(2013), 5.
M. Da Silva, Y. Abe, and J. Popovic. 2008. Simulation of Human Motion Data using

Short-Horizon Model-Predictive Control. Computer Graphics Forum (2008). https:
//doi.org/10.1111/j.1467-8659.2008.01134.x

Carlos Florensa, Yan Duan, and Pieter Abbeel. 2017. Stochastic Neural Networks for
Hierarchical Reinforcement Learning. In Proceedings of the International Conference
on Learning Representations (ICLR).

Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen. 2013. Flexible
Muscle-Based Locomotion for Bipedal Creatures. ACM Transactions on Graphics 32,
6 (2013).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

F. Sebastin Grassia. 1998. Practical Parameterization of Rotations Using the Exponential
Map. J. Graph. Tools 3, 3 (March 1998), 29–48. https://doi.org/10.1080/10867651.
1998.10487493

Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popović. 2004. Style-
Based Inverse Kinematics. ACM Trans. Graph. 23, 3 (Aug. 2004), 522–531. https:
//doi.org/10.1145/1015706.1015755

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. 2017. Improved Training of Wasserstein GANs. In Advances in Neural
Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 5767–5777.
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. 2018. Latent
Space Policies for Hierarchical Reinforcement Learning (Proceedings of Machine
Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stock-
holmsmässan, Stockholm Sweden, 1851–1860. http://proceedings.mlr.press/v80/
haarnoja18a.html

T. Harada, S. Taoka, T. Mori, and T. Sato. 2004. Quantitative evaluation method for pose
and motion similarity based on human perception. In 4th IEEE/RAS International
Conference on Humanoid Robots, 2004., Vol. 1. 494–512 Vol. 1. https://doi.org/10.
1109/ICHR.2004.1442140

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin
Riedmiller. 2018. Learning an Embedding Space for Transferable Robot Skills. In
International Conference on Learning Representations. https://openreview.net/forum?
id=rk07ZXZRb

Nicolas Heess, Gregory Wayne, Yuval Tassa, Timothy P. Lillicrap, Martin A. Riedmiller,
and David Silver. 2016. Learning and Transfer of Modulated Locomotor Controllers.
CoRR abs/1610.05182 (2016). arXiv:1610.05182 http://arxiv.org/abs/1610.05182

Jonathan Ho and Stefano Ermon. 2016. Generative Adversarial Imitation Learning.
In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 4565–4573.
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-Functioned Neural Networks
for Character Control. ACM Trans. Graph. 36, 4, Article 42 (July 2017), 13 pages.
https://doi.org/10.1145/3072959.3073663

Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C. Karen Liu. 2019. Synthesis
of Biologically Realistic Human Motion Using Joint Torque Actuation. ACM Trans.
Graph. 38, 4, Article 72 (July 2019), 12 pages. https://doi.org/10.1145/3306346.
3322966

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. 2018. End-to-
end Recovery of Human Shape and Pose. In Computer Vision and Pattern Regognition
(CVPR).

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive Growing
of GANs for Improved Quality, Stability, and Variation. CoRR abs/1710.10196 (2017).
arXiv:1710.10196 http://arxiv.org/abs/1710.10196

Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and Sid-
dhartha S. Srinivasa. 2019. Imitation Learning as f-Divergence Minimization. CoRR
abs/1905.12888 (2019). arXiv:1905.12888 http://arxiv.org/abs/1905.12888

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational
Bayes. In 2nd International Conference on Learning Representations, ICLR
2014, Ban�, AB, Canada, April 14-16, 2014, Conference Track Proceedings.
arXiv:http://arxiv.org/abs/1312.6114v10 [stat.ML]

Naveen Kodali, Jacob D. Abernethy, James Hays, and Zsolt Kira. 2017. How to Train
Your DRAGAN. CoRR abs/1705.07215 (2017). arXiv:1705.07215 http://arxiv.org/abs/
1705.07215

Taesoo Kwon and Jessica K. Hodgins. 2017. Momentum-Mapped Inverted Pendulum
Models for Controlling Dynamic Human Motions. ACM Trans. Graph. 36, 4, Article
145d (Jan. 2017), 14 pages. https://doi.org/10.1145/3072959.2983616

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard.
2002. Interactive Control of Avatars Animated with Human Motion Data. ACM
Trans. Graph. 21, 3 (July 2002), 491–500. https://doi.org/10.1145/566654.566607

