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Abstract

To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. 
This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, 
synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the 
fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key 
mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of 
interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial 
modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners 
in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, 
and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic 
plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical 
auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
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Abbreviations

ABHD  a/b-hydrolase domain-containing protein; 
monoacylglycerol lipase

ABP  AMPAR-binding protein
ADAM  A disintegrin and metalloproteinase
AKAP  A kinase anchoring protein
AMPA(R)  α-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (receptor)
AP  Adaptor protein complex
ApoER2  Apolipoprotein E receptor 2
APP  Amyloid precursor protein
Arp  Actin-related protein
ASIC  Acid-sensing ion channel

Atad  ATPase family AAA domain-containing
BAR  Bin-amphiphysin-Rvs
BMP  Bone morphogenetic protein
CACNG  Calcium channel γ subunit
CaM  Calmodulin
CaMK  Calcium/calmodulin-dependent protein 

kinase
CASK  Calcium/calmodulin-dependent serine pro-

tein kinase
CK  Caseine kinase
CKAMP  Cystine-knot AMPAR modulating protein
CNIH  Cornichon homolog protein
CPEB  Cytoplasmic polyadenylation element-bind-

ing protein
cpg  Candidate plasticity gene
CPT  Carnitine palmitoyltransferase
DHPG  Dihydroxyphenylglycine
DLG  Discs large homolog
DSP A-D  Dispanin subfamily A–D
EEA  Early endosome antigen
EphB  Erythropoietin-producing human hepatocel-

lular receptor
ER  Endoplasmic reticulum
ERK  Extracellular signal-regulated kinase
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FRRS1L  Ferric-chelate reductase 1-like protein
GABA  Aminobutyric acid
GIT  ARF GTPase-activating protein
GK  Guanylate kinase
GPC  Glypican
GPI  Glycosylphosphatidylinositol
GRASP  GRIP1-associated protein
GRIP  Glutamate receptor-interacting protein
GSG1L  Germline-specific gene 1-like
GSK  Glycogen synthase kinase
ICA  Islet cell autoantigen
IgSF  Immunoglobulin superfamily member
JNK  c-Jun-N-terminal pathway
KIBRA  Kidney and brain expressed protein
KIF  Kinesin superfamily
KSR  Kinase suppressor of Ras
LAR-RPTP  Leukocyte common antigen-related receptor 

protein tyrosine phosphatase
LRP  Low-density lipoprotein receptor-related 

protein
LRRTM  Leucine-rich repeat transmembrane protein
LTD  Long-term depression
LTP  Long-term potentiation
MAGI  Membrane-associated guanylate kinase, 

WW and PDZ domain-containing protein
MAGUK  Membrane-associated guanylate kinase
MAP  Microtubule-associated protein
MAPK  Mitogen activated protein kinase
MAP-LC  MAP light chain
Mdm  Mouse double minute
MPP  MAGUK p55 subfamily member
NEEP  Neuron-enriched endosomal protein
NMDA(R)  N-methyl-D-aspartate (receptor)
NO  Nitric oxide
nPIST  Neuronal isoform of protein interacting 

specifically with TC-10
NSF  N-ethylmaleimide-sensitive fusion protein
PACSIN  Protein kinase C and casein kinase substrate 

in neurons
Par  Partitioning-defective kinase
PDZ  Postsynaptic density (PSD) 95, Dros-

ophila discs large homolog (Dlg) 1, zonula-
occludens 1 protein (zo1)

PICK  Protein interacting with C Kinase
PK  Protein kinase
PORCN  Protein-serine O-palmitoleoyltransferase 

porcupine
PP  Protein phosphatase
PRRT   Proline-rich transmembrane protein
PSD  Postsynaptic density
PTP  Protein tyrosine phosphatase
PV  Parvalbumin
Rap  Ras-related protein

RasGEF  Ras guanine nucleotide exchange factor
Sac  Phophatidylinositide phosphatase Sac
SAP  Synapse-associated protein
Ser  Serine
SH3  Src homology 3
SNAP  Soluble NSF attachment protein
SNARE  Soluble NSF attachment protein receptor
SorCS  Sortilin-related VPS10 domain-containing 

receptor
stg  Stargazer
SynCAM  Synaptic cell adhesion molecule
SynDIG  Synapse differentiation induced gene
TARP  Transmembrane AMPAR regulatory protein
Thr  Threonine
TSPAN  Tetraspanin
TTX  Tetrodotoxin
Tyr  Tyrosine
UPR  Unfolded protein response

Introduction

Synaptic plasticity is a core feature of neuronal networks and 
describes their ability to adjust the strength of their connec-
tions in response to extrinsic stimuli. It is, therefore, highly 
regulated at both ends of the synaptic cleft. On the postsyn-
aptic side, neuronal sensitivity is regulated by adapting the 
number and properties of available receptors at the mem-
brane. When these changes are long-lasting, they are referred 
to as long-term potentiation (LTP) or long-term depres-
sion (LTD), depending on whether the synaptic strength is 
increased or decreased, respectively. This type of plasticity 
is collectively called Hebbian plasticity, underlies learning 
and memory, and represents one of the first brain functions 
to suffer in neurodegenerative diseases [1, 2]. Moreover, 
neurons are also able to sense their own activity levels and 
to return to their baseline, thereby ensuring a certain stabil-
ity in the network. This process, called homeostatic synaptic 
scaling, also depends on the insertion or removal of recep-
tors from the membrane—insertion increases neuronal sen-
sitivity to neurotransmitters (scaling up), whereas removal 
decreases it (scaling down) [3].

Glutamate is the major excitatory neurotransmitter in 
the central nervous system, and its major ionotropic recep-
tors are the N-methyl-D-aspartate (NMDA) and α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
receptors. NMDA receptors (NMDARs) are both ligand- and 
voltage-gated: their activation depends not only on the bind-
ing of glutamate, but also on the concomitant depolarization 
of the postsynaptic membrane following neuronal activity, 
which relieves the block of their ion channel by magnesium. 
AMPA receptors (AMPARs), on the other hand, are ligand-
gated only and the primary mediators of fast excitatory 
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transmission. The dynamic regulation of AMPARs traffick-
ing to, at, and from the synaptic membrane is a key aspect 
of synaptic plasticity [4]. From their assembly onwards as 
homo- or heterotetramers of four highly homologous subu-
nits GluA1-4, AMPARs are, however, never alone but sur-
rounded by a multitude of proteins throughout their lifetime, 
which guide their subcellular destination and fate. The role 
of these interacting proteins has attracted more and more 
attention over the past few years, as it became clearer that 
they were playing a major role in regulating AMPAR traf-
ficking and function. Their temporally and spatially regu-
lated expression, leading to different combinations according 
to age, brain region, neuronal type, and even cellular locali-
zation, also provides a molecular framework underlying the 
spatio-temporal specific features of AMPAR trafficking ([5]; 
reviewed in Ref. [6]). For instance, mutant mice lacking the 
interacting protein transmembrane AMPAR regulatory pro-
tein (TARP) γ2 or γ8 present defects in their major region 
of expression—the cerebellum or hippocampus, respec-
tively [7, 8]. Similarly, pharmacological companies select 
now interacting proteins as drug targets, as their restricted 
expression pattern allows for a more specific modulation of 
receptor signaling (reviewed in Ref. [9]).

In addition to their timing and location, the strength and 
stability of the interaction between the auxiliary proteins 
and AMPARs is of course variable. Some of them were 
found repeatedly in proteomics studies, and have, therefore, 
been classified as parts of native AMPAR macrocomplexes. 
Those include an “inner core”, composed of the strongest 
bound proteins [TARPs, cornichon proteins (CNIHs), and 
germline-specific gene 1-like (GSG1L)], and an “outer core” 
of peripheral, more variable content [10]. Interestingly, not 
all of the historically well-known AMPAR interacting pro-
teins, such as glutamate receptor-interacting protein (GRIP) 
1 and protein interacting with C kinase (PICK) 1, were iden-
tified in proteomic studies. These diverging results may, of 
course, arise from technical differences between the pro-
tocols, which were designed for different purposes (strin-
gency of the interaction, confirmation of single partners ver-
sus unbiased protein screening). More interestingly, highly 
dynamic interactions and/or subunit specificity might also 
be the reason for the lack of some interactors in those studies 
[11, 12]. This could apply very well to GRIP1 and PICK1, 
which also act as scaffolds for larger complexes.

This review will focus on the major direct interacting 
partners of AMPA receptors regulating their trafficking. Due 
to the impossibility of describing the variety of roles under-
taken by these proteins, we will refer our readers to recent 
reviews regarding their role in AMPAR complex assembly, 
gating, and function, but also AMPAR trafficking specifi-
cally at the endoplasmic reticulum (ER) and during aging 
and diseases [13–17]. In this review, we will give an over-
view of the complex network of interactions surrounding 

AMPARs, concentrating on the role of AMPAR partners 
in regulating AMPAR trafficking in mature neurons, espe-
cially at the synapse. We will start with proteins containing 
PDZ [Postsynaptic density (PSD) 95, Drosophila discs large 
homolog (Dlg) 1, and zonula-occludens 1 protein (zo1)] 
domains, i.e., GRIP1, PICK1, and the MAGUK (mem-
brane-associated guanylate kinase) family; we will continue 
with the typical auxiliary subunits TARP and CNIH, and 
finish with the partners newly identified by Schwenk and 
colleagues.

PDZ domain-containing interactants

Glutamate receptor‑interacting proteins (GRIPs)

AMPAR subunits GluA2 and GluA3 share a common 
sequence (-SVKI) at the end of their C-terminus, through 
which they can interact with PDZ domain-containing pro-
teins [18]. Two groups have been identified so far: the GRIP 
family of proteins [18, 19] and PICK1 [20]. GRIP proteins 
include the original member GRIP1 [18], as well as GRIP2 
[21, 22] and AMPAR-binding protein (ABP; [19]). GRIP1/2 
contains seven PDZ domains, while ABP, a shorter splice 
variant of GRIP2, lacks the seventh PDZ domain [22]. The 
role of GRIP proteins in regulating AMPAR trafficking to 
and at the synapse has been intensively studied. GRIP1, but 
not GRIP2, binds to the motor protein kinesin superfam-
ily protein (KIF) 5 and acts as a cargo for AMPARs and 
other proteins, such as erythropoietin-producing human 
hepatocellular receptor (EphB) receptors and N-cadherin, 
transporting them into the dendrites [23–27] (Fig. 1). GRIP1 
release from KIF5 is regulated by the phosphorylation of the 
threonine residue 956 of GRIP1, which subsequently binds 
another partner, the 14-3-3 proteins; this is an important 
step for the function of AMPARs at the synapse. Mutat-
ing this threonine to an alanine, and thereby preventing its 
phosphorylation, impairs GRIP1 function; phosphodeficient 
mice show impaired cargo trafficking, but also decreased 
dendritogenesis [25]. This phosphorylation is carried by the 
kinase Akt1 [27].

At the synapse, GRIP1 role is more ambiguous. Several 
studies have, indeed, shown GRIP1 requirement in AMPAR 
insertion to the synaptic surface [28–36], while others have 
linked it to AMPAR removal from the synaptic membrane 
and intracellular anchorage [37–39]. On one hand, GRIP1 
binding to GluA2 is regulated by GluA2 phosphorylation 
on the serine 880 (pSer880) by protein kinase C (PKC), 
which decreases GluA2 affinity for GRIP1, but does not 
affect its interaction with PICK1 [29, 40]. pSer880 has, 
therefore, been suggested as a “switch” regulating GluA2 
interaction with both PDZ-containing proteins. Upon Ser880 
phosphorylation, GluA2 release from GRIP1 is associated 
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with its internalization and the dissociation of its postsyn-
aptic clusters [32], and its subsequent binding to PICK1 
is required for the maintenance of cerebellar LTD [33]. A 
similar mechanism has been proposed for hippocampal LTD, 
suggesting a complementary role for GRIP1 and PICK1 in 
regulating the insertion and internalization of AMPARs at 
the surface, respectively [29, 31, 34]. Consistently, GluA2 
phosphorylation on Ser880 is required for cerebellar LTD 
[30]. In addition, GRIP1/2 double knockout mice show 
increased pSer880- GluA2 levels and decreased surface 
AMPARs, while transgenic mice with gain-of-function 
mutations display enhanced surface distribution and faster 
recycling of AMPARs [41, 42]. On the other hand, GRIP1 
has also been shown to bind internalized GluA2 receptors 
and tether them intracellularly following LTD induction or 
AMPA-induced endocytosis, suggesting a role in preventing 
AMPAR reinsertion at the membrane [37, 39, 43]. A similar 
role has been proposed for GRIP2 [44]. In agreement with 
this, GRIP1/2 double knockout Purkinje cells are unable 
to express LTD [45]. In addition to AMPAR insertion or 
internalization, GRIP1 may also regulate activity-dependent 
AMPAR reinsertion into the membrane, by interacting with 
the exocyst protein Sec8 [46]. To add a further level of com-
plexity, PICK1 is also able to bind the second linker domain 

of GRIP proteins; interfering with such interaction decreases 
Ser880 phosphorylation and surface GluA2 expression, 
NMDAR-induced GluA2 internalization and its subsequent 
reinsertion into the membrane, suggesting a regulatory role 
for PICK1/GRIP1 interaction as well [47]. Finally, GluA2 
phosphorylation on the tyrosine 876 also regulates its bind-
ing to PDZ-containing proteins similarly to Ser880 phospho-
rylation, as it decreases GRIP1/2 binding without affecting 
PICK1 interaction; mutating this residue leads to a reduction 
of GluA2 receptors at the membrane, further emphasizing 
the main role for GRIP1 in regulating surface expression of 
AMPARs [48].

All these functions are, however, not mutually exclusive, 
if one considers the existence of multiple AMPAR pools 
at the synapse, with different recycling rates, and possibly 
involving different regulatory proteins and responding to dif-
ferent stimuli. Indeed, not all GluA2-containing receptors 
are internalized upon Ser880 phosphorylation by PKC; a 
subpopulation stays inserted at the membrane, suggesting 
that binding to GRIP1 is not required by all the receptors for 
surface expression [49]. Moreover, triggering NMDAR- or 
mGluR-dependent LTD in hippocampal neurons leads to the 
endocytosis of different AMPAR populations: while the for-
mer induces internalization of rapidly recycling AMPARs, 
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Fig. 1  Regulation of AMPAR trafficking by GRIP1 and PICK1. 
The PDZ domain-containing GRIP1 and PICK1 regulate surface 
AMPAR in opposite directions: GRIP1 primarily promotes AMPAR 
surface insertion, stabilization, and reinsertion after internalization, 
while PICK1 acts on internalization and intracellular anchorage. 
Their interaction with GluA2 subunits is regulated by GluA2 phos-
phorylation on the serine 880, which favors GluA2–PICK1 binding 
over GluA2–GRIP1. GRIP1 interaction with ephrinB ligands stabi-
lizes surface AMPARs, at spine (ephrinB2, via the phosphorylation 
of ephrinB2 serine-9) or shaft (ephrinB3) synapses. Following inter-
nalization, PICK1–GluA2 also inhibits actin polymerization. PICK1 

regulates AMPAR sorting, while GRIP1 also transports AMPARs to 
the synapse by interacting with the motor proteins KIF1A and KIF5; 
cargo release from KIF5 and the microtubules requires phosphoryla-
tion of GRIP1–Thr956 residue. Conversely, GRIP1 interaction with 
MAP1B-LC leads to AMPAR–GRIP1 trapping on the microtubules. 
EE early endosome, RE recycling endosome. Note for all figures: 
posttranslational modifications (with the causative enzymes, when 
known) and direct partners of AMPAR interactants relevant for their 
regulation of AMPAR trafficking are also included. No stoichiometry 
is implicated; binding sites are indicative only, and size ratios are not 
to scale
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which are not bound to GRIP, the latter triggers the endocy-
tosis of stable, GRIP-bound AMPARs [50].

