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Introduction

The overexcitation of glutamate receptors, in particular N-methyl-

d-aspartic acid (NMDA) receptors, has been implicated in the 

neuronal injury associated with ischemic stroke, head trauma, 

hypoglycemia, and prolonged seizures (Choi and Rothman, 

1990) and may play an important role in chronic neurodegener-

ative disorders such as amyotrophic lateral sclerosis (Rothstein 

et al., 1990) and Parkinson’s disease (Turski et al., 1991). 

Depending on intensity, duration, and intrinsic factors, an expo-

sure of neurons to glutamate or NMDA can cause a rapid, necrotic 

death or a more delayed apoptotic injury characterized by cell 

shrinkage and nuclear condensation (Ankarcrona et al., 1995; 

Lankiewicz et al., 2000; Ward et al., 2006).

Glutamate receptor overactivation leads to a massive dis-

turbance of cellular ion homeostasis resulting from the primary 

or secondary in�ux of Na+, Ca2+, H+, and Cl into the cytoplasm 

(Choi, 1987). Neurons attempt to restore their cellular ion  

homeostasis via the activity of ATP-consuming ion pumps, in-

cluding Ca2+ ATPases and the plasma membrane Na+K+ATPase, 

the driving force for Na+-Ca2+ and Na+-H+ exchangers (Brines 

and Robbins, 1992; Mironov, 1995). Importantly, the extent of 

ATP depletion and recovery of cellular bioenergetics critically 

determines the type of cell death that occurs (Ankarcrona et al., 

1995; Bonfoco et al., 1995; Luetjens et al., 2000; Ward et al., 

2000). If the extent of ionic disturbances exceeds the capacity 

of the ATP-dependent ion pumps to restore ionic gradients, 

rapid cell swelling and necrosis occurs (Ankarcrona et al., 1995; 

E
xcitotoxicity after glutamate receptor overactivation 
induces disturbances in cellular ion gradients, re-
sulting in necrosis or apoptosis. Excitotoxic necrosis 

is triggered by rapid, irreversible ATP depletion, whereas 
the ability to recover cellular bioenergetics is suggested to 
be necessary for the activation of excitotoxic apoptosis. 
In this study, we demonstrate that even a transient decrease 
in cellular bioenergetics and an associated activation of  
adenosine monophosphate–activated protein kinase (AMPK) 
is necessary for the activation of excitotoxic apoptosis. 
We show that the Bcl-2 homology domain 3 (BH3)–only 

protein Bim, a proapoptotic Bcl-2 family member, is 
activated in multiple excitotoxicity paradigms, mediates 
excitotoxic apoptosis, and inhibits delayed Ca2+ dereg-
ulation, mitochondrial depolarization, and apoptosis- 
inducing factor translocation. We demonstrate that bim 
activation required the activation of AMPK and that pro-
longed AMPK activation is sufficient to induce bim gene 
expression and to trigger a bim-dependent cell death. 
Collectively, our data demonstrate that AMPK activation 
and the BH3-only protein Bim couple transient energy 
depletion to stress-induced neuronal apoptosis.
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resulted in an initial increase in intracellular Ca2+ that quickly 

returned to baseline levels; however, cells undergoing ex-

citotoxic apoptosis displayed a delayed Ca2+ deregulation 

(DCD) within 10–18 h of stimulation (Fig. 1 D). Analysis of 

m using tetramethyl rhodamine methyl ester (TMRM) and 

ATP levels revealed a membrane potential depolarization 

during glutamate exposure that was coupled to a reduction  

in cellular ATP levels. Both processes were transient in na-

ture, with TMRM �uorescence and ATP levels recovering 

within 1–2 h (Fig. 1, E and F). Collectively, these data sug-

gested that glutamate receptor activation induced a transient 

depletion of energy levels that was followed by a delayed 

apoptotic response in the majority of neurons. To investigate 

potential mediators of this event, we used real-time quanti-

tative PCR (qPCR) to investigate the expression levels of 

BH3-only proteins that have been shown to be central in  

coupling stress signaling to apoptotic pathways (Youle and 

Strasser, 2008). The mRNA expression of bim was signi�-

cantly increased in the time frame after glutamate receptor 

activation, before the major increase in cell death (Fig. 1,  

G and H). In contrast, the expression levels of the other  

major BH3-only proteins, including bid, puma, and bmf,  

were not signi�cantly altered (Fig. 1 G), suggesting that Bim 

may be speci�cally activated in response to glutamate recep-

tor activation.

Bim mediates excitotoxic apoptosis

Using siRNA to inhibit the expression of bim, we assessed the 

ability of CGNs to undergo cell death after glutamate excita-

tion. As demonstrated in Fig. 1 I, bim siRNA signi�cantly re-

duced the expression of Bim protein, as assessed by Western 

blotting. Importantly, the decreased expression of Bim within 

these neurons signi�cantly reduced the number of neurons 

undergoing glutamate-induced apoptosis (Fig. 1 I).

To exclude potential off-target effects of bim siRNA in 

the protection against excitotoxic apoptosis, we availed of a 

panel of gene-targeted mice de�cient for various BH3-only 

proteins (Bouillet et al., 1999; Villunger et al., 2003; Kaufmann 

et al., 2007). Neocortical neurons were exposed to 100 µM 

NMDA for 5 min, as NMDA receptors predominantly medi-

ate glutamate excitotoxicity in cortical neurons (Choi et al., 

1987). Pyknotic nuclei were detected in the majority of neu-

rons 24 h after excitation (Fig. 2 A), and quanti�cation  

revealed a time-dependent increase in the number of pyk-

notic nuclei at 16 and 24 h after NMDA excitation (Fig. S1). 

