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α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) enable

most excitatory transmission in the brain and are crucial for mediating basal synaptic

strength and plasticity. Because of the importance of their function, AMPAR dynamics,

activity and subunit composition undergo a tight regulation which begins as early

as prenatal development and continues through adulthood. Accumulating evidence

suggests that the precise regulatory mechanisms involved in orchestrating AMPAR

trafficking are challenged in the aging brain. In turn dysregulation of AMPARs can

be linked to most neurological and neurodegenerative disorders. Understanding the

mechanisms that govern AMPAR signaling during natural and pathological cognitive

decline will guide the efforts to develop most effective ways to tackle neurodegenerative

diseases which are one of the primary burdens afflicting an increasingly aging

population. In this review, I provide a brief overview of the molecular mechanisms

involved in AMPAR trafficking highlighting what is currently known about how these

processes change with age and disease. As a particularly well-studied example of

AMPAR dysfunction in pathological aging I focus in Alzheimer’s disease (AD) with special

emphasis in how the production of neurofibrillary tangles (NFTs) and amyloid-β plaques

may contribute to disruption in AMPAR function.
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INTRODUCTION

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are glutamate-

gated channels that mediate most fast excitatory transmission in the central nervous system

(CNS). Because of their crucial role in regulating brain function, AMPARs are under tight

regulatory processes that control their biosynthesis, membrane trafficking, degradation and

various post-translational modifications (Anggono and Huganir, 2012; Lu and Roche, 2012).

Arguably, one of the most important functions of AMPAR dynamics might be to underlie several

forms of synaptic plasticity which has been proposed to act as a subcellular correlate of learning

and memory (recently reviewed in Huganir and Nicoll, 2013; Nicoll, 2017). Significant advances

over the last decades have contributed to our understanding of the processes involved in AMPAR

dynamics at synapses, nonetheless how these mechanisms regulate normal synaptic transmission

and plasticity and how they go awry during natural aging and neurodegeneration remain unknown.

Elucidating the underlying mechanisms of brain function and decline is especially relevant

in today’s society since an increasingly aged population faces higher risks of developing

neurodegenerative diseases such as Alzheimer’s disease (AD). In the U.S. alone, AD affects more
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than 5 million people with an annual cost of over 200 billion1.

Over the last two decades researchers have exposed subtle

differences in synaptic structure and function at early stages of

AD in accord with the notion that subcellular reorganization

precedes actual neuronal loss (Coleman and Flood, 1987; Brown

et al., 1998; Scheff et al., 2006; Shankar et al., 2007). Consistently,

one of the earliest biological manifestations of AD dementia is

reduced synaptic AMPARs and synaptic plasticity impairments

(Walsh et al., 2002; Shankar et al., 2008; Li et al., 2009; reviewed

in Burke and Barnes, 2006; Guntupalli et al., 2016).

At the molecular level, AD is characterized by the presence

of two pathological metabolites: plaques formed by oligomeric

clusters of amyloid-β (Aβ) and neurofibrillar tau tangles (NFTs).

Aβ is a secreted proteolytic derivative of the amyloid precursor

protein (APP) which has been linked to early deficits in AD

pathogenesis (Lambert et al., 1998; Lesné et al., 2006). NFTs

are aggregates of hyperphosphorylated tau, a protein essential

for microtubule assembly (Cleveland et al., 1977; Harada et al.,

1994) whose aberrant conformation has been proposed to

induce neurotoxicity. Together with Aβ, NFTs is considered

a hallmark of AD but tangles can be found in different

neurodegenerative diseases known with the general name of

tauopathies. A large body of work has deepened our knowledge

of how these pathological metabolites alter AMPAR dynamics

to undermine synaptic function. Furthermore there has been

a growing appreciation that Aβ and NFTs may synergistically

act to disrupt synaptic AMPARs. Nonetheless, the mechanisms

employed by Aβ and NFTs to hijack synaptic transmission and

plasticity are only partly understood. In this review, I provide a

brief overview of the current models of AMPAR trafficking to

then focus on how these processes may be altered by both Aβ

and NFTs.

MECHANISMS OF AMPAR TRAFFICKING:
A BRIEF OVERVIEW

Given their critical role, the mechanisms underlying AMPAR

dynamics during baseline transmission and plastic events have

been the focus of extensive study over the last decades.

Particularly AMPAR trafficking during synaptic plasticity has

drawn the most attention. The term synaptic plasticity refers

to neurons’ ability to adapt the strength of synaptic responses

as a consequence of changes in neuronal activity. Among

several different types of plasticity, the best known is a

bidirectional form of Hebbian plasticity that requires the

activation of N-methyl-D-aspartate receptors (NMDARs) that

triggers AMPARmobilization. A prominent example of this form

of plasticity is long-term potentiation (LTP). LTP is elicited in

response to high frequency stimulation for brief periods of time

(in the order of seconds) sufficient to activate NMDARs initiating

a calcium-dependent mechanism that recruits synaptic AMPARs

thereby increasing synaptic efficacy. Conversely, low frequency

stimulation for several minutes leads to the removal of synaptic

AMPARs to produce a long-sustained decrease in synaptic

1http://www.alz.org/facts/

strength known as long-term depression (LTD). Both forms of

NMDAR-dependent plasticity have been proposed to underlie

important functions like information processing, learning and

memory (reviewed in Huganir and Nicoll, 2013; Nicoll, 2017).

In addition, synaptic AMPARs may be passively replenished by

constitutive trafficking mechanisms (reviewed in Shepherd and

Huganir, 2007; Henley et al., 2011). Here, I briefly introduce

some of the most important findings regarding constitutive and

regulated AMPAR trafficking to later discuss how these processes

may be altered during AD.