Recently, a new function of GRIP1 in homeostatic syn-
aptic scaling has also been uncovered [35, 36]. Using either 
shRNA against GRIP1 or GRIP1/2 double knockout neu-
rons, two studies showed that GluA2–GRIP1 interaction is 
required for the trafficking and insertion of AMPARs in the 
membrane during scaling up following silencing of neuronal 
activity; it is, however, not required for scaling down, con-
sistently with a major role of GRIP1 in surface AMPAR 
insertion rather than internalization [36].

Another level of regulation arises from the existence 
of several GRIP1/2 isoforms that undergo different modes 
of posttranslational modification. GRIP1, indeed, has five 
isoforms to date (GRIP1a–e) and GRIP2 two [38, 51–53]. 
GRIP1c–e display different subcellular localization and are 
also found in inhibitory–aminobutyric acid (GABA) express-
ing synapses, but their specific function is still unknown [52, 
53]. GRIP1a/b and the two GRIP2 isoforms differ by an 18 
amino acid variant at the extreme N-terminus that can be 
palmitoylated [38, 51]. Palmitoylation regulates GRIP1a/b 
intracellular localization and its role in NMDAR-induced 
AMPAR internalization, which is enhanced by overexpres-
sion of palmitoylated GRIP1b, but inhibited by overexpres-
sion of unpalmitoylable GRIP1a [54]. In agreement, GRIP1b 
palmitoylation by DHHC5/8 directs GRIP1b to dendritic 
endosomes and enhances AMPAR recycling [55]. While 
GRIP2 colocalizes with internal membranes, palmitoylated 
GRIP2 (p-GRIP2) is targeted to the plasma membrane in 
spines, suggesting a differential role as synaptic and intracel-
lular anchoring sites for AMPARs during activity-induced 
recycling [38]. Overexpressing p-GRIP2 increases surface 
AMPAR abundance and synaptic transmission, as well as 
colocalization with N-cadherin [56]. Interestingly, these 
results suggest a different role of palmitoylation in regulating 
GRIP functions, as palmitoylation of GRIP2 but not GRIP1 
has an effect on basal AMPAR trafficking.

In addition to AMPARs, GRIP1 interacts with several 
other proteins, including the extracellular matrix protein 
Fras1, whose mutations cause the Fraser syndrome in human 
patients. GRIP1 knockout mice show similar defects to 
Fras1 knockout mice, such as subepidermal hemorrhagy, 
renal agenesis, and closing of eyelids, and the absence of 
this interaction is most likely the reason why GRIP1 knock-
out mice die embryonically [57]. GRIP1 also binds the 
MAGUK protein calcium/calmodulin-dependent serine pro-
tein kinase (CASK), another protein involved in glutamate 
receptor trafficking [58, 59]. GRIP1 interacts as well with 
neuron-enriched endosomal protein of 21 kDa (NEEP21), 
an early endosomal protein which is crucial for proper 
receptor recycling in neurons [60, 61] and colocalizes with 
GluA2/3 receptors at the postsynaptic density (PSD) [62]. 
Overexpression of NEEP21 slows recycling of AMPARs to 

the dendritic membrane, while depletion decreases surface 
GluA2 abundance and basal synaptic transmission, and, in 
turn, blocks LTP, suggesting a role for the GRIP1–NEEP21 
interaction in constitutive AMPAR cycling, but also activ-
ity-dependent sorting and reinsertion of AMPARs from the 
endosomes [61, 63] (Fig. 1). GRIP1–NEEP21 binding is 
regulated by phosphorylation of the serine 917 of GRIP1a; 
such phosphorylation occurs after the formation of the com-
plex and is likely involved into GRIP1 dissociation from the 
endosomes to allow insertion of AMPARs into the mem-
brane [64].

GRIP1 interacts as well with the neuron-specific guanine 
exchange factor GRIP1-associated protein 1 (GRASP1). 
GRASP1 is part of the complex including GRIP1 and 
GluA2, and is involved in constitutive and NMDA-induced 
AMPAR synaptic targeting [65]. Recently, GRASP1 was 
also involved in LTP maintenance following activation by 
the translational regulator cytoplasmic polyadenylation ele-
ment-binding protein 2 (CPEB2; [66]). Of note, GRASP1 
synaptic abundance is increased by prenatal cocaine expo-
sure via PKC- and Src-mediated hyperphosphorylation of 
GRIP1, likely mediating AMPAR dysfunction and den-
dritic defects observed in cocaine-exposed brains [67, 68]. 
GRASP1 has, furthermore, been shown to coordinate endo-
somal recycling by segregating Rab4 and early endosome 
antigen 1 (EEA1)/NEEP21/Rab5 early endosomes via its 
binding to the soluble NSF attachment protein receptor 
(SNARE) protein syntaxin 13, a protein that also interacts 
with NEEP21, thereby regulating AMPAR recycling to the 
surface [60, 69]. This regulatory role has not only func-
tional but also morphological consequences, as it is neces-
sary for proper AMPAR recycling, synaptic plasticity, and 
spine morphology. Consistently, GRASP1 knockout mice 
display lower glutamatergic synapse density, reduced LTP, 
and impaired learning-induced AMPAR delivery and cog-
nitive ability. GRASP1 mutations have been now found in 
human patients with intellectual disability, and these muta-
tions affect AMPAR recycling as well, opening the door to 
a better understanding of the etiology of such impairments 
[70]. Interestingly, loss- or gain-of-function of GRIP pro-
teins affects social interactions, and in humans, five missense 
GRIP1 variants leading to a gain-of-function have also been 
associated with autism [41, 42].

In addition, GRIP1 scaffolds a complex including the 
focal adhesion protein liprin α, the leukocyte common anti-
gen-related (LAR) family receptor protein tyrosine phos-
phatases (LAR-RPTP), and AMPARs, which is enriched at 
postsynaptic sites. Interfering with the GRIP1–liprin α bind-
ing decreases surface expression and clustering of AMPARs 
[71]. A similar reduction was observed when interfering 
with the binding of an additional member of the complex, 
the actin regulatory protein ARF GTPase-activating protein 
(GIT) 1 [72]. Cadherin and β-catenin may also be included 
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into this complex, whose transport to the dendrite is regu-
lated by the LAR-RPTP, implicating GRIP1 in regulating 
spine morphology [73]. Interestingly, GRIP1-liprin α inter-
action has also been involved in muscarinic-induced hip-
pocampal LTP [74]. GRIP1 and liprin α also associate with 
the motor protein KIF1A [75], suggesting that GRIP1 can 
interact with more than one motor protein. Indeed, GRIP1 
has also been shown to bind the light chain of microtubule-
associated protein (MAP) 1B, an interaction required for 
dihydroxyphenylglycine (DHPG)-induced AMPAR inter-
nalization and regulating its trafficking towards the dendrite 
[76, 77].

Another partner of GRIP1 is the AAA + ATPase Thorase, 
or ATPase family AAA domain-containing 1 (Atad1), which 
regulates in an ATP-dependent fashion AMPAR internaliza-
tion by disassembling GRIP1–GluA2 complexes (Fig. 1). 
Upon Thorase depletion, AMPAR internalization and LTD 
are consequently decreased, while LTP is enhanced [78]. 
Thorase-deficient mice display disrupted AMPAR internali-
zation and recycling and behavioral deficits, which can be 
rescued by the FDA-approved drug Perampanel [79]. Inter-
estingly, Thorase variants have been found in schizophrenia 
patients and Perampanel use in patients improved hyper-
tonicity and resolution of seizures, showing a promising 
start [80]. Very recently, additional Thorase mutants were 
found in patients with lethal encephalopathy. In mice, those 
mutations result in a gain-of-function that affects expres-
sion levels of multiple proteins as well as the disassembly 
of GRIP1–GluA2 complexes, leading to a decreased surface 
GluA2 expression [81]. Altogether, these studies directly 
involve GRIP1 in the etiology of several human diseases, 
underlying the importance of understanding its function in 
AMPAR trafficking.

Last but not least, GRIP1 also interacts with the Eph 
family of receptor tyrosine kinases and their ephrin ligands; 
more precisely, with ephrinB ligands, their cognate recep-
tor EphB2, but also EphA7 [82]. The Eph/ephrin family of 
signaling molecules displays a bidirectional mode of signal-
ing, as binding of ephrin ligands to Eph receptors triggers 
signaling downstream of Eph (forward signaling), but also 
of ephrin (reverse signaling). In addition to their crucial 
roles in multiple processes during brain development, the 
Eph/ephrin family has also been involved in synaptogenesis 
and synaptic plasticity (reviewed in Ref. [83]). Regarding 
AMPARs specifically, Eph receptors have been involved 
in regulating their clathrin-mediated endocytosis, their 
localization, transsynaptic glutamatergic synaptogenesis, 
and downregulation during homeostatic plasticity [84–87]. 
Transsynaptic binding of presynaptic ephrinBs to postsyn-
aptic EphB receptors induces binding of GRIP1 to EphB that 
is necessary for the induction of mossy fiber LTP [88]. Post-
synaptic ephrinB3 interaction with GRIP1 was also shown 
to specifically promote the formation of shaft synapses in 

hippocampal cultures. The same study showed that ephrinB3 
knockout mice display reduced shaft synapses, while spine 
density was unaffected [89]. Interestingly, synaptic AMPAR 
expression is also reduced in ephrinB3 knockout mice, and 
ephrinB3 regulates the anchoring and stability at the syn-
apse of another crucial synaptic scaffolding protein, PSD95 
[90, 91]. GRIP1–EphB2 interactions are also important for 
dendritic development. GRIP1 transports EphB2 to the den-
dritic compartment via its binding to KIF5 and by doing 
so regulates dendritogenesis [24]. EphrinB ligands recruit 
GRIP1 and GRIP2 to lipid rafts upon activation by EphB2, 
suggesting a role of GRIP1 proteins as scaffolds for large 
multiprotein complexes downstream of Eph/ephrin sign-
aling [21]. As AMPAR internalization rate is increased in 
raft-depleted neurons, this supports a role of such GRIP-
scaffolded complex in AMPAR stabilization at the surface 
[92]. In fact, activation of ephrinB2 reverse signaling was 
shown to regulate the insertion and stabilization of AMPARs 
at the surface and ephrinB2 knockout neurons displayed an 
enhanced constitutive AMPAR internalization and impair-
ment in synaptic transmission [93]. A serine residue (Ser-
9) in ephrinB ligands was found to regulate the binding to 
GRIP1 (Fig. 1). In a parallel study, the PDZ-binding site of 
ephrinB2 was shown to be required for both LTP and LTD 
at the CA3–CA1 hippocampal synapse [94]. Recently, addi-
tional insight on the regulation of AMPA receptor insertion 
at the synaptic membrane came from studies that described 
a cooperation model between the ephrinB2 ligands and 
the Reelin receptor apolipoprotein E receptor 2 (ApoER2 
[95]). ApoER2 had been previously implicated in AMPAR 
trafficking following stimulation with Reelin and ApoER2 
knockout mice showed an impaired LTP [96–98]. Mecha-
nistically, this new study by Pfennig and colleagues shows 
that GRIP1 bridges a whole complex at the membrane that 
includes ephrinB2, AMPAR, and ApoER2. The formation of 
the complex is required for the new insertion and stabiliza-
tion of AMPARs at the synaptic membrane, following either 
neuronal activity or stimulation with Reelin. Such complex 
is regulated by phosphorylation of the Ser-9 in ephrinB2 and 
is necessary for LTP maintenance [95].

Protein interacting with C kinase (PICK1)

Originally identified as a partner of PKCα, PICK1 binds 
via its PDZ domain the C-terminus of the AMPAR subu-
nits GluA2 and GluA3, like GRIP1 [20, 99]. PICK1 role 
in AMPAR trafficking has been extensively studied, and, 
in a relatively consensual model, acts as the counterpart 
to GRIP1 by regulating AMPAR endocytosis [20, 29, 31, 
100, 101] (Fig. 1). PICK1 is, indeed, required for NMDAR-
induced internalization of AMPARs [100, 102] as well as 
for LTD in the hippocampus [31, 103–105], the cerebel-
lum [106], but also the cortex [107] and ventral tegmental 
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area [108]. PICK1 is also able to bind activated PKCα and 
target it to the synapses, where it can phosphorylate GluA2-
Ser880, thereby facilitating AMPAR endocytosis [101]. 
According to other studies, PICK1 regulates AMPAR recy-
cling after NMDAR-induced internalization by retaining 
AMPARs intracellularly, but is not required for endocytosis 
itself, as PICK1 knockout neurons displayed an increased 
recycling rate of AMPARs to the surface but no impaired 
internalization [43, 109–111]. Both functions are not mutu-
ally exclusive, and actually not antagonistic, as both underlie 
the role of PICK1 in downregulating surface GluA2 expres-
sion. In addition, PICK1 has been involved in regulating 
calcium-permeable AMPAR trafficking, and its overexpres-
sion favors GluA2-lacking over GluA2-containing receptors 
[104, 112, 113].

PICK1 may also be involved in NMDAR-dependent LTP, 
as LTP is prevented by PICK1 knockdown and occluded 
by PICK1 overexpression [105]. However, another study 
found no defective LTP in PICK1 knockout slices [111]. 
The precise function of PICK1 may also be highly stim-
ulus-dependent: while low NMDAR activation triggers an 
increase of PICK1 endosomal clustering (consistent with 
higher AMPAR endocytosis), a higher NMDAR activation 
(similar to LTP induction protocols) leads to the dissocia-
tion of GluA2–PICK1 complexes and an increase of sur-
face GluA2 expression mediated by the N-ethylmaleimide-
sensitive fusion protein (NSF), another AMPAR interactant, 
and calcium [110, 114]. Another study investigated LTP and 
LTD in juvenile and adult PICK1 knockout mice and found 
that both LTP and LTD were completely unaffected in juve-
nile mice, whereas a specific form of LTP only and multiple 
forms of LTD were impaired in adult mice; consistently, only 
adult mice displayed learning deficits [115]. These findings 
are strikingly similar to the phenotype shown by knockout 
mice for kidney and brain expressed protein (KIBRA), a 
gene related to human memory capabilities; KIBRA binds 
PICK1 and forms a complex with AMPARs, and its deletion 
impairs hippocampal LTP and LTD, and thereby learning, 
in adult mice, but not juvenile [116]. The precise function 
of PICK1 appears, therefore, highly contextual, depending 
on the brain region, age, and stimulus. Finally, in addition to 
LTD and LTP, PICK1 is also involved in homeostatic scaling 
up, which is occluded in PICK1 knockout neurons; it is not, 
however, required for scaling down [117].

