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Abstract: Amperometric detection of nitric oxide with ISO-NOPMC NO microsensors 
(WPI) is systemically studied in the six media including seawater. The linear range of the 
microsensor for NO was from 10-6 to 10-9 mol/l and the detection limit was 
4.2×10-10 mol/L(S/N=2). With this method, we provide preliminary evidence that NO 
production could be a general attribute of marine alga (Haeterosigma akashiwo). 
Experiment conducted with inhibitor of uncoupler 2,4-DNP (2,4-dinitropheno) revealed that 
NR (nitrate reductase) activity is responsible for NO formation. 
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Introduction 

Since its identification as the endothelium-derived relaxing factor (EDRF) [1-2], nitric oxide (NO) 
has been proved effective as a neurotransmitter and an immune mediator. Some pathological processes, 
such as diabetes, ischemia and atherosclerosis are found to be connected with abnormalities of the 
EDRF [3].  

The measurement of NO in solutions is very difficult because of its low stability and high fugacity. 
Most of several NO detection methods [4] involve indirect detection of the NO oxidation products 
removed from biological media. These direct methods also include electrochemical methods which are 
the best because they are simple, relatively fast, highly sensitive, applicable in vivo and capable of real 
time performance [5-6]. 
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The electrochemical detection of NO in biological media has been reported [7-11]. However, up to 
now, there are few reports concerning practical electrochemical measurement of NO in seawater. The 
aim of this work is to use amperometric method and ISO-NOPMC microsensor [12] to detect NO in 
the six media including seawater for the first time. 

Much research has been made about the influence of dissolved inorganic nitrogen (DIN) in 
seawater, including NH4

+, NO3
-, and NO2

-, on the marine phytoplankton growth. However, NO was 
always neglected in the past nitrogen studies [13]. Since NO is the necessary intermediate at the 
nitrogen cycle and has important effect in organism, the research on the physiological effect of NO in 
algal growth is significant [14-15]. In this paper, amperometric detection of nitric oxide with ISO-
NOPMC NO microsensors (WPI) is also applied for studying NO production of Haeterosigma 
akashiwo. The results of the study will help to explore NO in ocean ecosystem. 

 
2. Experimental 
 
2.1. Chemicals 

Pure NO gas (99.9%, Zhuo Zheng gas limited company, Guangzhou), pure nitrogen gas 
(99.999%，He Li Industrial Gas Center, Qingdao); CuCl2·2H2O was obtained from Sigma-Aldrich (St. 
Louis, USA). Natural seawater (from nearshore of Qingdao) filtered by 45 µm membrane filter. All 
other products were of analytical grade and used as received. 

NO standards were prepared by making serial dilutions of saturated NO solutions: doubly distilled 
water (2 mL) was bubbled with nitrogen for 30 min to remove oxygen. Then the solution was bubbled 
with pure NO gas for 30 minutes. The concentration of a saturated NO solution is 1.4 mM [16]. 
Standards were freshly made for each experiment and kept in a glass flask with a rubber septum. 
Dilutions of the saturated solution were made using doubly distilled water. 

Martin artificial seawater was made by Martin recipe. Fleming artificial seawater was made by 
Fleming recipe. Alga Solution was made by F/2 recipe. The regents were analytical purity. 
Heterosigma akashiwo was from the Key Laboratory of Marine Ecology and Environmental Sciences, 
Institute of Oceanology, Chinese Academy of Sciences. 
   
2.2. Electrochemical instrumentation  
 

Electrochemical experiments were performed using ISO-NO Mark II NO meter (World Precision 
Instruments (WPI), Inc., Sarasota, USA) connected with an ISO-NOPMC microsensor. The analog 
signal from the ISO-NO Mark II NO meter was digitized using a DUO18 two-channel data-acquisition 
system (World precision instruments (WPI), Inc., Sarasota, USA) connected to a Pentium III PC 
computer.  
  
 
 
 
 



Sensors 2005, 5            
 

 

539

2.3. Electrochemical measurement of NO 

The applied potential of the sensor was 0.86 V (vs. Ag/AgCl). The ISO-NOPMC sensor was 
allowed to polarize in 0.1 mol/L CuCl2 for at least 1 hour before use. During polarization, the 
background current of the sensor, observed as the base line on a current-time chart, will decrease 
slowly. The sensor is ready for use when the background current has reached a stable value (less than 
2000 pA). Deoxygenated solution (10 mL) was placed in the electrochemical cell and aliquots of 
standard saturated or diluted NO solution were added with micrometer syringe. Electrochemical 
responses of the ISO-NOPMC microsensor to NO were evaluated by current-time plot on ISO-NO 
Mark II NO meter. Data were recorded under constant stirring conditions of solution at room 
temperature. The main electrolytes in Martin artificial seawater, Fleming artificial seawater, alga 
culture solution, filtered seawater and natural seawater used for electrochemical detection are 
NaCl +MgSO4. When distilled water without any electrolyte was used as samples, the sensor can not 
detect NO properly since ion strength will affect the background current. 

