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Abstract. The ability of purified extracellular matrix 

components to promote the initial migration of am- 

phibian neural crest (NC) cells was quantitatively in- 
vestigated in vitro. NC cells migrated avidly on fibro- 

nectin (FN), displaying progressively more extensive 

dispersion at increasing amounts of material incorpo- 

rated in the substrate. In contrast, dispersion on lami- 

nin substrates was optimal at low protein concentra- 

tions but strongly reduced at high concentrations. NC 

cells were unable to migrate on substrates containing a 

high molecular mass chondroitin sulfate proteoglycan 

(ChSP). 

When proteolytic peptides, representing isolated 

functional domains of the FN molecule, were tested as 

potential migration substrates, the cell binding region 

of the molecule (105 kD) was found to be as active as 

the intact FN. A 31-kD heparin-binding fragment also 

stimulated NC cell migration, whereas NC cells dis- 

persed to a markedly lower extent on the isolated col- 

lagen-binding domain (40 kD), or the latter domain 
linked to the NH2-terminal part of the FN molecule. 

Migration on the intact FN was partially inhibited by 

antibodies directed against the 105- and 31-kD frag- 

ments, respectively; dispersion was further decreased 

when the antibodies were used in combination. 

Addition of the ChSP to the culture medium dramat- 

ically perturbed NC cell migration on substrates of 

FN, as well as of 105- or 31-kD fragments. However, 

preincubation of isolated cells or substrates with ChSP 

followed by washing did not affect NC cell movement. 

The use of substrates consisting of different relative 

amounts of ChSP and the 105-kD peptide revealed that 

ChSP counteracted the motility-promoting activity of 

the 105-kD FN fragment in a concentration-dependent 

manner also when bound to the substrate. 

Our results indicate that NC cell migration on FN 

involves two separate domains of the molecule, and 

that ChSP can modulate the migratory behavior of NC 

cells moving along FN-rich pathways and may there- 

fore influence directionally and subsequent localization 
of NC cells in the embryo. 

D 
RECTIONAL cell migration is a fundamental embry- 
onic process which involves dynamic interactions 
between the migrating cells and their environment. 

The neural crest (NC) j is a suitable system for studies of the 
complex process of embryonic cell movement (7, 15, 24, 38, 
64, 69), since NC cells migrate extensively in the embryo 
in an apparently regulated manner. Proceeding along 
delimited pathways, NC cells eventually reach distinct loca- 
tions where they differentiate into numerous cell types that 
will compose several of the organs of the body (39, 72). 

The extracellular matrix (ECM) that migrating NC cells 
encounter during their migratory phase (4, 40, 48, 61, 65) 
has been ascribed guiding functions during migration, and 
has been thought to influence the final homing of NC cells 
(4, 29, 40, 48, 49, 53, 61, 71). Recent studies by Lffberg and 

1. Abbreviations used in this paper: ChSP, chondroitin sulfate proteoglycan; 
D, directionality; ECM, extracellular matrix; FN, fibronectin; LN, lami- 
nin; NC, neural crest; NT, neural tube; VN, vitronectin. 

co-workers (41 and unpublished results) demonstrate that 
ECM, transplanted on membrane microcarriers from older 
to younger regions of the axolotl embryo, are able to elicit 
a precocious local initiation of NC cell migration. These 
findings demonstrate that the onset of NC cell migration is 
dependent upon the maturation of the surrounding ECM. 

Numerous attempts have been made to define the composi- 
tion of the ECM permissive for NC cell movement (4, 48, 
49). Fibronectin (FN) and laminin (LN) have been shown to 
be ubiquitous components of the ECM found along the 
migratory pathways of the NC (13, 14, 34, 47, 47, Perris, R., 
C. Fiillstr6m, Y. von Boxberg, D. E Newgreen, and J. L6f- 
berg, unpublished data); these cell adhesion proteins also 
strongly stimulate NC cell migration in vitro (16, 19, 44, 45, 
58, 67). Sulfated proteoglycans have also been identified 
along the NC migratory routes and their differential distribu- 
tion has been thought to contribute to the modeling of suit- 
able paths for the migrating NC cells (2, 11, 49, 53, 66; 
Perris, R., C. F/illstrfm, Y. von Boxberg, D. E Newgreen, 
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and J. Lffberg, unpublished data). However, when tested in 
vitro, exogeneously administered glycosaminoglycans and 
proteoglycans have yielded inconsistent effects on NC cell 
locomotion (44, 48, 49, 67). These differences probably 
reflect variations in experimental conditions such as: the spe- 
cies studied, the developmental stage of cells, the types of 
substrate on which NC cells were seeded, and the structure 
of the glycosaminoglycans/proteoglycans used. 