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation by
Learning Multi-Objective Control. ACM Trans. Graph. 37, 6, Article 180 (Dec. 2018),
10 pages. https://doi.org/10.1145/3272127.3275071

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable Muscle-
Actuated Human Simulation and Control. ACM Trans. Graph. 38, 4, Article 73 (July
2019), 13 pages. https://doi.org/10.1145/3306346.3322972

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010a. Data-Driven Biped Control. ACM
Trans. Graph. 29, 4, Article 129 (July 2010), 8 pages. https://doi.org/10.1145/1778765.
1781155

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010b. Motion Fields for Interactive Character Locomotion. ACM Trans. Graph. 29,
6, Article 138 (Dec. 2010), 8 pages. https://doi.org/10.1145/1882261.1866160

Sergey Levine, Yongjoon Lee, Vladlen Koltun, and Zoran Popović. 2011. Space-Time
Planning with Parameterized Locomotion Controllers. ACM Trans. Graph. 30, 3,

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

http://tensorflow.org/
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1109/TVCG.2012.325
http://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1145/3355089.3356536
https://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1145/3274247.3274506
https://doi.org/10.1145/3274247.3274506
https://doi.org/10.1111/j.1467-8659.2008.01134.x
https://doi.org/10.1111/j.1467-8659.2008.01134.x
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1080/10867651.1998.10487493
https://doi.org/10.1080/10867651.1998.10487493
https://doi.org/10.1145/1015706.1015755
https://doi.org/10.1145/1015706.1015755
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
http://proceedings.mlr.press/v80/haarnoja18a.html
http://proceedings.mlr.press/v80/haarnoja18a.html
https://doi.org/10.1109/ICHR.2004.1442140
https://doi.org/10.1109/ICHR.2004.1442140
https://openreview.net/forum?id=rk07ZXZRb
https://openreview.net/forum?id=rk07ZXZRb
https://arxiv.org/abs/1610.05182
http://arxiv.org/abs/1610.05182
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/3306346.3322966
https://doi.org/10.1145/3306346.3322966
https://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1905.12888
http://arxiv.org/abs/1905.12888
https://arxiv.org/abs/1705.07215
http://arxiv.org/abs/1705.07215
http://arxiv.org/abs/1705.07215
https://doi.org/10.1145/3072959.2983616
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/3272127.3275071
https://doi.org/10.1145/3306346.3322972
https://doi.org/10.1145/1778765.1781155
https://doi.org/10.1145/1778765.1781155
https://doi.org/10.1145/1882261.1866160

1:14 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

Article 23 (May 2011), 11 pages. https://doi.org/10.1145/1966394.1966402
Sergey Levine, Jack M. Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun.

2012. Continuous Character Control with Low-Dimensional Embeddings. ACM
Transactions on Graphics 31, 4 (2012), 28.

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. 2020. Character
Controllers Using Motion VAEs. 39, 4 (2020).

Libin Liu, Michiel van de Panne, and KangKang Yin. 2016. Guided Learning of Control
Graphs for Physics-Based Characters. ACM Transactions on Graphics 35, 3 (2016).

Libin Liu, KangKang Yin, Michiel van de Panne, and Baining Guo. 2012. Terrain runner:
control, parameterization, composition, and planning for highly dynamic motions.
ACM Transactions on Graphics (TOG) 31, 6 (2012), 154.

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010.
Sampling-based contact-rich motion control. ACM Trans. Graph. 29, 4, Article 128
(July 2010), 10 pages. https://doi.org/10.1145/1778765.1778865

Ying-Sheng Luo, Jonathan Hans Soeseno, Trista Pei-Chun Chen, and Wei-Chao Chen.
2020. CARL: Controllable Agent with Reinforcement Learning for Quadruped
Locomotion. ACM Trans. Graph. 39, 4, Article 38 (July 2020), 10 pages. https:
//doi.org/10.1145/3386569.3392433

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey
Levine, and Pierre Sermanet. 2020. Learning Latent Plans from Play. In Proceedings of
the Conference on Robot Learning (Proceedings of Machine Learning Research, Vol. 100),
Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (Eds.). PMLR, 1113–1132.
http://proceedings.mlr.press/v100/lynch20a.html

