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AmPEP: Sequence-based 
prediction of antimicrobial peptides 
using distribution patterns of 
amino acid properties and random 
forest
Pratiti Bhadra, Jielu Yan, Jinyan Li, Simon Fong & Shirley W. I. Siu

Antimicrobial peptides (AMPs) are promising candidates in the fight against multidrug-resistant 
pathogens owing to AMPs’ broad range of activities and low toxicity. Nonetheless, identification of 
AMPs through wet-lab experiments is still expensive and time consuming. Here, we propose an accurate 

computational method for AMP prediction by the random forest algorithm. The prediction model is 

based on the distribution patterns of amino acid properties along the sequence. Using our collection 

of large and diverse sets of AMP and non-AMP data (3268 and 166791 sequences, respectively), we 
evaluated 19 random forest classifiers with different positive:negative data ratios by 10-fold cross-
validation. Our optimal model, AmPEP with the 1:3 data ratio, showed high accuracy (96%), Matthew’s 
correlation coefficient (MCC) of 0.9, area under the receiver operating characteristic curve (AUC-ROC) 
of 0.99, and the Kappa statistic of 0.9. Descriptor analysis of AMP/non-AMP distributions by means 
of Pearson correlation coefficients revealed that reduced feature sets (from a full-featured set of 105 
to a minimal-feature set of 23) can result in comparable performance in all respects except for some 
reductions in precision. Furthermore, AmPEP outperformed existing methods in terms of accuracy, 

MCC, and AUC-ROC when tested on benchmark datasets.

Antimicrobial peptides (AMPs) represent a large group of endogenous compounds widely distributed in nature. 
Owing to their broad spectrum of antimicrobial activities, such as antibacterial, anticancer, antiviral, antifungal, 
anti-in�ammatory, and immunomodulatory properties, AMPs have become a model for developing novel anti-
microbial drugs that may address the problem of increasing multidrug resistance of pathogenic microorganisms1.

In recent years, many computational methods were developed to accelerate the process of antimicrobial-drug 
discovery and design by providing a rational basis for candidate selection2. Machine learning algorithms have 
been the prime technique to train sequence-based classi�ers to di�erentiate AMPs from non-AMPs. For exam-
ple, prediction methods available on the CAMP website have been devised based on random forest (RF), support 
vector machine (SVM), arti�cial neural network (ANN), and discriminant analysis (DA) and have been trained 
on 257 features3,4. Multilevel classi�er iAMP-2L was designed to predict AMPs and their activities by a fuzzy 
K-nearest neighbor algorithm and the pseudo–amino acid composition with 46 features5. A recently published 
SVM-based AMP classi�er, iAMPpred, uses 66 features representing the computational, physicochemical, and 
structural properties of a peptide to predict its activity as antibacterial, antifungal, or antiviral6.

A crucial factor for the success of a prediction method is composition of the feature set. �e ideal feature 
set should capture the major and subtle patterns from the sequence to di�erentiate actual positives from nega-
tives. Our survey of existing methods5–9 has shown that compositional, physicochemical, and structural prop-
erties; sequence order; and the pattern of terminal residues are the most frequently adopted features for AMP 
predictions. By testing the predictive abilities of features in a systematic way, we have found that distribution 
patterns of amino acid properties including hydrophobicity, normalized van der Waals volume, polarity, polariz-
ability, charge, secondary structure, and solvent accessibility are su�cient to identify AMPs with high accuracy. 
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Distribution patterns of amino acid properties were �rst proposed by Dubchak et al. in 1995 as part of the 
Global Protein Sequence descriptors (composition-transition-distribution; CTD)10. CTD was developed for the 
protein-folding class prediction problem. Later, it was used for protein subcellular location prediction11 and pro-
tein function classi�cation12. CTD was also included as part of the feature set for prediction methods provided on 
the CAMP web site13. Nevertheless, as feature selection was performed to reduce the feature set from 257 features 
to 64, it was not clear which selected features were in CAMP �nal models.

Here, we present AmPEP, a simple yet accurate AMP classi�cation method based only on the distribution 
descriptors involving the RF algorithm. In an attempt to further reduce the feature set, we performed correlation 
analysis on the AMP/non-AMP distributions of each feature and showed that features with low AMP versus 
non-AMP correlations contributed to high accuracy of the prediction model. On the basis of this analysis, we 
generated a minimal set of 23 features that, to the best of our knowledge, is the smallest feature set for AMP pre-
diction with high accuracy. Because the AMP dataset is highly imbalanced, we evaluated how di�erent ratios of 
positives to negatives in the dataset can a�ect the predictive performance. To benchmark our method, at the end 
of the paper, we present a comparative analysis of our method against two other best-performing methods found 
in the literature: iAMPpred and iAMP-2L.