The focus of this in vitro study was to determine the effects 
of a well-characterized high molecular mass hyaluronate- 
binding chondroitin sulfate proteoglycan (ChSP) on initial 
NC cell migration on FN. To gain a better understanding of 
the mechanisms by which proteoglycans may regulate NC 
cell migration on FN, we also localized the regions of the 
FN molecule responsible for the motility-promoting effects 
exerted by the intact protein and examined how ChSP 
affected locomotion on isolated portions of the FN molecule. 
The degree of NC cell dispersion away from the co-explanted 
neural tube was adopted here to assess the migratory re- 
sponse induced by the different types of substrates examined. 

Materials and Methods 

ECM Components 

The following purified ECM molecules were kind gifts: heparin (Dr. Ulf 
Lindahl, Department of Veterinary Medical Chemistry, Swedish Univer- 
sity of Agricultural Science, Uppsala, Sweden); a high molecular weight, 
hyaluronate-binding chondroitin sulfate proteoglycan, purified from bovine 
nasal cartilage under dissociative conditions (Dr. Bruce Caterson, Depart- 
ment of Biochemistry, West Virginia University, Morgantown, WV); 
vitronectin (VN) (Dr. Erkki Rouslahti, La Jolla Cancer Research Founda- 
tion, La Jolla, CA); LN (Dr. Rupert Timpl, Max-Planck Institute for Bio- 
chemistry, Martinsried, Munich, Federal Republic of Germany). LN was 
also purchased from Bethesda Research Laboratories, Gaithersburg, MD. 
FN was purified from human plasma as previously described (70). 

Purification of FN Fragments 

FN fragments containing the collagen-binding domain (70 and 40 kD) were 
generated by digestion of FN (3 mg/ml in PBS) at 22~ with 10 p.g/mi 
chymotrypsin (type II; Sigma Chemical Co., St. Louis, MO) for 7 min. The 
digestion was terminated by the addition of phenylmethylsulfonyl fuoride 
(1 mM) to the incubation mixture. The digest was subjected to chromatogra- 
phy on a column ofgelatin-Sepharose as described earlier (25). The gelatin- 
binding peptides eluted from the gelatin-Sepharose (20 mg) were finally 
purified by chromatography on a DEAE-Sephacel column (10 mi bed vol- 
ume). The sample was applied to the DEAE column in 20 mM Tris-HC1 
buffer, pH 7.4, and eluted with a linear gradient (100 mi) of NAC1 from 0 
to 200 mM in this buffer. Under these conditions the 70-kD fragment eluted 
well ahead of the 40-kD fragment. 

Purification of a cell-binding fragment (105 kD) and a heparin-binding 
fragment (31 kD) from chymotrypsin-digested FN has previously been de- 
scribed (74). The precise localization of the various fragments within the 
FN molecule has recently been described in detail elsewhere (43, 60. 74). 

Antibodies against FN Fragments 

Antibodies against the 31-kD fragment and the NH2-terminal 29-kD frag- 
ment of FN (17), respectively, were raised in hens and purified from egg 
yolk as previously described (74). Potential antibodies in the IgG prepara- 
tions possessing cross-reactivity with other paris of the FN molecule were 
removed by chromatography on columns of Sepharose conjugated with the 
appropriate FN fragments. Thus, anti-31-kD IgG was absorbed against the 
29- and 105-kD fragments, while anti-29-kD IgG was absorbed versus the 
31- and 105-kD fragments. 

Antibodies specific for the cell-binding FN fragment were obtained by 
affinity chromatography of rabbit anti-FN IgG (26) on a column of 
Sepharose conjugated with 105-kD fragment. The preparations of IgG were 

found to react specifically with 31-, 29-, and 105-kD fragments, respec- 
tively, in enzyme-linked and Western blot analysis. 

Preparation of Culture Substrates 

Culture substrates composed of the selected ECM molecules were prepared 
in tissue culture dishes (35 mm; Nunc, Roskilde, Denmark) by coating the 
middle area (1 cm 2) of the dishes with 100 lal of 0.01-1.000 lag/ml of the 
proteins dissolved in 0.05 M COrbuffer, pH 9.6. After surface coating, 
dishes were extensively washed with PBS and uncovered areas were blocked 
with 2% BSA (type IV; Sigma Chemical Co.) in the CO3 buffer for 60 min 
at 37~ In addition, three different types of dual substrates, composed of 
both ChSP and the 105-kD FN peptide, were produced. One type of sub- 
strate, having different relative amounts of the two ECM components, was 
generated by incubating dishes first with various concentrations of ChSP 
(0.1-1130 lag/all) and subsequently with 10 lag/nil of the 105-kD fragment. 
Alternatively, half of the surface of the dish was coated with ChSP (40-80 
gg/ml) and the other half with 105-kD peptide (10 lag/nil). A third type of 
substrate was prepared by scraping narrow parallel tracks on a ChSP-coated 
dish and subsequently incubating the exposed plastic surface with 105-kD 
FN fragment (10 lag/mi). In all cases of double-coating possible noncovered 
areas were blocked with BSA. 

