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ABSTRACT

Motivation: Increasing antibiotics resistance in human pathogens

represents a pressing public health issue worldwide for which novel

antibiotic therapies based on antimicrobial peptides (AMPs) may

offer one possible solution. In the current study, we utilized publicly

available data on AMPs to construct hidden Markov models (HMMs)

that enable recognition of individual classes of antimicrobials

peptides (such as defensins, cathelicidins, cecropins, etc.) with up

to 99% accuracy and can be used for discovering novel AMP

candidates.

Results: HMM models for both mature peptides and propeptides

were constructed. A total of 146 models for mature peptides and

40 for propeptides have been developed for individual AMP classes.

These were created by clustering and analyzing AMP sequences

available in the public sources and by consequent iterative scanning

of the Swiss-Prot database for previously unknown gene-coded

AMPs. As a result, an additional 229 additional AMPs have been

identified from Swiss-Prot, and all but 34 could be associated with

known antimicrobial activities according to the literature. The final

set of 1045 mature peptides and 253 propeptides have been

organized into the open-source AMPer database.

Availability: The developed HMM-based tools and AMP sequences

can be accessed through the AMPer resource at http://www.cnbi2.

com/cgi-bin/amp.pl

Contact: cfjell@interchange.ubc.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Antimicrobial peptides (AMPs) represent a diverse class of
natural peptides that form a part of the innate immune system
of mammalians, insects, amphibians and plants among others

(for example, Sima et al., 2003a, b). In the face of increasing
antibiotic resistance in pathogenic microorganisms, AMPs have
drawn significant scientific attention as a novel class of

prospective antimicrobial therapeutics as both antibacterial
drugs and modulators of innate immunity (Finlay and
Hancock, 2004; Hamilton-Miller, 2004; Koczulla and

Bals, 2003; Levy and Marshall, 2004). Although the AMPs

exhibit relatively lower potency against susceptible bacterial

targets compared to conventional low-molecular-weight anti-

biotic compounds, they hold several compensatory advantages

including fast target killing, broad range of activity, low

toxicity and minimal development of resistance in target

organisms (Hancock, 2001; Yount and Yeaman, 2003).
Despite the fact that a broad spectrum of AMPs have been

identified and discussed in the literature, their structure-activity

relationships are not well understood, largely because of

substantial sequence and structure diversity of AMPs.

Examples include the alpha-helical cecropins and magainins

and the beta-sheet structure of beta-defensins among others.

It should be mentioned, however, that AMP 3D structures are

often dependent on binding to membrane or lipopolysacchar-

ide, and in solution many AMPs may exist in different, and/or

non-ordered configuration (Chapple et al., 2004; Yount and

Yeaman, 2003). Thus, the general views on the AMP

characteristic features typically involve their cationic character,

relatively high hydrophobicity and short length (Powers and

Hancock, 2003; Yount and Yeaman, 2003).
The mechanisms of peptide antimicrobial action are also

under debate; while membrane disruption has been a common

theme, other evidence suggests that peptides transit into the

cytosol and disrupt intracellular targets and that the membrane

effects are distinct from (and not always crucial to) the killing

effects (Hancock and Rozek, 2002; Patrzykat et al., 2002).

In addition, the relative importance of direct killing versus

immunomodulatory effects of mammalian AMPs is not

obvious since some peptides generally considered as AMPs do

not appear to have direct microbe-killing effects in vivo

(Bowdish et al., 2005; Brogden, 2005).
All the above-mentioned controversies make ‘in silico’

discovery and/or modeling of AMPs an important but

challenging Bioinformatics task. Currently, sequence analysis

for AMP discovery has been done on a limited number of

AMPs: the beta-defensins and other cysteine-containing

peptides. A number of novel beta-defensins in mouse and

human were identified by analysis of a specific exon of

beta-defensins followed by scanning of genomic sequence

(Scheetz et al., 2002; Schutte et al., 2002). Manual identification

of a predictive motif, GXC, for cysteine-containing AMPs was*To whom correspondence should be addressed.
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also used to find novel AMPs of that type (Yount and Yeaman,

2004). However, these efforts were applicable only to a small

number of AMP types.
We decided to conduct a more generalized study of AMP

sequences using profile-based hidden Markov models (HMMs)

in combination with sequence clustering and protein structure

annotation. The major objective of the study was to produce

HMM models for the existing AMP types such as defensins,

cathelicidins and histatins among others, and to apply

these methods to create a more consistent classification of

antimicrobial sequences. This new resource is available as an

online database, for investigation of AMP sequence diversity,

and as a set of HMM files for the discovery of novel gene-coded

AMP candidates.