Indeed, parallel assessment of apoptosis by propidium iodide 

(PI) staining revealed that the number of PI-positive cells  

after transient NMDA receptor activation closely paralleled 

apoptotic levels, as assessed by the quanti�cation of pyk-

notic nuclei (Fig. S1). Analysis of the expression of the BH3-

only proteins Bim, Bid, and PUMA revealed an early and 

sustained increase in the expression of Bim, whereas the ex-

pression of PUMA or Bid remained unchanged (Fig. 2 B). 

No evidence for increased cleavage of Bid into its more po-

tent truncated form, tBid, was observed (Fig. 2 B). We next 

quanti�ed the levels of pyknotic nuclei after NMDA ex-

citation in neurons from puma-, bid-, or bim-de�cient mice. 

Bonfoco et al., 1995; Ward et al., 2000, 2007). Conversely, if 

the ATP demand is less severe and the capacity of cells to gener-

ate ATP is suf�cient, neurons restore their ionic gradients, and 

only a transient decrease in mitochondrial membrane potential 

(m) or cellular ATP levels can be detected. Nevertheless, many 

of these neurons proceed to undergo apoptotic death over the 

following hours (Ankarcrona et al., 1995; Bonfoco et al., 1995; 

Luetjens et al., 2000; Ward et al., 2007).

What remains largely unresolved is the question of how 

excitotoxicity triggers apoptosis despite the apparent recovery 

of ATP levels and ionic gradients. Clearly, several pathways 

may be activated by the in�ux of Ca2+, which triggers non-

necrotic cell death, including the activation of nitric oxide  

synthase, PARP (poly[ADP-ribose] polymerase), or calpains 

(Dawson et al., 1991; Mandir et al., 2000). In contrast, provi-

sion of energy substrates such as glucose or pyruvate potently 

inhibits excitotoxic cell death (Ruiz et al., 1998; Vergun et al., 

2003; Weisová et al., 2009). Evidently, energy stress induced by 

excitotoxins may cooperate with other cell death pathways or 

may even be the key stress signal for the activation of excito-

toxic apoptosis. In this context, we recently demonstrated that 

the ability of cells to recover their bioenergetics critically deter-

mined the levels of excitotoxic apoptosis and de�ned a role for 

increased glucose uptake in this process (Ward et al., 2007; 

Weisová et al., 2009).

Apoptotic signaling pathways require the activation of 

the proapoptotic Bcl-2 family members Bax or Bak (Wei et al., 

2001), resulting in the permeabilization of the outer mitochon-

drial membrane and the release of the intermembrane pro-

teins, including cytochrome c and apoptosis-inducing factor 

(AIF). The transcriptional induction and/or the posttranslational  

activation of Bcl-2 homology domain 3 (BH3)–only proteins 

is believed to be essential for Bax/Bak activation and down-

stream signaling events. Previous studies have demonstrated 

that apoptotic excitotoxic injury is inhibited by loss of Bax or  

Bcl-2 overexpression (Xiang et al., 1998; Wang et al., 2004; Dietz  

et al., 2007; Semenova et al., 2007). In this study, we demon-

strate that, in contrast to currently held views, ATP depletion 

and energy stress signaling are not only responsible for the 

activation of necrotic but also for the activation of apoptotic 

excitotoxic injury and that this occurs via the activation of an 

AMP-activated protein kinase (AMPK), culminating in the  

activation of the BH3-only protein Bim.

Results

Excitotoxic apoptosis activates the  

BH3-only protein Bim

Glutamate receptor overactivation induces a necrotic or 

apoptotic cell death, depending on the duration of receptor 

stimulation and magnitude of intracellular Ca2+ and Na+ 

loading (Ankarcrona et al., 1995). Stimulation of glutamate 

receptors in cerebellar granular neurons (CGNs) with 100 µM 

glutamate/10 µM Gly for 10 min resulted in a delayed exci-

totoxic apoptosis within a 4–24-h time frame, which was char-

acterized by cell shrinkage and nuclear pyknosis (Fig. 1, A–C; 

Ward et al., 2006; Weisová et al., 2009). Glutamate excitation 

http://www.jcb.org/cgi/content/full/jcb.200909166/DC1


85Energy depletion and excitotoxic apoptosis • Concannon et al.

Figure 1. NMDA receptor overactivation re-
sults in a transient depletion of ATP and de-
layed apoptosis associated with induction of 
the BH3-only protein Bim. (A) Model of tran-
sient NMDA receptor activation. CGNs were 
treated with 100 µM glutamate/10 µM Gly for 
10 min, or mouse neocortical neurons were 
treated with 100 µM NMDA/10 µM Gly for 
5 min. The onset of injury occurs over a time 
frame of 4–24 h. (B) Time course of delayed 
excitotoxic apoptosis. CGNs were treated with 
100 µM glutamate/10 µM Gly for 10 min 
and subsequently stained with Hoechst, and 
condensed pyknotic nuclei were quantified at 
the indicated time points. (C) Cell shrinkage 
during excitotoxic apoptosis. Differential inter-
ference contrast images of CGNs at the indi-
cated time points after glutamate treatment. 
(D) Excitotoxic apoptosis is associated with a 
DCD. Ca2+ levels were monitored with Fluo-4 
and time-lapse microscopy after treatment with 
100 µM glutamate/10 µM Gly for 10 min. 
(E) Individual traces of TMRM fluorescence 
changes in CGNs as monitored using time-
lapse microscopy after treatment with 100 µM 
glutamate/10 µM Gly for 10 min. (F) Cellular 
ATP levels in CGNs after treatment with 100 µM 
glutamate/10 µM Gly for 10 min. ATP levels 
were normalized to sham-treated neurons.  
(B and F) Data represent means ± SEM from  
n = 4 cultures. These experiments were re-
peated twice with similar results. *, P < 0.05 
compared with sham-treated controls. (G) Real-
time qPCR analysis of expression of bim, bmf, 
puma, and bid mRNA at 16 h after glutamate  
treatment relative to -actin mRNA levels.  
(H) Real-time qPCR analysis of bim mRNA ex-
pression after glutamate treatment at 16 and 
24 h after excitation relative to -actin mRNA 
levels. (G and H) Expression levels were nor-
malized to sham-treated cells, and data are 
represented as means ± SEM from n = 3 inde-
pendent cultures. *, P < 0.05 compared with 
sham-treated controls. (I) CGNs transfected 
with control or bim siRNA for 72 h and sub-
sequently treated with 100 µM glutamate/ 
10 µM Gly for 10 min. Condensed pyknotic nu-
clei were quantified 24 h after excitation. Data 
represent means ± SEM from n = 4 cultures.  
*, P < 0.05. This experiment was repeated 
once with similar results. (right) The expression 
levels of Bim were assessed by Western blot-
ting 72 h after siRNA transfection. Probing for 
-actin served as a loading control. Bar, 10 µm.
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outer membrane permeabilization in excitotoxic apoptosis 