Antibodies used to block FN substrates were added at various concentra- 
tions to the FN-coated dishes, which were then incubated for 2 h at 37~ 
or at 40C overnight. The binding efficiency of various anti-FN fragment an- 
tibodies to FN adsorbed onto the plastic was controlled by a two-site sand- 
wich ELISA (35). 

Protein-binding Assay 

The relative amount of material bound to the plastic dish was determined 
for each ECM protein according to the following procedure: 1 mg of the 
purified ECM proteins, apart from VN, was dissolved in 1 ml PBS, mixed 
with an equal volume of hiotin-l~-aminocaproic acid N-hydroxysuccimide 
ester (1 mg/ml in dimethylsulphoxide; Calbiochem-Behring Corp., La Jolla, 
CA) and incubated for 3 h at room temperature. Biotinylated proteins were 
dialyzed against 0.05 M bicarbonate buffer, pH 9.6, at 4~ for 48 h in order 
to remove uncoupled biotin-X-NHS. 96-well Microfluor plates (Dynatech 
Laboratories, Inc., Alexandria, VA) were coated with 100 lal of the various 
biotinylated proteins (0.01-100 lag/mi) in 0.05 M bicarbonate, pH 9.6, by the 
same procedure used for coating of culture substrates. The plates were 
washed with 0.02 M Iris, 0.5 M NaCI, 2 mM MgCI~, pH 7.4 (buffer A), 
and incubated for 15 min at 20~ with streptavidin-conjngated 13-galactosi- 
dase (Bethesda Research Laboratories) diluted 1:5000 in buffer A sup- 
plemented with 0.05% Tween 20 and 0.1% BSA. The conjugate contained 
approximately one molecule of enzyme for each molecule of streptavidin 
(1,028 U of active 13-galactosidase per milligram of active streptavidin). The 
dishes were washed with buffer A containing 0.5% Tween 20, and after 0, 
12, 18, or 24 h the fluorometrical enzyme reaction was started by the addi- 
tion of 0.2 mM 4-methylumbelliferyl-I~-galactoside (Sigma Chemical Co.) 
in 0.1 M phosphate buffer, pH 7.2, containing 2 mM MgSO2, 0.4 mM 
MnSO4, 4 mM EDTA, 0.1% NaN3 (60 lal per well). The accumulation of 
4-methylumbelliferon was monitored after 0, 15, 30, and 45 min in a 
Microfuor reader (excitation wavelength, 365 nm; emission, 450 nm; Dy- 
natech Laboratories, Inc.). All values obtained were expressed as picomoles 
4-methylumbeiliferon generated per minute. The background values 
(microwells coated with BSA only) were subtracted from the results shown 
(Figs. 1 and 2). 

Cell Culture and Migration Assay 

Premigratory NC cells were co-isolated together with the underlying neural 
tube (NT) from 3 1/2-d-old embryos of the Mexican axolotl (Ambystoma 
mexicanum). Preparation of the embryos for microsurgery and the proce- 
dure of explanation of the neural primordia (NC-NT) were performed as 
previously described (51). To obtain comparable NC cell populations, the 
neural primordia were excised at axial levels between the 3rd and 12th trunk 
segments. Isolated neural primordia were rinsed for 30-45 min in the cul- 
ture medium (see below) supplemented with 0.1% BSA to allow maximal 
recovery of the extirpated NT tissue and thereby minimize release of cell 
debris. NC-NT explants were then deposited onto the various ECM sub- 
strates and cultured for 18 h at 20~ in a serum-free culture solution (PL-85) 
composed as follows (g/liter): NaCI, 4.755; CaC12, 0.14; Ca(NO3)2 x 4 
H20, 0.080; MgSO4 • 7 H20, 0.189; Hepes, 3.570; KCI, 0.1275; Na2HPO4 
x 2 H20, 0.06; NaHCO3, 0.200; and L-glutamine 50 lag/ml (pH 7,gig.0), 
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Figures 1 and 2. Adsorption of various proteins onto tissue culture plastic. The results shown have been subtracted from the background 

values (equals close to 0; wells coated with only BSA). The results represent mean + SD of three independent analyses. The SD are not 

indicated unless they exceeded the width of the symbols. Unlike other proteins FN was studied at coating concentrations up to 1 mg/ml 

in order to approach its saturation point. The values indicate the relative amount of each protein adsorbed onto the plastic at various coating 

concentrations as monitored directly after the coating procedure. Identical results were obtained at measurements after 6, 12, 18, and 24 

h of incubation of the substrate in buffer. Note that the absolute amount of protein bound to the plastic cannot be determined from these data. 