X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. 2017. Least Squares
Generative Adversarial Networks. In 2017 IEEE International Conference on Computer
Vision (ICCV). 2813–2821. https://doi.org/10.1109/ICCV.2017.304

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg
Wayne, Yee Whye Teh, and Nicolas Heess. 2019. Neural Probabilistic Motor Primi-
tives for Humanoid Control. In International Conference on Learning Representations.
https://openreview.net/forum?id=BJl6TjRcY7

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang,
Greg Wayne, and Nicolas Heess. 2017. Learning human behaviors from motion
capture by adversarial imitation. CoRR abs/1707.02201 (2017). arXiv:1707.02201
http://arxiv.org/abs/1707.02201

JoshMerel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu
Pham, Tom Erez, Greg Wayne, and Nicolas Heess. 2020. Catch and Carry: Reusable
Neural Controllers for Vision-Guided Whole-Body Tasks. ACM Trans. Graph. 39, 4,
Article 39 (July 2020), 14 pages. https://doi.org/10.1145/3386569.3392474

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. 2018. Which Training Meth-
ods for GANs do actually Converge?. In Proceedings of the 35th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80),
Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stockholm Swe-
den, 3481–3490. http://proceedings.mlr.press/v80/mescheder18a.html

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of Complex
Behaviors through Contact-Invariant Optimization. ACM Trans. Graph. 31, 4, Article
43 (July 2012), 8 pages. https://doi.org/10.1145/2185520.2185539

Igor Mordatch, Jack M. Wang, Emanuel Todorov, and Vladlen Koltun. 2013. Animating
Human Lower Limbs Using Contact-Invariant Optimization. ACM Trans. Graph. 32,
6, Article 203 (Nov. 2013), 8 pages. https://doi.org/10.1145/2508363.2508365

Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović. 2009. Contact-Aware
Nonlinear Control of Dynamic Characters. In ACM SIGGRAPH 2009 Papers (New
Orleans, Louisiana) (SIGGRAPH ’09). Association for Computing Machinery, New
York, NY, USA, Article 81, 9 pages. https://doi.org/10.1145/1576246.1531387

Vinod Nair and Geo�rey E. Hinton. 2010. Recti�ed Linear Units Improve Restricted
Boltzmann Machines. In Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning (Haifa, Israel) (ICML’10). Omnipress, Madison,
WI, USA, 807–814.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Training Genera-
tive Neural Samplers using Variational Divergence Minimization. In Advances in
Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (Eds.), Vol. 29. Curran Associates, Inc., 271–279. https://proceedings.
neurips.cc/paper/2016/�le/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learning
Predict-and-Simulate Policies from Unorganized Human Motion Data. ACM Trans.
Graph. 38, 6, Article 205 (Nov. 2019), 11 pages. https://doi.org/10.1145/3355089.
3356501

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018a. Deep-
Mimic: Example-guided Deep Reinforcement Learning of Physics-based Charac-
ter Skills. ACM Trans. Graph. 37, 4, Article 143 (July 2018), 14 pages. https:
//doi.org/10.1145/3197517.3201311

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-adaptive Loco-
motion Skills Using Deep Reinforcement Learning. ACM Trans. Graph. 35, 4, Article
81 (July 2016), 12 pages. https://doi.org/10.1145/2897824.2925881

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages. https://doi.org/10.1145/3072959.

3073602
Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. 2019a.

MCP: Learning Composable Hierarchical Control with Multiplicative Composi-
tional Policies. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 3681–3692. http://papers.nips.cc/paper/8626-mcp-learning-
composable-hierarchical-control-with-multiplicative-compositional-policies.pdf

Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine.
2018b. SFV: Reinforcement Learning of Physical Skills from Videos. ACM Trans.
Graph. 37, 6, Article 178 (Nov. 2018), 14 pages.

Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine. 2019b.
Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and
GANs by Constraining Information Flow. In International Conference on Learning
Representations. https://openreview.net/forum?id=HyxPx3R9tm

Dean A. Pomerleau. 1988. ALVINN: An Autonomous Land Vehicle in a Neural Network.
In Proceedings of the 1st International Conference on Neural Information Processing
Systems (NIPS’88). MIT Press, Cambridge, MA, USA, 305–313.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. CoRR
abs/1511.06434 (2015). arXiv:1511.06434 http://arxiv.org/abs/1511.06434

Marc H. Raibert and Jessica K. Hodgins. 1991. Animation of Dynamic Legged Loco-
motion. In Proceedings of the 18th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’91). Association for Computing Machinery, New
York, NY, USA, 349–358. https://doi.org/10.1145/122718.122755

Stephane Ross, Geo�rey Gordon, and Drew Bagnell. 2011. A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning (Proceedings of
Machine Learning Research, Vol. 15), Geo�rey Gordon, David Dunson, and Miroslav
Dudík (Eds.). JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL,
USA, 627–635. http://proceedings.mlr.press/v15/ross11a.html

Alla Safonova and Jessica K. Hodgins. 2007. Construction and Optimal Search of
Interpolated Motion Graphs. ACM Trans. Graph. 26, 3 (July 2007), 106–es. https:
//doi.org/10.1145/1276377.1276510

H. Sakoe and S. Chiba. 1978. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 1
(1978), 43–49. https://doi.org/10.1109/TASSP.1978.1163055

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. 2016. Improved Techniques for Training GANs. CoRR abs/1606.03498
(2016). arXiv:1606.03498 http://arxiv.org/abs/1606.03498

John Schulman, PhilippMoritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. 2015.
High-Dimensional Continuous Control Using Generalized Advantage Estimation.
CoRR abs/1506.02438 (2015). arXiv:1506.02438

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
arXiv:1707.06347 http://arxiv.org/abs/1707.06347

SFU. [n.d.]. SFU Motion Capture Database. http://mocap.cs.sfu.ca/.
Dana Sharon and Michiel van de Panne. 2005. Synthesis of Controllers for Stylized

Planar Bipedal Walking. In Proc. of IEEE International Conference on Robotics and
Animation.

Kwang Won Sok, Manmyung Kim, and Jehee Lee. 2007. Simulating Biped Behaviors
from Human Motion Data. ACM Trans. Graph. 26, 3 (July 2007), 107–es. https:
//doi.org/10.1145/1276377.1276511

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural State Machine
for Character-Scene Interactions. ACM Trans. Graph. 38, 6, Article 209 (Nov. 2019),
14 pages. https://doi.org/10.1145/3355089.3356505

Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning
(1st ed.). MIT Press, Cambridge, MA, USA.

Jie Tan, Yuting Gu, C. Karen Liu, and Greg Turk. 2014. Learning Bicycle Stunts. ACM
Trans. Graph. 33, 4, Article 50 (July 2014), 12 pages. https://doi.org/10.1145/2601097.
2601121

Je� Tang, Howard Leung, Taku Komura, and Hubert Shum. 2008. Emulating human
perception of motion similarity. Computer Animation and Virtual Worlds 19 (08
2008), 211–221. https://doi.org/10.1002/cav.260

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,
David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lilli-
crap, and Martin A. Riedmiller. 2018. DeepMind Control Suite. CoRR abs/1801.00690
(2018). arXiv:1801.00690 http://arxiv.org/abs/1801.00690

Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Generative Adversarial Imitation
from Observation. CoRR abs/1807.06158 (2018). arXiv:1807.06158 http://arxiv.org/
abs/1807.06158

Adrien Treuille, Yongjoon Lee, and Zoran Popović. 2007. Near-Optimal Character
Animation with Continuous Control. In ACM SIGGRAPH 2007 Papers (San Diego,
California) (SIGGRAPH ’07). Association for Computing Machinery, New York, NY,
USA, 7–es. https://doi.org/10.1145/1275808.1276386

Michiel van de Panne, Ryan Kim, and Eugene Flume. 1994. Virtual Wind-up Toys for
Animation. In Proceedings of Graphics Interface ’94. 208–215.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/1966394.1966402
https://doi.org/10.1145/1778765.1778865
https://doi.org/10.1145/3386569.3392433
https://doi.org/10.1145/3386569.3392433
http://proceedings.mlr.press/v100/lynch20a.html
https://doi.org/10.1109/ICCV.2017.304
https://openreview.net/forum?id=BJl6TjRcY7
https://arxiv.org/abs/1707.02201
http://arxiv.org/abs/1707.02201
https://doi.org/10.1145/3386569.3392474
http://proceedings.mlr.press/v80/mescheder18a.html
https://doi.org/10.1145/2185520.2185539
https://doi.org/10.1145/2508363.2508365
https://doi.org/10.1145/1576246.1531387
https://proceedings.neurips.cc/paper/2016/file/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/2897824.2925881
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3072959.3073602
http://papers.nips.cc/paper/8626-mcp-learning-composable-hierarchical-control-with-multiplicative-compositional-policies.pdf
http://papers.nips.cc/paper/8626-mcp-learning-composable-hierarchical-control-with-multiplicative-compositional-policies.pdf
https://openreview.net/forum?id=HyxPx3R9tm
https://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://doi.org/10.1145/122718.122755
http://proceedings.mlr.press/v15/ross11a.html
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1109/TASSP.1978.1163055
https://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/1276377.1276511
https://doi.org/10.1145/1276377.1276511
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/2601097.2601121
https://doi.org/10.1145/2601097.2601121
https://doi.org/10.1002/cav.260
https://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1807.06158
http://arxiv.org/abs/1807.06158
http://arxiv.org/abs/1807.06158
https://doi.org/10.1145/1275808.1276386