2 RESULTS AND DISCUSSION

The analysis of the AMPs proceeded as described next and is

summarized in Supplementary Figure 1.

2.1 Database of AMPs

Initially, we used the set of known gene-coded AMPs from the

AMSDb collection at the University of Trieste to compile

a generalized set of known AMP sequences (see the ‘Web

Resources’ section for more details about the source of AMP

sequences). This resulting set of confirmed AMPs contained

890 sequences and encompassed all major AMP classes

including defensins, cathelicidins and granulin among others.

These peptides are available as entire holopeptides, containing

both mature functional peptides as well as prosequences.

Some of these proteins were found to contain obsolete

annotations and refer to obsolete Uniprot IDs. Since we are

interested in analyzing the mature and prosequence regions

separately, we required the proteins be present in the current

version (August 2006) of the Uniprot database. To associate the

proteins in AMSDb to the current Uniprot we performed

a pairwise similarity comparison using blastp of the BLAST

tool (Altschul et al., 1990). We considered a match to be made

where the AMSDb protein has at least 99% sequence identity

over at least 99% of the length of the smaller sequence of

the pair. We tried relaxing the criteria to 95% for each

parameter — this resulted in only two more matches, which we

did not consider significant to justify the additional risk of

incorrect assignment. In addition, 33 proteins were identified

based on sequence ID that were the same proteins between

AMSDb and Uniprot, but the sequence was 599% similar.

These 33 Uniprot proteins were used. Of the 890 original

AMSDb proteins, 741 proteins were matched in Uniprot (661

from Swiss-Prot and 80 from TrEMBL).
The peptide location annotations were used from Uniprot to

identify mature peptide and propeptide regions. A total of 679

Uniprot proteins were found to have suitable annotation

for mature peptides, yielding 767 mature peptides. Most

proteins contributed one mature peptide while one protein,

human Histatin-3 (HIS3_HUMAN), contributed 26 peptides,

the highest number. A total of 238 Uniprot proteins

had annotations for propeptides, yielding 316 propeptides.

Most proteins contributed 1 propeptide, but up to 7

(for AMP_IMPBA from Balsam plant) were contributed for

a single protein.

2.2 Clustering of the AMPs

As it has already been mentioned, AMPs are very diverse in

their sequences and fall into classification of a small number of

secondary structures (Hwang et al., 1998; Powers and Hancock,

2003). However, our objective in clustering was to group similar

peptides for later analysis by HMMs. For this purpose, we

wanted to capture in a single cluster the diversity of sequences

that likely corresponded to single type of peptide. While a large

number of AMP groups can be defined based on descriptions

in the literature (such as defensins, magainins, cathelicidins),

this nomenclature is not amenable to specification for auto-

mated grouping, due to the large diversity in sequence as well as

length for a given protein name or description. Since no

classification scheme was found that was suitable for our

purpose, we chose to group AMPs by sequence analysis using

custom sequence similarity.

In short, clusters were constructed to have a minimum

amount of similarity between all peptides in the cluster

(see Methods section for details). Two sets of clusters were

constructed, for mature peptides and propeptides. Each

peptides was compared to the peptides in existing clusters and

a minimum ‘global’ sequence identity was calculated as the

number of matching amino acids divided by the length of the

shorter peptide using the most significant alignment given by

the blastp algorithm. A peptide was placed in an existing cluster

based on the minimum global sequence identity for any peptide

in the cluster. The peptide was placed in the cluster giving the

highest minimum match, if the minimum was greater than a

given minimum identity threshold. Peptides not placed in

existing clusters were used to start new clusters.
Minimum similarity thresholds in the range 10–90% were

used to evaluate the resulting clusters. Decreasing the threshold

to a minimum of 10% global similarity gives the maximum

number of peptides placed in clusters. However, when we

examined the multiple alignments of these clusters for low

thresholds we found problems: Many contained two or more

sets of closely related peptides that were more appropriately

Table 1. Effect of similarity threshold on clustering of mature peptides

Threshold (%) Number of clusters Clustered fraction (%)

10 136 94

20 142 92

30 149 90

40 148 84

50 151 80

60 158 75

70 153 66

80 136 56

90 120 42

The original set of mature peptides were clustered for several values of the

minimum global percent similarity (Threshold). The clustered fraction is the

fraction of the original set of mature peptides that were placed in clusters for

the given threshold.
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separated into distinct clusters. As well, short peptides were
found to be inserted into clusters where the matching amino

acids in the multiple alignment were interspersed with gaps
between matching positions of only one or two amino acids.