AMPAR Subunits and Synaptic Plasticity
AMPARs are tetrameric assemblies of two dimers of four

subunits (GluA1-GluA4) with GluA1/GluA2 (comprising ∼80%

of all synaptic AMPARs) and GluA2/GluA3 heteromers being

the predominant conformation (Wenthold et al., 1996; Lu

et al., 2009), whereas developmentally regulated GluA4 is mostly

absent in mature excitatory neurons (Zhu et al., 2000). Each

AMPAR subunit exhibits similar core structure with a variable

cytosolic c-tail which enables protein-protein interactions and

post-translational modifications (reviewed in Henley et al.,

2011; Huganir and Nicoll, 2013). The c-tail of the different

GluA subunits has been postulated to be a critical factor in

AMPAR trafficking. The long c-tail of the GluA1 subunit has

attracted the most attention because is a primary target of

calcium/calmodulin-dependent protein kinase II (CaMKII), an

important molecule for memory formation and LTP (Lisman

and Goldring, 1988; Silva et al., 1992). CaMKII-mediated

phosphorylation of the GluA1 c-tail stabilizes receptors at

synapses through a PDZ-dependent mechanism which suggested

that incorporation of GluA1-containing AMPARs into synapses

is a major mechanism underlying LTP (Hayashi et al., 2000; Plant

et al., 2006). Because GluA1 homomers are calcium permeable

(Sans et al., 2003), in contrast to GluA1/GluA2 heterodimers,

it has been proposed that a transient insertion of GluA1-

containing AMPARs is an important step during LTP induction

(Plant et al., 2006). These newly incorporated calcium permeable

receptors could magnify the calcium influx at synapses resulting

in LTP stabilization during the first minutes of potentiation.

However, regular synapses contain extremely low levels of

GluA1 homomers (Lu et al., 2009), thus it has been proposed

that LTP maintenance is subsequently supported by the steady

replacement of GluA1 by GluA2-containing receptors (Shi

et al., 2001; Plant et al., 2006; Yang et al., 2010; Jaafari et al.,

2012).

Consistent with this model, GluA2 and GluA3 subunits

appear to be the primary targets during constitutive trafficking

of AMPAR endocytosis during LTD. For example, constitutive

trafficking of GluA2 is regulated by the multimeric ATPase

N-ethylmaleimide sensitive factor (NSF) since blockade of

the GluA2-NSF interaction results in a rapid run-down of

AMPAR-mediated currents (Nishimune et al., 1998). In addition,

the short c-tails of both GluA2 and GluA3 subunits display

PDZ-interacting motifs which mediate the binding to several

synaptic molecules. One of these motifs allows the binding

to the protein interacting with C-kinase 1 (PICK1). PICK1-

dependent interactions selectively regulate the constitutive
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FIGURE 1 | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking in healthy and aged brain. Top panel: AMPAR trafficking in the

healthy brain. Central panel: AMPAR trafficking during basal transmission: AMPARs heterodimers are stabilized at the PSD through an indirect interaction with

PSD-95 mediated by stargazin. Synaptic GluA3/GluA2 heterodimers are highly dynamic and undergo constitutive recycling via recycling endosomes.

Phosphorylation levels of S845 of GluA1 c-tail are low perhaps by maintaining protein kinase A (PKA) and protein kinase C (PKC) away from synapses. These kinases

bind to protein scaffold AKAP150 which may be recruited to synaptic compartments in response to neuronal activation. Left Panel: AMPAR internalization during

long-term depression (LTD): mild calcium influx through N-methyl-D-aspartate receptors (NMDARs) activates dephosphorylation of S845 in a calcineurin-dependent

manner. Upon calcium influx AKAP150 is concentrated at the PSD where serves as a synaptic anchor for calcineurin. Calcineurin-dependent dephosphorylation

destabilizes the interaction of AMPARs with the PSD thus promoting a lateral move to the dendritic shaft where receptors are later internalized by vesicular

compartments. Simultaneously, calcium binding to protein interacting with c-kinase 1 (PICK1) elicits an open (active) conformation that accelerates the endocytosis

of GluA3/GluA2 receptors. Other molecules involved in the PIP3 pathway such as PTEN are recruited to the PSD via a PSD-95-dependent mechanism. PTEN

activation at synapses reduces the levels of PIP3 in the plasma membrane destabilizing AMPARs. Reduction of PIP3 may activate GSK3β which also facilitates

AMPAR removal through an unidentified mechanism. Right Panel: AMPAR insertion during long-term potentiation (LTP): high frequency stimulation induces a strong

activation of NMDARs sufficient to recruit CaMKII to the synapse where it phosphorylates S381 of the GluA1 subunit thereby increasing channel conductance and

synaptic stability. Other kinases like PKA and PKC may approach synaptic targets due to AKAP150 translocation to synapses thus increasing the phosphorylation

levels of other critical residues such as S845. Calcium influx promotes postsynaptic exocytosis of AMPARs more likely at the dendritic shafts (schematics represent

exocytosis within the dendritic spine for simplicity). Exocytosis of GluA1-containing receptors may occur during the first minutes but then are steadily replaced by

GluA2-containing AMPARs. Recently inserted receptors laterally diffuse to the PSD where can are trapped by new synaptic slots which theoretically could

accommodate different types of glutamate receptors. Bottom panel: AMPAR trafficking in the aged brain. Central panel: AMPAR trafficking during basal transmission:

basal transmission is decreased as a consequence of healthy aging. Synaptic GluA3/GluA2-containing AMPARs are not replenished at the same rate than at

younger synapses inducing weaker synaptic transmission. In addition phosphorylation levels may be altered. Disruptions in critical scaffolding molecules like PSD-95

may contribute to alterations of synaptic structure and morphology. Left Panel: AMPAR internalization during LTD: internalization of AMPARs in enhanced in older

synapses likely as a consequence of an increased endocytosis rate and changes in phosphorylation levels. Right Panel: AMPAR insertion during LTP: LTP is impaired

in older synapses where newly inserted AMPARs may be easily removed from an unstructured PSD undergoing enhanced endocytosis.

and activity-dependent recycling of GluA2/GluA3-containing

receptors by facilitating the formation of functional protein

complexes that involve molecules like the memory-associated

Kidney/BRAin protein KIBRA (Kim et al., 2001; Lin and

Huganir, 2007; Citri et al., 2010; Makuch et al., 2011; but

see also Terashima et al., 2008). Furthermore, another PDZ

domain-containing protein, the glutamate receptor-interacting

protein 1 (GRIP1), has also been implicated in specifically

stabilize GluA2 and GluA3 subunits at synapses (Dong et al.,

1997).