Gentamycin (50 gg/ml) and benzylpenicillin (250 IU/mi) were used as anti- 
biotics. After exactly 18 h of incubation (the time needed in vivo for an em- 
bryo at a premigratory NC stage to reach a slightly postmigratory develop- 
mental stage; references 40, 41, and 61) the cultures were evaluated and 
photographed under phase-contrast optics in an inverted microscope (Leitz, 
Diavert). The migratory response of NC cells to the different ECM sub- 
strates tesuxl was estimated on the basis of two closely connected 
parameters: (a) maximal migration distance of discrete NC cells within the 
emigrated population and (b) total number of cells emigrated from the NT 
explant. Four (0--4) arbitrarily defined localization zones were chosen to de- 
note the maximal distance NC cells had migrated after 18 h (Figs. 3 and 
4). No mitotic activity was observed within this period of culture. The num- 
ber of NC cells emigrated from the NT explant was estimated in each culture 
by counting individual cells in the outgrowth. To facilitate cell counting at 
the time of evaluation (see below), NC cultures were occasionally incubated 
for 30 rain at 20"C with the fluorescent dye carboxyfluorescein diacetate 
succinimyl ester (Molecular Probes Inc., Junction City, OR) diluted 1:500 
from a stock solution of 10 mM in DMSO (5). After careful rinsing in PBS, 
the vitally stained cells (Fig. 5) could be observed and photographed under 
epifluorescent illumination in a Leitz Ortholux microscope equipped with 
the fluorescein-specific filter set 12 (Fig. 5). Cell behavior and overall rate 
of frontal advance of the emigrating NC cell population (46) was com- 
plementarily analyzed in several cultures by video time-lapse recording. 
Such recordings were performed using an inverted microscope equipped 
with a National system including a camera (WV-1350 AE/G), a time-lapse 
videotape recorder (VTR NV-8030), a time-date generator (WJ 800), and 
a tape (NV-P76H). Playback was on a monitor (AG3; Electrohome Inc., 
Stockholm, Sweden). The extent of randomness in directionality during 
movement was analyzed in the frontal individual cells after 12 h of culture 
on substrates of LN, FN, or of the 105-, 70-, 40-, and 30-kD FN fragments. 
The analysis of directionality was accomplished by tracing nuclear displace- 

merit and migration paths of cells for a period of 1 1/2 h at 10-rain intervals. 
The frequency of deviation from a reference migratory direction perpendic- 
ular to the NT explant was adopted to denote the degree of randomness dur- 
ing migration. Persistence in directionality was established by vector analy- 
sis according to a previously described procedure (16). A value of 1 
represents maximal migratory directionality. 

Results  

General Observations on the Mode of Locomotion 

Video time-lapse recordings showed that on all types of sub- 
strates NC cells migrated preferentially from the central por- 
tion of the NT explant after 4-6 h of culture. Cell motility 
was apparently initiated by blebs on the cell surface that 
gradually transformed into blunt projections later replaced 
by longer and thinner filopodial processes. Characteristi- 
cally, the moving NC cells displayed multipolarity in their 
protrusive activity but consistently moved in the direction of 
a dominant projection. A transitory elongation of the cell 
body invariably preceded displacement. The initial migra- 
tion was rapid and the leading cells that left the NT explant 
tended to disperse radially and form an even sheet on the dor- 
sal side of the NT explant. Progressively, the cell mat in- 
creased in size and extended to both sides of the NT as well 
as to the area adjacent to the cut edges (Fig. 4). The overall 
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Figure 3. Schematic illustration of the migratory assay. From op- 
timal representative cultures, four localization zones were arbitrar- 
ily designed. Each zone corresponds to a maximal distance of 1.2, 
2.8, 4.8, and 7.6 mm, respectively, (as indicated to the right) from 
the NT explant. A culture was judged to show emigration corre- 
sponding to localization zones 1-4 when at least five discrete cells 
(arrows) could be observed at level with the boundary of the zones. 
Ordinarily, however, considerably more than five cells localized at 
the same distance from the NT explant, as emigrated NC cells 
formed uniformly spread sheets. NC cells were considered to be en- 
tirely impeded from emigration when <10 individual cells could be 
discerned beyond the edges of the NT explant (equals localization 
zone 0). 

degree of cell-cell association in the established outgrowth 
and the shape of cells varied according to the type of sub- 
strate (see below). Although the overall direction during mi- 
gration away from the NT explant was maintained through- 
out initial dispersion, the persistence in directionality of 
individual cells differed depending on the type of substrate. 
Directionality also seemed to be influenced by various types 
of cell-cell contacts resulting in momentary local paralysis 

of pseudopodial activity, contact inhibition of movement, or 
contact-induced retraction. Thus, peripheral cells of the out- 
growths were evidently polarized in their movement. Ordi- 
narily, detachment of one cell from another was soon recom- 
pensed by association with a new neighboring cell. 