Results
Analysis of protein sequence descriptors. �e CTD global protein sequence descriptors10 group amino 
acids into three classes for each physicochemical property. �e complete CTD consists of three components: �e 
Composition descriptor set (C) characterizes the global percentage of amino acids of each class in the sequence; 
the Transition descriptor set (T) characterizes the percent frequency of transitions between two classes along the 
sequence; and the Distribution descriptor set (D) characterizes the distribution patterns of amino acids of each 
class in the sequence. �e three descriptor sets–C, T, and D—have been applied in various studies to other predic-
tion problems12,13. Nevertheless, to determine whether CTD or each individual descriptor set alone is capable of 
AMP vs. non-AMP classi�cation, we evaluated the predictive performance of four RF classi�ers based on CTD, 
C, T, and D via 10-fold cross-validation by means of our collection of data Mmodel_train. As shown in Table 1, the 
overall performance of the two smallest descriptor sets C and T is poorer than that of the other two with respect 
to accuracy (Acc), Matthew’s correlation coe�cient (MCC), area under the receiver operating characteristic curve 
(AUC-ROC), and Kappa (κ). �e model with the D descriptor set alone achieved almost similar performance 
relative to the model with CTD. �ese results indicate that among the three descriptor sets, D is capable of pre-
dicting AMPs with high accuracy but smaller complexity. �erefore, we adopted the Distribution descriptor set 
(abbreviated as DF hereina�er) and performed its further analysis regarding AMP prediction.

In total, DF consists of 105 descriptors encoding distribution patterns of seven physicochemical properties of 
amino acids along the protein chain. Each descriptor is named a�er its physicochemical property (hydrophobicity, 
normalized van der Waals volume, polarity, polarizability, charge, secondary structure, or solvent accessibility), 
class (C1, C2, or C3), and distribution type (“�rst residue,” “25% residue,” “50% residue,” “75% residue,” or “100% 
residue” as 001, 025, 050, 075, or 100, respectively). We evaluated these descriptors on AMP vs. non-AMP clas-
si�cation by comparing the statistical distributions of the positive and negative samples in the Mmodel_train data-
set and computed Pearson correlation coe�cients (PCCs). A PCC that is close to zero indicates no correlation, 
~0.3 denotes a weak correlation, and ~0.5 moderate correlation. Here, we are interested in testing whether these 
descriptors can help di�erentiate AMPs from non-AMPs, i.e., those that yield zero to moderate PCC values could 
be the most important descriptors for the classi�cation task.

As shown in Fig. 1 (also see Supplementary Table S1 and Figure S1), values of PCCs ranged from 0.06 to 0.81. 
Out of 105 descriptors, 23 (21.9%) had PCCs less than 0.5 (denoted as DF_PCC<0.5). Among them, nine, two, four, 
three, and �ve descriptors are of types �rst residue, 25% residue, 50% residue, 75% residue, and 100% residue, 
respectively. We can see that descriptors for �rst residue and 100% residue distribution types are among the most 
important descriptors. �ese descriptors encode physicochemical properties toward the N and C termini of the 
peptide chain. As summarized in a review by Bahar and Ren, peptide termini are crucial for its antimicrobial 
activity and resistance to proteases14. Because the average of DF_PCC < 0.5 of the �rst residue type of descriptors is 
0.457, as compared to 0.540 for the 100% residue type, the N-terminal region of an AMP may contribute more 
than its C-terminal region to the antimicrobial activity.

To determine whether the same distribution patterns are present in other datasets, we performed PCC analysis 
on the benchmark datasets Ctrain and Ctest. In total, 15 descriptors were found to have PCC < 0.5 in all three data-
sets and are marked with asterisks in Supplementary Table S1. Looking closely again at the �rst residue and 100% 
residue descriptors, we observed that in most cases, the three datasets have similar average descriptor values. On 
the other hand, some large di�erences can be seen in 100% residue descriptors between Ctrain and the other two 
datasets as shown in Supplementary Figure S2. Although these two datasets contain di�erent kinds of AMPs 

Feature set 
{#} Sn Sp Acc MCC AUC-ROC AUC-PR κ

CTD {147} 0.979 (0.002) 0.944 (0.004) 0.961 (0.002) 0.924 (0.005) 0.988 (0.001) 0.698 (0.023) 0.923 (0.005)

C {21} 0.958 (0.002) 0.943 (0.004) 0.950 (0.002) 0.901 (0.004) 0.983 (0.001) 0.747 (0.018) 0.901 (0.004)

T {21} 0.959 (0.002) 0.943 (0.004) 0.951 (0.002) 0.901 (0.004) 0.983 (0.001) 0.745 (0.018) 0.901 (0.005)

D {105} 0.978 (0.002) 0.945 (0.004) 0.962 (0.002) 0.924 (0.004) 0.988 (0.001) 0.698 (0.024) 0.923 (0.005)

Table 1. A comparison of four RF classi�ers using di�erent feature sets by 10-fold cross-validation with the 
AMP data ratio of 1:1. Values shown are the mean and standard deviation (in parentheses).
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having a broad spectrum of activities such as antiviral, anticancer, antifungal, and anti-in�ammatory, Ctrain con-
tains only antibacterial peptides. �erefore, we presumed that these di�erences are important for the antibacterial 
activity of AMPs. Indeed, Lata et al.7 showed that there are di�erences in the terminal-residue pro�les between 
antibacterial and nonantibacterial peptides. In addition to the C-terminal pro�le, Meher et al.6 suggested that 
composition, the net charge, isoelectric point, and propensity for secondary structure also di�er among AMPs 
exerting di�erent e�ects such as antibacterial, antiviral, and antifungal.