These findings have promoted a widely accepted model in

which during LTP GluA2-lacking AMPARs are rapidly inserted

at synapses likely by laterally diffusing from extrasynaptic

localizations. Both synaptic and extrasynaptic AMPARs can be

rapidly replenished by regulated exocytotic events providing

enough receptors to engage in both activity-dependent and

constitutive trafficking (Passafaro et al., 2001; Makino and

Malinow, 2009; Jurado et al., 2013; Arendt et al., 2015).

Subsequently, GluA2-lacking AMPARs can be steadily replaced

by GluA2-containing receptors which are more susceptible

of dynamic regulation during baseline transmission and LTD

(Shi et al., 2001; Plant et al., 2006; Yang et al., 2010; Jaafari

et al., 2012; see model of AMPAR trafficking in Figure 1).

However, this prevailing view has recently been challenged.

Using a molecular replacement approach in which different

combinations of GluA1 c-tail mutants replaced the endogenous

subunit, Granger et al. (2013) showed that AMPAR subunit

composition is not a definitive determinant for LTP. These

findings also exposed that the insertion of different glutamate

receptors such as kainate receptors can support synaptic
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potentiation. These results shed new light into the mechanisms

of synaptic plasticity and imply that the most important

requirement for LTP is the rapid recruitment of glutamate

receptors at synaptic localizations independently of subunit

composition. Furthermore, using organotypic slicesWatson et al.

(2017) have recently shown that the AMPARN-terminal domain

may be required for LTP by mediating synaptic anchoring in

a subunit-selective manner. Mutagenesis experiments revealed

that AMPARs lacking the N-terminal domain aremore labile and

unable to sustain LTP while synaptic depression was enhanced

suggesting that AMPAR anchoring through the N-terminal

domain is important for maintaining normal synaptic strength

and LTP expression. These recent advances prompt new

interesting questions on AMPAR dynamics and regulation and

will produce exciting avenues of investigation in the near

future.

AMPAR Phosphorylation
Phosphorylation is a critical determinant of AMPAR trafficking

and function (recently reviewed in Lu and Roche, 2012; Wang

et al., 2014). In general, kinase activity resulting in AMPAR

phosphorylation is associated with LTP whereas phosphatase

activity and dephosphorylation is linked to LTD (Lee et al.,

2000). An important phosphorylation target for both CaMKII

and protein kinase C (PKC) is the serine 831 (S831) in the long

GluA1 c-tail which leads to an increase of channel conductance

(Roche et al., 1996; Derkach et al., 1999; Kristensen et al.,

2011). Work in transgenic mice expressing mutated versions

of GluA1 CaMKII sites has revealed a potential role of this

particular phosphorylation event during synaptic plasticity and

memory retention (Lee et al., 2003, 2010, but see also Granger

et al., 2013).

Phosphorylation of another GluA1 residue (S845) by protein

kinase A (PKA) also increases the peak conductance and open

probability of the channel (Banke et al., 2000). PKA-mediated

phosphorylation of GluA1 S845 stabilizes extrasynaptic

GluA1 homomers, to become more readily available to

reach synapses during LTP whereas S845 dephosphorylation

facilitates AMPAR endocytosis during LTD (He et al., 2009).

GluA1 S845 is dephosphorylated by the calcium dependent

phosphatase calcineurin (also known as PP2B). Interestingly,

calcineurin and PKA can be jointly anchored by synaptic

scaffold AKAP150 which brings together these two antagonistic

functions at synapses. A specific AKAP150 knockdown or

the expression of a mutant unable to bind calcineurin lead to

enhanced GluA1 S845 phosphorylation and blocked LTD, but

not LTP (Jurado et al., 2010b; Sanderson et al., 2012) consistent

with the idea that the net balance of AMPAR phosphorylation

determines receptors’ stability at synapses. Additionally,

phosphatases and kinases involved in the PIP3 pathway have

been shown to regulate AMPAR dynamics during LTP and

LTD (Man et al., 2003; Arendt et al., 2010; Jurado et al.,

2010a). However this form of regulation is likely to recruit

several converging pathways rather than directly affect AMPAR

phosphorylation.

Given the importance of AMPAR phosphorylation in

regulating receptor activity, it has been proposed that

phosphorylation levels are maintained low during baseline

conditions and then regulated by neuronal activity (Hosokawa

et al., 2015). This may explain why changes in AMPAR

phosphorylation show more profound effects during activity-

dependent than constitutive trafficking. Although further work

is required to elucidate the exact mechanisms, the present

evidence highlights an important role of phosphorylation,

and surely other post-transcriptional modifications like

palmitoylation and ubiquitylation (Lu and Roche, 2012), in

controlling AMPAR trafficking and function. In this regard,

ubiquitylation and phosphorylation may be strategic targets

during neurodegenerative diseases as it has been shown

that soluble Aβ oligomers increase AMPAR ubiquitination

(Rodrigues et al., 2016) and reduce phosphorylation of

GluA1 S845 occurring simultaneously to AMPAR removal

from the plasma membrane (Guntupalli et al., 2017; Widagdo

et al., 2017).

Other Pathways of AMPAR Regulation
Protein-protein interactions play also a crucial role in AMPAR

dynamics. AMPAR regulatory proteins such as the canonical

transmembrane AMPAR regulatory proteins (TARPs) serve as

auxiliary subunits that regulate channel activity and synaptic

stabilization (Bats et al., 2007; Coombs and Cull-Candy, 2009).

Although the TARP family is the best known, there has been a

great progress in identifying novel AMPAR auxiliary subunits

(recently reviewed in Jackson and Nicoll, 2011) along with

adhesion molecules such as leucine-rich repeat transmembrane

(LRRTM) proteins and N-cadherins (Saglietti et al., 2007;

Soler-Llavina et al., 2013) which also contribute to synaptic

retention.