(Ankarcrona et al., 1995; Budd et al., 2000; Luetjens et al., 

2000; Ward et al., 2000, 2006; Wang et al., 2004; Cheung  

et al., 2005). We next investigated whether the loss of Bim 

expression modulated these events. Real-time imaging ex-

periments demonstrated that the acute Ca2+ responses during 

NMDA exposure were comparable between wild-type (WT) 

and bim/ neurons (Fig. 3, A–C). However, analysis of DCD 

revealed that bim-de�cient neurons maintained their Ca2+  

homeostasis for longer periods and underwent DCD at a 

much lower frequency than their WT counterparts (Fig. 3 D). 

Furthermore, bim/ neurons maintained their ∆m consider-

ably longer than their WT littermates after NMDA receptor 

activation (Fig. 3 E). Indeed the frequency of delayed ∆m 

depolarization was dramatically reduced in bim-de�cient mice 

(Fig. 3 F). Cultures from bim-de�cient mice also showed a 

signi�cant reduction in the number of neurons that displayed 

nuclear localization of the mitochondrial protein AIF after NMDA 

excitation (Fig. 3, G and H).

Loss of either bid or puma expression afforded no protection 

after NMDA treatment (Fig. 2, D and E); however, bim/ 

neurons provided signi�cant protection (Fig. 2 C). We also 

investigated the role of Bim during excitotoxic injury in the 

more complex environment of mouse organotypic hippocampal 

slice cultures (OHSCs). Treatment with 50 µM NMDA for 

30 min resulted in cell death at the CA1 region, as assessed 

by PI uptake after 24 h (Fig. 2 F). This injury was accompa-

nied by a signi�cant induction of bim mRNA and Bim pro-

tein expression (Fig. S2), with loss of Bim expression 

affording signi�cant protection from NMDA-induced excito-

toxic injury (Fig. 2, F and G).

bim is required for DCD and AIF 

translocation during excitotoxic apoptosis

The aforementioned experiments suggested that Bim plays a 

key role in mediating apoptosis in multiple models of excito-

toxic injury. Previous studies have indicated important roles 

for DCD, delayed m depolarization, and mitochondrial 

Figure 2. Proapoptotic BH3-only protein Bim 
is essential for NMDA-mediated excitotoxic 
apoptosis. (A) Neocortical neurons were ex-
posed to 100 µM NMDA/10 µM Gly or sham 
conditions for 5 min and allowed to recover 
for 24 h. Nuclear morphology was assessed 
by Hoechst staining. (B) Neocortical neurons 
were treated as described in A and allowed to 
recover for the indicated times. The expression 
of the BH3-only proteins Bim, Bid, and PUMA 
was analyzed by Western blotting. Probing for 
-actin served as loading control. (C–E) Mouse 
neocortical neurons from bim/ (C), puma/ 
(D), or bid/ (E) mice and WT controls were 
treated with 100 µM NMDA or sham condi-
tions for 5 min and scored for pyknotic nuclei 
24 h after excitation. Three subfields contain-
ing 300 neurons each were captured and 
quantified per well. Data represent means ±  
SEM from n = 4 cultures. This experiment 
was repeated three times with similar results.  
*, P < 0.05 compared with NMDA-treated WT 
controls. (F) Representative images of OHSCs 
treated with 50 µM NMDA or exposed to sham 
conditions for 30 min and allowed to recover 
for 24 h. Cell death was assessed by PI stain-
ing. (G) Quantification of cell death. OHSCs 
were treated as described in F, and cell death 
was assessed by PI staining. Experiments were 
performed in triplicate in three separate cul-
tures for each strain of mice. Mean ± SEM is 
shown. *, P < 0.05 compared with NMDA-
treated WT controls (ANOVA post-hoc Tukey). 
Bars: (A) 10 µm; (F) 500 µm.