Effects of AMP/non-AMP data ratios on prediction performance. Because experimental non-AMP 
data are scarce, a conventional way to produce negative samples is selection of random sequences from a protein 
database following certain criteria. �is approach enables generation of a large amount of negative data. For 
training a classi�er, one would usually select a positive/negative (P:N) data ratio of 1:1. By contrast, in a study by 
Li and coworkers on rebalancing data ratio techniques for inherently imbalanced medical data, they showed that 
in some cases, optimal classi�cation accuracy and an optimal κ statistic can be achieved with a slight imbalance of 
the data distributions15. Here, we attempted to evaluate the e�ect of di�erent P:N ratios on AMP prediction. From 
our own collection of data Mmodel_train (P:N ratio of 1:51), we generated 19 sets of data with P:N ratios ranging from 
1:1, 1:1.5, and 1:2 up to 1:10. Because the amount of non-AMP data is large, for each P:N ratio, we constructed as 
many subsets of non-AMPs as possible by random selection without replacement. For example, at the P:N ratio 
of 1:1.5, the non-AMP data were su�cient to generate 34 di�erent negative subsets. Details of the datasets for 
P:N ratio tests can be found in Supplementary Table S2. �en, we evaluated the predictive performance of each 
RF classi�er with DF features by 10-fold cross-validation and averaged the results across all subsets with the same 
P:N ratio.

Figure 2 presents the results on eight performance measures of the P:N ratio tests including sensitivity (Sn), 
speci�city (Sp), Acc, MCC, AUC-ROC, area under the precision-recall curve (AUC-PR), κ, and C-measure (also 
see Supplementary Table S3 for all computed values). C-measure is a single metric combining four performance 
measures: AUC-ROC, AUC-PR, MCC, and κ. As shown in the �gure, although Sn, MCC, and κ decrease as the 
dataset gets more imbalanced, Sp and Acc improve. �is �nding indicates that as the negative dataset gets bigger, 
the training procedure will inevitably switch its focus away from the positive samples (the minor class) and try to 
predict more correctly the negative samples (the major class). As mentioned in the Methods section, AUC-ROC is 
insensitive to the change in class distribution and more or less stays the same vis-Ã -vis di�erent ratios of AMP/
non-AMP data. In contrast to all the other measures where changes are linear, there is a drastic rise in AUC-PR 
as the amount of non-AMP data is increased, then it reaches a maximum at the P:N ratio of 1:6.5 and levels 
o� at higher P:N ratios. Given that the amount of AMP data remains constant across these tests, the increase 
in AUC-PR (hence the precision) reveals that the reliability for positively predicted samples is greater when 
the amount of negative data is increased. A prediction model with high precision is particularly preferable for 
large-scale screening of AMPs in genome sequences where only highly reliable AMPs should be returned for the 
costly experimental validation.

To �nd an optimal model for general purposes, we selected C-measure, which combines the performance of 
four most popular metrics. According to C-measure, an RF classi�er with the P:N ratio of 1:3 performs the best.

Recently, Synthetic Minority Over-sampling Technique (SMOTE) has been widely used as a preprocess-
ing technique to rebalance the proportion of positive and negative samples before constructing the classifer. 
In SMOTE, in order to prevent information loss, instead of under-sampling the majority class it performs 
over-sampling by generating synthetic samples of the minority class from nearest neighbor samples16. To see if 
SMOTE improves AMP classi�cation, we included SMOTE as part of the cross validation procedure where data 
in the training set is rebalanced by SMOTE and the constructed classifer is used to test the samples in the test set. 
As shown in Table 2, AmPEP methods with SMOTE perform comparably to AmPEP methods without SMOTE. 
While all four methods yielded very close accuracies, one can clearly see the shi� in performance from higher 
sensitivity in AmPEP (1:1) to higher speci�city in methods with larger proportion of initial negative samples. 
When the data is highly imbalanced (e.g. 1:10), SMOTE is likely to predict with biasing to the majority class, 

Figure 1. Pearson correlation coe�cients (PCCs) between AMP and non-AMP distributions of the same 
descriptor in the Mmodel_train dataset.
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which is the negative class. Considering all major combined-measures (MCC, AUC-ROC, AUC-PR, Kappa), 
C-measure suggests that AmPEP (1:3) without SMOTE is the overall better option.

Descriptor selection. In an attempt to select the best descriptors among all 105, we evaluated the per-
formance of models with reduced descriptor subsets. �ese subsets were generated based on the PCC analy-
sis of AMP/non-AMP distributions. �ree subsets–DF_PCC<0.7 (80 descriptors), DF_PCC<0.6 (43 descriptors), and 
DF_PCC<0.5 (23 descriptors)–were evaluated. As shown in Table 3, all three models with reduced descriptor sets 
maintained high accuracy as the full-feature model. Major di�erences are noticeable in AUC-PR and C-measure, 
in which performance is reduced by 4% and 5%, respectively, for DF_PCC<0.6 and by 6% and 7%, respectively, for 
DF_PCC<0.5.