TARPs such as stargazin and γ5 are key regulators of

AMPAR biophysical properties by reducing the sensitivity

to polyamines of GluA2-lacking receptors (Soto et al., 2007,

2009). In addition to these modulatory roles, TARPs participate

in AMPAR trafficking and synaptic retention. For example,

stargazin and TARPs γ3, γ4 and γ8 stabilize synaptic AMPARs

through binding to PSD-95 and this stabilization has been

postulated to be important during LTP (Tomita et al.,

2005). During high frequency stimulation, glutamate binding

to AMPARs reduces the interaction with stargazin which

destabilizes desensitized receptors to diffuse away from synapses

(Morimoto-Tomita et al., 2009; Constals et al., 2015; but see

also Nakagawa et al., 2005). This mechanism may remove

inactive AMPARs from synapses to be later replenished by

fresh receptors from extrasynaptic compartments to sustain

LTP. Although it has not fully been elucidated, there is

accumulating evidence that some TARPs including stargazin

may differentially affect AMPAR trafficking depending on

subunit composition. For example in the absence of stargazin,

there is an increase in GluA1-containing AMPARs in synapses

suggesting that these receptors can reach synaptic compartments

independently of this molecule (Bats et al., 2012; but see

also Jackson et al., 2011). Future work will examine how

AMPAR auxiliary subunits coordinate their multimodal roles

to regulate channel activity, subunit composition and synaptic

retention.
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AMPAR SIGNALING DURING NORMAL
AGING

Before deepening into AD pathology, it is important to consider

how the molecular processes that govern AMPAR-mediated

transmission are affected during healthy aging. An older brain

often exhibits mild defects in cognitive capabilities such as spatial

and working memory with usually harmless consequences. This

natural cognitive decline does not seem to be directly connected

to significant neuronal loss which only seldom occurs in healthy

elderly, but rather depends on the reorganization of synaptic

structure (recently reviewed in Morrison and Baxter, 2012)

suggesting abnormalities in the trafficking and stabilization of

synaptic molecules.

To date, work focused in the events underlying healthy aging

are limited to just a few studies tangentially addressing AMPAR

trafficking by the means of analyzing synaptic plasticity. The

primary findings of these studies conclude that in general LTP

in older animals is less robust and requires stronger stimulation

protocols to be elicited (Moore et al., 1993; Barnes et al.,

2000; Tombaugh et al., 2002) whereas LTD appears to be

facilitated (Norris et al., 1996). These findings suggest that the

machinery involved in AMPAR removal from synapses may be

enhanced later in life. This mechanism acting during natural

agingmay be exploited by Aβ or other pathological metabolites to

further decrease synaptic AMPARs and trigger synaptic decline

(Kamenetz et al., 2003; Hsieh et al., 2006; Shankar et al.,

2007).

A surge of instability at the postsynaptic density may have

negative repercussions not only for synaptic plasticity but

also for maintaining stable synaptic strength. In fact, overall

AMPAR hypofunction in aged subjects is suspected however

it is uncertain whether this is a consequence of a decrease in

synaptic AMPARs or an increase of modified receptors with

reduced stability at synapses and/or conductivity. Two recent

studies in aged rats showed that the administration of positive

allosteric modulators of AMPARs had a beneficial effect on

restoring age-related memory and synaptic potentiation deficits

(Bloss et al., 2008; Radin et al., 2016). These results imply

that at older synapses the number of functional AMPARs

is sufficient to support LTP and memory storage but these

receptors are mostly silent in the absence of appropriate

enhancers.

The aforementioned scenario suggests two alternative

hypotheses. One theory could postulate that aging alters

presynaptic function thereby reducing glutamate release. A

decrease in glutamate exocytosis would particularly affect

AMPARs which bind to the endogenous agonist with much

lower affinity than other glutamate receptors such as NMDARs

(Edmonds et al., 1995). In fact, a significant increase in the

bouton size and number of synaptophysin-positive terminals has

been reported in the hippocampus of aged rats (Shimada et al.,

2003; Himeda et al., 2005) suggesting that aging may hinder

glutamate release leading to enlarging presynaptic compartments

as a compensatory mechanism.

A second scenario could predict an increase of modified

AMPARs which are either more labile at synapses or with

reduced net conductivity. In this situation the administration

of stimulants may overcome their loss of function, at least

transiently. As discussed previously, increased instability

and reduced conductivity can be triggered by altering

AMPAR phosphorylation and/or by modifying their subunit

composition. Currently, there are no reports assessing AMPAR

phosphorylation in animal models of normal aging however

a study by Hara et al. (2012) suggested that a switch in

AMPAR subunit composition may be involved in natural

cognitive decline. They used electron microscopy to analyze

the subcellular localization of both the GluA2 subunit and

protein kinase PKMζ in young and aged monkeys. Their

results showed that older animals presented less synapses

co-labeled with GluA2 and PKMζ. It is interesting that GluA2-

containing AMPARs are targeted in other brain pathologies like

epilepsy (Grooms et al., 2000) however it is unknown whether

age related mechanisms specifically target these receptors

or whether their exit from synapses is a consequence of a

broader reorganization of synaptic architecture. Given that

most AMPARs in mature cortical and hippocampal synapses

are GluA1/2 heteromers (Lu et al., 2009), it is reasonable

to propose that mechanisms directed to remove GluA2 will

greatly affect synaptic transmission and plasticity in the aging

brain (see model of AMPAR trafficking in healthy aging in

Figure 1). Despite these recent advances, studies exploring

AMPAR dynamics in neurons from naturally aged subjects are

scarce thus it is still unclear whether AMPAR phosphorylation

and/or subunit composition are differentially regulated in older

brains and how these alterations may contribute to cognitive

decay.