Like GRIP1, PICK1 function in AMPAR trafficking is 
regulated by posttranslational modifications. While Thr82 
phosphorylation on PICK1 prevents GluA2 binding, Ser416 
phosphorylation by glycogen synthase kinase (GSK) 3β is 
required for PICK1 interaction with GluA2 [118, 119]. 
PICK1 palmitoylation by DHHC8 is required for cerebellar 
LTD [120]. Interestingly, the monoubiquitination of PICK1 
by parkin1 triggers the excessive potentiation of the acid-
sensing ion channels (ASICs), which also bind PICK1 PDZ 

domain; channel hyperactivity can lead to excitotoxicity, 
thereby potentially linking PICK1 and the neuronal degen-
eration seen in Parkinson’s disease [121].

In addition to GluA2/3, PICK1 binds a multitude of other 
proteins, some of which also modulate the regulation of 
AMPAR trafficking by PICK1. For instance, upon calcium 
release from the ER, PICK1 forms a complex with calcium/
calmodulin-dependent protein kinase type II (CaMKII) and 
GluA2 that facilitates GluA2 exit from the ER and traffick-
ing towards the dendrites [122] (Fig. 7). PICK1 can also act 
directly as a calcium sensor, and PICK1-GluA2 interactions 
are increased upon calcium stimulation. Thus, PICK1 bind-
ing to calcium is required for NMDAR-induced AMPAR 
internalization or their intracellular retention [102, 111]. 
Calcium also regulates the formation of a complex includ-
ing PICK1, NSF, GluA2, and the SNARE protein β soluble 
NSF attachment protein (βSNAP), which modulates surface 
GluA2 expression, as NSF stabilizes AMPARs at the surface 
by destabilizing GluA2–PICK1 complexes [123, 124].

In addition, PICK1 also regulates spine morphology by 
binding to the small GTPase Arf1, F-actin, and the actin-
nucleating complex actin-related protein Arp2/3 (Fig. 1). 
The formation of this complex, indeed, inhibits actin elon-
gation and branching promoted by Arp2/3, which underlie 
vesicle trafficking and spine morphogenesis. Consistently, 
Arf1 binding, by preventing PICK1-Arp2/3 interaction, 
impairs NMDAR-induced AMPAR endocytosis and spine 
shrinkage during LTD [125–127]. Interestingly, PICK1 also 
binds the Rho family members Cdc42 and Rac1, providing 
a direct mechanistic link from AMPAR stimulation to the 
regulation of spine morphology [128]. One study, however, 
reported that PICK1 did not bind Arp2/3 nor F-actin directly, 
but was involved in nondirectional organelle motility driven 
by myosin motors [129]. PICK1 was also involved in axonal 
trafficking via its newly identified partner the kinesin-bind-
ing protein syntabulin [130], which might, therefore, act as a 
motor protein for PICK1 regulation of presynaptic AMPAR 
trafficking [131, 132]. Recently, PICK1 was also shown to 
interact with a central player in clathrin-mediated endocy-
tosis, the adaptor protein AP2, which bridges cargo proteins 
and clathrin. This interaction is required for AMPAR clus-
tering and internalization upon NDMAR stimulation [133].

Another important binding partner of PICK1 is islet cell 
autoantigen 69 kDa (ICA69), which blocks synaptic target-
ing of PICK1 and, concomitantly, of AMPARs [134] and 
PKCα [135]. This role is not only important for plasticity, 
but also during development, as ICA69 negatively regulates 
synaptic trafficking and clustering of GluA2-containing 
AMPARs by PICK1 during synaptogenesis, an important 
step for synapse maturation [136]. Furthermore, PICK1 
bridges the protein kinase C and casein kinase substrate 
in neurons (PACSIN) family members PACSIN1 and 2 in 
a complex with AMPARs; this interaction depends on the 
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phosphorylation of the PACSIN proteins and is required for 
AMPAR endocytosis and cerebellar LTD, but also regulates 
the subsequent AMPAR recycling to the surface [137, 138]. 
The vesicle sorting protein sortilin-related VPS10 domain-
containing receptor 3 (SorCS3) also binds PICK1, and the 
impaired PICK1 localization and subsequent AMPAR syn-
aptic targeting in SorCS3 knockout mice are proposed to 
underlie their deficits in cerebellar LTD and hippocampal 
learning behaviors [139, 140]. Finally, PICK1 also inter-
acts with tetraspanin 7 (TSPAN7), in which mutations have 
been found in some types of X-linked intellectual disabil-
ity. By competing with GluA2 to bind PICK1 PDZ domain, 
TSPAN7 limits PICK1 availability to AMPARs and, there-
fore, stabilizes them at the surface. PICK1/TSPAN7 interac-
tion also regulates spine morphogenesis [141].

In addition to its PDZ domain, PICK1 possesses a 
bin–amphiphysin–Rvs (BAR) domain, through which it 
binds lipids; this binding regulates synaptic targeting of 
PICK1, and, therefore, of AMPARs, and consequently, 
mutating the BAR domain decreases synaptic surface clus-
tering of AMPARs and LTD [103, 106]. Additional studies 
have focused on the reciprocal influences of the BAR and 
PDZ domains, as well as the N- and C-terminal domains of 
PICK1, and their importance for AMPAR trafficking [47, 
142]. The BAR domain has also been proposed to enable 
PICK1 to form long-distance interactions and thereby 
facilitate its scaffolding of multiple membrane-bound pro-
teins [143]. Contradictory findings were reported regarding 
PICK1 higher structure ([129]; see also Refs. [144, 145]). 
Further studies are required to delineate PICK1 structure and 
its functional influence on AMPAR trafficking.

Membrane‑associated guanylate kinase (MAGUK) 
family

MAGUKs form a large family of PDZ domain-containing 
scaffolding proteins that are essential for the development 
and plasticity of synapses. The MAGUK family is divided 
into several subclasses based on their domain organiza-
tion, including the Discs large homologs (DLGs), calcium/
calmodulin-dependent serine protein kinase (CASK), and 
palmitoylated membrane proteins (MPPs) [146].

The DLG family has been associated with AMPAR traf-
ficking and plasticity for years. However, until recently, a 
direct association with AMPARs had only been demon-
strated for synapse-associated protein 97 (SAP97 or DLG-
1), which binds the C-terminus of the GluA1 subunit. Other 
DLG members such as PSD93 (DLG-2), PSD95 (DLG-
4, or SAP90), and SAP102 (DLG-3) were found to bind 
directly NMDARs, but not AMPARs [147–149]. Intrigu-
ingly, PSD95, SAP97, SAP102, and the relatively unknown 
MPP2, were recently shown to belong to AMPAR native 
macromolecular complexes [10]. More detailed studies are 

now required to dissect this newly discovered association 
between DLG family members and AMPARs.

Postsynaptic density (PSD) 95 and 93

The prototypical member of the DLG family is PSD95, 
which was nearly simultaneously identified as a postsynaptic 
protein in rat synaptosomes and as SAP90 in the presynaptic 
compartment of Purkinje cells, prefiguring the wide array of 
functions served by the protein at both sides of the synaptic 
cleft [150, 151]. PSD95 appears to play a pivotal role in 
plasticity, and mice impaired for PSD95 signaling display, 
indeed, learning deficits and abnormal anxiety-like behavior 
[152, 153]. As a scaffold protein, PSD95 affects spine den-
sity and morphology. For example, spine number and size 
are increased upon overexpression, while PSD95 knockdown 
prevents spine morphological development, but also spine 
growth and stabilization after LTP induction [154, 155]. In 
addition, PSD95 drives the maturation of glutamatergic syn-
apses, i.e., the insertion of AMPARs into synapses that pre-
viously only contained NMDARs, which converts them from 
“silent” to “functional” synapses [154]. Many studies modu-
lated the levels (overexpression or knockdown) of PSD95 
to investigate the function of PSD95 in synaptic plasticity, 
and the scenario is thought extremely puzzling. On one 
hand, several studies have shown that PSD95 overexpres-
sion increases the proportion of AMPAR expressing syn-
apses, AMPAR synaptic clustering, and AMPAR-mediated 
synaptic transmission and, as a consequence, occludes LTP, 
since the strengthened synapses cannot further potentiate [7, 
154, 156–159]. Very intriguingly, PSDS95 overexpression 
enhances LTD [156, 157]. On the other hand, the converse 
strategy (reducing PSD95 levels or using a ligand-binding 
deficient mutant) produces even more confusing results. 
In the adult hippocampus, LTP is, indeed, intact [155] or 
even (somewhat surprisingly) enhanced [152, 160, 161]. 
However, in the developing superior colliculus [162] and in 
the barrel cortex [158], LTP is blocked. On the other hand, 
in mice with lower PSD95 levels or functionally impaired 
PSD95, LTD is disrupted in the adult hippocampus [152, 
155, 161], but it is intact in the developing hippocampus 
[153] and superior colliculus [162].

There are likely several mechanisms behind all this diver-
sity of phenotypes. First, PSD95 functions appear clearly 
developmentally and spatially regulated. As the conversion 
of silent to functional synapses primarily takes place in the 
developing brain, it is not surprising to see a differential 
effect of PSD95 between the young and adult brain. In addi-
tion, PSD95 is not the only synaptic MAGUK; PSD93 and 
SAP102 are also present and may undertake similar func-
tions, which might explain why PSD95 is not uncondition-
ally required for LTP and why not all synapses are equally 
affected in PSD95 knockout mice ([159] and see below). 
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Finally, PSD95 acts at multiple levels at the synapse—on the 
stability of the PSD itself, and also as a scaffold for a wide 
array of proteins in addition to AMPARs and NMDARs, all 
of which may be affected upon the changes of PSD95 levels. 
PSD95 may, therefore, also act not as a primary regulator 
of plasticity, but as a mediator. Regarding LTD, its major 
involvement seems to transduce NMDAR-mediated calcium 
influx by scaffolding additional proteins required for LTD-
induced AMPAR endocytosis [163].

PSD95 does not only play a role in Hebbian plasticity; it 
has also been involved in homeostatic synaptic scaling, in an 
age-dependent fashion. Indeed, scaling up is only affected 
by PSD95 knockdown in young cortical neurons, while scal-
ing down is impaired by PSD95 knockdown or overexpres-
sion, in young or adult cortical neurons [205]. This differ-
ential involvement of PSD95 is likely mediated by different 
domains and interaction partners of PSD95, some of which 
have been shown to be also required for scaling down [205].

The role of PSD95 as a scaffold protein for AMPARs 
has been extensively studied in the last decade. Mechanisti-
cally, PSD95 stabilizes AMPARs at the synaptic surface by 
scaffolding nanodomains at the synapse which are prefer-
entially enriched in AMPARs rather than NMDARs. Such 
concentration in nanodomains, which enhances synaptic 
efficacy and is activity-regulated [164–166], involves the 
formation of a complex with the transmembrane AMPAR 
regulatory protein (TARP) γ2 (stargazin) necessary for the 
correct targeting and diffusion of AMPARs to the synaptic 
surface [7, 167–169] (Fig. 2). PSD95/stargazin complexes 
have also been suggested to regulate AMPAR “slots” at the 
synapse, where freely diffusing AMPARs are “trapped” to 

regulate synaptic strength; the precise molecular mecha-
nisms underlying the formation of these slots are, however, 
still unclear (reviewed in Ref. [170]). In addition to starga-
zin, PSD95 also binds other TARPs, including γ3 and γ8, but 
the function of this interaction in synaptic plasticity has not 
been further investigated [171]. Surface AMPAR diffusion 
toward synapses is required for hippocampal LTP and for 
in vivo contextual learning [172]. Nanodomain formation 
also involves the capture of diffusing AMPARs by the adhe-
sion molecules neurexin/neuroligin, which assemble them 
in PSD95 scaffolds in competition with the preexisting syn-
apses [173]. Moreover, PSD95 has been recently shown to 
interact with the adhesion molecules immunoglobulin super-
family member 11 (IgSF11) and α-actinin, both of which are 
involved in AMPAR stabilization at the synapse [174, 175]. 
IgSF11 knockdown leads to a decreased AMPAR clustering 
and increased surface motility, suggesting that IgSF11 might 
also be involved in regulating the formation or maintenance 
of the nanodomains [174]. α-Actinin knockdown phenocop-
ied PSD95 knockdown and knockout, as there is a reduction 
in the number of synapses but not in AMPAR content [175].

Two isoforms of PSD95 have been identified, which 
differ at their N-terminus. The α isoform is predominant 
and normally palmitoylated; under baseline conditions, it 
masks the effects of the β isoform. The regulation of syn-
aptic strength by either isoform is activity-dependent [176, 
177]. Palmitoylation, mediated by DHHC-containing pal-
mitoyl transferases and a/b-hydrolase domain-containing 
17 (ABHD17) depalmitoylase, is crucial for PSD95 sort-
ing, synaptic targeting, its integration into the PSD lattice, 
and the clustering of AMPARs in nanodomains [178–183]. 

Fig. 2  Regulation of AMPAR 
trafficking by PSD95 and TARP 
γ2/stargazin. PSD95 and TARP 
γ2/stargazin regulate AMPAR 
synaptic trapping. PSD95 
anchors stargazin-bound freely 
diffusing AMPARs at the PSD, 
thereby enhancing synaptic 
strength. Stargazin phospho-
rylation in its cytoplasmic tail 
promotes PSD95 binding; upon 
dephosphorylation, stargazin-
bound AMPARs are endo-
cytosed or diffuse out of the 
synapse. Additional posttransla-
tional modifications on PSD95 
or stargazin modulate this bind-
ing in either direction. Stargazin 
also regulates AMPAR synaptic 
trafficking by interacting with 
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Palmitoylation also regulates PSD95 binding to stargazin 
and is prevented by an interaction with calmodulin (CaM). 
CaM binding enables the calcium-induced release of PSD95 
and its anchored proteins from the postsynaptic membrane, 
a necessary step for the reorganization of the PSD following 
NMDAR-induced LTD [183, 184]. Consistently, palmitoyla-
tion is induced by chronic activity blockade during homeo-
static scaling up, leading to an increased synaptic AMPAR 
clustering. CaM binding to PSD95 was very recently shown 
to mediate AMPAR internalization during synaptic scaling 
down [185, 186]. In addition to CaM binding, CaMKII itself 
also positively regulates PSD95 trafficking out of the spines 
following LTP induction by phosphorylating PSD95 on 
Ser73, which blocks LTP and LTP-induced spine growth, 
suggesting that CaMKII modulates the end of LTP-triggered 
cascades [183, 187]. Other phosphorylation sites of PSD95 
include Ser295, whose phosphorylation by the Rac1/c-Jun-
N-terminal pathway 1 (JNK1) pathway enhances synaptic 
targeting of PSD95 and AMPAR clustering and whose 
dephosphorylation is required for AMPAR internalization 
during LTD [188]; and Thr19, whose phosphorylation by 
GSK-3β is a contrario required for AMPAR endocytosis 
and LTD [189]. Recently, Ser561 phosphorylation by parti-
tioning-defective (Par) 1 kinases was shown to function as a 
structural switch between open and closed conformations of 
PSD95; a phosphodeficient mutant favors an open conforma-
tion, increasing PSD95 synaptic stability and its ability to 
act as a scaffold by binding multiple proteins [190]. Ser561 
phosphorylation is also required for AMPAR internaliza-
tion following NMDAR activation. In addition, multiple 
phosphorylation sites modulating protein interactions have 
been newly identified in PSD95, but their role in synaptic 
plasticity remains to be investigated [191]. Finally, PSD95 
is also ubiquitinated by the E3 ligase mouse double minute 
2 (Mdm2) upon NMDAR activation, leading to its removal 
from the surface; this process is regulated by the kinase 
Cdk5 and modulates PSD95 binding to the clathrin adaptor 
protein complex AP-2, providing a mechanistic link between 
NMDAR activation and AMPAR endocytosis. And, indeed, 
blocking this ubiquitination prevents subsequent AMPAR 
endocytosis [192, 193].