However, for higher thresholds, dramatically lower coverage of
the peptides was represented in the clusters, with a 90%

threshold yielding clusters for only 42% of the starting
peptides.
Therefore, we decided to use an intermediate threshold of

30% global sequence and manually correct the clusters by
removing short peptides having poor alignment, and by

splitting clusters into additional clusters where the peptides
consisted of two or more highly similar sets of peptides.

In total, 20 peptides were removed from 19 clusters; 3 clusters
were split into 6; and 6 clusters composed of 2 clones each were

removed. There were 146 resulting clusters for mature peptides,

containing 655 peptides. The propeptide clusters were treated
similarly using a threshold of 30% global identity. There were

207 clustered propeptides in 42 clusters before manual edits.
Four propeptides were removed from 4 clusters; 5 clusters were

removed; and 3 clusters were split into 6. There were
40 resulting clusters containing 192 propeptides.
As anticipated, such classification approach allowed group-

ing together all related peptides as in the conventional classes
such as beta-defensins, cecropins, magainins etc. Peptides of a

particular class such as the beta-defensins were also separated
into multiple clusters, indicating subclasses of these peptides.

We did not try to reduce the number of clusters, for example,
to produce a single cluster for each type of defensin.

We considered that the larger number of clusters with more
highly similar peptides in each is beneficial for model building,

as the more specific models may reflect important sequence
motifs that may be lost if the clusters contain too much

variation.

2.3 HMM modeling

Once we had created the initial clusters, we created profile

HMMs for the clusters to be used to search for additional
members of the AMP groups that were not present in the

original AMP dataset. The HMMER software package (Eddy,
1998; http://hmmer.wustl.edu/) has been utilized to create one

profile HMM for each AMP cluster. ClustalW was used to
generate the multiple alignments used by HMMER. The

HMMER package was chosen over other tools, because it is
considered to be less sensitive to small misalignments in the

multiple sequence alignments and to report reliable E-values
(Madera and Gough, 2002).

2.4 Iterative enhancement of clusters

To enhance our initial clusters, we identified AMP sequences
from Swiss-Prot and used these to enrich the initial clusters of

the AMPs by iteratively applying the corresponding HMM
models to Swiss-Prot sequences. For the current work, we

considered only the Swiss-Prot database as it contains
confirmed and relatively well-studied peptide sequences to

allow validation of the process to be done.
We found that it was not possible to use a specific threshold

for significance of match (such as expectation value, E-value,

from BLAST or HMMER) to distinguish between hits to

AMPs and non-AMPs. In an attempt to identify an E-value

threshold that will distinguish significant matches from matches

due to chance when searching the Swiss-Prot database, we

evaluated the clustered peptides with the models specific for

their cluster specifying the size of the dataset as the number of

peptides in Swiss-Prot. When these E-values were plotted

against the length of the model, it becomes clear that there is no

E-value that can distinguish significant matches from random

matches for short peptides (Fig. 1). (Note that the length of the

HMM is approximately the length of the peptides upon which

it was trained.)
Since E-values alone are not sufficient to identify significant

matches, we decided to use additional information from the

Swiss-Prot database to determine significance. For each Swiss-

Prot protein, the model giving an HMM match with the lowest

E-value was identified. The annotations for the Swiss-Prot

protein were used to identify any protein regions overlapping

with the region matched by a model. The Swiss-Prot peptide

with highest mutual overlap with the region matched by the

model was identified. This peptide was also compared to all

peptides in the model’s cluster to determine its similarity to

a listed AMP. To be considered as a significant match, the

mutual overlap between the region matched by a model and the

annotated peptide was at least 90%. In addition, the blastp

match between the Swiss-Prot peptide and the best-matching

clustered peptide was at least 50% identity over 90% of the

peptide length.