AMPAR SIGNALING DURING
NEURODEGENERATION: FOCUS ON
ALZHEIMER’S DISEASE

In the pathology of AD, neuronal function is compromised

in two fronts: extracellularly by the accumulation of secreted

Aβ oligomers and intracellularly by deposits of aberrant tau

protein. However it is possible that neurons may not have

to face these challenges simultaneously. Cellular and animal

models indicate that Aβ accumulation precedes NFTs formation

(Hardy and Selkoe, 2002) suggesting that both metabolites

may take part in different stages during the progression of

neurodegeneration. Here, I discuss some of the recent work

analyzing the roles of Aβ and NFTs in AMPAR trafficking and

how these molecules may work synergistically to alter synaptic

structure and function.

Effect of Aβ in AMPAR Signaling

Aβ in Synaptic Plasticity
Aβ induces synaptic aberrations by altering the morphology

and composition of synapses that lead to significant dendritic

spines loss (Lacor et al., 2007; Bittner et al., 2010). These effects

suggest a critical role of Aβ in altering synaptic function. In

fact, the most consistent effect in response to exogenous Aβ

or APP overexpression is the induction or enhancement of
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synaptic depression by a process analogous to Hebbian LTD

(Kamenetz et al., 2003; Hsieh et al., 2006; Shankar et al., 2007).

Similarly to canonical LTD, Aβ-induced depression requires

NMDARs activation which triggers the removal of AMPARs

from synapses (Kamenetz et al., 2003; Hsieh et al., 2006;

Shankar et al., 2007). Furthermore, the blockade of AMPAR

endocytosis prevents the loss of dendritic spines induced by

Aβ (Hsieh et al., 2006). Interestingly, Aβ oligomers have

been proposed to indirectly interact with NMDARs (Decker

et al., 2010) which may lead to neuronal oxidative stress (De

Felice et al., 2007). According to the requirement of NMDAR

activation, the removal of synaptic AMPAR in response to

Aβ has been proposed to share common signaling pathways

with LTD. For example, blocking LTD-related pathways like

p38 MAPK and calcineurin prevented Aβ-induced LTP deficits

andAMPAR internalization (Wang et al., 2004; Zhao et al., 2010).

Additionally, the inhibition of GSK3β and PTEN, two molecules

involved in the PIP3 pathway which have been involved in

activity-dependent regulation of dendritic growth and LTD

(Arendt et al., 2010; Jurado et al., 2010a; Rui et al., 2013),

restored Aβ-induced AMPAR endocytosis (Rui et al., 2010) and

protected synaptic function and cognition in cellular and animal

models of AD (Knafo et al., 2016). Despite these similarities,

Aβ-induced synaptic depression has also been proposed to

engage distinct signaling cascades such as the metabotropic

function of NMDARs by targeting GluN2B-containing receptors

which recruit protein G-dependent pathways (Kessels et al.,

2013).

In accordance with synaptic and cognition decline, LTP is

impaired in animal models of AD and in response to acute

administration of Aβ (Walsh et al., 2002; Shankar et al., 2008;

Wei et al., 2010). One of the main effects of Aβ is to alter

CaMKII synaptic localization. Using cortical neurons from APP

transgenic mice, Gu et al. (2009) found that he synaptic pool of

CaMKII was significantly reduced in an APP transgenic mouse.

This effect was consistent with a decrease in the density of

CaMKII clusters at synapses of cortical neurons treated with

Aβ oligomers (Gu et al., 2009). Conversely, overexpression

of CaMKII restored AMPAR-mediated transmission suggesting

that Aβ alters the subcellular distribution of CaMKII which

in turn destabilizes synaptic AMPARs and hinders synaptic

potentiation. Alternatively, soluble Aβ may affect LTP induction

by reducing surface expression of NMDARs (Snyder et al., 2005).

However, a decrease in surface NMDARs may in turn have a

protective effect since a specific NMDAR knock-down abolished

the binding of oligomers to dendrites suggesting that NMDARs

might be required for the synaptic targeting of Aβ (Decker

et al., 2010). Furthermore, Aβ has been proposed to specifically

activate GluN2B-containing NMDARs leading to neuronal

hyperactivation and LTP blockade (Li et al., 2009, 2011). Another

route that Aβ may utilize to interfere with AMPAR insertion

appears to be interfering with BDNF-dependent pathways

required for synaptic potentiation (Garzon et al., 2002; Peng

et al., 2009). This accumulative evidence indicates that soluble

Aβ oligomers underlie synaptic dysfunction by altering both

NMDARs and AMPAR trafficking and function (reviewed in Tu

et al., 2014).

Synaptic Targets of Aβ: A Role for AMPARs Subunits?
Intriguingly, the presence of Aβ plaques do not necessarily lead

to neurodegeneration (Mintun et al., 2006; Quigley et al., 2011;

Wirth et al., 2013) posing the question of why certain people

retain their cognitive function while others develop dementia.

A potential explanation could be that Aβ-induced toxicity

requires the activation of additional factors which expression

may be highly variable in the population. But, what are these

additional factors or binding partners of extracellular Aβ? To

date the most widely accepted partner of Aβ is the cellular prion

protein (Laurén et al., 2009) which has led to hypothesize that

Aβ itself could behave as a self-propagating prion to induce

neurodegeneration (Watts and Prusiner, 2017). More recently,

a pull-down approach has been used to identify endogenous

binding partners of Aβ oligomers from cerebrospinal fluid

(Rahman et al., 2015). Approximately 100 molecules primarily

involved in lipid metabolism, homeostasis and the immune

response have been identified (Rahman et al., 2015) suggesting

that Aβ may affect multiple cellular functions through a myriad

of potential binding partners.