In addition to the N-terminal PDZ domains, PSD95 con-
tains also a C-terminal Src homology 3 (SH3) and guanylate 
kinase (GK) like domain. PSD95 interaction with A kinase 
anchoring protein (AKAP) 79/150 via its C-terminal SH3 
and GK domains is necessary for NMDA-induced AMPAR 
endocytosis [194, 195]. PSD95 may also mediate AMPAR 
internalization via its complex with GluA1 and low-density 
lipoprotein receptor-related protein 1 (LRP1), a protein 
involved in regulating synaptic integrity; LRP1 knockdown, 
indeed, leads to accelerated turnover and decreased surface 
GluA1 and GluA1-induced neurite growth [196]. Finally, 
PSD95 binds also directly ephrinB3, which stabilizes it at 

the synapse; activity-induced phosphorylation of ephrinB3 
Ser332 by mitogen activated protein kinase (MAPK) pre-
vents this association and leads to an increased PSD95 
turnover [91].

A last factor to be taken into consideration when studying 
MAGUK proteins is, as mentioned before, the presence of 
multiple family members at the synapse—presence which 
may itself differ depending on the age, brain region, and 
neuronal type considered. For instance, the closely related 
PSD93 is present at the postsynapse and displays a similar 
but not identical expression pattern to PSD95 in the adult rat 
brain, with a unique pattern in the cerebellar Purkinje cells 
[197]. Like PSD95, several isoforms of PSD93 have been 
identified—6 in total—with different impacts on AMPAR- 
and NMDAR-mediated functions; the most abundant iso-
forms in the hippocampus can also be palmitoylated [176, 
198]. PSD93 can be phosphorylated by the kinases Fyn and 
extracellular signal-regulated kinase (ERK); it also mediates 
NMDAR phosphorylation by Fyn, an important regulatory 
modification of NMDAR function [199–201].

PSD93 and PSD95 seem to be present in a largely non-
overlapping subset of synapses, and may, therefore, confer 
different properties to the synapses for which they are main 
MAGUK ([159, 202, 203], but see [204]). This differen-
tial pattern may explain why not all synapses are similarly 
affected in PSD95 knockout mice [159, 160]. Contrary to 
PSD95, PSD93 knockout mice display normal LTD, but an 
impaired LTP [161]. PSD93 is also able to support on its 
own scaling down in young cortical neurons, but not scaling 
up, nor scaling down or up in adult neurons [205]. In addi-
tion, in Purkinje cells at least, PSD93 binds the microtubule 
protein MAP1A, suggesting a potential role in regulating 
the dendritic trafficking of its partners, such as NMDARs 
and PSD95, with which it can form heteromers [197, 206].

Synapse-associated protein (SAP) 102

SAP102, originally identified as the first synaptic protein 
binding NMDARs, regulates NMDAR synaptic clustering 
and clearance and mediates NMDA-dependent plasticity and 
spine remodeling. Consistently, SAP102 knockout mice dis-
play impairments in ERK-dependent LTP and spike-time 
dependent plasticity, as well as cognitive deficits [207–211]. 
SAP102 also regulates AMPAR clustering at immature syn-
apses. SAP102 knockdown strikingly leads to the removal of 
all AMPARs from the surface during synaptogenesis [159]. 
Synapse maturation requires the switch from SAP102 to 
PSD95 and PSD93, and SAP102 only supports AMPAR 
trafficking in mature synapses to compensate for the simul-
taneous knockdown of the normally predominant PSD95 
and PSD93 [212]. SAP102 also functionally interacts with 
PSD95 (potentially by direct binding or via TARPs) and 
regulates its ability to enhance AMPAR-mediated synaptic 
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transmission [213]. Contrary to PSD95 and PSD93 locali-
zation and general immobility in the sole PSDs, SAP102 is 
localized in the whole spine volume, in and around PSDs, 
and is highly mobile, a feature depending on actin and glu-
tamate receptor activation [204, 214, 215]. This suggests 
that SAP102 function might be more related to AMPAR 
trafficking towards the synapse rather than stabilization at 
the surface. Recently, SAP102 synaptic targeting and spine 
motility were found to be regulated via phosphorylation by 
casein kinase II (CKII) of its Ser632 residue, a residue pre-
sent in one of the three isoforms of SAP102. Phosphoryla-
tion of Ser632 was found to be induced by activity, leading 
to an increase of SAP102 density and stability at the synapse 
[216].

SAP102 interacts as well with neurobeachin, a brain-spe-
cific AKAP that regulates AMPAR trafficking [217–219]. 
SAP102 also forms a complex with EphB2 and the Ras gua-
nine nucleotide exchange factor (RasGEF) effector Kalirin7 
and regulates surface EphB2. Mechanistically, SAP102 
is necessary for actin reorganization, synapse formation, 
and AMPAR synaptic trafficking upon EphB activation by 
ephrinB [220].

Further insights about the role of PSD95 and SAP102 
come from studies where all three MAGUK proteins 
involved in regulating baseline transmission, i.e., PSD95, 
PSD93, and SAP102, were knocked down simultaneously 
by RNAi in organotypic slices [221, 222]. This knockdown 
causes a vast reduction in global AMPAR and NMDAR 
transmission, due to a decrease in glutamate receptor con-
taining synapses; the synaptic strength of surviving synapses 
is, however, unaffected [221]. MAGUK loss triggers first a 
reduction in quantal postsynaptic currents, which then recov-
ers via a consolidation process involving calcium channels, 
CaMKII and GluA2, similarly to a homeostatic process 
[221]. Furthermore, the knockdown leads to a decreased 
PSD size, a large loss of the PSD95 containing vertical fila-
ments structuring PSDs and concomitantly of AMPAR or 
NMDAR complexes, and a subsequent decrease in synaptic 
transmission [222]. Collectively, these results strongly sug-
gest a basic role for MAGUK proteins as a PSD scaffold, on 
which glutamate receptor trafficking is then grafted. These 
roles seem restricted during synaptogenesis, as MAGUK 
knockdown in adult CA1 in rats only slightly affected syn-
aptic transmission acutely, causing a significant reduction 
only after several weeks; a contrario, the same procedure in 
young rats immediately leads to a large reduction continu-
ing until adulthood [223]. Interestingly, MAGUK loss in the 
adult dentate gyrus leads to a similar effect as in a young 
CA1, emphasizing the role of MAGUK proteins during 
development. Consistently, a very recent study investigating 
SAP102 expression in adult and aging hippocampi suggests 
a developmentally and subregionally regulated role, which 

can be altered during neurodegenerative diseases such as 
Alzheimer’s [224].

Synapse-associated protein (SAP) 97

SAP97 occupies a special place in the MAGUK-DLG fam-
ily as it specifically binds GluA1, and not GluA2–4; this 
specificity depends on a small sequence outside of GluA1 
canonical PDZ-binding sequence [147, 149]. SAP97 appears 
to be involved in GluA1 early trafficking to the dendritic 
membrane, as well as the regulation of the extrasynaptic and 
synaptic pools of AMPAR at the surface [225–228] (Fig. 3).

Like PSD95, the N-terminus of SAP97 exists in two iso-
forms, the palmitoylable α isoform and the non-palmitoyla-
ble, L27 domain-containing β isoform. While the α isoform 
regulates AMPAR-mediated transmission in an activity-
independent manner, the β isoform, most abundant, does it in 
an activity-dependent and CaMKII-regulated manner [176]. 
αSAP97 is directly targeted to the PSD, while βSAP97 is 
present at the perisynaptic regions [227]. These results are 
consistent with earlier reports of βSAP97 expression at the 
edges of PSDs in synapses expressing homomeric GluA1 
channels or heteromeric GluA1-containing AMPARs; this 
pattern, in opposition to PSD95 and PSD93, points towards 
a role of βSAP97 in recycling GluA1 receptors in and out 
of the PSD [204, 226, 229]. Structurally, the presence of 
the L27 domain enables SAP97 to adopt an open conforma-
tion, indicating that αSAP97 and βSAP97 have a compact or 
extended conformation, respectively, providing a structural 
basis for the functional differences observed between the 
isoforms [230]. In addition, βSAP97 L27 domain is cru-
cial for SAP97 dimerization and the modulation of synaptic 
strength; overexpression of L27-mutated SAP97 potentiates 
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Fig. 3  Regulation of GluA1 trafficking by SAP97. SAP97 specifically 
regulates GluA1-containing AMPARs in an isoform-specific manner. 
βSAP97 directs GluA1 to the extrasynaptic pool, while αSAP97 pref-
erentially targets GluA1 to synapses
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GluA1-dependent transmission, but does not affect synaptic 
delivery, suggesting a role for βSAP97 dimers in regulating 
GluA1 expression at the surface [231]. βSAP97 also con-
tains an I3 splice variant in the hook region between the 
SH3 and GK domains, which includes a binding site for the 
actin-binding protein 4.1 N, another AMPAR interactant; 
overexpression of βSAP97-I3 drives an increase in spine 
head size, as well as in surface AMPAR expression and syn-
aptic transmission [226].

Intriguingly, further investigation of the specific roles of 
SAP97 isoforms reveals a common effect on synaptic plas-
ticity via distinct mechanisms; indeed, while overexpression 
of both isoforms impairs LTP and enhances LTD, αSAP97 
acts solely on synaptic AMPARs, while βSAP97 regu-
lates extrasynaptic AMPA and NMDARs [228]. αSAP97 
overexpression increases the synaptic pool of AMPARs, 
thereby occluding further potentiation by LTP; βSAP97 
overexpression directs AMPARs and NDMARs at the peri-
synapse, thereby preventing LTP induction. Conversely, 
βSAP97 knockdown increases the synaptic pool of AMPA 
and NMDARs. Consistently, overexpression of both iso-
forms was recently reported to increase AMPAR pool at the 
surface, but by different mechanisms [232]. αSAP97 acts, 
indeed, at the PSD itself, increasing its size and, therefore, 
the number of AMPAR slots, but also at the presynaptic 
clusters; βSAP97, on the other hand, increases AMPAR 
density at the PSD edges and its immediate surrounding 
regions, but not within the PSD. Taken collectively, these 
studies emphasize a different role of αSAP97 and βSAP97 
in regulating the synaptic and perisynaptic pools of GluA1-
containing AMPARs, respectively.

In addition to a role at the synapse, several studies sug-
gest a function of SAP97 in early trafficking to the synapse. 
SAP97 association with GluA1 was reported to occur mainly 
in the early secretory pathway, at the ER or Golgi appara-
tus, with only a small portion of GluA1 receptors bound to 
SAP97 at the synapse [225]. Consistently, SAP97 expression 
was found mainly in regions coinciding with ER and Golgi 
apparatus; its SH3 and GK domains were not required for 
its role in GluA1 delivery [233]. Moreover, SAP97 binds 
directly myosin VI and SAP97–GluA1–myosin VI com-
plexes are detected in vesicles; disrupting SAP97–myosinVI 
interaction leads to a decrease in synapse number, surface 
AMPAR, and synaptic strength, emphasizing a role for 
SAP97 as adaptor protein in GluA1 transport [234, 235].

SAP97 also acts as a scaffold protein bridging GluA1 
to other partners. One of them is AKAP79/150, which 
itself interacts with PKA and protein phosphatase 2 regu-
latory subunit (PP2B); SAP97, thus, provides a platform 
regulating GluA1 phosphorylation at Ser845, and thereby 
GluA1-mediated synaptic transmission [236]. AKAP79/150 
binds a specific isoform of SAP97 containing the C-termi-
nal I3 or I5 sequence; at this position, SAP97 can also be 

phosphorylated on Ser39 by CaMKII, a step necessary for 
synaptic delivery of SAP97, and concomitantly GluA1; this 
phosphorylation prevents AKAP79/150–SAP97 binding 
[237, 238]. This interaction is also important for the switch 
from GluA1-containing to GluA4-containing AMPARs 
between the early and late stages of behavioral condition-
ing; SAP97–AKAP79/PKA–GluA1 complexes are formed 
initially, and then replaced by SAP97-kinase suppressor of 
Ras (KSR) 1/PKC–GluA4 complexes, and at both times, 
SAP97 interacts with PSD95 to deliver the corresponding 
AMPAR subunit at the synapse [239]. This suggests a more 
general role for SAP97 in AMPAR trafficking, even without 
a direct interaction to GluA2–4, and is consistent with a 
previous study showing an involvement of SAP97–PSD95 
interaction in regulating GluA1 trafficking at the synapse 
[240]. SAP97 can also compensate when PSD95 and PSD93 
are knocked down, and using conditional SAP97 knockout 
mice, SAP97 involvement in GluA1 trafficking was shown to 
be most important during early development [241]. SAP97 
also binds to the MAGUK CASK; this interaction stabilizes 
SAP97 in its extended conformation, which preferentially 
colocalizes with NMDARs, contrary to the unbound SAP97, 
which adopts the compact conformation and colocalizes 
with GluA1 receptors [242]. Consistently, CASK–SAP97 
complex mediates NMDAR sorting through a specific secre-
tory pathway, separated from AMPARs [243].

In addition, SAP97 links GluA1 to a disintegrin and met-
alloproteinase 10 (ADAM10), a membrane-bound secretase 
cleaving neuronal amyloid precursor protein (APP) at the 
synapse. SAP97 ability to bridge the ADAM10–GluA1 
complex was significantly decreased in the hippocampi 
of Alzheimer’s patients, and ADAM10 and GluA1 syn-
aptic levels were consequently lower; in rodents, such a 
decrease in ADAM10 levels favors the amyloidogenic path-
way [244, 245]. In addition to Alzheimer’s disease, altered 
SAP97–GluA1 interactions have also been involved in 
schizophrenia [246]. Finally, SAP97 also has a transsynaptic 
action; SAP97 overexpression at the postsynapse increases 
presynaptic size and function, via the recruitment of GluA1, 
but also adhesion molecules, including cadherins, integ-
rins, and the EphB/ephrinB family at the membrane [247]. 
This transsynaptic effect is exerted primarily by αSAP97, 
although βSAP97 can also slightly increase presynaptic Bas-
soon levels [232]. This indicates an extensive role of SAP97 
in regulating GluA1 delivery to the dendrites and relative 
abundance in the perisynaptic and synaptic pools, but also 
in synapse formation and function.

MAGUK p55 subfamily member (MPP) 2

Barely anything is known about the neuronal functions of 
MPP2. MPP2 is localized at the postsynapse and interacts 
with many PSD proteins, including itself, PSD95, SAP97, 
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and actin, but also CaMKIIα, suggesting a role as a scaffold 
protein [248]. Recently, MPP2 was found to interact also 
with guanylate kinase-associated protein (GKAP) and the 
synaptic cell adhesion molecule (SynCAM1) 1, a protein 
also involved in structuring PSDs [249]. MPP2 also interacts 
with small conductance-activated potassium SK2 channels 
and positions them properly at the synapse, a crucial element 
for their role in synaptic plasticity [250]. A similar role for 
AMPARs is open for investigation.