Those Swiss-Prot entries that produced a significant match to

any of the 186 HMMs (146 for mature peptides and 40 for

propeptides) were added into the existing AMP clusters. After

peptides were added to a cluster, a new multiple alignment and

HMM were constructed as described above. The new model,

based on a larger number of sequences, was then used to scan

Swiss-Prot. This was repeated until no additional peptides had

a significant match: there were five iterations for the mature

peptide models, and only one for the propeptide models.
The iterative scanning of the Swiss-Prot database (containing

230 133 peptides) resulted in an additional 389 mature peptides

Fig. 1. The relationship between E-value and model length.

The peptides in each cluster were scanned with the model corresponding

to the cluster. For the shortest models (created from the shortest

peptides) the E-values are greater than one.
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from 229 Swiss-Prot proteins being added to the AMP dataset

as candidate AMPs, for a total of 1045 peptide from 970

Uniprot proteins. Sixty-one propeptides were also added for a

total of 253 propeptides from 223 proteins. Peptides were

considered to be properly included as AMPs where the

annotations included reference to antimicrobial activity or the

protein belonged to the same family as a known AMP already

in the database (see Methods for details).

The utility of a selection process that does not rely on the

E-value can be seen in Cluster 1 (see on-line Supplementary

tables) for the mature peptides. Starting with an initial 2 AMPs,

an additional 9 peptides are added to the cluster. Despite the

high E-values (up to 5.9), all peptides were found to have

annotations that demonstrate antimicrobial activity.
The relationship between the mature peptides and propep-

tides from the same protein is shown in Figure 2. In Figure 2A,

mature clusters are joined to propeptide clusters where the

propeptides are derived from the same protein as a mature

peptide in the cluster. Only the mature peptide clusters of at

least ten peptides. Similarly, Figure 2B shows links from the

largest propeptide sequences to mature peptide clusters.

These figures suggest there is greater conservation of propep-

tide sequence, since a greater proportion of propeptide clusters

have links to multiple mature clusters. A full mapping between

clusters is available as Figure 4 (Supplementary Material).

Of the 229 proteins added, 34 either did not have annotation

for antimicrobial activity, or annotation specifically stated that

they were not antimicrobial. Among these are two groups of

peptides that have AMPs in the same family: 9 Dahlein peptides

are annotated as inactive (2 other Dahleins are active,

DAH11_LITDA and DAH12_LITDA), and 8 Aurein peptides

are annotated as inactive while 6 are active. An additional

17 peptides are peptide hormones such as cholecystokinin that

do not have annotations for antimicrobial activity. However,

there is considerable controversy surrounding whether certain

peptides should be considered antimicrobial or not; in

particular, differing assay conditions used by different investi-

gators lead to differing results. For this reason, these peptides

were left in the AMPer database and it is left to the

investigators to review the relevant literature provided through

links from the AMPer system.

The physico-chemical properties of the mature peptides vary

dramatically between clusters. As can be seen in Table 3A

(Supplementary Material) for the largest AMP clusters

(size 410 peptides), the net charge depends strongly on the

type of AMP. As expected, the median charges typically exceed

þ2 but one class is negative. Except for one cluster, the median

hydrophobicity is above 40% with a maximum of 77%. There

are 5 clusters of propeptides size 10 or greater, shown in

Table 3B (Supplementary Material). These tend to be strongly

negative and much less hydrophobic than the mature clusters.

2.5 Accuracy of models

The 186 final clusters were produced with high stringency

requirements for matches to HMMs. Such stringency explains

the relatively large number of identified clusters containing

similar annotation: for example, there are 22 clusters of

defensins which are split along the defensin subclasses

(including several subclasses of alpha- and beta-defensins,

cryptdins and other enteric defensins). Further investigation of

the effect of using lower stringency thresholds for the initial

clustering and for addition of peptides to clusters might allow

these clusters to be merged, and a more representative model to

be produced. However, performing additional merges may

also lead to incorrect merges that give less-accurate models.

We consider that the presence of multiple clusters of similar

peptides reflects subclasses of these peptides, and that the larger

number of higher accuracy models may be beneficial for further

work on mechanisms of action of AMPs that differ between

subclasses.