Neural Crest Cell Migration 
on Cell Adhesion Proteins 

The emigrating NC cell population moved rapidly on FN 
substrates. Cells at the leading front of the moving cell mass 
migrated with relatively low persistency in directionality. 
The average directionality (D) was calculated at 0.53 5- 0.16 
(11 cells analyzed) as revealed by video time-lapse tracings 
and vector analysis. The degree of cell-cell association was 

also low (Fig. 6) and cells at the periphery of the outgrowth 

migrated away from each other to become markedly dis- 
persed. Under optimal migratory conditions, i.e., on sub- 
strates coated with 0.1-1 mg FN/ml, ~14% of the emigrated 
cells exhibited a bipolar elongated shape characteristic of 
migrating NC cells (30, 46), compared with 5 % on BSA sub- 
strates. The locomotory response on FN substrates was dose 
dependent (Table I, Fig. 12), reaching a maximum at a coat- 

ing concentration of 100 ~tg/ml. Reduction of the coating 
concentration from 100 to 10 ltg/ml caused almost a 50% 
reduction of cell migration (Fig. 12), even though the amount 
of FN bound to the plastic was only diminished by '~10% 
(Fig. 1). At coating concentrations <0.1 vg/ml the migration 
on FN was indistinguishable from the minimal movement on 
BSA. When studied at its optimal coating concentration (10 

I~g/ml; Dr. K. Gebb, Pharmacia AB, Uppsala, Sweden, per- 
sonal communication), VN stimulated dispersion equally as 
well as FN (Table I, Fig. 8). 

NC cells migrated less far on LN than on FN or VN, but 
LN proved to be more efficacious than FN at low concentra- 
tions. A substrate produced by coating with 0.1 lxg/ml of LN 
sustained a pronounced dispersion comparable to the one on 
dishes coated with 10 Ixg/ml of FN (Fig. 7). Further augmen- 
tation of the LN concentration significantly reduced the ex- 
tent of dispersion (Table I, Fig. 12). On LN substrates the 
randomness of movement was somewhat lower than on FN 
(D = 0.68 5- 0.15, 12 cells analyzed). NC cells at the margins 

Figures 4 and 5. (Fig. 4) Micrograph illustrating a representative optimal NC cell dispersion obtained on a substrate containing the FN 
cell-binding region (105 kD; coating concentration, 100 lxg/ml). A, anterior; P, posterior; NT, neural tube. (Fig. 5) A selected area of the 
same culture as shown in Fig. 4 after vital staining with carboxylfluorescein diacetate succinimyl ester and viewed under fluorescence optics. 
Note the minimal nuclear overlapping exhibited by migrating NC cells. 
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Figures 6-11. NC cell migration on cell adhesion proteins and ChSE (Fig. 6) On FN (coating concentration, 100 Ixg/ml), NC cells migrated 
extensively. The cells frequently attained an elongated shape and were loosely associated with each other. (Fig. 7) On LN (0.1 txg/ml), 
NC cells moved less rapidly, were preferentially rounded, and were more closely connected one to another. (Figs. 8 and 9) The dispersion 
after 18 h of culture on VN (10 lxg/ml) and ChSP (40 gg/ml) substrates, respectively. (Fig. 10) The prominent NC cell migration observed 
on the 105-kD FN peptide (100 gg/ml). Note the high proportion of elongalexl cells and, despite the large number of cells, their scattered 
distribution within the outgrowth. (Fig. 11) The parallel alignment of elongated cells was predominant on substrates composed of the 
heparin-binding FN fragment (31 kD; 10 gg/ml). 

of  the outgrowth tended to flatten out on the substrate and re- 

mained connected one to another (Fig. 7). About 9 % of the 
emigrated cells were observed in an elongated phase after 
18 h of culture, probably reflecting a gradual retardation of 
locomotion. 

Neural Crest Cell Migration 
on Proteolytic FN Fragments 

A 105-kD peptide containing the cell-binding domain of the 

FN molecule was found to promote NC cell migration even 
better than intact FN (Fig. 13). However, changes in direc- 
tionality during single cell movement occurred more fre- 
quently than on FN substrates (D = 0.43 + 0.22, 12 cells 
analyzed). Cells were found to be more scattered and ex- 
hibited a lower overall degree of cell-cell contact (Fig. 10). 
The percentage of elongated cells was markedly high (17 %; 
Fig. 10). 

The 31-kD heparin-binding FN fragment also supported 
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Table L Neural Crest Cell Migration on 5oo 
Cell Adhesion Proteins 

Localization No. of 
No. of zone 0--4 NC cells 

Substrate cultures (mean) emigrated 

BSA (control) 16 1 (1.3) 66.4 + 17.0 

FN (1,000 p.g/ml) 14 4 (3.6) 406.7 + 21.9 

FN (100 p.g/ml) 16 4 (3.6) 411.5 + 20.7 

FN (10 I~g/ml) 16 2 (2.4) 215.3 + 22.2 

FN (1 lxg/ml) 16 2 (2.0) 136.9 + 8.2 

FN (0.1 lig/ml) 16 1 (1.2) 99.4 + 13.7 

FN (0.01 Ixg/ml) 16 1 (1.0) 68.5 + 11.4 

VN (10 p.g/ml) 12 3 (3.4) 408.6 + 38.7 

LN (100 I.tg/ml) 16 1 (1.3) 91.3 + 14.5 

LN (10 ~tg/ml) 16 2 (1.9) 104.0 + 16.2 

LN (1 p.g/ml) 16 2 (2.4) 208.7 + 15.0 

LN (0.1 gg/ml) 16 3 (2.6) 204.4 + 22.3 
LN (0.01 p.g/ml) 16 2 (1.8) 103.8 + 23.0 

ChSP (40-80 p.g/ml) 13 1 (0.7) 17.2 + 5.2 

VN and ChSP were used at coating concentrations giving maximal adsorbance 
onto the plast ic .  T h e  variation in migration distance (zones) is indicated by 
mean values in parantheses. The number of NC cells emigrated from the NT 
explant after 18 h of culture is indicated in the right column as mean + SD. 