Comparative analysis of other variants of AAC, PAAC, and Covariance descriptors. Since amino 
acid composition (AAC) and pseudo amino acid composition (PAAC) have been widely used to predict various 
attributes of proteins17, the performance of RF classi�ers using 10 variant descriptors of AAC, PAAC, and covari-
ance were compared with AmPEP. Propy-1.018 and Pse-in-One-1.0.419 were used to calculate variant ACC, PAAC, 
and covariance protein descriptors from sequences. As shown in Table 4 for data ratio of 1:3, AmPEP using the 
full distribution descriptors and reduced descriptor set perform better than other RF classi�ers using variant 
AAC and PAAC descriptors with respect to sensitivity, accuracy, MCC, AUC-ROC, and κ. It is interesting to note 
that AAC and PAAC perform only second to our methods in these aspects but they have improved speci�city 
and AUC-PR while K-mer with the largest descriptor set among all methods yielded the highest speci�city and 
AUC-PR. Similar performances were observed for classi�ers using data ratio of 1:1 as presented in Supplementary 
Table S5.

Comparative analysis with state-of-the-art methods. To further assess the predictive ability of 
our AMP prediction method, we trained the RF models of DF, DF_PCC<0.7, DF_PCC<0.6, and DF_PCC<0.5 on Ctrain 
and compared their performance on Ctest against two latest AMP prediction methods, namely, iAMPpred6 
and iAMP-2L5. �e reason why only two methods were included here for comparison is that iAMPpred and 
iAMP-2L were recently shown to be the best two approaches among eight AMP prediction methods on the same 

Figure 2. Performance of RF classi�ers during 10-fold cross-validation on datasets with di�erent AMP/non-
AMP ratios.

Method Sn Sp Acc MCC AUC-ROC AUC-PR κ C-measure

AmPEP (1:1) 0.978 0.945 0.962 0.924 0.988 0.698 0.923 0.588

AmPEP (1:3) 0.950 0.965 0.962 0.900 0.989 0.830 0.899 0.664

AmPEP with 
SMOTE (1:3)

0.957 0.966 0.964 0.905 0.990 0.817 0.905 0.663

AmPEP with 
SMOTE (1:10)

0.858 0.984 0.973 0.835 0.990 0.861 0.835 0.594

Table 2. Performance comparison of classi�ers trained with P:N ratio of 1:1 and 1:3 against classi�ers with 
applied SMOTE data rebalancing technique (k = 5) on initial data ratio of 1:3 and 1:10. Values shown were 
obtained from 10-fold cross validation.
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benchmark datasets6. As shown in Table 5, our model AmPEP (DF) outperforms these two methods with respect 
to AUC-ROC and MCC by 2–5% and 1–2%, respectively, though AUC-PR is reduced by 3% as compared to 
iAMPpred. It is worth noting that our models with reduced descriptor sets also perform similarly to the existing 
methods with a similar feature set size.

Discussion
A serious public health problem is the failure of conventional antibiotics to kill pathogenic bacteria because of the 
development of multidrug resistance. Computational methods that can quickly and accurately identify candidate 
peptides as AMPs for subsequent experimental assays are necessary to shorten the drug discovery process. To this 
end, we developed a highly accurate sequence-based AMP classi�cation method, named AmPEP, using distribu-
tion patterns of amino acid properties. Our feature set is composed of 105 distribution descriptors covering seven 
physicochemical properties of peptides (hydrophobicity, normalized van der Waals volume, polarity, polarizabil-
ity, charge, secondary structure, and solvent accessibility). For each property, the class distribution pattern was 
characterized on the basis of the sequence as a position percentage: the �rst residue, 25% residue, 50% residue, 
75% residue, and 100% residue type of distribution.

Although there are a few AMP prediction methods available, the development of AmPEP is di�erent from that 
of the existing approaches in several ways: First of all, distribution descriptors were for the �rst time used alone as 
features for identi�cation of AMPs, whereas all the existing AMP prediction methods employ a combination of 
features such as composition of amino acids and pseudo–amino acid code. Furthermore, to the best of our knowl-
edge, our work contributed to the construction of the largest and diverse AMP dataset for the purpose of machine 
learning model evaluation. Our positive data were curated a�er retrieval from three major databases (CAMP, 
APD3, and LAMP), whereas most of the earlier methods involve a single database: either CAMP or APD5,20,21. 
Because experimental negative data are scarce, the negative data here were generated from UniProt sequences. 
Instead of restricting the sequence length to 100 amino acid residues or less as other methods do5,20, we included 
protein sequences 5–255 residues long to cover the same length space as in our collection of known AMPs. �e 
�nal dataset for model construction contains 3,268 AMPs and 166,791 non-AMPs. �e large amount of non-AMP 

Feature set {#} Sn Sp Acc MCC AUC-ROC AUC-PR κ C-measure

DF {105} 0.950 (0.003) 0.965 (0.002) 0.962 (0.002) 0.900 (0.004) 0.989 (0.000) 0.830 (0.009) 0.899 (0.004) 0.665 (0.006)