To assess the expected performance of the system to identify

previously unknown AMPs from proproteins, we performed an

�10-fold cross-validation on the AMP identification procedure

as described in detail below. Since we were interested in the

capacity of the system to identify AMPs in proproteins,

we performed the testing steps of the validation on full

proproteins from Swiss-Prot rather than simply the peptide

comprising the clusters. The presence of another peptide from

the same protein in both testing and training sets severely

complicates interpretation of the results. The current pipeline is

intended to identify proteins that contain additional AMPs and

will not properly handle recognition of additional peptides of

the same cluster type. For this reason, only the 105 mature

peptides and 29 propeptide clusters that did not contain more

than one peptide from the same proprotein were considered.

In addition, for creation of HMMs, at least 2 peptides are

required; to select a test peptide from the set, therefore,

a minimum cluster size of 3 is needed. This left a total of

81 mature and 20 prosequence clusters used for cross-validation.

The results of the cross-validation shows great variation in

performance for recognizing additional AMPs. The cross-

validation sensitivity varied from 0% for one mature cluster

containing three peptides, to 100% for 36 mature clusters. The

average sensitivity of all mature clusters was 82% (the SD of

the cluster mean sensitivities was 23%). The specificity and

accuracy were both 99.2% (SD 1.3%). For the prosequence

clusters, the sensitivity also varied between 0% for two clusters

of 3 peptides, and 100% for 9 clusters with average 81%

(SD 30%); the average specificity for the prosequence clusters

was 98.8% (SD 2.7%) and accuracy was 98.8% (SD 2.7%).

The values for each cluster are available in Tables 4A and B

(Supplementary Material).

Table 2. Changing consensus sequence with number of iterations for

mature peptides in cluster 137. N is the iteration number with N¼ 0 the

initial data from AMSDb

N Consensus

0 GlLDtLKnlAktagKGalqslLntaSCKLsgqC

1 GiLDtlKnlAkgvaKgvaqsLLdklsCKlskgC

2 GiLDtlKnlAkgaAKgvaqsLLdtlkCKltggC

3 GiLDtlKnlAkgaaKgaaqsLLdtlsCKlsggC

4 GiLDtlKglAknaGKGvaqsLLdtlsCKisggC

5 GiLDtlKnlAkgaAKgaAqsLLdtlsCKisggC
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Fig. 2. (A) Cluster linkage from largest mature peptide clusters. (B) Cluster linkage from largest propetide clusters. Relationship between mature

peptides and propeptides from the same protein. (A) For mature peptide clusters of 10 or more peptides, the corresponding propeptide clusters are

indicated by a line joining the clusters. The width of the line indicates the number of propeptides in that cluster that are from the same protein IDs as

the mature peptides. Similarly, (B) shows the linkage from propeptide clusters with ten or more propeptides. Percentage values following the left

clusters are the fraction of peptides with links to the right clusters.
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It should be noted that the specificity is conservatively based

on distinguishing a class of AMPs from other possibly very

similar AMPs (such as one class of defensins from several other

classes of defensins). As well, the accuracy is dominated by the

number of negatives, since the number of actual negatives is

much larger than the number of actual positives. In scanning

a large database of unrelated proteins such as Swiss-Prot,

the specificity and accuracy is expected to be significantly better

since the number of false positives will be much lower, as

demonstrated by the low number of total positive matches

found for all of Swiss-Prot. The low sensitivity of some clusters

is thought to be due to the relatively large variation in sequence

in these clusters, especially for clusters containing few peptides.

A variety of technical reasons were found for why peptides

were missed: the HMM search did not give a significant match

(E-value410), or the HMM match did not align well with the

Uniprot feature list, or the BLAST match to the closest training

peptide was too poor (data not shown). This suggests that

a simple tweaking of system parameters will not lead to

a dramatic increase in sensitivity without undesired decrease in

specificity; therefore, a search for better search parameters was

not pursued in this study.

2.6 Online tools

All materials described here have been made available online

(http://www.cnbi2.com/cgi-bin/amp.pl). All AMP sequences

and final clusters are available for download. In addition,

utilities are provided on-line to scan sequence provided by the

user to categorize the sequence according to these models. The

HMMER HMM files used to predict and classify AMPs are

available for researchers to download and use to scan sequence

files using the HMMER package independently. This is a

unique contribution to the community: one other site,

ANTIMIC (Brahmachary et al., 2004; http://research.i2r.

a-star.edu.sg/Templar/DB/ANTIMIC), provides some limited

search against a few specific models but does not categorize

submitted sequence, and does not provide for download of the

sequences or the few HMM models it contains.