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:15

Kevin Wampler, Zoran Popović, and Jovan Popović. 2014. Generalizing Locomotion
Style to New Animals with Inverse Optimal Regression. ACM Trans. Graph. 33, 4,
Article 49 (July 2014), 11 pages. https://doi.org/10.1145/2601097.2601192

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2009. Optimizing Walking
Controllers. In ACM SIGGRAPH Asia 2009 Papers (Yokohama, Japan) (SIGGRAPH
Asia ’09). Association for Computing Machinery, New York, NY, USA, Article 168,
8 pages. https://doi.org/10.1145/1661412.1618514

Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. 2012. Optimizing
Locomotion Controllers Using Biologically-Based Actuators and Objectives. ACM
Trans. Graph. 31, 4, Article 25 (July 2012), 11 pages. https://doi.org/10.1145/2185520.
2185521

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and
Nicolas Heess. 2017. Robust Imitation of Diverse Behaviors. In Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Cur-
ran Associates, Inc., 5320–5329. https://proceedings.neurips.cc/paper/2017/�le/
044a23cadb567653eb51d4eb40acaa88-Paper.pdf

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable Approach to
Control Diverse Behaviors for Physically Simulated Characters. ACM Trans. Graph.
39, 4, Article 33 (July 2020), 12 pages. https://doi.org/10.1145/3386569.3392381

Yuting Ye and C. Karen Liu. 2010. Synthesis of Responsive Motion Using a Dynamic
Model. Computer Graphics Forum (2010). https://doi.org/10.1111/j.1467-8659.2009.
01625.x

Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning Symmetric and Low-Energy
Locomotion. ACM Trans. Graph. 37, 4, Article 144 (July 2018), 12 pages. https:
//doi.org/10.1145/3197517.3201397

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-Adaptive Neural
Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (July
2018), 11 pages. https://doi.org/10.1145/3197517.3201366

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. 2008. Maximum
Entropy Inverse Reinforcement Learning. In Proceedings of the 23rd National Confer-
ence on Arti�cial Intelligence - Volume 3 (Chicago, Illinois) (AAAI’08). AAAI Press,
1433–1438.

Victor Brian Zordan and Jessica K. Hodgins. 2002. Motion Capture-Driven Simulations
That Hit and React. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (SanAntonio, Texas) (SCA ’02). Association for Comput-
ing Machinery, New York, NY, USA, 89–96. https://doi.org/10.1145/545261.545276

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/2601097.2601192
https://doi.org/10.1145/1661412.1618514
https://doi.org/10.1145/2185520.2185521
https://doi.org/10.1145/2185520.2185521
https://proceedings.neurips.cc/paper/2017/file/044a23cadb567653eb51d4eb40acaa88-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/044a23cadb567653eb51d4eb40acaa88-Paper.pdf
https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1111/j.1467-8659.2009.01625.x
https://doi.org/10.1111/j.1467-8659.2009.01625.x
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/545261.545276

1:16 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

APPENDIX

A TASKS

In this section, we provide a detailed description of each task, and

the task reward functions used during training.

Target Heading: In this task, the objective for the character is to

move along a target heading direction d∗ at a target speed E∗. The

goal input for the policy is speci�ed as gC = (d̃
∗
C , E
∗), with d̃∗C being

the target direction in the character’s local coordinate frame. The

task-reward is calculated according to:

A�C = exp
(
−0.25

(
E∗ − d∗ · ¤xcomC

)2)
, (11)

where ¤GcomC is the center-of-mass velocity of the character at time

step C , and the target speed is selected randomly between E∗ ∈

[1, 5]m/s. For slower moving styles, such as Zombie and Stealthy,

the target speed is �xed at 1m/s.