http://www.jcb.org/cgi/content/full/jcb.200909166/DC1
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(Fig. 4, C and D). To assess whether AMPK activation was 

suf�cient to mediate neuronal apoptosis, we directly activated 

AMPK activity using 5-aminoimidazole-4-carboxamide ri-

boside (AICAR), which is an AMP mimetic. The addition of 

AICAR to cultures of neocortical neurons resulted in increased 

phosphorylation of AMPK, correlating with a robust induction 

of Bim expression that was evident within 8–24 h after AICAR 

addition (Fig. 4 E). A similar pro�le for AMPK activation and 

Bim expression was observed in CGNs treated with AICAR 

(Fig. S3 A). To investigate whether AMPK could modulate bim 

mRNA levels, we used luciferase reporter assays with a 0.8-kB 

fragment of the bim promoter (Sunters et al., 2003). Moreover, 

we examined whether overexpression of a constitutively active 

AMPK-1 (CA-AMPK), rendered insensitive to phosphatase 

Prolonged activation of AMPK is sufficient 

for increased Bim expression

Given that glucose or energy substrate supplementation in-

hibits excitotoxic injury (Vergun et al., 2003; Weisová et al., 

2009), we tested the hypothesis that transient energy depletion 

in response to glutamate or NMDA mediates the activation of 

excitotoxic apoptosis. Similar to CGNs exposed to glutamate  

(Fig. 1 F), ATP levels were transiently decreased in neocorti-

cal neurons exposed to NMDA (Fig. 4 A). High performance 

liquid chromatography (HPLC) analysis demonstrated that the 

decline in cellular ATP was accompanied by an accumulation 

of AMP (Fig. 4 B). In both excitotoxicity models, these bio-

energetic alterations correlated with increased phosphorylation 

of AMPK at Thr172, which is indicative of AMPK activation 

Figure 3. Bim is required for DCD, mitochondrial depolarization, and AIF translocation during excitotoxic apoptosis. Cortical neurons cultured on Wilco 
dishes were loaded with Fluo-4 AM and TMRM for 30 min at 37°C before being mounted on a thermostatic chamber of a confocal microscope. The 
neurons were exposed to 100 µM NMDA/10 µM Gly or sham conditions for 5 min, after which neuronal injury was monitored over a 24-h period. 
(A and B) Individual traces of initial Ca2+ responses in WT (A) and bim/ (B) neurons after NMDA receptor activation. (C) Quantification of peak initial 
Fluo-4 fluorescence in WT (n = 91) and bim/ (n = 70) neurons revealed no significant differences between genotypes. (D) Analysis of the frequency of 
WT (n = 90) and bim/ (n = 70) neurons undergoing DCD. *, P < 0.05 compared with WT-treated neurons. (E) Individual traces of TMRM fluorescence 
in WT and bim/ neurons after NMDA treatment. (F) Analysis of the frequency of WT (n = 91) and bim/ (n = 70) neurons undergoing loss of TMRM 
fluorescence. *, P < 0.05 compared with WT-treated neurons. (C, D, and F) Mean ± SEM is shown. (G) Representative images of AIF immunofluorescence 
in NMDA- or sham-treated cultures. (H) Quantification of the number of neurons with nuclear-localized AIF as analyzed by immunofluorescence. Mouse 
cortical neurons from WT and bim/ mice were treated with 100 µM NMDA/10 µM Gly or sham conditions for 5 min and allowed to recover for 16 h. 
Six subfields containing 50 neurons each were captured and quantified for AIF release per culture. Data represent mean ± SEM from n = 4 cultures. The 
experiment was repeated twice with similar results. *, P < 0.05 compared with NMDA-treated WT neurons (ANOVA post-hoc Tukey). Bar, 10 µm.

http://www.jcb.org/cgi/content/full/jcb.200909166/DC1
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for increased bim mRNA expression and to trigger a Bim- 

dependent cell death.

AMPK mediates excitotoxic apoptosis in  

a Bim-dependent manner

We noted that activation of AMPK with AICAR induced a 

signi�cant activation of JNK (Fig. 5 A), which has previously 

been linked to excitotoxic apoptosis (Borsello et al., 2003; Chen 

et al., 2003), a �nding reiterated in our excitotoxicity models  

(Fig. S4). Therefore, we addressed whether AMPK contributed 

to JNK activation during excitotoxic apoptosis. Using an siRNA 

construct targeting AMPK-1/2 (Weisová et al., 2009), we 

down-regulated the expression of AMPK at the protein level 

(Fig. 5 B). Immuno�uorescence analysis demonstrated increased 

nuclear accumulation of phosphorylated Ser63 c-Jun in control 

siRNA–transfected neurons after NMDA treatment (Fig. 5,  

C and D). In contrast, neurons expressing the AMPK siRNA 

inactivation (Woods et al., 2000), could modulate bim pro-

moter activity. Indeed, the expression of the CA-AMPK was 

associated with a signi�cant increase in bim promoter activity 

(Fig. 4 F), indicating that AMPK can up-regulate bim mRNA 

levels. We next asked whether prolonged AMPK activation  

was suf�cient to induce apoptosis in neurons, as reported in 

other cell types (Meisse et al., 2002; Kefas et al., 2003), and 

whether this was Bim dependent. Neocortical neurons from 

WT and bim/ mice were cotransfected with vectors expressing  

CA-AMPK and GFP and analyzed for nuclear apoptosis af-

ter 24 h. Expression of CA-AMPK induced cell death within 

WT neocortical neurons, but neurons from bim/ mice were 

highly resistant (Fig. 4 G). Likewise, CA-AMPK induced sig-

ni�cant apoptosis in CGNs, and cotransfection with bim siRNA  

afforded protection compared with control siRNA (Fig. S3 B). 