DF_PCC<0.7 {80} 0.950 (0.003) 0.965 (0.002) 0.961 (0.002) 0.900 (0.005) 0.989 (0.001) 0.819 (0.011) 0.899 (0.005) 0.665 (0.010)

DF_PCC<0.6 {43} 0.950 (0.003) 0.965 (0.002) 0.961 (0.002) 0.899 (0.005) 0.989 (0.000) 0.793 (0.008) 0.899 (0.005) 0.633 (0.008)

DF_PCC<05 {23} 0.949 (0.004) 0.965 (0.002) 0.961 (0.002) 0.898 (0.005) 0.988 (0.001) 0.779 (0.011) 0.898 (0.005) 0.620 (0.009)

Table 3. Performance of four RF classi�ers involving di�erent feature subsets during 10-fold cross-validation at 
the AMP/non-AMP data ratio of 1:3. Values shown are the mean and standard deviation (in parentheses). Each 
experiment uses all AMP data and a set of non-AMP data randomly drawn without replacement from the non-
AMPs of the dataset. �e best-performing models on a particular measure are highlighted.

Feature set {#} Sn Sp Acc MCC AUC-ROC AUC-PR κ C-measure

AmPEP {105} 0.950 (0.003) 0.965 (0.002) 0.962 (0.002) 0.900 (0.004) 0.989 (0.000) 0.830 (0.009) 0.899 (0.004) 0.665 (0.006)

AmPEP {23} 0.949 (0.004) 0.965 (0.002) 0.961 (0.002) 0.898 (0.005) 0.988 (0.001) 0.779 (0.011) 0.898 (0.005) 0.620 (0.009)

AAC {20} 0.910 (0.002) 0.971 (0.000) 0.956 (0.001) 0.881 (0.002) 0.989 (0.000) 0.862 (0.002) 0.881 (0.002) 0.662 (0.004)

PAAC {24} 0.910 (0.002) 0.970 (0.000) 0.955 (0.000) 0.881 (0.001) 0.985 (0.000) 0.891 (0.001) 0.881 (0.001) 0.681 (0.002)

K-mer {400} 0.898 (0.002) 0.972 (0.000) 0.953 (0.001) 0.875 (0.002) 0.985 (0.000) 0.918 (0.002) 0.875 (0.002) 0.692 (0.003)

Auto Covariance (AC) {6} 0.613 (0.003) 0.942 (0.001) 0.860 (0.001) 0.604 (0.003) 0.874 (0.001) 0.742 (0.003) 0.597 (0.003) 0.234 (0.003)

Cross Covariance (CC) {12} 0.661 (0.004) 0.949 (0.001) 0.877 (0.001) 0.657 (0.004) 0.905 (0.001) 0.769 (0.002) 0.651 (0.004) 0.298 (0.004)

Auto-Cross Covariance (ACC) {18} 0.710 (0.003) 0.951 (0.001) 0.891 (0.001) 0.698 (0.003) 0.922 (0.001) 0.825 (0.002) 0.695 (0.003) 0.369 (0.004)

Parallel Correlation Pseudo Amino 
Acid Composition (PC-PseAAC) {22}

0.908 (0.003) 0.971 (0.001) 0.955 (0.001) 0.881 (0.002) 0.985 (0.000) 0.884 (0.005) 0.881 (0.002) 0.676 (0.006)

Series Correlation Pseudo Amino 
Acid Composition (SC-PseAAC) {26}

0.907 (0.002) 0.971 (0.001) 0.955 (0.001) 0.880 (0.002) 0.985 (0.000) 0.882 (0.004) 0.880 (0.002) 0.673(0.005)

General Parallel Correlation Pseudo 
Amino Acid Composition (PC-
PseAAC-General){22}

0.909 (0.002) 0.970 (0.000) 0.955 (0.001) 0.880 (0.002) 0.985 (0.000) 0.896 (0.003) 0.880 (0.002) 0.683 (0.003)

Parallel Series Correlation Pseudo 
Amino Acid Composition  
(SC-PseAAC-General) {26}

0.908 (0.002) 0.970 (0.001) 0.955 (0.001) 0.879 (0.002) 0.985 (0.000) 0.894 (0.003) 0.879 (0.002) 0.680 (0.003)

Table 4. A comparison of RF classi�ers using di�erent descriptors by 10-fold cross-validation with the AMP 
data ratio of 1:3. Values shown are averages and standard deviations (in brackets) over 10 times of 10-fold cross 
validation. �e best two results in each performance measure are highlighted. AAC: Amino Acid Composition, 
PAAC: Pseudo Amino Acid Composition AAC and PseAAC were generated using propy 1.0 package (default 
parameter of propy is used). Other descriptors, K-mer, AC, CC, ACC, PC-PseAAC, SC-PseAAC, PC-PseAAC-
General, SC-PseAAC-General were generated by Pse-in-One-1.0.4 using default parameters.
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data allowed us to assess, for the �rst time, the prediction model performance at di�erent positive-to-negative 
data ratios. A total of 19 data ratios were tested on eight performance measures. Our proposed combined metric, 
C-measure, takes into account four performance characteristics (MCC, AUC-ROC, AUC-PR, and κ) when select-
ing an optimal model with accuracy, precision, and credibility.