Interestingly, Aβ oligomers have been shown to preferentially

target different AMPAR subunits (Zhao et al., 2010; Reinders

et al., 2016). Using co-immunoprecipitation and photoreactive

amino acid cross-linking in primary hippocampal cultures, Zhao

et al. (2010) showed that Aβ oligomers preferentially affect

GluA2-containing AMPARs raising the possibility that Aβ may

alter AMPAR trafficking by binding directly to the GluA2 protein

complex. Additionally, GluA2-containing AMPARs appear to

be primarily affected during healthy aging (Hara et al., 2012)

suggesting that Aβ signaling may exploit a naturally occurring

mechanism to aggravate ongoing synaptic decay. However, a

recent study suggested that another AMPAR subunit may be

Aβ preferred target. Reinders et al. (2016) showed that synaptic

depression and spine loss in CA1 neurons that overexpressed

Aβ required GluA3 expression. In their electrophysiology

experiments, LTP remained unaltered in acute hippocampal

slices from GluA3-deficient mice in response to exogenous Aβ

which efficiently diminished LTP in control mice. These results

imply that Aβ preferentially drives GluA3-containing AMPAR

removal. This apparent contradiction may be explained when

considering that most GluA3 heteromers exist as GluA2/GluA3-

containing AMPARs (Lu et al., 2009). A model then arises in

which Aβ oligomers favorably bind GluA2/GluA3-containing

AMPARs thereby triggering the selective endocytosis of these

receptors from the surface of synapses (see model of how Aβ

alters AMPAR trafficking in Figure 2). A potential target for

Aβ to jointly alter GluA2/3-containing AMPAR recycling is

PICK1 (Kim et al., 2001; Lin and Huganir, 2007; Citri et al.,

2010). PICK1-dependent internalization is mediated by the

phosphorylation of the GluA2 or GluA3 c-tails by PKCα, a

process that leaves surface GluA1-containing receptors mostly

unchanged (Kim et al., 2001; Lin and Huganir, 2007; Citri et al.,

2010; but see also Terashima et al., 2008). Remarkably, synapses

from mice lacking PICK1 are protected from Aβ-induced

depressive effects (Alfonso et al., 2014) indicating that interaction

of PICK1 with GluA2/3 AMPARs may play a role in Aβ

synaptotoxicity.
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FIGURE 2 | Effect of soluble amyloid-β (Aβ) oligomers and hyperphosphorylated tau in AMPAR trafficking. Top panel: effect of soluble Aβ oligomers in AMPAR

trafficking: Central panel: AMPAR trafficking during basal transmission: soluble Aβ oligomers may bind to NMDARs and AMPARs (preferentially to GluN2B and

GluA2/GluA3 heteromers). This interaction enhances AMPAR endocytosis which decreases synaptic strength. Left Panel: AMPAR internalization during LTD: in the

presence of Aβ, NMDAR-dependent LTD engages similar signaling pathways than regular LTD. However, endocytosis exacerbation may contribute to increase

synaptic depression through a PICK1-dependent mechanism. Right panel: AMPAR insertion during LTP: accumulation of Aβ oligomers prevents CaMKII from

reaching synaptic localizations and blocking AMPAR phosphorylation important for LTP expression. Bottom panel: effect of hyperphosphorylated tau in AMPAR

trafficking. Central panel: AMPAR trafficking during basal transmission: hyperphosphorylated tau is missorted to dendritic spines where dysregulates key

components of the PSD such as PSD95 and NMDARs. Hyperphosphorylated tau prevents Fyn kinase from reaching synaptic localizations which may alter basaline

phosphorylation levels of both AMPARs and NMDARs. Left Panel: AMPAR internalization during LTD: as a consequence of reduced PSD stability, LTD may appear

enhanced in the presence of hyperphosphorylated tau at synapses. Right Panel: AMPAR insertion during LTP: insertion of AMPARs may not be affected by

hyperphophorylated tau, however subsequent synaptic retention may be impaired due to a less stable PSD. Additionally, the inability of critical protein kinases such

as the Fyn kinase to reach their synaptic target may contribute to a loss of newly-inserted receptors.

Targeting AMPAR Subunits: A Novel Therapeutic

Approach for AD?
By inducing the selective endocytosis of GluA2/3s, Aβ could

trigger synaptic depression and reduce synapse stability. Thus it

seems reasonable to speculate that synapses which reduced levels

of GluA2/3-containing AMPARs may be protected from Aβ

toxicity. In fact, a recent screening for gene-expression profiles

associated with mild cognitive impairment found GluA3 among

the genes that showed a strong negative correlation with

neurodegeneration (Berchtold et al., 2014). Synapses with lower

levels of GluA2/3 may be generated during synaptic potentiation

since it has been proposed that GluA1-containing AMPARs

are primarily inserted during LTP (Hayashi et al., 2000; Plant

et al., 2006; but also see Granger et al., 2013). However future

therapeutic approaches based on reducing GluA2/3 AMPARs in

favor of GluA1 could have unexpected side effects. Although in

general soluble Aβ facilitates synaptic depression and hinders

potentiation, intracellular Aβ has also been shown in some cases

to increase GluA1-containing AMPARs which in turn may lead

to calcium-dependent excitotoxicity (Whitcomb et al., 2015).

Despite pharmacological approaches targeted to potentiate

synaptic strength by recruiting GluA1-containing AMPARs may

present some undesirable side effects, it seems reasonable to

postulate that maintaining an intellectually active life style may

protect from some of the molecular alterations triggered by Aβ

plaques which normally appear in naturally aging brains (Mintun

et al., 2006; Quigley et al., 2011; Wirth et al., 2013).

Effect of NFT in AMPAR Signaling

Effect of NFT in Synaptic Transmission
Although the role of tau in disrupting AMPAR trafficking has

been less studied than the effect of oligomeric Aβ, there is

substantial evidence of synaptic abnormalities associated with

tau-mediated signaling with numerous studies exposing that

AMPARs appear particularly vulnerable to tau pathology. These

body of work described a significant loss of surface receptors

in cultured neurons treated with mutated tau proteins (Hoover

et al., 2010; Yu et al., 2012) and in tau mutant mice (Eckermann

et al., 2007; Yoshiyama et al., 2007; Mocanu et al., 2008; Polydoro

et al., 2009; Bittner et al., 2010; Rocher et al., 2010; Crimins

et al., 2011; Sydow et al., 2011) with a few studies reporting no

changes in synaptic density or morphology (Shahani et al., 2006;