Transmembrane AMPAR regulatory proteins 
(TARPs)

Transmembrane AMPAR regulatory proteins form the first 
family to have been identified as auxiliary proteins to neu-
ronal AMPARs, and more generally to any neurotransmit-
ter-gated ion receptor [148, 251, 252]. Structurally, TARPs 
are part of the calcium channel γ subunit (CACNG) family, 
which comprises of eight members, CACNG 1–8 or γ1–γ8. 
CACNG1 and 6 function primarily as calcium channel aux-
iliary proteins in skeletal muscles and do not interact with 
AMPARs at all [253]. The TARP family includes the other 
six members, the prototypical γ2 or stargazin, γ3, γ4, γ5, γ7, 
and γ8, and is subdivided into two types based on sequence 
homology and function: Type I contains γ2, γ3, γ4, and γ8, 
and is itself split into Type Ia (γ2 and γ3) and Type Ib (γ4 
and γ8), while Type II encompasses the remaining γ5 and 
γ7 [252]. The spatial and temporal expression pattern of 
TARPs is partially overlapping and, therefore, single TARP 
knockout mice do not show any gross phenotype, with the 
exception of γ2, suggesting partial functional redundancy 
[252, 254, 255]. Differences have also been observed in the 
stoichiometry of the TARP–AMPAR complexes, thereby 
influencing AMPAR function; a complex includes up to four 
TARP/AMPAR for γ2 and γ3, but seldom more than two 
TARP/AMPAR for γ4. The stoichiometry varies also accord-
ing to the neuronal cell type [256–258]. Type I TARPs can 
bind all GluA subunits, but in a mutually exclusive fash-
ion—one TARP type per complex [259]. Finally, TARPs 
do not only regulate AMPAR trafficking, but also its physi-
ological properties such as agonist/antagonist response, gat-
ing, and kinetics [252]. We will, in this review, focus on 
the function in AMPAR trafficking of the TARPs identified 
by Schwenk and colleagues as auxiliary proteins to native 
AMPARs, i.e., γ2, γ3, γ4, γ7, and γ8 [10].

TARP γ2/stargazin

Stargazin was first identified as a disrupted gene in the 
mutated chromosome 15 of the stargazer mice, a spontane-
ous mouse mutant displaying absence epilepsy [260]. Sub-
sequent studies in the stargazer cerebellum revealed that 

stargazin interacts with AMPARs and PSD proteins, includ-
ing PSD95, PSD93, SAP97, and SAP102 [167]. Since then, 
stargazin was found to regulate several aspects of AMPAR 
trafficking, including synaptic targeting [167, 261, 262], 
surface receptor delivery [263], stabilization [264], diffu-
sion [265, 266], and endocytosis [267], and is, therefore, 
involved in plasticity processes such as LTP and LTD [268, 
269] and synaptic scaling [270, 271]. Stargazin function is 
highly specific for AMPARs, as surface delivery of NMDA 
and kainate receptors is stargazin-independent [272].

The multiple functions of stargazin are preferentially 
mediated by its different domains, with the C-terminal cyto-
plasmic tail and the extracellular domain influencing mainly 
receptor trafficking and channel properties, respectively 
[273–275]. Stargazin binds GluA subunits intra- and extra-
cellularly, and its interaction with the glutamate-binding 
domain of AMPARs is important for channel desensitization 
[276]. On the other hand, the C-terminal domain contains a 
membrane sorting signal important for stargazin regulation 
of AMPAR synaptic delivery [261]. The first reconstruction 
of stargazin structure, performed in a lipid bilayer, showed 
that the C-terminus strongly interacts with the lipidic 
membrane, leading to an extended open conformation and 
thereby facilitating protein interactions [277]. Several recent 
studies further investigated the AMPAR–stargazin complex 
[278–282]. They dissected the role of stargazin in modulat-
ing AMPAR gating, first via the destabilization of closed 
receptors by its initial binding, and by the subsequent stabi-
lization of AMPAR activated state by electrostatic interac-
tions between stargazin and the receptors [278, 281, 282]. 
Its positioning below the AMPAR ligand-binding domain 
enables stargazin to modulate receptor gating by regulat-
ing intra- and inter-dimer interactions, but also to act as a 
scaffold bridging the receptors to other regulatory proteins, 
emphasizing the intricate connections between the various 
functions assumed by stargazin [279, 280].

Stargazin plays an essential role in AMPAR synaptic 
targeting; surface expression of the receptors is, indeed, 
reduced in stargazer cerebella, where stargazin is the major 
TARP [167]. As mentioned before, stargazin–PSD95 inter-
action is essential for its regulation of AMPAR synaptic 
targeting [167] (Fig. 2). In the ER, stargazin has been sug-
gested to act as a chaperone-like protein ensuring the correct 
folding of AMPAR subunits, although it differs from classi-
cal chaperones in its continuous association with its targets 
outside of the ER [263]. AMPARs in the stargazer cerebel-
lum are not completely N-glycosylated and, therefore, do 
not properly mature [259] and the unfolded protein response 
(UPR) is upregulated in the cerebellum of stargazer mice 
[263]. However, another study found that stargazin played a 
major role at later stages of AMPAR maturation, and that its 
chaperone-like duties may become necessary only upon high 
levels of AMPAR synthesis [283]. Stargazin forms, indeed, 
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a complex with GluA2 and MAP1A light chain (MAP1A-
LC2), which is important for AMPAR early trafficking, 
likely prior to entering the PSD, as the complex does not 
include PSD proteins [284]. At a later stage of trafficking, 
stargazin also bridges AMPARs and PSD95 to the Golgi-
enriched neuronal isoform of protein interacting specifically 
with TC-10 (nPIST), an important interaction for surface 
expression and clustering of AMPARs [285].

Stargazin–PSD95 interaction is also crucial for control-
ling synaptic abundance of AMPARs by regulating their dif-
fusion between extrasynaptic and synaptic pools [7, 168]. 
Consistently, enhancing PSD95 binding by extending the 
length of stargazin cytoplasmic tail was more recently shown 
to increase AMPAR trapping at synaptic sites [286]. Phos-
phorylation of Thr321 within stargazin PDZ-binding domain 
by PKA disrupts its binding to PSD95 and thereby synaptic 
clustering and function of AMPARs [287, 288]. Intriguingly, 
Thr321 can also be phosphorylated by MAPK, but with dif-
ferent consequences: blocking PKA-mediated phospho-
rylation prevents LTP, while preventing MAPK-mediated 
phosphorylation blocks LTD, but not LTP [268]. These 
results are consistent with MAPK role in AMPAR removal 
during LTD; they also suggest that PSD95 is required for 
some, but not all, of stargazin functions. Taken collectively, 
these studies underlie the role of phosphorylation as bidi-
rectional switch for stargazin role in AMPAR trafficking and 
in plasticity.

Stargazin can also be phosphorylated at nine serine resi-
dues of its cytoplasmic tail; the phosphorylation is carried 
out by CaMKII and PKC, and dephosphorylation by phos-
phatase 1 (PP1) downstream of PP2B/calcineurin [289]. 
Phosphorylation on these residues increases stargazin bind-
ing to PSD95, but prevents its binding to lipid bilayers; 
these mutually exclusive interactions add a further level 
of complexity to stargazin regulation of AMPAR synaptic 
delivery [290]. Interestingly, synaptic NMDAR activity 
can trigger serine phosphorylation and dephosphorylation, 
depending on the stimulation protocol and the type of plas-
ticity induced—phosphorylation for LTP; dephosphoryla-
tion for LTD [289, 291]. Consistently, calcineurin-mediated 
dephosphorylation of stargazin is also required for cerebel-
lar LTD [269]. Mechanistically, dephosphorylated starga-
zin binds the clathrin complex AP-2, triggering clathrin-
mediated endocytosis of AMPARs, which are then delivered 
to late endosomes/lysosomes upon binding of stargazin to 
AP-3 [267]. Interestingly, the role of stargazin in endocy-
tosis might also be stimulus-dependent: glutamate-induced 
desensitization indeed leads to the dissociation of starga-
zin/AMPAR complexes, and while stargazin remains stably 
at the membrane, AMPARs are subsequently internalized 
[264]. Here, stargazin passively sets up AMPARs for inter-
nalization simply by unbinding them, contrary to the active 
part taken in NMDAR-induced endocytosis. Another study 

indicates that, following the decreased affinity between star-
gazin and AMPARs due to glutamate-induced desensitiza-
tion, AMPARs leave the synapse by lateral diffusion rather 
than endocytosis; this increased surface motility facilitates 
their replacement with naive receptors [266]. These results 
are not mutually exclusive; several conformations of desen-
sitized AMPARs, with potentially different affinities for star-
gazin and, therefore, set up for separate pathways, have also 
been reported [292].

In addition to AMPAR synaptic delivery and cycling, 
stargazin phosphorylation by CaMKII regulates their lat-
eral diffusion: NMDAR-induced calcium influx activates 
CaMKII, leading to stargazin phosphorylation and increas-
ing its binding to PSD95, thereby trapping PSD95-stargazin-
AMPAR complexes at the synapse [265]. Similarly, starga-
zin serine phosphorylation is required for the new synaptic 
insertion of AMPARs during tetrodotoxin (TTX)-induced 
synaptic upscaling; it is also important for the experience-
dependent development of the retinogeniculate synapse, and 
it is increased upon visual deprivation during that phase 
[270]. Conversely, inducing synaptic downscaling leads 
to the dephosphorylation of stargazin serine residues, an 
increased surface motility of stargazin and AMPARs, and 
a higher AMPAR endocytosis, the latter being mediated by 
stargazin interaction with AP-2 and AP-3 [271].

Interestingly, stargazin is also nitrosylated by nitric 
oxide (NO) under basal conditions, enhancing its binding 
to AMPARs and their surface expression; nitrosylation is 
increased upon NMDAR activation, adding a further regu-
latory residue to NMDAR-governed stargazin modulation 
of AMPAR trafficking [293]. Stargazin can also be gly-
cosylated, although the influence of this posttranslational 
modification on stargazin functions remains to be investi-
gated [294].

In addition to DLG-MAGUK and the clathrin adaptor 
complex, stargazin also binds several other proteins regu-
lating its functions in AMPAR trafficking. Stargazin inter-
acts, for instance, with the adaptor protein Erbin in cortical 
parvalbumin-positive (PV) interneurons; this interaction is 
essential for stargazin stability at the surface, and, therefore, 
AMPAR surface expression and function [295]. Consist-
ently, stargazer mice were shown recently to display altered 
AMPAR subunit composition in PV interneurons, leading to 
a loss of the feedforward inhibitory circuit in the somatosen-
sory cortex; these data provide a mechanistic link between 
stargazin and the absent epileptic seizures characteristic of 
the stargazer mouse models [296, 297]. This may stem from 
a differential regulation of AMPAR subunits trafficking by 
stargazin; indeed, while stargazin targets GluA2 subunits to 
the dendritic surface, it directs GluA1 receptors only to the 
dendrites, but not the surface [298]. Stargazin exerts addi-
tionally a protective effect for GluA1-containing receptors 
against lysosomal degradation, but not for GluA2/GluA3 
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heterodimers. Interestingly, stargazin also binds another 
MAGUK protein, membrane-associated guanylate kinase 2 
(MAGI-2), a scaffold protein interacting with many proteins 
involved in neuronal morphology, such as dendrin, axin, and 
catenins; this interaction is important for MAGI-2 localisa-
tion at the synapse and provides a link between AMPARs, 
TARPs, and neuronal morphology [299]. Consistently, Type 
I TARPs influence the development of cortical pyramidal 
dendritic trees, stargazin specifically at later stages [300]. 
Taken collectively, these studies underlie the importance of 
stargazin as a scaffolding protein, bridging AMPAR traffick-
ing and other crucial neuronal processes.

TARP γ3, γ4, and γ8

Functionally, γ3, γ4, and γ8 were classified as TARPs when 
it was shown that their transfection in stargazer cerebellar 
granule cells could restore AMPAR-mediated responses 
[264]. Like stargazin, they are enriched in the PSD and are 
important for surface expression of AMPARs in the brain 
regions where they are expressed; γ3 is mainly, but not 
exclusively, present in the cerebral cortex, γ4 in the olfactory 
bulbs, striatum, and glia, and γ8 in the hippocampus [264]. 
Contrarily to stargazin, γ3 and γ8, γ4 expression reaches its 
peak during embryonic and early postnatal development and 
slowly decreases afterwards [264]. Like stargazin, γ3 and γ8 
interact with PSD95 and PSD93; it is currently unknown, 
but probable, for γ4 [171].

γ3 and γ4 knockout mice do not show any gross phe-
notype; neither do γ3/γ4 double knockout mice [254, 255, 
301]. However, stargazer (stg)/γ3 double knockout mice die 
a couple of weeks after birth, a stronger phenotype than 
pure stargazer mice [254]. This suggests that the lack of 
phenotype in γ3 knockout mice comes from a compensation 
by overlapping TARPs, i.e., stargazin, but also γ8. Indeed, 
synaptic AMPAR content and function is unaffected in stg/
γ3 double knockout hippocampal neurons, where γ8 is still 
expressed, but impaired in cerebellar Golgi neurons, where 
γ8 is not. This loss of synaptic AMPARs reflects specifi-
cally a decrease in GluA2-containing receptors, implying a 
subunit-specific trafficking regulation by stargazin and γ3. 
Interestingly, Golgi neurons are unaffected in single knock-
out mice, suggesting that stargazin or γ3 alone is sufficient 
to regulate AMPAR trafficking and function [254].

The phenotype of stg/γ4 double knockout mice appears 
to be background-dependent, as this strain has been reported 
viable by Menuz and colleagues, but with very low levels 
of birth by Letts and colleagues [255, 301]. To compensate 
for the lack of viable stg/γ4 double knockout mice in their 
hands, Letts and colleagues crossed γ4 knockout mice to 
milder alleles of the stargazin gene, waggler and stargaz-
er3J. These double mutants were viable and displayed an 
increased number of seizures compared to  single waggler 

or stargazer3J mice; this worsened phenotype indicates that 
γ4 acts as a seizure repressor, although the exact mecha-
nisms are unclear [301]. This may be related to the spe-
cific modulation of AMPAR function by γ4; indeed, while 
most properties are regulated to a similar extent to stargazin, 
AMPAR desensitization is much more strongly modulated 
by γ4 [302]. Triple knockout mice for stargazin, γ3 and γ4 
die at birth from apnea and are paralyzed, pointing towards 
a developmental role for γ3 as well [255]. Intriguingly, 
AMPAR targeting to the perisynaptic and synaptic surface 
is unaffected in cortical and spinal neurons [255]. This sug-
gests a compensation by another TARP; as it is expressed in 
both neuronal populations shortly after birth and can influ-
ence AMPAR function at that age, γ8 is a likely candidate 
[255]. In the nucleus accumbens, γ4 was found to mainly 
localize in perisynaptic membranes, contrary to the synap-
tic localization of stargazin, suggesting a preferential role 
in regulating the perisynaptic AMPAR pool [303] (Fig. 4).