prominent NC cell migration, although maximal emigration 
was not as extensive as that observed on the 105-kD fragment 
(Fig. 11). During displacement from the NT explant on the 
31-kD peptide, individual NC cells showed a slightly higher 
degree of mean directionality than was found on FN or the 

105-kD fragment (D = 0.59 + 0.17, 11 cells analyzed). Cell- 
cell associations appeared to be more numerous. Many cells 
stretched and aligned themselves perpendicular to the NT 
explant. A significantly greater portion of NC cells migrat- 
ing on the 31-kD heparin-binding peptide (27%) attained an 
elongated shape than of cells moving on the 105-kD fragment 

(Fig. 11). 
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Figure 12. Dose-dependent NC cell migration on FN and LN. 
Mean number of NC cells emigrated from the NT explant after 18 
h of culture is presented as a function of the concentration of protein 
used for coating of the substrates. 
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Figure 13. Dose-dependent locomotion of NC cells on substrates 
prepared from functionally distinct portions of the FN molecule. 
The cell-binding domain (105 kD), the heparin-binding domain (31 
kD), the collagen-binding domain (40 kD) and the collagen-binding 
plus the NH2-terminal regions (70 kD) were coated onto dishes at 
the indicated concentrations and the numbers of NC cells emigrated 
were determined as described in Materials and Methods. 

FN fragments composed of the NH2-terminal domain 
and/or the collagen-binding domain (70 and 40 kD, respec- 
tively) were weak supporters of NC cell migration. Maximal 
dispersion on the 70- and 40-kD peptides reached only 30 % 
of that obtained on the 105-kD peptide. However, both mole- 
cules were able to support NC cell migration clearly distin- 
guishable from that on BSA substrates at concentrations as 

low as 0.01 lag/ml. Directionality of individual cell migration 
was found to be higher than on LN, reaching the D values 
0.71 + 0.18 (nine cells analyzed) for the 70-kD fragments and 
0.76 + 0.19 (nine cells analyzed) for the 40-kD fragments, 
respectively. The degree of cell-cell association on these 
fragments was similar to that observed on the 31-kD peptide. 
The portion of cells exhibiting a bipolar shape was 14 and 

11% for the 70- and 40-kD peptides, respectively. 
Further evidence for the involvement of the cell- and 

heparin-binding domains in NC cell migration on FN was 
obtained by using antibodies against different parts of the 
molecule. As expected, antibodies against the NH~-terminal 
region of the FN molecule had no effect on NC dispersion 
on FN (Table II). In contrast, antibodies against the heparin- 
binding domain (31 kD) or the cell-binding region (105 kD) 
both reduced NC cell locomotion on FN. Their alteration of 
NC cell movement was progressively abolished at lower anti- 
body concentrations (Table II). Used in combination on FN 
substrates, anti-31- and 105-kD antibodies had an additive 
inhibitory effect. The antibodies completely inhibited NC 
cell migration on the isolated 31- and 105-kD FN peptides, 
respectively. 
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Table II. Inhibition of Neural Crest Cell Migration 
on FN Substrates by Antibodies against Different Domains 
of the Molecule 

Local- 
ization Emigrated 

No. of zone 0-4 NC 
Substrate cultures (mean) cells 

% 

FN + anti-29 kD (700 p.g/ml) 16 3 (3.3) 90 

FN + anti-31 kD (470 p.g/ml) 16 2 (2.4) 59 

FN + anti-31 kD ( 47 Itg/ml) 16 3 (2.8) 51 

FN + anti-31 kD (1.6 Ixg/ml) 16 3 (3.4) 89 

31 kda + anti-31 kD (470 gg/ml) 16 1 (1.4) 19 

FN + anti-105 kD (120 lxg/ml) 16 2 (2.4) 58 

FN + anti-105 kD ( 12 ltg/ml) 16 3 (2.6) 65 

FN + anti-105 kD (4.1 gg/ml) 14 3 (3.3) 84 

105 kD + anti-105 kD (120 gg/ml) 10 1 (1.5) 17 

FN + anti-105 kD + anti-31 kD 14 2 (2.0) 35 

(120 gg/ml, 47 gg/ml) 

Substrates produced by coating with 100-150 p.g/ml of the proteins were in- 
cubated with various concentrations of antibodies directed against specific 
regions of the FN molecule (see Materials and Methods). The extent of NC cell 
dispersion obtained after each antibody incubation is indicated as percentage 
of the migratory response observed in the absence of antibodies. 