Target Location: In this task, the character’s objective is to move

to a target location x∗. The goal gC = x̃∗C records the target location

in the character’s local coordinate frame. The task-reward is given

by:

A�C = 0.7 exp
(
−0.5| |x∗ − xrootC | |2

)

+ 0.3 exp
(
−
(
max

(
0, E∗ − d∗C · ¤x

com
C

))2)
. (12)

Here, E∗ = 1</B speci�es a minimum target speed at which the

character should move towards the target, and the character will

not be penalized for moving faster than this threshold. d∗C is a unit

vector on the horizontal plane that points from the character’s root

to the target.

Dribbling: To evaluate our system on more complex object ma-

nipulation tasks, we train policies for a dribbling task, where the

objective is for the character to dribble a soccer ball to a target

location. The reward function is given by:

A�C = 0.1AcvC + 0.1A
cp
C + 0.3A

bv
C + 0.5A

bp
C (13)

AcvC = exp

(
−1.5 max

(
0, E∗ − dballC · ¤xcomC

)2)
(14)

A
cp
C = exp

(
−0.5 | |xballC − xcomC | |2

)
(15)

AbvC = exp

(
−max

(
0, E∗ − d∗C · ¤x

ball
C

)2)
(16)

A
bp
C = exp

(
−0.5 | |x∗C − x

com
C | |2

)
. (17)

AcvC and A
cp
C encourages the character to move towards and stay near

the ball, where xballC and ¤xballC represent the position and velocity

of the ball, dballC is a unit vector pointing from the character to the

ball, and E∗ = 1m/s is the target velocity at which the character

should move towards the ball. Similarly, AbvC and A
bp
C encourages the

character to move the ball to the target location, with d∗C denoting a

unit vector pointing from the ball to the target. The goal gC = x̃∗C
records the relative position of the target location with respect to the

character. The state sC is augmented with additional features that

describe the state of the ball, including the position x̃ballC , orientation

q̃ballC , linear velocity ¤̃xballC , and angular velocity ¤̃qballC of the ball in

the character’s local coordinate frame.

Strike: Finally, to further demonstrate our approach’s ability to

compose diverse behaviors, we consider a task where the charac-

ter’s objective is to strike a target using a designated end-e�ector

(e.g. hands). The target may be located at various distances from

the character. Therefore, the character must �rst move close to the

target before striking it. These distinct phases of the task entail

di�erent optimal behaviors, and thus requires the policy to compose

and transition between the appropriate skills. The goal gC = (x̃
∗
C , ℎC)

records the location of the target x̃∗C in the character’s local coor-

dinate frame, along with an indicator variable ℎC that speci�es if

the target has already been hit. The task-reward is partitioned into

three phases:

A�C =




1, target has been hit

0.3 AnearC + 0.3, | |x∗ − xrootC | | < 1.375<

0.3 A farC , otherwise

. (18)

If the character is far from the target x∗, A farC encourages the char-

acter to move to the target using a similar reward function as the

Target Location task (Equation 12). Once the character is within a

given distance of the target, AnearC encourages the character to strike

the target with a particular end-e�ector,

AnearC = 0.2 exp
(
−2| |x∗ − xeffC | |

2
)
+ 0.8 clip

(
2

3
d∗C · ¤x

eff
C , 0, 1

)
,

where xeffC and ¤xeffC denote the position and velocity of the end-

e�ector, and d∗C is a unit vector pointing from the character’s root to

the target. After striking the target, the character receives a constant

reward of 1 for the remaining time steps.

Obstacles: Finally, we consider tasks that involve visual percep-

tion and interaction with more complex environments, where the

character’s goal is to traverse an obstacle �lled environment, while

maintaining a target speed. Policies are trained for two types of envi-

ronments. 1) An environment containing a combination of obstacles

including gaps, steps, and overhead obstacles that the character

must duck under. 2) An environment containing stepping stones

that requires more precise contact planning. Examples of the envi-

ronment are available in Figure 1 and 3. The task-reward is the same

as the one used for the Target Heading task (Equation 11), except

the target heading is �xed along the direction of forward progress.