While γ8 knockout mice appear normal, they do show a 
strong impairment of AMPAR trafficking, contrary to γ3, 
γ4, or γ7 knockout mice [8]. γ8 loss leads to a striking 85% 
reduction of GluA proteins in the hippocampus, where γ8 
is primarily expressed; the remaining receptors are mislo-
calized and do not reach the dendritic membrane. Consist-
ently, γ8 overexpression enhances surface AMPAR expres-
sion, indicating a role in AMPAR synaptic delivery. In γ8 
knockout mice, both extrasynaptic and synaptic AMPAR 
pools are affected; however, the extrasynaptic pool is much 
more depleted, suggesting a selective delivery of the avail-
able AMPARs to the synaptic pool. Basal synaptic trans-
mission and LTP are impaired, likely due to an insufficient 
extrasynaptic pool of AMPARs; on the other hand, LTD 
is intact, implicating that γ8 is not involved in NMDAR-
induced AMPAR endocytosis [8, 304]. The stronger reduc-
tion in surface AMPARs in stg/γ8 double knockout mice 
suggests that stargazin mediates the trafficking of the few 
AMPARs expressed at the membrane in γ8 knockout mice 
[8]. γ3 may also complement γ8 and stargazin, but as stg/
γ3/γ8 mice die embryonically, it is difficult to assess. On the 
other hand, γ4 is most likely not involved, as γ3/γ4/γ8 triple 
knockout mice, who are viable and fertile, do not show a 
stronger phenotype than γ8 knockout mice [255].

Another mouse line lacking γ8 on a different background 
shows a similar phenotype, as surface AMPARs are reduced 
in hippocampal synapses, while intracellular AMPARs are 
unaffected [305]. However, the synaptic and extrasynaptic 
pools are here similarly reduced; as the global abundance of 
AMPARs is also much less decreased (55% instead of 85% 
reduction), this is still consistent with a preferential delivery 
to the synaptic pool, with a greater amount of AMPARs 
now available to the extrasynaptic pool [305]. Both studies 
indicate a role for γ8 in AMPAR delivery to the surface and 
the activity-induced mobilization of the extrasynaptic pool 
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by lateral diffusion (Fig. 4). Consistently, γ8 was recently 
described as the only TARP expressed at the nonperforated 
synapses of the hippocampal Schaffer collaterals onto CA1 
pyramidal cells, which have a lower AMPAR density com-
pared to perforated synapses, where stargazin and γ3 were 
also detected [306]. In stg perforated synapses, compensa-
tory γ8 upregulation failed to completely rescue surface 
AMPAR expression; conversely, in γ8 knockout perforated 
synapses, compensation was successfully carried by starga-
zin upregulation. This suggests that stargazin and γ8 regulate 
AMPAR trafficking and synaptic density at different levels—
stargazin being required for high synaptic expression and γ8 
for low density, basal expression; the lack of changes in γ3 
knockout mice points toward a different role for γ3 in the 
hippocampus [306].

While the PDZ-binding domains are identical between 
Type I TARPs, γ8 possesses unique stretches at the C-ter-
minus and diverges from stargazin at the other two intracel-
lular domains, suggesting the existence of a different regu-
latory mechanism [289]. Indeed, swapping all cytoplasmic 
domains between stargazin and γ8 is enough to completely 
exchange the synaptic AMPAR phenotype between the two 
TARPs, showing that intracellular domains as a whole regu-
late synaptic AMPAR trafficking [307]. The role of the PDZ-
binding domain is still ambiguous; it has been hypothesized 
to be required for the synaptic localization of AMPAR/
TARP complexes via PSD95 binding by TARP, and, there-
fore, subsequent LTP. Consistently, a recent study reported 
that LTP was impaired in single-cell genetic experiments, 
where GluA1 homomers tethered to PDZ-binding domain-
lacking γ8 were expressed on a triple GluA knockout back-
ground [308]. However, knockin mice expressing γ8 lacking 
its PDZ-binding domain display an impaired basal transmis-
sion, but normal LTP, suggesting that different mechanisms 

are regulating synaptic AMPAR localization in these two 
events [304]. Another possibility is compensation by other 
TARPs in the knockin mice, or a differential regulation for 
AMPAR heteromers compared to GluA1 homomers; addi-
tional work is required to elucidate this model. In both stud-
ies, however, the decreased basal transmission is attributed 
to lower synaptic AMPAR content, while the extrasynaptic 
pool is unaffected, suggesting that the backbone of γ8 is 
important for extrasynaptic AMPAR targeting, in line with 
other studies [8, 304, 306]. Consistently, and contrary to 
stargazin PSD localization, γ8 is preferentially found in the 
extrasynaptic membranes [304, 309].

Like stargazin, γ8 is subjected to several posttranslational 
modifications. γ8 is notably phosphorylated at several C-ter-
minal serine residues by CaMKII and PKC, and dephospho-
rylated by PP1 and/or PP2A, but not PP2B [289, 309]. γ8 
phosphorylation was recently found to be required for LTP, 
as demonstrated by an impaired LTP in mice expressing 
phosphodeficient γ8; this is consistent with the requirement 
for LTP of the γ8 backbone, outside of the PDZ-binding 
domain [310]. Contrary to stargazin, which does not bind 
PP2B, but is a substrate, γ8 binds the phosphatase PP2B/
calcineurin in a CaM-dependent manner, but is not a target; 
via this association, γ8 may regulate AMPAR phospho-
rylation levels and, therefore, their trafficking during basal 
conditions, but also LTP and LTD [311]. γ8 is also N-gly-
cosylated, a modification essential for its trafficking to the 
membrane and surface expression; moreover, unglycosylated 
γ8 on γ8 knockdown background is unable to rescue the 
decreased AMPAR surface expression, suggesting that the 
maturation of γ8 is required for the correct synaptic delivery 
and surface expression of AMPARs [294].

γ3, γ4, and γ8 have, therefore, all been involved in regu-
lating AMPAR trafficking. γ8 is now well established as the 

Fig. 4  Regulation of AMPAR 
trafficking by TARP γ3, γ4, 
γ7, and γ8, CNIH and GSG1L. 
TARP γ3, γ4, γ7, and γ8, 
CNIH2 and 3, and GSG1L 
modulate AMPAR trafficking to 
and at the synapse. γ3, γ4, and 
γ8 and CNIH2 together, target 
AMPARs to the extrasynap-
tic pool. γ8 and CNIH2 also 
cooperatively regulate AMPAR 
lateral diffusion to and anchor-
ing at the synapse, by binding 
MAGUK proteins. TARP γ7 
and CNIH3 are also present at 
the synapse. GSG1L, on the 
other hand, promotes AMPAR 
endocytosis and negatively 
regulates AMPAR trafficking to 
the synapse
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major TARP in the hippocampus, and its main role appears 
to modulate AMPAR delivery to the extrasynaptic pool and 
its lateral diffusion to the synapse. On the other hand, the 
exact roles of γ3 and γ4 are still uncertain due to the general 
compensation by the preponderant stargazin and γ8, and 
require further work.

Tarp γ7

TARP γ7 was first identified as a regulatory protein for volt-
age-gated calcium channels; its low-sequence homology to 
Type I TARPs and its different structure suggested that it 
did not function as a TARP, like γ5 [312]. However, γ7 was 
then shown to be highly expressed in the cerebellum, espe-
cially in Purkinje cells, granule cells, and stellate cells [313, 
314]. γ7 is enriched in the PSD and binds all GluA subunits 
and PSD95 (Fig. 4); furthermore, γ7 modulates AMPAR 
trafficking and gating, and its overexpression enhances glu-
tamate-evoked AMPAR currents [313]. γ7 regulates also 
specifically GluA2-containing AMPARs and its modulation 
depends on GluA2 editing [315].

In addition, γ7 and stargazin are abundantly detected at 
various cerebellar asymmetrical synapses (such as the paral-
lel or climbing fiber synapses onto Purkinje cells) but absent 
from symmetrical synapses (basket or stellate cell synapses 
onto Purkinje cells) [314]. Knockout mice for stargazin (stg), 
γ7, or double knockout for stg/γ7 showed a selective reduc-
tion in synaptic AMPAR subunits content—GluA2/3 were 
markedly affected in stg, GluA1/4 moderately in γ7 knock-
out, and GluA2/3/4 in double knockout mice. Intriguingly, 
these losses were predominant at different asymmetrical 
synapses, pointing towards a cooperation between starga-
zin and γ7 to promote AMPAR synaptic expression [314]. 
The lack of phenotype displayed by γ7 knockout mice and 
the cerebellar impairments shown by the stargazer mice 
suggest, however, that γ7 function is relatively small and 
unable to fully compensate for the lack of stargazin. Indeed, 
as shown by the lack of further impairment in stg/γ7 double 
knockout compared to stg mice, γ7 contribution to excitatory 
transmission is negligible [316]. Nonetheless, in the double 
knockout mice, the climbing fiber-to-Purkinje cell synapses 
are affected and their excitatory transmission impaired, sug-
gesting a specific modulation by γ7 of this class of synapses. 
Consistently, selective deletion of stargazin in Purkinje cells 
on a wild-type background did not cause any motor defects, 
while this deletion on a γ7 knockout background severely 
impaired multiple motor behaviors [316]. These results sug-
gest that stargazin and γ7 cooperation is specifically regulat-
ing the climbing fiber input onto Purkinje cells, and that this 
collaboration is essential for motor control.

On the other hand, γ7 has also been implicated in reg-
ulating the trafficking and perisynaptic accumulation of 

GluA2-lacking, calcium-permeable AMPARs in stellate and 
granule cells [317]. These receptors are, however, unable to 
cluster at the synapse and AMPAR-mediated transmission 
is then ensured by “TARPless” AMPARs, suggesting that 
neither stargazin nor γ7 is required for surface expression 
and a role for γ7 in trapping AMPARs in the extrasynaptic 
pool [317]. Consistently, γ7 selectively increases calcium-
permeable AMPAR expression at the synapse of granule 
cells and downregulates GluA2-containing, calcium-imper-
meable AMPARs [318]. Conversely, however, another study 
has shown the requirement of stargazin for surface AMPAR 
expression in cerebellar stellate cells [262]. All in all, the 
role of γ7 in cerebellar granule and stellate cells appears still 
controversial; its role in Purkinje cells seems so far unchal-
lenged. Its small contribution to AMPAR trafficking may 
indicate a greater role in unrelated functions; indeed, γ7 
regulates the stability of specific mRNAs via its interaction 
with the RNA-binding heterogeneous nuclear ribonucleo-
protein (hnRNP) A2 and promotes neurite outgrowth via the 
retrograde transport of signaling vesicles [319, 320].

Cornichon proteins (CNIHs)

CNIH2 and 3 are transmembrane proteins first identified as 
cargo transporters in Drosophila, and only more recently 
as AMPAR auxiliary subunits in a proteomic analysis of 
AMPAR complexes [321, 322]. CNIHs appear to bind the 
majority of AMPARs in the rat brain, even more so than 
TARPs. Like TARPs, CNIHs are involved in both AMPAR 
trafficking and channel kinetics, as CNIH overexpression 
increases surface AMPAR expression and slows down inac-
tivation and desensitization, suggesting a role in stabilizing 
the channel in an open, active configuration [322]. CNIH2 
and 3 expression patterns in the brain show a peak during 
the first two postnatal weeks and a slow decrease over time, 
contrary to GluA subunits; however, the proportion of CNIH 
bound to AMPARs remains constant, indicating a specific 
reduction in AMPAR-free CNIH and suggesting a switch 
from general cargo transporter to AMPAR auxiliary subunit 
[323].

Immediately after CNIH identification as auxiliary subu-
nits, two partially conflicting studies regarding their exact 
functions were published [324, 325]. While Shi and col-
leagues found a major role in cargo trafficking, with very 
little surface expression in hippocampal neurons [325], Kato 
et al. showed that CNIH2 is not only present in postsynaptic 
densities, but it also associates with TARP γ8 and AMPARs 
in a complex cooperatively regulating channel gating and 
pharmacology, specifically AMPAR desensitization [324]. 
Intriguingly, CNIH2 levels were strikingly reduced in γ8 
knockout mice, similarly to the reduced levels of GluA1/2 
subunits observed in these mice [8, 324]. CNIH proteins lack 
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a synaptic targeting PDZ-binding site, which is consistent 
with a role for AMPAR trafficking towards the extrasynaptic 
pools together with γ8. In agreement, Shi et al. showed that 
CNIH2 overexpression is able to partially rescue extrasyn-
aptic, but not synaptic AMPAR pool in stargazer granule 
cells; coexpression with γ8, as found by Kato and colleagues, 
enhances that rescue [324, 325]. Furthermore, the roles of 
CNIH2 as cargo transporter and auxiliary subunit are not 
mutually exclusive; in hippocampal neurons, CNIH2 medi-
ates primarily AMPAR transport between the ER and Golgi 
complexes, but interaction with GluA subunits leads to its 
escape from the early anterograde pathway and its transport 
with the receptor to the cell surface, where it stays associ-
ated and becomes a membrane protein [326] (Figs. 4, 7). A 
similar double role in trafficking and gating regulation was 
found for the sole CNIH homolog in C. elegans, suggesting 
a conserved dual function [327].

The role of CNIH proteins may also depend on the neu-
ronal cell type, especially via the differential expressions 
of TARP isoforms. While CNIH2 differentially modulates 
AMPAR gating by regulating the stoichiometry of TARPs 
within AMPAR complexes, it only reaches the surface when 
coexpressed with γ8, explaining the localization and chan-
nel gating differences between γ8-expressing hippocampal 
neurons and γ8-lacking Purkinje cells [328, 329] (Fig. 4). In 
addition, the role of CNIH proteins may also be GluA sub-
unit-dependent. CNIH2 and 3 bind preferentially to GluA1 
subunits and facilitate the transit to and expression at the 
surface of GluA1/A2 heteromers over GluA2/A3 receptors; 
CNIH2 and 3 conditional knockout mice show a deep reduc-
tion in AMPAR function due to a retention of immature 
receptors at the ER, a shift in AMPAR transmission con-
sistent with a loss of GluA1 receptors, and impaired LTP 
[330]. In agreement, both CNIH2 and 3 are associated at the 
surface with GluA2-lacking, calcium-permeable AMPARs 
and regulate their desensitization [331]. However, another 
study reports that CNIH proteins bind equally to GluA1 and 
GluA2 subunits, and that the lack of binding to GluA2 might 
rise from a technical issue; in this report, CNIH2 was found 
to mediate the switch from fast to slow AMPAR-mediated 
transmission in hilar mossy cells, further emphasizing the 
role of CNIH in AMPAR kinetics [332].

Structurally, CNIH proteins bind AMPARs via their mem-
brane-proximal domain; compared to CNIH1 and 4, CNIH2 
and 3 have an additional extracellular loop interacting with the 
ligand-binding domain and transmembrane domain of GluA 
subunits and necessary to exert their regulatory functions [333, 
334]. These elements are both bound by CNIH and γ8, but 
lead to a regulation of AMPAR gating in opposite directions 
by each auxiliary protein, providing a structural basis for the 
regulation by CNIH of γ8-mediated AMPAR de- and resen-
sitization and the differential pharmacology induced by the 
binding of either auxiliary protein [334, 335]. Further studies 

are required to investigate the domains involved in regulating 
AMPAR trafficking from the ER to the membrane and to dis-
tinguish the specific roles of CNIH2 and 3.