Web pages are available for viewing the AMPs and

corresponding properties. The initial page (http://www.cnbi2.

com/cgi-bin/amp.pl) provides links to lists of the AMP clusters

and the peptides themselves. In addition to properties such as

peptide length, charge and hydrophobicity, the consensus

sequence is given as well as links to navigate to the list of

AMPs in each cluster. For each peptide, there are clickable

links to the Swiss-Prot web site and to the Swiss-Prot records

for the version used in this study. The iteration number

(‘round’) is indicated for each peptide with round zero

indicating the peptide is from the original set from AMSDb

database (a link is also given to AMSDb).

Several properties of the peptide subsequence matched by the

HMM model are also given: amino acid sequence, length,

charge, hydrophobicity (as hydrophobic fraction — fraction of

amino acids that are hydrophobic), position of the subsequence

within the main protein as well as the E-value of the model

match for this peptide. Additionally, values used for analysis

are also given: the coverage of the best-matching peptide by

the region matched by the HMM and vice versa, and the

best-matching (by blastp) previously clustered peptide with
percent identity and alignment length.
In summary, we utilized a set of documented AMPs to collect

additional known gene-coded AMPs into a single database
using a hybrid method for identifying AMPs. We clustered the

peptides and enriched the clusters with peptides from
Swiss-Prot, which could be matched by the trained HMM at

high confidence by integrating additional information using
pair-wise sequence comparison and annotations of peptide

positions. The HMM models and sequence files are made
available to the public from the AMPer website. We anticipate

that these will be useful for discovering novel AMPs from

unannotated sequence.

3 METHODS

3.1 Initial peptide set

The initial set of gene-coded AMP sequences was obtained from the

Biochemistry Department University of Triest, Italy (http://

www.bbcm.units.it/�tossi/pag5.htm). These peptides were compared

to the current Uniprot (Swiss-Prot and TrEMBL) databases (down-

loaded from http://www.pir.uniprot.org/ on 4 August 2006) to

determine the current naming and annotation of the initial AMPs.

Pairwise comparison was done using the blastp algorithm of the

BLAST package with no filtering (parameters -F F). We considered a

match to be positive when there was at least 99% identity of amino

acids over a match length of at least 99% of the length of the AMP in

the initial set.

For AMSDb proteins with current Uniprot IDs but where the

sequence was significantly different, the current Uniprot record was

used. Mature peptides and propeptides were identified for each protein

using the feature annotations available from Uniprot. For proteins with

multiple mature peptides, those peptides annotated as antimicrobial

were kept for analysis. Peptides were required to have definite start and

end positions (records with ‘?’ were rejected).

3.2 Clustering

Pairwise similarity between peptides was calculated using blastp

(BLAST package, Altschul et al., 1990) with filtering off (-F F) and

word size of 2 (-W 2). Clusters of similar peptides were constructed

based on the pairwise alignments using a percentage match defined as

the number of amino acids identical between the two peptide in the

most significant alignment (highest bit score) divided by the length of

the shorter of the two peptides. Clusters were built by successively

adding peptides to a cluster where the percentage match was greater

than threshold for every peptide in the cluster.

The percentage match threshold was varied between 10 and 90% for

clustering mature peptides. Multiple alignments were created for each

cluster using ClustalW (Thompson et al., 1994). The alignments of

mature peptide clusters resulting from several thresholds were

examined. Low thresholds produced clusters containing similar

peptides mixed with smaller peptides that were aligned at widely

spaced intervals to the longer peptides.

The clusters from a 30% threshold were manually edited for both

mature peptides and propeptides. Peptides were removed that aligned

with a large number of widely spaced inserts, and clusters containing

two groups of highly similar peptides were split into two clusters.

3.3 Iterative enhancement of clusters

At the start of an iteration, multiple sequence alignments were built for

each cluster using ClustalW (as above). The HMMER software
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package (Eddy, 1998; http://hmmer.wustl.edu/) was used to create one

HMM for each cluster from the multiple alignment, using the utility,

hmmbuild. Default parameters were used except for ‘–f ’ parameter,

used to create local models. The Swiss-Prot database was scanned using

the HMMER utility, hmmsearch, for each model file. Custom Java,

Python and BASH shell code were used to execute hmmsearch and

parse resulting output.