Effects of ChSP and Heparin on NC Cell Migration 

NC cells were entirely unable to migrate on substrates of 

ChSP (Table I, Fig. 9). On mixed substrates containing 
different relative amounts of the ChSP and the 105-kD pep- 
tide, the ChSP impeded emigration of NC cells from the NT 
explant in a dose-dependent manner (Fig. 14). When half of 
the culture dish was coated with the 105-kD peptide and the 
adjacent half with ChSP, NC cells migrated rapidly on the 
105-kD fragment but stopped abruptly as they reached the 

ChSP-coated surface (Fig. 18). Similarly, NC cells were con- 
strained and moved solely along the tracks of the 105-kD 
fragment when such were produced on ChSP substrates 

(Fig. 19). 
ChSP was also found to interfere with NC cell migration 

on FN substrates when added to the culture medium. 
Efficient inhibition of cell dispersion on intact FN occurred 

at concentrations of >0.5 mg ChSP/ml (Fig. 15) while 0.05 
mg/ml of ChSP was sufficient to totally block NC cell migra- 
tion on the 105-kD peptide (Figs. 15-17). A 10-fold lower 
concentration of ChSP still prevented dramatic emigration 
from the NT explants, whereas further diminutions of the 
amount of ChSP in the medium progressively abrogated the 
inhibitory effect. Soluble ChSP also obstructed NC cell loco- 
motion on substrates of the 31-kD peptide as well as of the 
70- and 40-kD peptides. 

To determine whether ChSP affected NC cell motility by 
binding to the cell surface and thereby modulating attach- 
ment of the cells to the substrate, premigratory cells were in- 
cubated in a solution of ChSP, rinsed, and then deposited on 
a substrate of the 105-kD peptide. Such preincubation with 
ChSP, however, did not alter NC cell migration (Table III) 
and neither did a similar preincubation of the 105-kD peptide 
substrates. Furthermore, addition of optimal inhibitory 
amounts of ChSP to NC cells that had been migrating on the 
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Figure 14. Migratory response of NC cells plated on mixed sub- 
strates containing the ChSP and the 105-kD peptides in different rel- 
ative proportions. The mean number of NC cells emigral~d is 
shown as a function of the concentration of ChSP employed in the 
first coating step (see Materials and Methods). SD are not indicated 
unless they extended beyond the width of the symbols. 
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Figure 15. Inhibited NC cell migration on substrates of FN, 105-, 
and 31-kD proteolytic fragments by addition of ChSP to the culture 
medium. Mean number of NC cells emigrated is indicated as a 
function of the concentration of ChSP administered. FN and pro- 
teolytic fragments were used at their optimal coating concentra- 
tions. In cases where the SD did not exceed the width of the symbols 
they are not indicated. 
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Figures 16-19. (Fig. 16) Inhibited NC cell migration on the 105-kD FN fragment (coating concentration, 100 )xg/ml) by inclusion of soluble 
ChSP (50 t~g/ml) from the start of the culture (0 h). (Fig. 17) Arrest of NC cell dispersion by addition of soluble ChSP (50)tg/ml) to 
NC cells that had been displacing for 8 h on a substrate identical to that in Fig. 16. (Fig. 18) NC cells moving on the 105-kD FN fragment 
interrupt their migration at the border of a surface coated with ChSP (80 ~tg/ml). The boundary between the two types of substrate is indi- 
cated at the middle-left side of the micrograph. (Fig. 19) NC ceils proceeding along a track of the 105-kD FN fragment generated on a 
ChSP substrate (see Materials and Methods). The cells are restrained to the 105-kD peptide route during their emigration from the NT. 

105-kD fragment for 6-8 h arrested movement (Table III, 
Fig. 17), without causing detachment of cells from the sub- 

strate. 
Addition of heparin to the culture medium affected NC cell 

migration differently than did administration of ChSP. Hepa- 
rin strongly inhibited the movement of NC cells on the 31-kD 
heparin-binding peptide, but had no effect on migration on 
the 105-kD fragment (Table III). 

Discussion 

A large number of cell types, including NC cells, attach to 
and migrate extensively on FN substrates (12, 18, 42, 58). 
The attachment of cells to FN is confined to a limited portion 
of the molecule known as the celt-binding region, in which 
the tetrapeptide RGDS has a key role (52). Cell surface 
receptors mediating the attachment to FN have recently been 
isolated and characterized in different cell types (1, 8, 10, 20, 
28, 33, 54). Antibodies against the fibroblastic FN receptor, 
as well as high concentrations of soluble synthetic RGDS 
pcptides, have been reported to perturb NC cell migration in 
chick embryos (3, 5, 6). These observations underline the 
importance of FN for NC cell migration in vivo. Further- 
more, there is evidence that migratory embryonal cells dis- 

play a diffuse distribution of the FN receptor on the cell sur- 
face in apparently labile adhesions, whereas in stationary 
cells the FN receptor accumulates at specific cell substrate 
attachment sites linked to the cytoskeleton (14). A similar 
diffuse distribution of FN receptors has beefl demonstrated 
in vitally transformed cells (9). In such cells it has also been 
reported that the FN receptor'is phosphorylated on a tyrosine 
residue (23), which indicates that dynamic interactions of the 
receptor with extracellular FN or the cytoskeleton may be 
regulated by phosphorylation of the FN receptor. 