3 Results and discussion 

3.1 Sensitivity and linear range of the NO microsensor 

The study about the response of ISO-NOPMC NO microsensors to nitric oxide in distilled water, 
Martin artificial seawater, Fleming artificial seawater, alga culture solution, filtered seawater and 
natural seawater was carried out. The results indicate that the linear responses of NO sensor to NO 
ranging from 10-9 to 10-5 mol/L in above media are good (R>0.98). Although in distilled water the 
response current to the same NO concentration is higher (the detection limit is 3.5×10-10 mol/L 
(S/N>3)), the sensor can not detect NO properly since ion strength will affect the background current. 
In the other media, the detection limits are about 4.2×10-10 mol/L (S/N=2). As the medium component 
will affect the responses of the microsensors, NO sensors should be calibrated in the same environment 
in which the experimental measurement is to be made as possible. Fig.1-2 show the response curves of 
NO sensor to the NO in seawater and the corresponding linear equations. 

Fig.3 shows the linear equations of NO sensor in six media. In distilled water and artificial seawater, 
the linear range of the microsensors ranges from 10-5 mol/L NO to 10-9 mol/L NO. In artificial 
seawater the slope of the linear equations at NO concentration of 10-6 mol/L has small variation for the 
influence of the ions in the solutions. In algal solution, filtered seawater, natural seawater, the slope of 
the linear equations at NO concentration of 10-6 mol/L has large variation for the influence of the 
organic and colloid matter in the solutions. In result, the linear range in the three solutions is from 10-6 

mol/L NO to 10-9 mol/L NO or from 10-5 mol/L NO to 10-6  mol/L NO. 
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Figure 1. Current-time curves of the ISO-NOPMC microsensor response to successive additions of 
NO and plots of the response vs. NO concentration in natural seawater. Each [NO] increment is 1.4×

10-6 (a), 1.4×10-7 (b), 1.4×10-8 (c) and 1.4×10-9 mol/L (d). 

                 
(a)                                         (b) 

Figure 2. Current-time curve of the ISO-NOPMC microsensor response to successive additions of 4.2
×10-10 mol/L NO (a) and the noise curve (b) in natural seawater. 
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Figure 3. Relationship between NO concentration (10-9 -10-5 mol/L) in distilled water and electrode 
current measured at the ISO-NOPMC microsensor (a: distilled water, b: Martin artificial seawater, c: 

Fleming artificial seawater, d: filtered seawater, e: alga culture solution, f: natural seawater). 

 
Since there are a lot of biomolecules in blood and tissue liquid, the sensors are usually calibrated in 

PBS buffer (8.0 g NaCl + 2.9 g Na2HPO4 + 0.2 g KCl + 0.2 g KH2PO4 + 0.1 g MgCl2·6H2O dissolved 
in 1 L aqueous solution, pH 7.4) in the biological detection of nitric oxide. But the above study proved 
the medium could influence the detection of NO, and NO sensors should be calibrated in the same 
environment in which the experimental measurement is to be made as possible. Natural seawater is a 
kind of fine electrolytic solution, and the detection limit of NO in seawater is similar with the reported 
detection limit of NO in PBS buffer [12]. Therefore, the method is fit for the practical detection of NO 
in natural seawater. 

 

a b 
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3.2 Lifetime and Precision of the sensors 

The sensors used daily for at least 4 hours could work normally for about two months. After 
working for two months, the response time of the sensors will become long and the response current of 
the sensors will get low. The deviation is less than 2% for ISO-NO-Mark II in the range from 0 to 
10,000 pA. The experiment of precision showed that the relative standard deviation was 6.3%. 
 
3.3 NO production of alga 

It was proved that NR from corn could produce NO from nitrite with NADH, and light can 
influence this reaction. The study of Rockel [17] shows that the main way by which plants produce NO 
is nitrite reduction with NR (nitrate reductase) (Fig. 4). Marine phytoplankton such as red tide algae 
and food algae can perhaps produce NO by the way. 

 
 
 

 

Figure 4. NO (A), O2
- and ONOO-(B) catalysed by NR in plants. 

 
NR activity is usually higher under good photosynthetic conditions than that in the dark, and NR 

activity in the dark for 6 hours is only about 50% of that in illuminated leaves [18]. In our experiments, 
NO can be detected in day but can’t be monitored in night. About 1.5×10-9 mol/L NO release of 
Haeterosigma akashiwo was monitored during a dark-light transient time (Fig. 5(a)). It indicates light 
intensity is important for NO produce of plants.  

In the dark, NR activity can be activated by uncouplers or 5’-AMP (adenosine monophosphate) [19]. 
2,4-DNP can active NR activity [20]. In Fig.5(b), Haeterosigma akashiwo fed with 2 mmol/L 2,4-DNP 
in the dark released 2.4 × 10-9 mol/L NO. These results demonstrate NO production from 
Haeterosigma akashiwo is correlated with NR activity.  

4. Conclusion 

The relation between the sensors currents and the NO concentrations is linear for NO 
concentrations ranging from 10-6 to 10-9mol/L and the detection limits of them are about 4.2×10-10 

mol/L (S/N=2) in natural seawater. Compared with our previous research on the detection of NO in 
seawater using polarography and homemade Nafion/Co(salen) modified platinum electrode [21-22], 
amperometric detection of nitric oxide with NO microsensors has high sensitivity (4.2×10-10 mol/L 
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NO), stability (relative standard deviation is 6.30‰ ). The method is a kind of practical NO 
determination method in seawater. Using this method, NO production of Haeterosigma akashiwo was 
proved.  

 

   
(a)                                     (b) 

Figure 5. NO in alga solution during a dark-light transient (a) and effect of 2,4-DNP 
on NO production by dark-grown Haeterosigma akashiwo (b). 
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