Scanning of Swiss-Prot was performed for all models. For each

Swiss-Prot protein matched, the information for the most significant

match (lowest E-value) for any model was stored. Sequence regions

matched by the HMMs were then compared to the annotated feature

regions from Swiss-Prot. The annotated region (mature peptides or

propeptides) having the greatest overlap with the HMM match region

were stored. As an additional check, the clustered sequences were

aligned to the full Swiss-Prot proteins matched by the HMMs using

blastp. The best-matching clustered peptide was determined based on

highest bit score. Swiss-Prot peptides were considered positive matches

and added to the clusters if the regions matched by the HMMs and the

feature annotation agreed to at least 90% of the their length, and the

best-matching peptide from the same cluster had at least 50% identity

to the Swiss-Prot protein.

Positive matches were then added to the clusters for mature peptides

and propeptides if they were not already present in any cluster. A new

multiple alignment was then created using ClustalW, and a new model

file was created using HMMER as described above. The Swiss-Prot

sequences were scanned again using the new model files, and any

additional matching peptides were added to the clusters. The process

of scanning Swiss-Prot, adding matching peptide to clusters, and

rebuilding the model files was repeated until no additional Swiss-Prot

peptides were found. Consensus sequence was obtained using, the

utility, hmmemit, with the ‘-c’ option. Mature peptide clusters were

mapped to propeptide clusters by identifying clusters containing

peptides from the same Uniprot protein. Graphics were created

with PyX (http://pyx.sourceforge.net/) and ImageMagick (http://

www.imagemagick.org).

3.4 Accuracy of models

An �10-fold cross-validation was performed to estimate the expected

performance of the models. Cross-validation was performed for each

cluster independent of the others. Testing and training sets of peptides

were created by randomly assigning peptides in a cluster to a number of

sets of approximately equal size. Where the cluster had 10 or more

peptides, 10% of the peptides were assigned to each set. Where the

number of peptides in a cluster was not evenly divisible by 10,

additional peptides were randomly assigned to sets (allowing only one

additional peptide per set) until all peptides were assigned to exactly one

set. Where a cluster had510 peptides, one peptide was assigned to each

of N sets, where N is the number of peptides in the cluster. By selecting

one set, in turn, as the positive data for the test set and the other sets as

positive data for the training sets, the sets of data were prepared to give

an �10-fold cross-validation for clusters having more than �10

peptides, and leave-one-out cross-validation for clusters having less

than 10 peptides. In all cases, peptides from all other clusters were taken

as negative test data (HMMs do not use negative training data). Since

the software system was intended to identify unrecognized AMPs from

proteins, the system will not attempt to recognize additional peptides

from a protein already known to contain AMPs. Therefore, performing

a cross-validation was done using only clusters where each peptide was

derived from unique proteins. This avoids the situation where a test

peptide is automatically considered a positive match since it belongs to

the same protein as a training peptide. In addition, for HMMs to be

created, at least two peptides are required; therefore, only clusters of

size three or greater were evaluated (so that one peptide would be

available for the test set).

The same procedure was used during validation as was used in

identifying additional AMPs from Swiss-Prot. For each cluster, the

training peptides were used to create an HMM. Since the purpose of the

method is to identify AMPs from within full proteins, the HMM was

used to scan the full Swiss-Prot protein corresponding to the test

peptides. A BLAST search was performed between the training peptides

and the corresponding Swiss-Prot proteins. As before, positives were

defined when proteins passed the conditions that the region matched by

the HMMs and the feature annotation agreed to at least 90% of the

their length, and the best-matching peptide had at least 50% identity to

the Swiss-Prot protein.

3.5 Online tools

The web site uses a Perl CGI script running on an Apache Linux server

with a MySQL RDBMS. Online sequence analysis uses utilities from

the HMMER package.

ACKNOWLEDGEMENTS

CDF is supported by a Doctoral Research Award from the

Canadian Institutes for Health Research.

Conflict of Interest: none declared.

WEB RESOURCES

Biochemistry Department University of Triest, Italy: http://

www.bbcm.units.it/�tossi/pag5.htm
HMMER: http://hmmer.wustl.edu/
Uniprot database: http://www.pir.uniprot.org/

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Brahmachary,M. et al. (2004) ANTIMIC: a database of antimicrobial sequences.