Germline-speci�c gene 1-like (GSG1L)

GSG1L was recently identified as an AMPAR auxiliary subu-
nit with a structural similarity to the TARP family [10, 336]. 
In heterologous systems and Xenopus oocytes, GSG1L slows 
down AMPAR desensitization and deactivation, similarly to 
TARPs [10, 336]. In hippocampal CA1 neurons, however, 
GSG1L modulates AMPAR trafficking and gating in a very 
different way to TARPs, as it downregulates AMPAR traffick-
ing to the synaptic and extrasynaptic pools and enhances deac-
tivation and desensitization, thereby favoring a reduction in 
AMPAR function at the synapse [337] (Fig. 4). Furthermore, 
AMPAR endocytosis is promoted upon GSG1L overexpres-
sion and reduced in GSG1L knockout rats. LTP is enhanced in 
these rats, consistently with the increased availability of extra-
synaptic AMPARs and the reduced endocytosis rate [337]. 
Intriguingly, GSG1L reverts CNIH2 modulation of AMPAR 
kinetics both in Xenopus oocytes and CA1 neurons; as loss 
of CNIH2 occludes GSG1L effects, GSG1L function might 
actually be exerted via CNIH2 [10, 337]. Remarkably, in hip-
pocampal granule cells, while GSG1L also negatively regu-
lates AMPAR trafficking and surface expression, the protein 
only influences AMPAR gating when overexpressed, but not 
upon knockout suggesting that, in this population, GSG1L is 
only required for synaptic trafficking and not for channel prop-
erties [338]. In the brainstem nucleus abducens, GSG1L acts 
as a chaperone protein during classical conditioning, which 
requires the consecutive delivery of GluA1-containing recep-
tors, followed by GluA4-containing heteromers; the former 
are bound and chaperoned by γ8, and the latter by GSG1L, 
providing the necessary subunit specificity for the learning 
paradigm; these results further emphasize the role of GSG1L 
in AMPAR trafficking [339]. Structurally, the cytoplasmic 
region of GSG1L and especially the Loop1 domain are crucial 
to mediate its regulation of AMPAR function [337]. GSG1L 
binding to AMPARs induces a conformation promoting the 
desensitized state, providing a structural basis for its physi-
ological functions [340, 341]. Further investigation is required 
to understand the specific role of GSG1L in conjunction with 
other auxiliary proteins.

Shisa6 and 9 (cystine-knot AMPAR 
modulating proteins (CKAMP) 52 and 44)

The Shisa family of scaffold proteins are characterized by 
an N-terminal cysteine-rich and a proline-rich C-terminal 
regions and include several subclasses supporting a very 
wide range of cellular functions [342]; one subgroup is 
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formed by the members Shisa6–9, which are also known 
after their function and molecular weight as cystine-knot 
AMPAR modulating proteins (CKAMPs) [343, 344]. Shisa9, 
or CKAMP44, was the first Shisa protein to be identified as 
interacting with AMPARs, but also with PSD95 and starga-
zin; Shisa9 is localized at the PSD and modulates AMPAR 
desensitization and short-term plasticity at hippocampal 
synapses [343] (Fig. 5). Shisa9 can bind AMPARs in com-
plex with other auxiliary proteins, such as TARP γ2, γ4 or 
γ8, suggesting that they do not share the same binding site 
[345]. In the hippocampus, Shisa9 is lowly expressed in CA1 
neurons and seems to play a very minor role; however, in 
the dentate gyrus, it is highly expressed and associated with 
AMPAR/γ8 complexes. Shisa9 binding to PSD95 and the 
reduction in AMPAR/γ8 complexes in Shisa9 knockout mice 
suggest that Shisa9 stabilizes AMPARs at the surface. Con-
sistently, spine density is positively regulated by Shisa9 and 
γ8 [345]. Shisa9 knockout mice display a decreased surface 
AMPAR expression equally at the synaptic and extrasynap-
tic sites, indicating that Shisa9 does not regulate preferen-
tially one of these pools. LTP in dentate granule cells was 
also unaffected in these mice, contrary to γ8 knockout mice, 
where it is strongly reduced, consistently with LTP at the 
Schaffer collaterals [8, 345]. AMPAR de- and resensitiza-
tion and short-term plasticity is regulated by γ8 and Shisa9 
in opposite directions; interestingly, this means that AMPAR 
desensitization in double knockout mice is actually similar 
to wild-type mice, as the knockout compensate each other 
[345]. Very recently, Shisa9 was shown to be crucial for the 
integration of visual inputs at the reticulogeniculate synapse, 
which depends on short-term depression of AMPARs; in 
agreement with the literature, Shisa9 attenuates AMPAR 
resensitization, thereby enhancing short-term depression and 

preventing neuronal hyperactivation, but it also promotes 
surface AMPAR expression and thereby synaptic strength, 
suggesting that Shisa9 exerts a carefully balanced modula-
tion on the relay of visual signals [346].

Structurally, AMPAR binding requires a region down-
stream of Shisa9 transmembrane domain and the cystine-
knot domain is essential for its modulation of AMPAR 
trafficking and gating [345]. In addition to PSD95, the 
cytosolic PDZ-binding domain of Shisa9 binds to several 
other scaffold proteins, including PSD93, SAP97, SAP102, 
GRIP1, and PICK1 [347, 348]. Disrupting PDZ interac-
tions is enough to phenocopy the effect on AMPAR synaptic 
localization and transmission of Shisa9 knockout suggest-
ing that at least one of these partners is essential for Shisa9 
regulatory function [347]. Recently, interaction with PICK1 
was shown to bridge Shisa9 with PKC, inducing Shisa9 
phosphorylation; PICK1 association requires binding of 
another N-terminal domain of Shisa9, which is important 
for its regulation of AMPAR function, suggesting a possible 
competition between AMPAR and PICK1 [348]. As PICK1 
interaction with PKC is important for its targeting to the 
membrane, this could provide a mechanism for the mem-
brane targeting of Shisa9/PICK1, followed by a switch of 
Shisa9 to AMPAR/TARP/PSD95 complexes at the surface.

In addition to Shisa9, Shisa6, or CKAMP52, was also 
identified specifically as part of the native AMPAR com-
plexes [10, 349]. Like Shisa9, Shisa6 is present at the 
PSD and binds PSD95 via its cytosolic domain, forming a 
complex with AMPARs and trapping them at the synapse; 
moreover, Shisa6 regulates AMPAR gating by preventing 
desensitization, thereby protecting hippocampal CA1 neu-
rons from depression [349] (Fig. 5). Of note, while not part 
of the native complexes as described by Schwenk and col-
leagues [10], Shisa7 has also recently been found to associate 
with AMPARs and regulate their synaptic function; Shisa7 
knockout mice impaired LTP initiation and maintenance, and 
decreased short-term and long-term contextual fear memory 
[350]. As the expression pattern of Shisa6–9 is developmen-
tally regulated and as they differentially regulate AMPAR 
trafficking and gating in a cell-type-dependent manner [344], 
additional studies are necessary to determine more precisely 
their specific role in the various different brain regions.

Leucine-rich repeat transmembrane protein 
(LRRTM) 4

LRRTM4 belongs to the four-member leucine-rich repeat 
transmembrane protein (LRRTM) family of cell adhesion 
molecules, and alone in this family has been reported as a 
member of native AMPAR complexes [10]. Little is known 
about LRRTM4 role in synaptic function. LRRTMs are pre-
dominantly expressed in the brain, with partially overlapping 
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Fig. 5  Regulation of AMPAR trafficking by Shisa proteins. Shisa6 
and Shisa9 favor AMPAR stabilization at the synapse by binding to 
PSD95. Shisa9 is present in γ8-bound AMPAR complexes and binds 
several other PDZ domain-containing synaptic proteins; it also forms 
a complex with PICK1 and PKC upon trafficking to the synapse
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patterns; LRRTM4 itself is highly expressed from the end of 
embryonic development in several brain regions, including 
the cerebral cortex, the dentate granule cells and the CA3, but 
not CA1, pyramidal cells in the hippocampus, and a subset 
of cerebellar Purkinje cells [352]. The LRRTM family has 
been mainly characterized for its role as synaptic organiz-
ers (recently reviewed in Ref. [353]). LRRTMs are present 
at the postsynaptic sites; during development, they promote 
presynaptic differentiation in contacting axons [354], and as 
no effect on inhibitory synapses has been reported so far, 
their synaptogenic role appears specific to excitatory syn-
apses [353]. Contrary to LRRTM1–3, which acts as recep-
tors in trans for presynaptic neurexins, similarly to neuroli-
gins, LRRTM4 interacts with glypicans (GPCs), a family of 
heparan sulfate proteoglycans [355–359]. More specifically, 
LRRTM4 binding to axonal GPC-4 induces their clustering 
on their respective side of the synaptic cleft, and inhibiting 
this interaction using heparinases blocks LRRTM4 synap-
togenic function [357, 360]. GPC-4 additionally binds the 
LAR tyrosine phosphatase PTPσ, and the formation of the 
LRRTM4/GCP-4/PTPs complex mediates presynaptic dif-
ferentiation and excitatory transmission [358]. In LRRTM4 
knockout mice, dentate granule cells, but not CA1 pyramidal 
cells, exhibit a lower number of excitatory synapses; they 
also displayed lower synaptic levels of PSD95, an impaired 
excitatory (but not inhibitory) transmission and an inability 
to insert or stabilize new AMPARs at the surface following 
chemical LTP induction [360].

Interestingly, a regulatory role in AMPAR trafficking has 
also been found for LRRTM1 and 2. Indeed, LRRTM2 has 
been shown to directly bind PSD95 and regulate surface 
AMPAR trafficking [351]. Additionally, knocking down 
both proteins leads to decreased surface AMPARs follow-
ing chemical LTP and an impaired LTP in the adult Schaffer 
collaterals [361]. These findings were very recently con-
firmed in genetic double knockout mice, where the com-
plete deletion allowed Malenka and colleagues to uncover 
a role for LRRTM1 and 2 in basal AMPAR transmission, 
strongly suggesting a role in maintaining a sufficient pool of 
AMPARs at the surface [362]. Taken together, these results 
indicate a common role for LRRTMs in regulating AMPAR 
trafficking and function, albeit in different neuronal popu-
lations (Fig. 6). As LRRTM expression patterns are not 
completely mutually exclusive, further work is required to 
determine the existence of member-specific mechanisms.

Proline-rich transmembrane (PRRT) proteins 
1–2

PRRT 1 and 2 are type II transmembrane proteins; they were 
recently classified as members of the newly identified Dispanin 
family of transmembrane proteins, which are characterized by 

two transmembrane helices with several conserved motives 
[363]. The C-terminus of PRRT1 (or Dispanin subfamily 
D member 1, DSPD1) shares extensive similarity with the 
C-terminus of another Dispanin member, Dispanin subfamily 
C member 2 (DSPC2), initially identified as synapse differ-
entiation induced gene (SynDIG) 1; hence the other name of 
PRRT1, SynDIG4 [364]. Interestingly, SynDIG1 is a known 
AMPAR interactant: it is associated with AMPARs at syn-
aptic and extrasynaptic sites and promotes their clustering, 
and SynDIG1 distribution is regulated via activity-dependent 
palmitoylation [365, 366]. In vitro and in vivo, SynDIG1 also 
promotes the activity-dependent maturation of AMPAR-con-
taining synapses by increasing synaptic AMPAR and PSD95 
contents, thereby regulating synaptic number and strength 
([365, 368]; but see [369]). PRRT1 presents a complementary 
expression pattern to SynDIG1 and is especially enriched in 
the CA1 region of the hippocampus; intriguingly, it is only 
present in the PSD in low amounts and mainly colocalizes with 
extrasynaptic AMPARs [364] (Fig. 6). Consistently, PRRT1 
knockout mice mice show reduced extrasynaptic AMPARs, 
but also weaker synapses, impaired tetanus-induced (but not 
theta-burst induced) LTP, and cognitive impairments, sug-
gesting that PRRT1 is required for specific forms of synaptic 
plasticity, possibly by ensuring the existence of a sufficient 
pool of extrasynaptic AMPARs [370]. On the other hand, 
PRRT2 (or Dispanin subfamily B member 3, DSPB3) has 
been identified as the causative gene for multiple paroxys-
mal disorders arising from different mutations (reviewed in 
Ref. [371]). PRRT2 is expressed in subpopulations within the 
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Fig. 6  Newcomers in AMPAR complexes. Newly described con-
stituents of synaptic AMPAR complexes include PRRT1, which tar-
gets AMPARs to the extrasynaptic pool; LRRTM proteins, which 
maintain the pool of surface AMPARs; ABHD6, which negatively 
regulates surface AMPARs and stargazin; Noelin-1, which negatively 
regulates lateral mobility of AMPARs (extrasynaptic GluA1- and 
GluA2-containing receptors; synaptic GluA1-containing receptors); 
and Rap2b, which has been shown to trigger AMPAR endocyto-
sis indirectly, by recruiting effectors. A postsynaptic role of other 
interactants, such as neuritin, brorin, brorin-like or PRRT2, is still 
unknown
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cortex, hippocampus, cerebellum, and basal ganglia; it appears 
to be mainly a presynaptic protein and is only detected at low 
levels in the PSD [372]. At the presynapse, PRRT2 interacts 
with SNAP25, a component of the SNARE machinery, and 
synaptotagmins 1 and 2; it negatively regulates the priming of 
neurotransmitter-containing vesicles by blocking the SNARE 
machinery, thereby modulating synaptic transmission [372, 
373]. In addition, PRRT2 also binds intersectin 1, a presyn-
aptic scaffold protein [367]. Consistently with the observed 
symptoms, PRRT2 mutations found in human patients disrupt 
this regulation and thereby synaptic transmission [373, 374]. 
In addition, PRRT2 plays a role in neuronal migration and syn-
aptic development [374]. At the postsynapse, barely anything 
is known: PRRT2 has been detected at the tip of dendritic 
spines and reported to restrict surface AMPAR levels [374, 
375]. Additional studies are certainly needed to confirm and 
characterize its role as AMPAR auxiliary subunit.

Neuritin

Neuritin is part of the neurotrophin family and was originally 
identified as candidate plasticity gene (cpg) 15 in a screen 
for plasticity-related genes in the rat hippocampus [376]. 
Neuritin has since then been established as a major player in 
activity-dependent remodeling of dendritic and axonal arbo-
rization by combining cell and non-cell autonomous actions: 
following the upregulation of its expression by activity, neu-
ritin enhances axonal growth and branching, but can also be 
released from the axonal membrane by cleavage of its glyco-
sylphosphatidylinositol (GPI) anchor, subsequently uptaken 
by the postsynapse, and thereby promoting dendritic arbo-
rization [377–382]. Neuritin thus supports the stabilization 
and maturation of active synapses and is thereby crucial for 
experience-driven neuronal network development, as shown 
by the disrupted visual receptor fields displayed by neuritin 

knockout mice [383]. In addition, neuritin knockout mice 
display delayed hippocampal development, decreased spine 
stability leading to a reduced spine density, and a lengthened 
learning process, although memory persistence is unaffected 
[384]. Neuritin also has been involved in synaptic transmis-
sion via its regulation of potassium and calcium channels 
[66, 385]. However, in addition to Schwenk and colleagues 
[10], neuritin has only been associated with AMPARs by a 
single study: Cantallops and colleagues showed that, in a 
non-cell autonomous manner, neuritin leads to the recruit-
ment of AMPARs to the contacting postsynapses in Xenopus 
optic tectal neurons and the conversion of silent synapses to 
functional synapses [379]. These data are consistent with an 
association with AMPAR complexes; however, the mecha-
nisms and additional possible functions during plasticity in 
mature networks are open to investigation.