�e ultimate goal of AMP prediction is to design new peptide sequences with desirable antimicrobial and 
therapeutic e�ects. For example, on the basis of frequently occurring residue information from the ADP database, 
Wang et al. successfully designed a short AMP, GLK-19, with higher activity against Escherichia coli relative to 
human AMP LL-3722. Although peptide design is outside the scope of this paper, we believe that an understand-
ing of the role of residues, their properties, and positions in the sequence will be crucial for the design of an AMP 
de novo. As a �rst step toward acquisition of this information, we performed analyses of AMP and non-AMP 
distributions of all the distribution descriptors. By means of PCCs, we were able to rank descriptors that can 
better di�erentiate AMPs from non-AMPs. Based on our analysis, Charge was found to be the key factor for anti-
microbial activity. We also found that properties in terminal regions are signi�cantly di�erent between the two 
classes, in agreement with experiments. According to these analyses, we believe that the distribution patterns of 
properties learned from AMP and non-AMP sequences can be applied to establish helpful guidelines for the de 
novo design of highly active AMPs.

�e performance of AmPEP was compared with other prediction methods on benchmark datasets. AmPEP 
was found to have higher AUC-ROC and MCC than iAMPpred and iAMP-2L do. We showed that with a reduced 
number of features (from 105 to 23), AmPEP can still show comparable performance. At present, the 23-feature 
set is the smallest feature set for AMP prediction by the machine learning approach.

Proposed AmPEP is an attempt to develop a highly accurate RF classi�er for AMP prediction based on distri-
bution patterns of physicochemical properties. �e distribution patterns are believed to facilitate de novo AMP 
design, and AmPEP can address the time and cost limitations of experimental processes for designing a novel 
AMP. In view of the success of ensemble learning for AMP prediction, our future work will explore more recent 
ensemble learning techniques such as selective ensemble for training the classi�er23,24. Our current method relies 
on PCCs to select important features for the �nal classi�er. We believe that an advanced and intelligent feature 
selection strategy such as that in refs.25,26 may yield an improved model because noisy features will be eliminated.

Methods
The training dataset for model construction. We generated our own positive dataset by retriev-
ing naturally occurring and experimentally validated AMP sequences from major databases, namely, APD327, 
CAMPR34, and LAMP28, which contained 2338, 5549, and 3050 sequences, respectively. We pooled all the AMPs 
and removed duplicated ones; sequences with unnatural amino acids (B, J, O, U, X, and Z) were also eliminated 
to form a nonredundant dataset.

Given that experimentally validated negative AMP sequences are rarely found in the literature, we followed 
the data preparation procedure undertaken in other studies5,20 to generate a negative dataset. First, all protein 
sequences 5 to 255 amino acid residues long were downloaded from UniProt. �en, we removed all sequences that 
were annotated as AMP, membrane, toxic, secretory, defensive, antibiotic, anticancer, antiviral, and antifungal. 
Unique sequences were extracted, and sequences with unnatural amino acids (B, J, O, U, X, and Z) were removed. 
�e �nal training dataset for model construction, Mmodel_train, contains 3268 AMPs and 166791 non-AMPs.

Our datasets are freely accessible on the CBBio homepage at http://cbbio.cis.umac.mo/so�ware/AmPEP/.

Benchmark datasets for comparative analysis. �e performance of our method was compared with 
that of the latest AMP prediction methods. �e comparison was made by means of the benchmark dataset of Xiao 
et al.5. �e same dataset was used in a recent study by Meher et al. for a comparison of AMP prediction methods6. 
Overall, the training set (Ctrain) contains 770 AMPs and 2405 non-AMPs. �e test set (Ctest) contains 920 AMPs 
and 920 non-AMPs.

All the datasets used in this study are summarized in Table 6.

Features. �e goal of machine learning is to learn the feature pattern from data points and to �nd optimal 
model parameters that yield the highest accuracy while avoiding the problem of over�tting. Data points are con-
verted into features also known as descriptors. To identify AMPs by means of sequences alone, we have to convert 
the plain amino acid sequences into numerical descriptors characterizing di�erent properties of peptides. In this 

Method ML algorithm
Number of 
features AUC-ROC AUC-PR MCC κ

iAMPpred# SVM 66 0.98 0.99 0.91 —

iAMP-2L# FKNN 46 0.95 — 0.9 —

AmPEP (DF) RF 105 0.995 0.957 0.920 0.962

AmPEP (DF_PCC < 0.7) RF 80 0.994 0.950 0.914 0.913

AmPEP (DF_PCC < 0.6) RF 43 0.994 0.934 0.919 0.918

AmPEP (DF_PCC < 0.5) RF 23 0.995 0.905 0.924 0.923

Table 5. A comparison of our AMP prediction method with state-of-the-art methods on AUC-ROC, AUC-PR, 
MCC, and κ by means of datasets Ctrain and Ctest. #Results were taken from refs5,6.