In order for the policy to perceive the upcoming obstacles, the state

is augmented with a 1D height-�eld of the upcoming terrain. The

height-�eld records the height of the terrain at 100 sample locations,

uniformly spanning 10m ahead of the character.

B AMP HYPERPARAMETERS

Hyperparameter settings used in the AMP experiments are available

in Table 4. For single-clip imitation tasks, we found that a smaller

discount factorW = 0.95 allows the character to more closely imitate

a given reference motion. A larger discount factor W = 0.99 is used

for experiments that include additional task objective, since these

tasks may require longer horizon planning, such as Dribble and

Strike.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:17

Table 4. AMP hyperparameters.

Parameter Value

F� Task-Reward Weight 0.5

F(Style-Reward Weight 0.5

Fgp Gradient Penalty 10

Samples Per Update Iteration 4096

Batch Size 256

 Discriminator Batch Size 256

c Policy Stepsize (Single-Clip Imitation) 2 × 10−6

c Policy Stepsize (Tasks) 4 × 10−6

+ Value Stepsize (Single-Clip Imitation) 10−4

+ Value Stepsize (Tasks) 2 × 10−5

� Discriminator Stepsize 10−5

B Discriminator Replay Bu�er Size 105

W Discount (Single-Clip Imitation) 0.95

W Discount (Tasks) 0.99

SGD Momentum 0.9

GAE(_) 0.95

TD(_) 0.95

PPO Clip Threshold 0.02

C LATENT SPACE MODEL

The latent space model follows a similar architecture as Peng et al.

[2019a] and Merel et al. [2019]. During pretraining, an encoder

@(zC |gC) maps a goal gC to a distribution over latent variables zC .

A latent encoding zC ∼ @(zC |gC) is then sampled from the encoder

distribution and passed to the policy as an input c (aC |sC , zC). The

latent distribution is modeled as a Gaussian distribution @(zC |gC) =

N(`@ (gC), Σ@ (gC)), with mean `@ (gC) and diagonal covariance ma-

trix Σ@ (gC). The encoder is trained jointly with the policy using the

following objective:

arg max
c,@

E? (g |c,@)

[
)−1∑

C=0

WCAC

]

+ _E? (gC) [DKL [@(·|gC) | |?0]] .

(19)

g = {(sC , aC , gC , AC)
)−1
C=0 , s) , g) } represents the goal-augmented tra-

jectory, where the goal gC may vary at each time step, and

? (g |c, @) =? (g0)? (sC)

)−1∏

C=0

(
(gC+1 |gC)? (sC+1 |sC , aC) (20)

∫

zC

c (aC |sC , zC)@(zC |gC)3zC

)
(21)

is the likelihood of a trajectory under a given policy c and encoder

@. Similar to a VAE, we include a KL-regularizer with respect to a

variational prior ?0 (zC) = N(0, �) and coe�cient _. The policy and

encoder are trained end-to-end with PPO using the reparameteriza-

tion trick [Kingma and Welling 2014]. Once trained, the latent space

model can be transferred to downstream tasks by using c (aC |sC , zC)

as a low-level controller, and then training a separate high-level

controller D (zC |sC , gC) that speci�es latent encodings zC for the low-

level controller. The parameters of c are �xed, and a new high-level

controller D is trained for each downstream task.

During pretrainig, the latent spacemodel is trained using amotion

imitation, where the objective is for the character to imitate a corpus

of motion clips. A reference motion is selected randomly at the start

of each episode, and a new reference motion is selected every 5-10s.

The goal gC = (@̂C+1, @̂C+2) speci�es target poses from the reference

motion at the next two time steps.

The networks used for c and D follow a similar architecture as

the networks used for the policies trained with AMP. The encoder

@ is modeled by a network consisting of two hidden layers, with

512 and 256 hidden units, followed by a linear output layer for

`@ (gC) and Σ@ (gC). The size of the latent encoding is set to 16D.

Hyperparameter settings are available in Table 5.

Table 5. Latent space model hyperparameters.