Tackenberg and Brandt, 2009; Kimura et al., 2010; Rocher et al.,

2010). Reconciling these contradictory results is complicated

by the multiple tau manipulations employed ranging from

human mutant and wild type isoforms, pro- or non-aggregated,

fluorescent-tagged and endogenous tau in in vitro and in vivo

models. To complicate things further, in recent years there has

been a growing appreciation that NFTs may be less efficient
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in disrupting neuronal function than soluble tau (de Calignon

et al., 2009; Spires-Jones et al., 2009; Fox et al., 2011), thus

tau pathology and synaptotoxicity may greatly depend on the

ratio between the aggregated and dissociated forms. However

reorganization of synaptic ultrastructure may occur without a

dramatic remodeling of the synaptic density. A recent report

addressed the effect of tau on synapses using novel array

tomography and two-photon in vivo microscopy in an animal

model of taupathy (rTg4510; Santacruz et al., 2005; Kopeikina

et al., 2013). These results revealed that although synaptic density

remained unaltered critical synaptic proteins including PSD-95,

GluN1 and GluA1 were reduced. These findings suggest synapses

exposed to aberrant tau may exhibit subtle changes at the

ultrastructural level which in the long-run may significantly

affect synaptic function.

Effect of NFTs in Synaptic Plasticity
As aforementioned, there is ample evidence indicating that

synaptic strength is altered in models of tau abnormalities

(D’Amelio et al., 2011; but see also Crimins et al., 2011) and

that synaptic plasticity appears disrupted as a consequence

of aberrant tau. Polydoro et al. (2009) exposed that basal

synaptic transmission and induction of LTP with high-frequency

stimulation is perturbed in hippocampal CA1 region of old

but not young htau transgenic mice reinforcing the notion that

tau-dependent signaling interferes with AMPAR trafficking and

synaptic plasticity later in life (Kremer et al., 2011). Interestingly,

recombinant human tau oligomers have been shown to block

LTP and induce memory impairments independently of Aβ

(Fá et al., 2016). However another study detected no effect in

LTP but rather an enhancement of LTD (D’Amelio et al., 2011).

These discrepancies may be a consequence of employing two

different transgenicmodels.While Polydoro et al. (2009) used the

htau mice which overexpress human tau (Andorfer et al., 2003),

D’Amelio et al. (2011) employed Tg2576, a common model of

AD that overexpresses human Aβ (Hsiao et al., 1996). Given that

Aβ facilitates LTD, it may be plausible that increased Aβ levels

in Tg2576 mice could conceal tau-dependent effects in synaptic

potentiation. Despite these differences, there is a growing body

of evidence indicating a crucial role of tau-dependent signaling

in regulating synapse structure and function.

Mechanisms of NFT-mediated
Synaptotoxicity
But how a microtubule-associated protein, mostly located at

presynaptic compartments may affect postsynaptic organization

and dynamics? A potential explanationmay lay in recent findings

showing that tau can be localized not only in axonal microtubules

but also at postsynaptic densities, albeit at much lower levels

(Ittner et al., 2010). Particularly, hyperphosphorylated tau, but

not a phosphorylation-deficient tau, is accumulated in dendritic

spines where can dysregulate AMPAR trafficking together with

key signaling molecules (Hoover et al., 2010; Zempel et al.,

2010). Synaptic impairments originated by tau missorting seem

to occur independently of neurodegeneration (Hoover et al.,

2010) suggesting that tau may contribute to synaptic malfunction

before evident cognitive deficits arise. In addition to interrupting

AMPAR trafficking, tau can have disruptive effects in crucial

signaling pathways. For example, postsynaptic tau has been

shown to assist during the translocation of the Src kinase Fyn

to dendritic spines (Ittner et al., 2010). Fyn kinase is a key

regulator of GluN2 subunits phosphorylation which contributes

to the stabilization of synaptic NMDARs through a PSD-95-

dependent mechanism (Tezuka et al., 1999). Missorted tau to

synapses disrupts postsynaptic targeting of Fyn kinase with

negative effects in synaptic function and cognition (Bhaskar et al.,

2005; Ittner et al., 2010), and conversely its deletion reduced the

severity of spontaneous and chemically induced seizures in mice

overexpressing Fyn (Roberson et al., 2011).

Although phosphorylated tau is usually considered

potentially neurotoxic, recent evidence suggests a critical

role of phosphorylated tau in maintaining normal synaptic

transmission and plasticity. Thereby, using biochemical and

electrophysiological assays, Regan et al. (2015), have shown that

site-specific phosphorylation at serine 396 of tau is required

for hippocampal LTD. Moreover, a recent report from Ittner

et al. (2016) exposed positive effects of early tau phosphorylation

in an animal model of AD. Particularly, mimicking tau

phosphorylation at threonine 205 alleviated Aβ-induced

neuronal death and offered protection from excitotoxicity

during early stages of the disease (Ittner et al., 2016). These

data challenge the idea that tau phosphorylation may be a

negative consequence of Aβ synthesis and accumulation.

Furthermore, tau-mediated mechanisms may be recruited as

potential compensatory mechanisms during early AD prompting

the intriguing possibility that activating tau phosphorylation

during the initial phases of neurodegeneration may be beneficial.

These findings certainly warrant future studies to determine

how tau may be involved in inducing cognitive impairments by

affecting synaptic function (see model of how tau alters AMPAR

trafficking in Figure 2).

In addition to phosphorylation, tau acetylation is emerging

as an interesting target of tau regulation during pathological

aging as abnormal acetylation of tau lysines K274 and K281 have

been associated with dementia in AD (Tracy et al., 2016;

Tracy and Gan, 2017). Transgenic mice expressing human tau

with lysine-to-glutamine mutations exhibit AD-related memory

deficits and impaired hippocampal LTP. Interestingly, enhanced

tau acetylation disrupts hippocampal synaptic plasticity, reduces

postsynaptic KIBRA and is associated with loss of KIBRA

expression in AD patients with dementia (Tracy et al., 2016;

Tracy and Gan, 2017). Taken together these results suggest that

strategies targeted to block tau acetylation may lead to effective

treatments for cognitive decline in AD.