http://cbbio.cis.umac.mo/software/AmPEP/
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study, we employed the Distribution (DF) descriptor set from the Global Protein Sequence Descriptors proposed 
by Dubchak et al.10 originally for protein-folding class prediction. It encodes distribution patterns of physico-
chemical properties of amino acids along the protein chain. As shown in Table 7, seven physicochemical proper-
ties are considered: (1) hydrophobicity, (2) normalized van der Waals volume, (3) polarity, (4) polarizability, (5) 
charge, (6) secondary structure, and (7) solvent accessibility. For each of these seven properties, amino acids are 
grouped into three classes. For example, for the hydrophobicity property, the three classes are Polar (R, K, E, D, Q, 
and N), Neutral (G, A, S, T, P, H, and Y), and Hydrophobic (C, L, V, I, M, F, and W). For each of the 21 (=7×3) 
classes, �ve distribution descriptors representing the position percentage–the �rst residue, 25% residue, 50% res-
idue, 75% residue, and 100% residue distribution type–of a particular class in a sequence are computed. �e “�rst 
residue” of a particular class is the �rst occurrence of any of the class residues along the sequence. �e descriptor 
value is calculated as the percentage of residues before and include this residue from the N terminus. For the “Y% 
residue” type of distribution of a particular class, we �rst compute = ×⌊ ⌋Z R Y/100 , where R is the total number 
of class residues in the sequence, and Y denotes the desired percentage. �e position of the Zth occurrence of the 
class residues, denoted as P, can be determined from the sequence, then the descriptor value of the “Y% residue” 
distribution type of a particular class is �nally computed as (P/L) × 100%, where L is the total length of the 
sequence. �e descriptor value is 0 if none of the class residues is present in the sequence.

We illustrated these computations in Fig. 3 using the sample sequence “GLFDIIKKIAESI” (antibacterial pep-
tide aurein 1.1). According to the hydrophobicity property and its three classes Polar (P), Neutral (N), and 
Hydrophobic (H), the aurein peptide sequence of length 13 can be rewritten as “NHHPHHPPHNPNH.” �e “�rst 
residue” of the Polar class, which is amino acid D, is the 4th residue in the sequence. �us, the descriptor value of 
the “�rst residue” distribution type of the Polar class is computed as (4/13) × 100% = 30.77%. Because there are 
only four polar residues in this sequence, the �rst polar residue is also the “25% of class Polar” (the same descrip-
tor value is obtained). To compute the “75% residue” distribution type of class Neutral, we determine the occur-
rence = × . =⌊ ⌋Z 3 0 75 2, i.e., the 2nd Neutral residue. Position P of this residue is determined from the 
sequence, which is the 10th residue, and the descriptor value is then computed as (10/13) × 100% = 76.92%.

With the Distribution descriptors, we have �ve distribution patterns, seven physicochemical properties of 
amino acids, three classes for each property, thus amounting to 105 descriptors in total for each input sequence.

Machine learning algorithm. As for the machine learning model, we selected RF29 because of its better 
performance in an initial test against SVM (see Supplementary Table S4). RF has also proven to be successful in 
numerous bioinformatic applications such as the prediction of phosphorylation sites30, DNA-binding proteins31, 
protein–protein interactions32, and G protein–coupled receptors33. RF employs an ensemble learning approach, 
which makes predictions by averaging results across many decision trees, and each tree is constructed by random 
sampling of the training data. �e main principle behind ensemble approaches is that a group of learners can 
come together to form a “strong” learner. Hence, the number of trees is an important parameter for RF methods. 
In this study, 100 trees were analyzed in all our models because we noticed that the performance was better with 

Dataset

Model Design Comparative Study

Training (Mmodel_train)
Benchmark Training 
(Ctrain)

Benchmark Testing 
(Ctest)

Positive APD3, CAMPR3, LAMP {3268} Xiao {770} Xiao {920}

Negative UniProt {166791} Xiao {2405} Xiao {920}

Table 6. A summary of the positive and negative datasets. Values in braces are the numbers of sequences 
collected in that category.

Property

Grouping

Class 1 (C1) Class 2 (C2) Class 3 (C3)

Hydrophobicity
Polar  
R, K, E, D, Q, N

Neutral  
G, A, S, T, P, H, Y

Hydrophobic 
C, L, V, I, M, F, W

Normalized van der Waals 
volume

Volume range 0-2.78 
G, A, S, T, P, D

Volume range 2.95-4.0 
N, V, E, Q, I, L

Volume range 4.03-8.08  
M, H, K, F, R, Y, W

Polarity
Polarity value 4.9-6.2  
L, I, F, W, C, M, V, Y

Polarity value 8.0-9.2  
P, A, T, G, S

Polarity value 10.4-13  
H, Q, R, K, N, E, D

Polarizability
Polarizability value 0-0.108 
G, A, S, D, T

Polarizability value 0.128-0.186  
C, P, N, V, E, Q, I, L

Polarizability value 0.219-0.409 
K, M, H, F, R, Y, W

Charge
Positive  
K, R

Neutral  
A, N, C, Q, G, H, I, L, M, F, P, S, 
T, W, Y, V

Negative  
D, E

Secondary structure
Helix  
E, A, L, M, Q, K, R, H

Strand  
V, I, Y, C, W, F, T

Coil  
G, N, P, S, D

Solvent accessibility
Buried  
A, L, F, C, G, I, V, W

Exposed  
P, K, Q, E, N, D

Intermediate  
M, P, S, T, H, Y

Table 7. Physicochemical properties and groupings of amino acids.
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100 trees than with 200 or 500 trees. As the number of input variables tried at each split, commonly known as 
mtry, we adopted the default value, which was the square root of the number of features.