Parameter Value

Latent Encoding Dimension 16

_ KL-Regularizer 10−4

Samples Per Update Iteration 4096

Batch Size 256

c Policy Stepsize (Pre-Training) 2.5 × 10−6

D Policy Stepsize (Downstream Task) 10−4

+ Value Stepsize 10−3

W Discount (Pre-Training) 0.95

W Discount (Downstream Task) 0.99

SGD Momentum 0.9

GAE(_) 0.95

TD(_) 0.95

PPO Clip Threshold 0.02

D SPATIAL COMPOSITION

Our experiments have so far focused primarily on temporal composi-

tions of skills, where a character performs di�erent skills at di�erent

points in time in order to ful�ll particular task objectives, such as

walking to a target and then punching it. In this section, we explore

settings that require spatial composition of multiple skills, where the

task requires a character to perform di�erent skills simultaneously.

To evaluate AMP in this setting, we consider a compositional task

where a character needs to walk along a target heading direction

while also waving its hand at a target height. The motion prior

is trained using a dataset consisting of both walking motions and

waving motions, but none of the motion clips show examples of

walking and waving at the same time. Therefore, the onus is on the

policy to spatially compose these di�erent classes of skills in order

to ful�ll the two disparate objectives simultaneously.

In this task, the character has two objectives: 1) a target heading

objective for moving along a target direction d∗ at a target speed

E∗, 2) and a waving objective for raising its right hand to a target

height ~∗. The goal input for the policy is given by gC = (d̃
∗
C , E
∗, ~∗),

with d̃∗C being the target direction in the character’s local coordinate

frame. The composite reward is calculated according to:

A�C = 0.5A
heading
C + 0.5A

waving
C , (22)

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:18 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

where A
heading
C the same as the reward used for the Target Heading

task equation 11, and Awave
C is speci�ed according to:

Awave
C = exp

(
−16

(
~handC − ~∗

)2)
, (23)

where ~handC is the height of character’s right hand.

To evaluate AMP’s ability to compose disparate skills spatially, we

compare policies trained using both walking and waving motions,

with policies trained with only walking motions or only waving

motions. Table 6 compares the performance of the di�erent policies

with respect to the target heading and waving objectives. Although

the motion prior was not trained with any reference motions that

show both walking and waving at the same time, the policy was able

to discover behaviors that combine these di�erent skills, enabling

the character to walk along di�erent directions while also waving

its hand at various heights. The policies trained with only walking

motions tend to ignore the waving objective, and exhibit solely

walking behaviors. Policies trained with only the waving motion

are able to ful�ll the waving objective, but learns a clumsy shu�ing

gait in order to follow the target heading direction. These results

suggest that AMP does exhibit some capability for spatial composi-

tion di�erent skills. However, the policies trained with both datasets

can still exhibit some unnatural behaviors, particularly when the

target height for the hand is high.

Table 6. Performance of policies trained using di�erent dataset on a spatial

compositional task that combines following a target heading and waving

the character’s hand at a target height. The normalized task returns for each

objective is averaged across 100 episodes for each model. The model trained

with both walking and waving motions achieves relatively high rewards on

both objectives, while the models trained with only one type of motions

perform well only on one of the objectives.

Dataset (Size) Heading Return Waving Return

Wave (51.7s) 0.683 ± 0.195 0.949 ± 0.144

Walk (229.7s) 0.945 ± 0.192 0.306 ± 0.378

Wave + Walk (281.4s) 0.885 ± 0.184 0.891 ± 0.202

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:19

Fig. 9. Learning curves comparing AMP to the motion tracking approach proposed by Peng et al. [2018a] (Motion Tracking) on the single-clip imitation tasks.

3 policies initialized with di�erent random seeds are trained for each method and motion. AMP produces results of comparable quality when compared to

prior tracking-based methods, without requiring a manually designed reward function or synchronization between the policy and reference motion.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:20 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

Fig. 10. Learning curves of applying AMP to various tasks and datasets.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Background
	4.1 Goal-Conditioned Reinforcement Learning
	4.2 Generative Adversarial Imitation Learning

	5 Adversarial Motion Prior
	5.1 Imitation from Observations
	5.2 Least-Squares Discriminator
	5.3 Discriminator Observations
	5.4 Gradient Penalty

	6 Model Representation
	6.1 States and Actions
	6.2 Network Architecture
	6.3 Training

	7 Tasks
	8 Results
	8.1 Experimental Setup
	8.2 Tasks
	8.3 Comparisons
	8.4 Single-Clip Imitation
	8.5 Ablations

	9 Discussion and Limitations
	References
	A Tasks
	B AMP Hyperparameters
	C Latent Space Model
	D Spatial Composition