Noelin

Noelin is a secreted glycoprotein belonging to the larger 
olfactomedin family and transcribed in four alternative 
splice isoforms, Noelin 1–4, also known as olfactomedin 
1–4 in zebrafish [386, 387]. Noelin isoforms play important 
roles during various stages of the development of the neural 
system and head structure [388–391]. Regarding plasticity, 
both Noelin-1 and 2 have also been shown by independent 
studies to interact directly with AMPARs [10, 392–395]. 
Noelin-1 interacts with additional AMPAR auxiliary subu-
nits, such as TARP γ8 and neuritin; in addition, Noelin-1, 
2, and 3 are able to form heterodimers and have a similar 
expression pattern, suggesting the possible coexistence of 
multiple Noelin isoforms within a given AMPAR complex 
[394, 395] (Fig. 6). Noelin-1 knockout mice display abnor-
mal social- and anxiety-related behaviors and impaired 
olfaction, increased resting and activity-induced calcium 

Fig. 7  Endosomal constituents 
of AMPAR complexes. ER-
specific AMPAR complexes 
ensure their proper biogenesis 
and prime them for synaptic 
partners, such as TARP and 
CNIH. These ER-specific 
interactants include CPT-1c and 
FRRS1L, which bind together, 
providing a platform for GluA 
subunits and subsequently Sac1, 
PORCN, and ABHD6/12 bind-
ing. Several TARPs, CNIH2, 
PICK1, and Noelin-1 have also 
been involved in regulating 
AMPAR early trafficking
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concentrations in the hippocampus and olfactory bulbs, and 
upregulated calcium-dependent signaling pathways; how-
ever, AMPAR function was unaffected [392]. Consistently, 
Pandya and colleagues recently showed that Noelin-1 did 
not influence AMPAR channel properties [395]. On the 
contrary, Noelin-1 regulates the lateral mobility and inter-
action with the extracellular matrix of AMPARs, in a sub-
unit-specific manner: increasing Noelin-1 amounts in hip-
pocampal neurons affects both synaptic and extrasynaptic 
GluA1-containing AMPARs, but only extrasynaptic GluA2-
containing AMPARs. This suggests that additional auxiliary 
subunits are involved in regulating the lateral mobility of 
synaptic GluA2-containing AMPARs [395]. In zebrafish 
double knockout for olfactomedin1 a/b, the homologs of 
Noelin-1, levels of synaptic AMPARs are significantly 
reduced; as GluA2 palmitoylation is decreased (but phos-
phorylation unaffected), this suggests that Noelin-1 regulates 
GluA2 maturation and thereby trafficking from the ER to the 
dendritic compartment, a role not mutually exclusive with 
regulating AMPAR lateral mobility [393] (Fig. 7). Another 
hypothesis would be that Noelin-1 enhances AMPAR sur-
face stabilization, as it is present in lipid rafts, which have 
been shown to be important for this process [38]; however, 
the fact that AMPAR endocytosis is reduced in the mutant 
makes this possibility unlikely. Intriguingly, Noelin-1 is 
also present in the presynapse and interacts with SNARE 
proteins, which are also reduced in the presynaptic compart-
ment in knockout fish [393]. Noelin-2 knockout mice show 
impaired behaviors and olfaction similar to Noelin-1 knock-
out mice, with additional slight motor defects; the composi-
tion of synaptic AMPAR complexes was also altered, with 
increased levels of GluA2, but decreased Noelin-1, PSD95, 
and CNIH-2 [394]. How this relates to AMPAR function, 
and which role plays Noelin-3, the additional isoform identi-
fied by Schwenk and colleagues, remain to be investigated.

Of note, another pair of secreted proteins, brorin and 
brorin-like, have also been identified by Schwenk and col-
leagues as AMPAR interactants [10]. Very little is known 
about them; they act as neural-specific bone morphogenetic 
protein (BMP) antagonists in mouse and zebrafish and as 
regulators of neural development [396–399]. Their expres-
sion in the adult brain leaves the door open for functions in 
postmitotic neurons, but extensive work is still required to 
identify an AMPAR-related role.

Ras-related protein (Rap) 2b

Rap2b is one of the three alternatively spliced isoforms of 
Rap2, a member of the Ras family of small GTPases, which 
also includes Ras and Rap1. Only Rap2b has been identified 
as a member of native AMPAR complexes by Schwenk and 
colleagues [10]. This is rather surprising, as the sequence of 

these isoforms is over 90% identical, and no known Rap2 
effector has shown so far isoform-selective activity in vitro 
[400]. However, they are differentially palmitoylated, and 
contrary to Rap2a and c, Rap2b does not require palmitoyla-
tion for its binding to the plasma membrane [401]. Multiple 
functions specific for Rap2b have already been characterized, 
many of which cancer-related (reviewed in Ref. [402]), but 
no study on Ras/Rap signaling in plasticity has so far focused 
on a given Rap2 isoform, and the available information, as 
presented in this section, is, therefore, applicable to all Rap2 
isoforms. The Ras family regulates AMPAR trafficking bidi-
rectionally: while Ras is important for AMPAR insertion 
and LTP, Rap1 and 2 mediate AMPAR removal during LTD 
and depotentiation, respectively [403–407]; reviewed in Ref. 
[408]) (Fig. 6). Rap2 activates JNK and induces AMPAR 
dephosphorylation, while Rap1 acts via p38 MAPK; neurons 
expressing a constitutively active Rap2 show reduced surface 
AMPAR levels and lower synaptic function, and are unable 
to maintain LTP [404, 409].

Together with Ras, Rap2 also mediates activity-induced 
synapse-specific AMPAR trafficking: Ras promotes transfer 
from the cytoplasmic to the synaptic pool, and Rap2 induces 
AMPAR removal from the synapse to the cytoplasm, ena-
bling an activity-dependent reallocation of the receptors to 
other synapses [405] (Fig. 6). Consistently, Rap2 negatively 
regulates dendritic and axonal arborization: when consti-
tutively active, Rap2 induces a decreased complexity and 
spine loss; intriguingly, despite a similar role in physiologi-
cal plasticity, Rap1 does not affect neuronal morphology 
[409]. Transgenic mice expressing a constitutively active 
Rap2 show a similar phenotype, although Rap2 affects LTD 
but not depotentiation, and via ERK but not JNK signaling 
[410]. While these discrepancies are puzzling, this report 
is still consistent with a major role for Rap2 in AMPAR 
removal from the synaptic pool. Very recently, Zhang and 
colleagues studied the localization of Ras/Rap proteins in 
subcellular microdomains and showed that Ras mediates 
LTP via ER PI3K and lipid raft ERK, Rap1 transduces LTD 
via lysosomal p38 MAPK and Rap2 signals depotentiation 
via bulk membrane JNK, confirming and adding a further 
level of complexity to the current paradigm [407]. Efforts 
have so far focused on identifying coregulators and effectors 
of Rap2-mediated plasticity [406, 411], but not yet on the 
effects of its direct binding to AMPARs, which has yet to be 
confirmed independently. Further studies are thus required 
to tease out the specific role of Rap2b in AMPAR trafficking.
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a/b-hydrolase domain-containing (ABHD) 6 
and 12

ABHD6 and 12 are monoacylglycerol lipases—a pri-
mary function a priori surprising in a review dedicated to 
AMPAR trafficking. However, they were both identified as 
constituents of the native AMPAR complexes and ABHD6 
expression has been detected specifically in dendritic spines 
[10, 412]. ABHD6 overexpression leads to a decrease of 
AMPAR-mediated transmission and impaired LTP, while 
a knockdown has the opposite effect; NMDAR and GABA 
receptor-mediated transmissions are unaffected [413]. 
Moreover, surface AMPAR and stargazin are reduced in 
ABHD6 overexpressing cells, suggesting a role in restrict-
ing the surface pool of AMPARs (Fig. 6). In addition, this 
function does not require ABHD6 enzymatic activity, and 
is, therefore, also independent from the endocannabinoid 
pathway [413, 414]. Finally, ABHD6 binds GluA1–3 at their 
C-terminus and its effect is subunit-independent; it is also 
independent from stargazin [415]. Unexpectedly, ABHD6 
and 12 were also identified as part of AMPAR complexes 
at the ER, suggesting a dual regulatory role, at least for 
ABHD6 (see below) [416].

ER AMPARs interactants: carnityl 
palmitoyltransferase (CPT) 1C, ferric 
chelate reductase 1 like (FRRS1L), 
Sac1, and protein-serine 
O-palmitoleoyltransferase porcupine 
(PORCN)

CPT-1C is a brain-specific isoform of the depalmitoylat-
ing enzyme CPT1, mainly characterized for its role in food 
intake and energy homeostasis (reviewed in Ref. [417]). 
CPT-1C is expressed in hippocampal pyramidal cells and 
localized in the ER, in the soma but also in the spines; CPT-
1C deficiency leads to a decreased number in mature spines 
and, consistently, impaired spatial learning [418]. Although 
this has been linked to CPT-1C enzymatic activity via cer-
amide depalmitoylation, this phenotype is reminiscent of 
the role of GluA2 in promoting spine density and matura-
tion [419]. CPT-1C, indeed, interacts with AMPARs and 
enhances their surface level and function; however, consist-
ently with earlier reports, it colocalizes with intracellular 
AMPARs, but not at the plasma membrane [420]. Further-
more, while GluA1 must be depalmitoylated at the C585 res-
idue, CPT-1C is not the causative enzyme. CPT-1C knockout 
mice show reduced surface AMPAR amounts and function, 
due to a decreased translation efficiency; transcription and 
degradation are unaffected [421]. This reduced amount 
of synaptic AMPARs provides an additional mechanistic 

explanation for the decreased number of mature spines in 
CPT-1C knockout mice, and a mediation of CPT-1C action 
by AMPARs, beside ceramide, is a distinct possibility.

Recently, Brechet and colleagues reported that CPT-
1C, together with FRRS1L and the phosphatidylinositide 
phosphatase Sac1, defines a distinct type of AMPAR com-
plexes, located only at the ER, representing 15–20% of all 
AMPARs, and lacking all classical auxiliary subunits [416] 
(Fig. 7). CPT-1C and FRRS1L first bind each other, provid-
ing a platform for Sac1, and the ternary complex then asso-
ciates with AMPARs in the ER. CPT-1C/FRRS1L knock-
down leads to a decreased AMPAR function and number of 
functional AMPARs in the synaptic and extrasynaptic pools, 
strongly suggesting that, despite their exclusive location at 
the ER, these proteins do influence AMPAR trafficking, 
possibly through the priming of these early complexes for 
transfer to the Golgi apparatus and binding to other auxiliary 
subunits.

These results are consistent with a previous report on 
Sac1 involvement in AMPAR secretory trafficking; stress-
induced palmitoylation of JNK3 led to its binding to and 
sequestration of Sac1, thereby reducing surface levels of 
AMPARs [422]. FRRS1L modulation of AMPAR function 
was also shown in two other recent studies, one of which 
detected FRRS1L in dynein vesicles, indicating a possible 
additional role in AMPAR trafficking beyond the ER [423, 
424]. Notably, the impact of FRRS1L on synaptic function 
is independent of any enzymatic activity, as FRRS1L lacks a 
ferrochelatase domain, and is consistent with the symptoms 
of human patients suffering from FRRS1L loss of function, 
which leads to encephalopathies and severe intellectual dis-
abilities; disease mutations do indeed disrupt FRRS1L bind-
ing to AMPARs, suggesting that these mutations impair the 
regulation of AMPAR early biogenesis by FRRS1L [416, 
423].

Finally, another auxiliary subunit, PORCN, has been 
recently characterized as regulating AMPAR trafficking in 
the ER [414]. PORCN was first identified in Drosophila 
as an ER protein processing members of the Wnt pathway 
[425]. The porcupine family is highly conserved and several 
alternatively spliced isoforms exist, with different spatio-
temporal expression patterns, but all encode transmembrane 
ER proteins [426]. While PORCN overexpression in hip-
pocampal neurons has no effects, suggesting saturating pro-
tein levels, its knockdown leads to a dramatic reduction in 
total amounts of AMPARs and several auxiliary subunits, 
including TARP γ2, γ8, and CNIH2. Consistently, in con-
ditional PORCN knockout mice, synaptic and extrasynaptic 
surface levels of AMPARs are decreased, as well as synap-
tic function; LTP induction and maintenance are, however, 
normal, likely due to a proportionate reduction in basal and 
potentiated synaptic transmission. PORCN knockdown also 
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alters AMPAR kinetics, most likely through an altered com-
position of the complexes, as association with γ8 is reduced. 
Combined with the subcellular localization of PORCN—
mainly at the ER, with only a small portion at the PSD—
this suggests that PORCN regulates the early formation of 
AMPAR complexes at the ER level. Of note, like CPT-1C, 
FRRS1L, and ABHD6, this role of PORCN is independent 
of its enzymatic activity [414].

Like ABHD6 and 12, PORCN was identified as part 
of this early type of AMPAR complexes by Brechet and 
colleagues [416]. However, the formation of the CPT-1C/
FRRS1L/Sac1 complexes in the ER predates the binding of 
GluA complexes, which is itself required for the subsequent 
association of PORCN and ABHD6 and 12; this suggests a 
precise timing in the regulation of the first steps of AMPAR 
complex formation (Fig. 7). As the constitution of AMPAR 
complexes at the surface differs between neuronal types, and 
as ER-specific AMPAR complexes were identified in the 
hippocampus, future investigation is required to determine 
whether a similar complex is present in the ER of other neu-
ronal types, if the composition of this ER complex varies 
according to neuronal types, and if this ER complex influ-
ences the composition of the subsequent complexes accom-
panying AMPARs to the synapse, and thereby its regulation 
of AMPAR trafficking and function.

Concluding remarks

AMPA receptor trafficking to, at, and from the synapse has 
now been established as one of the core mechanisms under-
lying synaptic plasticity. It is tightly controlled throughout 
development and adulthood, and dysregulation is not only 
one of the hallmarks of physiological and pathological aging, 
but also of many neurological disorders [16]. Over the last 
two decades, the importance of AMPAR interacting part-
ners in regulating AMPAR trafficking has become increas-
ingly clear—not only because removing or impairing these 
proteins affects AMPAR trafficking in research models, but 
also because mutations in AMPAR interactants have been 
often found in human patients suffering from schizophrenia 
or autistic spectrum disorders (see, e.g., for reviews [427, 
428]). In recent years, a significant headway has been made 
to understand the roles of these interactants as regulators of 
AMPAR trafficking; however, much remains shrouded in 
mystery. While the major role of some of the better known 
proteins seems well-established—GRIP1 in AMPAR inser-
tion and stabilization, PICK1 in AMPAR internalization 
and anchorage, and PSD95 in AMPAR synaptic trapping—
detailed mechanisms are still unclear; additional tasks have 
also been uncovered for some interactants, and the functions 
of the most recent members of AMPAR complexes are still 
enigmatic. Further intricacy is brought by the dependence 

of the function of some AMPAR interactants on age, brain 
region, neuronal population, and even subcellular localiza-
tion. As these proteins often act in association, such complex 
roles may also arise from the combination of the different 
AMPAR interactants available, given their restricted spatio-
temporal expression patterns. As if the situation was not 
convoluted enough, AMPAR interactants—like AMPAR 
subunits themselves—are also subjected to a variety of post-
translational modifications regulating their function, such as 
palmitoylation or ubiquitination, and which also need to be 
integrated into regulatory models of AMPAR trafficking (see 
for reviews [429, 430]). A major challenge of the upcom-
ing research on AMPAR trafficking will, hence, be to study 
AMPAR interactants not only in different neuronal types and 
at different time points, but also to widen the focus from one 
protein of interest to the combination present in the given 
neuronal population. Increased collaborations and interdis-
ciplinary research, combining findings from the structural 
to the behavioral level, but also including data from human 
patients, are, therefore, required to progress towards a com-
prehensive picture of AMPAR trafficking.
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