Collectively, our data suggest that AMPK is activated during 

excitotoxic apoptosis and that prolonged activation is suf�cient 

Figure 4. AMPK is activated during excitotoxic apoptosis and is sufficient to induce bim expression. (A) Neocortical neurons were treated with 100 µM 
NMDA/10 µM Gly or sham conditions for 5 min and allowed to recover for the indicated time periods. ATP levels were assessed and expressed 
relative to sham-treated controls. Data represent mean ± SEM from n = 6 cultures. This experiment was repeated twice with similar results. *, P < 0.05 
compared with sham-treated cultures (ANOVA post-hoc Tukey). (B) Chromatograms of adenine nucleotides on reverse-phase column from sham (left) and 
100 µM glutamate/10 µM Gly for 10 min (right). (C) Western blotting of phospho Thr172 AMPK levels in neocortical neurons at the indicated time periods 
after NMDA excitation. Total AMPK served as a loading control. Results are representative of at least two independent experiments. (D) Western blotting 
of phospho Thr172 AMPK levels in CGNs at the indicated time periods after glutamate excitation. Probing for -actin served as loading control. Results 
are representative of at least two independent experiments. The vertical black line indicates that intervening lanes have been spliced out. (E) Neocortical 
neurons were treated with 2.5 mM AICAR for the indicated time periods. The levels of phospho Thr72 AMPK (p-AMPK), AMPK, Bim, and -actin (loading 
control) were assessed by Western blotting. Results are representative of at least two independent experiments. (F) CGNs transfected with a vector contain-
ing a 0.8-kB fragment of the bim promoter and either a vector expressing CA-AMPK or control empty vector (control). Luminescence activity was normalized 
to the activity of the cotransfected TK-Renilla luciferase. Mean ± SEM is shown. *, P < 0.05 compared with control vector (t test). (G) Neocortical neurons 
from WT and bim/ mice were cotransfected with GFP and either a vector expressing CA-AMPK or a control empty vector, and the levels of pyknotic nuclei 
in 150–200 neurons per culture were assessed 24 h after transfection. Data represent mean ± SEM from n = 4 cultures per treatment. This experiment was 
repeated twice with similar results. *, P < 0.05 compared with CA-AMPK–transfected WT neurons (ANOVA post-hoc Tukey).

http://www.jcb.org/cgi/content/full/jcb.200909166/DC1
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apoptosis in neocortical neurons (Fig. S5). Finally, to con-

�rm that AMPK triggers NMDA-mediated excitotoxicity 

through Bim, we assessed the impact of ampk knockdown on 

NMDA-induced apoptosis in bim/ neurons. As with our pre-

vious experiments (Fig. 5 E), loss of Bim or knockdown of 

ampk signi�cantly attenuated cell death within this paradigm 

had signi�cantly reduced nuclear accumulation of phospho 

c-Jun. Furthermore, AMPK siRNA substantially inhibited exci-

totoxic apoptosis induced by NMDA (Fig. 5 E), and this was 

accompanied by reduced Bim induction after NMDA treatment 

(Fig. 5 F). Similarly, treatment with the pharmacological AMPK 

inhibitor compound C afforded protection against excitotoxic 

Figure 5. AMPK mediates excitotoxic apoptosis in a Bim-dependent manner. (A) Neocortical neurons were treated with 2.5 mM AICAR for the indicated 
time periods. Levels of p-JNK were assessed by Western blotting. Probing for total JNK served as a loading control. (B) Mouse neocortical neurons were 
transfected with a vector expressing either a control (Con) or AMPK siRNA sequence. AMPK levels were assessed 48 h after transfection by Western blot-
ting. Probing for -actin served as a loading control. (A and B) Results are representative of at least two independent experiments. (C) Neocortical neurons 
transfected with either control or AMPK siRNA cultured for 48 h and subsequently treated with 100 µM NMDA/10 µM Gly or sham conditions for 5 min 
and fixed after 16 h. The numbers of neurons with nuclear phospho Ser63 c-Jun (p-cJun) staining were quantified. Data represent mean ± SEM from n = 3  
cultures. *, P < 0.05 compared with NMDA-treated control siRNA cultures (ANOVA post-hoc Tukey). (D) Representative images of neocortical neurons 
treated as described in C. Note the presence of nuclear phospho Ser63 c-Jun in control siRNA–transduced neurons but not in AMPK siRNA–transduced 
neurons. (E) Mouse cortical neurons were transfected with a vector expressing GFP and either an siRNA targeting AMPK or a control nontargeting siRNA 
and then cultured for 48 h. Neurons were subsequently treated with NMDA or sham and allowed to recover for 16–24 h before staining live with Hoechst. 
Pyknotic nuclei within the GFP-positive cells (250–300) were scored. Data represent mean ± SEM from n = 4 cultures. This experiment was repeated twice 
with similar results. *, P < 0.05 compared with sham-treated neurons; #, P < 0.05 compared with control siRNA–transfected neurons at the same time point 
(ANOVA post-hoc Tukey). (F) Western blot demonstrating expression of Bim after NMDA treatment in neocortical neurons transfected either with control or 
AMPK siRNA. Probing for -actin served as a loading control. (G) Neocortical neurons from WT and bim/ mice were transfected with a vector express-
ing EGFP and either an siRNA targeting AMPK or a control nontargeting siRNA for 48 h. After NMDA treatment, pyknotic nuclei within the GFP-positive 
cells were scored (250–300 cells). Data represent mean ± SEM from n = 4 cultures. This experiment was repeated twice with similar results. *, P < 0.05 
compared with NMDA treated with control siRNA (ANOVA post-hoc Tukey). Bar, 10 µm.

http://www.jcb.org/cgi/content/full/jcb.200909166/DC1
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toxic to nonneuronal cells (Meisse et al., 2002; Kefas et al., 