Nucleic Acids Res., 32, 1–589.

Bowdish,D.M. et al. (2005) A re-evaluation of the role of host defence peptides in

mammalian immunity. Curr. Protein Pept. Sci., 6, 35–51.

Brogden,K.A. (2005) Antimicrobial peptides: pore formers or metabolic

inhibitors in bacteria? Nat. Rev. Microbiol., 3, 238–250.

Chapple,D.S. et al. (2004) Structure and association of human lactoferrin

peptides with Escherichia coli lipopolysaccharide. Antimicrob. Agents

Chemother., 48, 2190–2198.

Durbin,R. et al. (1998) Biological Sequence Analysis: Probabilistic

Models of Proteins and Nucleic Acids. Cambridge University press,

Cambridge, UK.

Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics, 14, 755–763.

Finlay,B.B. and Hancock,R.E.W. (2004) Can innate immunity be enhance to

treat microbial infections? Nat. Rev. Microbiol., 2, 497–504.

Hamilton-Miller,J.M.T. (2004) Antibiotic resistance from two perspectives: man

and microbe. Int. J. Antimicrobial Agents, 23, 209–212.

Hancock,R.E.W. (2001) Cationic peptides: effectors in innate immunity and

novel antimicrobials. The Lancet Infectious Diseases, 1, 156–164.

Hancock,R.E.W. and Rozek,A. (2002) Role of membranes in the

activities of antimicrobial cationic peptides. FEMS Microbiol. Lett., 206,

143–149.

Hwang,P.M. and Vogel,H.J. (1998) Structure-function relationships of

antimicrobial peptides. Biochem. Cell Biol., 76, 235–246.

Jack,R.W. et al. (1995) Bacteriocins of gram-positive bacteria. Microbiol. Rev.,

59, 171–200.

Koczulla,A.R. and Bals,R. (2003) Antimicrobial peptides: current status and

therapeutic potential. Drugs, 63, 389–407.

Levy,S.B. and Marshall,B. (2004) Antibacterial resistance worldwide: causes,

challenges and responses. Nature Medicine, 10, S122–S129.

C.D.Fjell et al.

1154

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/9/1148/272556 by guest on 21 August 2022

http://hmmer.wustl.edu/
http://pyx.sourceforge.net/
http://
http://
http://hmmer.wustl.edu/
http://www.pir.uniprot.org/


Madera,M. and Gough,J. (2002) A comparison of profile hidden Markov model

procedures for remote homology detection. Nucleic Acids Res., 30, 4321–4328.

Park,J. et al. (1998) Sequence comparisons using multiple sequences detect three

times as many remote homologues as pairwise methods. J. Mol. Biol., 284,

1201–1210.

Patrzykat,A. et al. (2002) Sublethal concentrations of pleurocidin-derived

antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli.

Antimicrob. Agents Chemother., 46, 605–614.

Powers,J.P.S. and Hancock,R.E.W. (2003) The relationship between peptide

structure and antibacterial activity. Peptides, 24, 1681–1691.

Schutte,B.C. et al. (2002) Discovery of five conserved beta-defensin gene clusters

using a computational search strategy. Proc. Natl. Acad. Sci. USA, 99,

2129–2133.

Scheetz,T. et al. (2002) Genomics-based approaches to gene discovery in innate

immunity. Immunol Rev.

Sima,P. et al. (2003a) Mammalian antibiotic peptides. Folia Microbiol., 48,

123–137.

Sima,P. et al. (2003b) Non-mammalian vertebrate antibiotic peptides. Folia

Microbiol., 48, 709–724.

Sing,T. et al. (2005) ROCR: visualizing classifier performance in R.

Bioinformatics, 21, 3940–3941.

Thompson,J.D. et al. (1994) CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, posi-

tion-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22,

4673–4680.

Yeaman,M.R. and Yount,N.Y. (2003) Mechanisms of antimicrobial peptide

action and resistance. Pharmacol Rev., 55, 27–55.

Yount,N.Y. and Yeaman,M.R. (2004) Multidimensional signatures in anti-

microbial peptides. PNAS, 101, 7363–7368.

AMPer: a database and an automated discovery tool

1155

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/9/1148/272556 by guest on 21 August 2022