Cross-validation technique. Performance of a classi�er was evaluated by 10-fold cross-validation. In 
essence, the whole dataset is partitioned into 10 nonoverlapping subsets. In each round, nine subsets are used for 
training, and one for testing. �e process is repeated 10 times to ensure that each subset is utilized once for testing 
the model that was trained on the other nine.

Performance metrics. �e prediction models were evaluated on sensitivity (Sn, also known as recall), Sp, 
Acc, Pr, and MCC with the following de�nitions:

=
+

Sn
TP

TP FN (1)

=
+

Sp
TN

FP TN (2)

=
+

Pr
TP

TP FP (3)

=
+

+ + +
Acc

TP TN

TP FN FP TN (4)

=
× − ×

+ × + × + × +
MCC

TP TN FP FN

TP FP TP FN FP TN TN FN

( ) ( )

( ) ( ) ( ) ( ) (5)

where from the confusion matrix, TP (true positive) and TN (true negative) are correctly predicted positive 
and negative samples, respectively. Similarly, FP (false positive) and FN (false negative) are incorrectly predicted 
positive and negative samples, respectively. Among these measures, MCC is the most stringent one; it takes into 
account both accuracy and error rates of the two classes. MCC close to 1.0 means that the classi�er has high accu-
racy and a low misclassi�cation rate.

�e prediction models were also evaluated on AUC-ROC34, AUC-PR, and the κ statistic35. AUC-ROC is a 
popular measure for binary classi�ers in machine learning research. It is a two-dimensional curve showing how 
the number of correctly classi�ed positive samples (Sn) varies with the number of incorrectly classi�ed negative 
samples (1–Sp). �e AUC of this curve yields a single measure that indicates the robustness of the model, thus 
making this measure useful. One property of AUC-ROC is that it is insensitive to changes in class distribution 
because the calculation does not couple values from the two classes34. Nonetheless, for a prediction task where 
data for the two classes are highly imbalanced, e.g., the positive interesting samples are small as compared to large 
negative uninteresting samples, the PrecisionRecall curve will be a better option because both precision and recall 
focus on analysis of the positively predicted samples. Both AUC-ROC and AUC-PR return values between 0 and 
1; the higher the AUC value, the better is the performance of a classi�er.

�e κ statistic originally served to assess agreement between two raters by comparing the observed agreement 
versus the hypothetical random agreement in all N samples. It is calculated as

=
−

−
Kappa

p p

p1 (6)
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Figure 3. Illustration of the calculations of DF with a sample antibacterial peptide.
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where po is the probability of observed agreement (i.e., both raters give the same answer) and pe is the probability 
of overall random agreement. nC

A and nC
B are the total numbers of samples rated as class C by raters A and B, 

respectively. �erefore, κ measures the observed agreement between the two raters and adjusts it for the extent of 
agreement that could be expected by chance. To assess a classi�cation model with an imbalanced dataset, κ can 
help to estimate how credible the prediction accuracy is by factoring out the number of guess predictions. �e 
higher the value of κ, the more reliable is a classi�cation model. With the conventional notations for the confu-
sion matrix, we can express equations for po and pe as follows:

=
+

+ + +
p

TP TN

TP TN FP FN

( )

(8)o

=
+ × + × + × +

+ + +
p

TP FN TP FP TN FN TN FP

TP TN FP FN

( ) ( ) ( ) ( )

( ) (9)e 2

�e κ statistic can range from −1 to 1 though values below 0 are rare. As suggested by Li et al., credibility of 
the prediction accuracy can be classi�ed into three levels: 1) κ ≥ 0.75, credibility is high; 2) 0.4 ≤ κ < 0.75, credi-
bility is moderate; 3) κ < 0.4, credibility is low15.

Given that each performance metric above evaluates a di�erent characteristic of the model, here, we propose a 
combined measure, named as C-measure, to facilitate the selection of an optimal model. It is calculated as

‐ ‐ ‐= × × ×C measure AUC ROC AUC PR MCC Kappa (10)

In all the models tested, we obtained positive values for MCC and κ; thus, C-measure also lies between 0 and 1.

Implementation. �e propy 1.0 package18 was employed to calculate descriptor values. Model training 
and testing were implemented in MATLAB via the TreeBagger function of the Statistics and Machine learning 
toolbox.

Data availability. �e datasets generated and analyzed in this study can be freely downloaded on the CBBio 
lab homepage http://cbbio.cis.umac.mo/so�ware/AmPEP. �e prediction model in MATLAB code is available 
upon an e-mail request.
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