2003). Therefore, AMPK can be added to the growing list of  

kinases and transcription factors that have dual functions in the 

regulation of cell survival or cell death depending on the type of 

stress and type of cell, as reported for JNK, Foxo3a, and NF-B 

(nuclear factor B; O’Neill and Kaltschmidt, 1997; Biswas et al., 

2007; Mojsilovic-Petrovic et al., 2009). A key task for future 

studies will be to elucidate the mechanisms of cell fate switches 

by these signaling molecules. Signal intensity and subcellular 

location as well as transient (or oscillatory) versus persistent 

activation kinetics may critically determine cell fate. In this 

context, a transient activation of AMPK in neurons before glu-

cose deprivation has been shown to be neuroprotective (Culmsee  

et al., 2001; Weisová et al., 2009), whereas inhibition of AMPK 

activity with compound C administered at the onset of cerebral 

ischemia or genetic deletion of AMPK-2 provided signi�-

cant protection after middle cerebral artery occlusion in vivo  

(McCullough et al., 2005; Li et al., 2007). AMPK has been 

shown to in�uence several long-term processes and cell fate  

decisions in addition to the acute regulation of cellular bio-

energetics such as cell cycle arrest and cell polarity (Gwinn et al., 

2008). In this study, we demonstrate that prolonged AMPK 

activation is also directly associated with the transcriptional 

induction of the BH3-only protein Bim and activation of the 

Bcl-2–regulated apoptotic pathway.

Several different factors have been implicated in the regu-

lation of the bim gene in neurons, including JNK/c-Jun (Harris 

and Johnson, 2001; Whit�eld et al., 2001), Foxo3a (Sunters et al., 

2003; Biswas et al., 2007), and C-myb (Biswas et al., 2007). 

Previous studies have demonstrated the activation of JNK dur-

ing excitotoxic injury and the neuroprotection achieved by JNK 

inhibition in these scenarios (Borsello et al., 2003; Chen et al., 

2003; Centeno et al., 2007). Indeed, AMPK activation has also 

been linked to subsequent downstream JNK activity during 

apoptosis (Meisse et al., 2002; Kefas et al., 2003; Lee et al., 

2008). However, it should be noted that the regulation of bim 

expression is highly complex (Biswas et al., 2007), and other 

pathways independent of JNK signaling may well be required 

for Bim-dependent excitotoxic apoptosis. A recent study has 

shown that AMPK can phosphorylate and enhance the tran-

scriptional activity of Foxo3a (Greer et al., 2007). In addition, 

given that AMPK can down-regulate mTOR (mammalian target 

of rapamycin) signaling, this may in turn result in decreased 

Akt phosphorylation, nuclear translocation of Foxo3a, and  

induction of bim. Although we could demonstrate a role for 

AMPK in the regulation of Bim induction, it remains plausi-

ble that NMDA-mediated excitotoxic injury may also have an 

impact on JNK, Foxo3a, or other cellular signaling pathways in-

dependent of AMPK activity to regulate Bim expression. Indeed,  

it remains plausible that the activation of AMPK by itself may 

not be suf�cient for Bim induction in certain cell types and/or 

settings, and the AMPK-mediated regulation of Bim expression 

may be dependent on the manner of AMPK activation.

Our data also suggest that bim expression is central to DCD 

and the late collapse of the m, which are cellular events not 

previously linked to gene induction after an excitotoxic stimulus. 

Indeed, the time frame of bim mRNA induction preceded the 

(Fig. 5 G). However, the knockdown of ampk expression in 

bim/ neurons had no additive effect (Fig. 5 G) when com-

pared with the control siRNA–transfected bim/ neurons, 

suggesting that AMPK mediates excitotoxic apoptosis in a 

Bim-dependent manner.

Discussion

A decrease in cellular bioenergetics as a consequence of ion 

homeostasis disruption has been previously almost exclusively 

linked to necrotic cell death (Ankarcrona et al., 1995; Bonfoco 

et al., 1995; Ward et al., 2000, 2007). This study now provides 

evidence that cellular ATP depletion is also required for the 

activation of proapoptotic signaling pathways during excito-

toxic injury. We identi�ed the proapoptotic BH3-only protein 

Bim as essential for the initiation of cell death within this para-

digm. We also demonstrate that the energy sensor AMPK coupled 

energy depletion to bim mRNA induction and the subsequent 

activation of apoptosis in neurons.

Several studies have demonstrated that glutamate and 

NMDA receptor overactivation induce a rapid dysregulation of 

cellular ion homeostasis and an associated decrease in ATP 

levels, as neurons attempt to restore their ion homeostasis 

(Budd et al., 2000; Luetjens et al., 2000; Ward et al., 2000). 

AMPK is a Ser/Thr kinase that plays a fundamental role in the 

regulation of energy homeostasis, acting as an energy sensor to 

stresses that result in the depletion of ATP and increases in 

AMP. Increases in AMP levels such as those seen after NMDA 

treatment result in the allosteric activation of AMPK (Suter  

et al., 2006). However, several upstream kinases have been 

implicated in the phosphorylation and activation of AMPK, in-

cluding the tumor suppressor LKB1 (Hawley et al., 2003) and 

Ca2+/calmodulin-dependent kinase kinase  (CaMKK-; Hawley 

et al., 2005), which is activated via increases in intracellular 

Ca2+. Given the central role of Ca2+ in mediating excitotoxic  

injury (Tymianski et al., 1993) and that CaMKK- is activated 

by increases in intracellular Ca2+, it is interesting to speculate 

that CaMKK- may play a functional role in the activation of 

AMPK during excitotoxicity.

AMPK has been implicated in the stimulation of catabo-

lism, inhibition of fatty acid and cholesterol synthesis, and autoph-

agy during energetic stress (Meley et al., 2006; Ronnett et al., 

2009), all serving as attempts to provide energy substrates and 

enhance cellular ATP generation. Activation of glucose trans-

porters is one of the key activities of AMPK in providing energy 

substrates to ATP-deprived cells (Hardie et al., 2006). As neurons 

rely signi�cantly on glucose as their energy source, up-regulation 

of glucose transporters may represent a central step in AMPK 

action in neurons. Indeed, we previously demonstrated that 

glutamate excitation was associated with an AMPK-dependent 

increase in GLUT3 translocation and uptake of glucose into 

neurons (Weisová et al., 2009).