Aβ and Tau Converging Pathways
Aggregates of Aβ oligomers and NFTs are hallmarks of

AD, however it remains unknown how extracellular Aβ

and intracellular NFTs trigger synaptic dysfunction. Do they

employ different mechanisms or share common pathways to

accelerate synaptic decline? There are also questions regarding

the time-course of AD progression. Since pathological effects

associated with plaques usually appear earlier (Hardy and Selkoe,

2002), it has been proposed that Aβ initiates synaptic alterations
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which are later exacerbated by NFTs. However the existence of

tauophaties and the ability of hyperphoshorylated tau in altering

synaptic transmission in the absence of neurodegenerative

symptoms (Hoover et al., 2010) suggests that tau may act in the

absence of Aβ.

Despite the answer to these questions remains largely

unknown, there is ample evidence of a causal association between

oligomeric Aβ and tau (Rapoport et al., 2002; Roberson et al.,

2007; Ittner et al., 2010; Shipton et al., 2011; Nussbaum et al.,

2012; but see also Tackenberg and Brandt, 2009). Several studies

have shown that tau deletion can protect from Aβ-induced

synaptic loss and cognitive impairment in several animal models

of AD (Roberson et al., 2007, 2011; Ittner et al., 2010; Vossel

et al., 2010). One of the most plausible mechanisms linking the

actions of Aβ and tau in pathology may involve the stimulation

of tau phosphorylation through a signaling pathway initiated

by Aβ. Hyperphosphorylated tau is missorted to postsynaptic

densities where it may contribute to the synaptotoxic role of

oligomeric Aβ (Zempel et al., 2010; Ittner and Götz, 2011).

Consistent with this, Aβ oligomers isolated from brains of

AD patients were sufficient to elicit tau hyperphosphorylation

in cultured hippocampal neurons (Jin et al., 2011) and anti-

Aβ antibodies protected from tau hyperphophorylation and

neuritic degeneration (Jin et al., 2011). A potential point

of converge for Aβ and tau at synapses may be NMDARs

activation since their blockade has been shown to abolish both

Aβ-induced dendritic spine loss and tau-dependent toxicity

(Shankar et al., 2007; but see also Tackenberg and Brandt, 2009).

Interestingly, it has been recently proposed that Aβ could control

tau phosphorylation by stimulating glutamate release from

astrocytes which activates extrasynaptic NMDARs (Talantova

et al., 2013). These data agree with a model where Aβ-mediated

signaling promotes tau phosphorylation which may lead to

anomalous hyperphosphorylation and pathology (but see also

Ittner et al., 2016). However, new findings using human

pluripotent stem cell derived neurons from AD patients has

exposed that increased tau phosphorylation at Thr231 depends

on β-secretase activity (Israel et al., 2012) raising the possibility

that Aβ-induced tau phosphorylation can engage an alternative

pathway independent of Aβ signaling.

Regulation of tau by Aβ-mediated NMDARs activation entails

that common signaling pathways linked to these receptors

may be implicated in facilitating the pathological effects of

both molecules. In agreement, GSK3β regulates both tau

phosphorylation and Aβ production and its inhibition prevents

Aβ-induced impairment of LTP and improve AD pathology

(Shipton et al., 2011). In addition to sharing common signaling

pathways it may be possible that as a result of increasing

production of Aβ oligomers and NFTs at late stages of

neurodegeneration both molecules could be found in enough

amounts to directly interact with each other. This possibility

is supported by a recent study using co-immunoprecipitation

and immunohistology techniques. Using this approach Manczak

and Reddy (2013) have exposed a potential interaction between

Aβ oligomers and phosphorylated tau in both human and

animal AD brains which increased with disease progression. It is

thus possible that pathological interactions between oligomeric

Aβ and NFTs are important intermediate steps during later

stages of AD. Considering the current findings we could

imagine a scenario in which Aβ and tau may converge at

synapses by hijacking key synaptic pathways such as NMDAR-

mediated transmission. These early events may exacerbate

synaptic degeneration until a complete convergence of tau and

Aβ signaling pathways, facilitated by direct interaction between

FIGURE 3 | AMPAR trafficking during Alzheimer’s disease (AD): early and later phases. (A) AMPAR trafficking during early phase of neurodegeneration: at early

stages soluble Aβ oligomers may activate a NMDAR-dependent pathway that results in increased tau phosphorylation levels and further Aβ synthesis. A plausible

candidate to mediate these effects is GSK3β which reduces synaptic transmission and enhances LTD. (B) AMPAR trafficking during later phases of

neurodegeneration: combined effects of Aβ and hyperphosphorylated tau prevent LTP expression in altered synapses likely by preventing the action of key protein

kinases such as CaMKII and Fyn kinase. Aβ and hyperphosphorylated tau could form synaptotoxic aggregates at the PSD that further aggravate synaptic decay.
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the two at later stages (see model AMPAR trafficking in AD in

Figure 3). Future in-depth studies will be necessary to determine

the interplay of tau and Aβ in disrupting AMPAR dynamics and

neurodegeneration.

CONCLUDING REMARKS

The dynamic regulation of AMPARs is a crucial factor in

supporting baseline synaptic transmission and plasticity. Thus

AMPAR dysregulation underlies synaptic decay during natural

and pathological aging. Over the last years, great progress has

been made in understanding how AMPAR signaling is affected

during neurodegenerative diseases such as AD in which both

NFTs and Aβ disrupt glutamate receptors and their downstream

pathways. Interestingly, several findings indicate that selective

dysregulation of GluA2/3-containing AMPARs may be an

important target during both natural and pathological aging.

Removal of GluA2 has profound consequences in trafficking

and AMPAR calcium permeability resulting in an increase of

calcium influx which may contribute to neuronal excitotoxicity.

Selective targeting of GluA3 and GluA2-containing AMPARs

during pathological conditions suggests the intriguing possibility

that the molecular mechanisms involved in their regulation

may be the foundation of novel therapies for neurodegenerative

diseases. In this regard, personalized medicine catered to various

genetic backgrounds may be helpful to identify the potential

underlying causes of synaptic malfunction in a case-by-case

basis. In order to accomplish this, a better understanding of

the molecular underpinnings involved in AMPAR trafficking in

healthy synapses will be crucial.
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