In this study, we provide evidence that activation of 

AMPK is also required to induce excitotoxic apoptosis and 

show that prolonged AMPK activation can be suf�cient to 

trigger neuronal apoptosis. Multiple studies have demon-

strated that prolonged AMPK activation with AICAR can be 
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stopped by the addition of medium containing sera. The neurons were then 
dissociated by gentle pipetting, and after centrifugation (1,500 rpm for 3 min) 
the medium containing trypsin was aspirated. Neocortical neurons were 
resuspended in fresh plating medium (MEM containing 5% fetal calf serum, 
5% horse serum, 100 U/ml penicillin/streptomycin, 0.5 mM L-Gln, and 
0.6% D-glucose), whereas CGNs were resuspended in MEM containing 
10% fetal calf serum, 100 U/ml penicillin/streptomycin, 0.5 mM L-Gln,  
4 mM KCl, and 0.6% D-glucose. Cells were plated at 2 × 105 cells/cm2 on 
poly-Lys–coated plates and incubated at 37°C, 5% CO2. The plating me-
dium was exchanged for feeding medium the following day. Neurobasal 
medium–embryonic containing 100 U/ml penicillin/streptomycin, 2% 
B27, and 0.5 mM L-Gln and 600 nM cytosine arabinofuranoside for neo-
cortical neurons and 1:1 plating medium/feeding medium (plating medium 
minus L-Gln) and 10 µM cytosine arabinofuranoside for CGNs. One third 
of the medium was exchanged for fresh medium every 2–3 d until day 
in vitro (DIV) 6. Experiments were performed until DIV 9.

OHSCs
OHSCs were prepared and cultured according to the modified procedure 
(Kristensen et al., 2001). The brain from postnatal day 10 mouse pups was 
isolated and transferred to dissection medium containing HBSS (Invitrogen), 
20 mM Hepes, 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.65% 
glucose. Isolated hippocampi were placed on a McIlwain tissue chopper 
(Mickle Laboratory Engineering) and cut into 450-µm-thick sections. The 
slices were then transferred onto the porous (0.4 µm) membrane of millicell 
inserts (Millipore). The inserts were placed in 24-well tissue culture plates 
with 250 µl of culture medium consisting of MEM (Sigma-Aldrich) supple-
mented with 25% horse serum, 4 mM L-Gln, 6 mg/ml D-glucose, 2% B27, 
50 U/ml penicillin G, and 50 µg/ml streptomycin (Sigma-Aldrich). The 
slices were maintained in a humidified incubator with 5% CO2 at 35°C 
with media changes every other day. All experiments were performed  
at DIV 10.

Confocal microscopy
Primary neocortical neurons or CGNs were loaded with 3 µM Fluo-4 AM 
and 20 nM TMRM in experimental buffer (120 mM NaCl, 3.5 mM KCl, 
0.4 mM KH2PO4, 20 mM Hepes, 5 mM NaHCO3, 1.2 mM Na2SO4,  
1.2 mM CaCl2, 1.2 mM MgCl2, and 15 mM glucose, pH 7.4) for 30 min 
at 37°C. The buffer was then exchanged for buffer without Fluo-4 AM and 
placed on the stage of a confocal microscope (LSM 510 Meta; Carl Zeiss, 
Inc.) with a 63× NA 1.4 differential interference contrast objective with a 
thermostatically regulated chamber maintained at 37°C. 10 µM MK-801 
was added to block open channel NMDA receptors after receptor stimula-
tion. Fluo-4 AM was excited at 488 nm with the emission collected by a 
505–550-nm filter, TMRM was excited at 543 nm, and the emission was 
collected with by a 560-nm-long pass filter. Images were captured at 15-s 
intervals during excitation and every 5 min for the rest of the experiment. 
The resulting images were processed and analyzed using MetaMorph soft-
ware (7.0r1-4; MDS Analytical Technologies).

Real-time qPCR
Total RNA was extracted using the RNeasy mini kit (QIAGEN). First strand 
cDNA synthesis was performed using 2 µg of total RNA as template and 
reverse transcribed using Superscript II (Invitrogen) primed with 50 pmol 
of random hexamers. Real-time qPCR was performed using the Light-
Cycler 2.0 (Roche) and the QuantiTech SYBR green PCR kit (QIAGEN). 
Sense and antisense primers were as follows: 5-CCAGCTGACTGCCCT-
GTCTA-3 and 5-AGCAACTTCACCTGCTGTGC-3 for bim; 5-ACGA-
CAAGGCCATGCTGATA-3 and 5-AGGCACCCTCAGTCCATCTC-3 
for bid; 5-GAGACGCTGTCCTGGAGTCA-3 and 5-GGCCTTGTCTT-
CCTGGCTTA-3 for bmf; 5-ATGGACTCAGCATCGGAAGG-3 and 
5-TGGCTCATTTGCTCTTCACG-3 for puma; and 5-AGCCATCCAG-
GCTGTGTTGT-3 and 5-CAGCTGTGGTGGTGAAGCTG-3 for actin. 
The data were analyzed using the LightCycler software 4.0 (Roche) with 
all samples normalized to -actin.

Western blotting
Preparation of cell lysates and Western blotting were performed as  
described previously (Weisová et al., 2009). Blots were probed with either 
rabbit polyclonal antibodies to Bim (StressGen) diluted 1:1,000, phospho 
(Thr172) AMPK antibody (Cell Signaling Technology) diluted 1:1,000,  
total AMPK (Cell Signaling Technology) diluted 1:1,000, phospho 
(Thr183/Thr185) JNK (Cell Signaling Technology) diluted 1:1,000, total 
JNK (Cell Signaling Technology) diluted 1:1,000, PUMA-NT (ProSci) di-
luted 1:500, an anti–goat Bid antibody (R&D Systems) diluted 1:1,000, or 
a mouse monoclonal anti–-actin antibody (clone DM 1A; Sigma-Aldrich), 

delayed m depolarization and DCD, with the frequency of 

both of these events diminished in bim-de�cient neurons. We and 

others provided evidence for the mitochondrial release of cyto-

chrome c and AIF during excitotoxic apoptosis (Luetjens et al., 

2000; Wang et al., 2004). Cytochrome c release in mature neu-

rons may not be suf�cient to cause a large extent of executioner 

caspase activity caused by increased XIAP (X-linked inhibi-

tor of apoptosis protein) levels, reduced expression of APAF-1, 

and calpain-mediated degradation of caspases (Lankiewicz  

et al., 2000; Yakovlev et al., 2001; Potts et al., 2003). AIF plays 

a central role in caspase-independent excitotoxic apoptosis, 

where it substitutes for caspases to induce nuclear condensa-

tion (Wang et al., 2004; Cheung et al., 2005).

In this study, we demonstrate a requirement for Bim in 

excitotoxic apoptosis. This form of cell death contrasts with 

excitotoxic necrosis, in which m does not recover and cell 

lysis occurs in the absence of nuclear condensation (Ankarcrona 

et al., 1995; Ward et al., 2006). Nevertheless, we cannot exclude 

that other pathways were activated that mediate alternative 

or intermediate cell death types or work in parallel to Bim-

dependent apoptosis. These might include the Ca2+-mediated 

opening of the mitochondrial permeability transition pore 

(PTP; Baines et al., 2005), the activation of calpains (Bano et al., 

2005), and the activation of PARP-1 (Mandir et al., 2000). Of 

particular note, the activation of PARP-1 during excitotoxicity 

results in the depletion of intracellular pools of NAD+, which 

the enzyme uses as a substrate (Liu et al., 2008). This in turn 

results in a depletion of ATP levels as NAD+ synthetase is acti-

vated to synthesize NAD+ and a reduced concentration of 

NAD+ is available for reduction to the high energy substrate 

NADH. This may create a positive feed-forward signal for 

AMPK activation and consequent bim induction. Indeed NAD+ 

supplementation has been shown to protect neurons from  

excitotoxic injury (Liu et al., 2008). Similarly, PTP opening  

depletes mitochondrial ATP production, and the activation of 

calpains can further increase neuronal Ca2+ overloading (Bano 

et al., 2005), thereby increasing the ATP demand. However, as 

PARP-1 activation, PTP opening, and calpain activation also 

occur physiologically, it is reasonable to assume that AMPK-

dependent bim gene activation represents a key gateway for the 

activation of excitotoxic apoptosis.

In conclusion, we demonstrate that depletion of cellu-

lar ATP is a key signaling switch in the activation of pro-

apoptotic signaling pathways during excitotoxic injury. This  

process requires AMPK and the activation of the proapoptotic 

BH3-only protein Bim. These �ndings have the potential 

to be translated to numerous pathophysiological settings in 

which moderate to severe energy depletion may lead to the 

execution of apoptosis.

Materials and methods

Preparation of rat CGNs and mouse neocortical neurons
Mouse neocortex or rat (Sprague-Dawley) cerebellum was isolated from 
embryonic day 16 or postnatal day 7 pups, respectively. The isolated  
tissue was then transferred to dissection medium on ice (PBS with 0.25% 
glucose and 0.3% BSA). The tissue was incubated with 0.25% trypsin-
EDTA at 37°C for 15 min. After the incubation, the trypsinization was 
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a rabbit polyclonal anti-AIF antibody (Suter et al., 2000) diluted 1:500 
(gift from M. Jäättelä, Danish Cancer Society, Copenhagen, Denmark) or 
a rabbit polyclonal anti–phospho (Ser63) c-Jun antibody (Cell Signaling 
Technology) diluted 1:250. Primary antibodies were detected by incubation 
for 2 h at room temperature in a 1:500 dilution of either FITC- or rhodamine-
conjugated goat anti–rabbit secondary antibody (Jackson ImmunoResearch 
Laboratories, Inc.).

Gene-targeted mice
The generation and genotyping of puma/, bim/, and bid/ mice 
have previously been described (Bouillet et al., 1999; Villunger et al., 
2003; Kaufmann et al., 2007). The puma/ and bid/ mice were gener-
ated on an inbred C57BL/6 background, using C57BL/6-derived embry-
onic stem cells. The bim/ mice were originally generated on a mixed 
C57BL/6 × 129SV genetic background, using 129SV-derived embry-
onic stem cells, but had been backcrossed for >12 generations onto the 
C57BL/6 background.

Statistical analysis
Data are presented as means ± SEM. For statistical comparison, one-way 
analysis of variance (ANOVA) followed by Tukey’s test was used. P-values 
<0.05 were considered to be statistically significant.

Online supplemental material
Fig. S1 shows the quantification of neuronal cell death after NMDA treat-
ment. Fig. S2 shows the up-regulation of Bim in OHSCs subjected to NMDA-
induced excitotoxic injury. Fig. S3 shows that AMPK activation triggers 
Bim-dependent cell death in CGNs. Fig. S4 shows that JNK inhibition pro-
tects against excitotoxic apoptosis. Fig. S5 shows that compound C reduces 
NMDA-induced excitotoxic injury. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200909166/DC1.
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