In the present investigation we attempted (a) to localize the 
domains of the FN molecule responsible for the motility- 
promoting activity exerted by the intact protein and (b) to 
define the effects of a high molecular mass ChSP on NC cell 
migration on FN. These objectives were approached by 
using an in vitro migratory assay. The extent to which NC 
cells were capable of migrating on ECM-related substrates 
was established by quantifying the degree of dispersion of 
cells from the NT explant. 

In agreement with previous findings in other systems, our 
results indicate that axolotl NC cells migrate extensively and 
equally well on substrates of intact FN or the isolated cell- 
binding domain of the molecule. In both cases the extent of 
NC cell dispersion was directly correlated to the amount of 
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Table IlL Inhibition of NC Cell Migration by 
ChSP and Heparin 

Local- 
ization No. of 

No. of zone 0--4 NC cells 
Substrate cultures (mean) emigrated 

31 kD + Heparin (105 ~tg/rnl)* 12 1 (1.3) 

31 kD + Heparin (15 p,g/ml) 12 2 (2.2) 

31 kD + Heparin (1.5 mg/ml)  12 4 (3.8) 

105 kD + Heparin (150 

$tg/ml) 10 4 (3.8) 

105 kD + ChSP (0.3 mg/ml)  

after 6-8 h of culture* 10 2 (2.0) 

Preincubation of NC cells in 
ChSP (1.5 mg/ml) before 
plating on 105-kD substratew 10 4 (3.9) 

Preincubation of 105-kD sub- 
strates with ChSP (1-3 mg/ 
ml) before plating of the cellsll 10 4 (3.9) 

51.5 + 10.9 

254.4 • 23.1 

382.3 • 13.0 

476.9 • 12.5 

152.8 ___ 28.6 

484.3 ___ 13.3 

482.7 + 17.2 

* Various concentrations of heparin were added at time of cell plating. 
ChSP was added to NC cell cultures after 6-8 h, at time when displacement 

of some NC cells from the NT explant had started. The number of cells 
emigrated here should be compared with the emigration observed when identi- 
cal amounts of ChSP were added at the start of the culture (Fig. 15). 
w Preincubation of freshly isolated neural primordia in ChSP, washing, and 
subsequent plating on 105-kD peptide substrates. 
II Preincubation of substrates composed of the 105-kD FN fragment followed 
by washing and plating of the neural primordia. 

protein incorporated into the substrate. In contrast, cell 
migration on LN was optimal at low protein concentrations 
and markedly reduced on substrates with high quantities of 
LN. Contradictory results have previously been reported 
concerning the preference of NC cells for FN or LN as 
migratory substrates (18, 45, 58). Our results emphasize the 
importance of considering several quantitative parameters in 
these types of discriminative examinations. The significance 
of the differential migratory response observed at increasing 
substrate-bound concentrations of FN and LN is unclear, but 
the results may support the idea that NC cell migration oc- 
curs in the embryo preferentially along FN-rich paths, while 
LN-abundant areas (i.e., well-developed basement mem- 
branes) correspond to sites of arrest for the moving cells. 

VN supported NC cell migration to an extent comparable 
to that of FN. This result establishes yet another common 
property of these two proteins, in addition to similarities in 
their domain structure (63), tissue distribution (21), and cell 
attachment-promoting properties (59). Two related but dis- 
tinct cell surface receptors have been described for FN and 
VN, respectively, and have been shown to exhibit mutually 
exclusive reactivities for the two molecules (55). Thus it 
seems conceivable that both types of receptors may be pres- 
ent on early migratory NC cells and that on these cells they 
are functionally analogous. 

Surprisingly, the 31-kD heparin-binding FN fragment 
stimulated NC cell migration almost as prominently as the 
105-kD peptide. It has previously been found that the isolated 
heparin-binding FN domain is not capable of promoting the 
spread of melanoma and fibroblastic cells (36, 42, 74) but 
induces focal contact formation and the subsequent reassem- 
bly of cytoskeletal proteins manifested by bundling of actin 

filaments (74). Indirect evidence suggests that cell surface 
heparan sulfate proteoglycans may mediate the interaction of 
fibroblasts with the 31-kD fragment (36, 37, 62, 73). Since 
heparin efficiently inhibited locomotion of NC cells on the 
31-kD fragment (but had no effect on migration on the 105- 
kD fragment), it is possible that membrane-bound heparan 
sulfate proteoglycans could also exert receptor-like activities 
in early migratory NC cells. Apparently, the response of the 

two cell types to the 31 kD is different, but the motility ap- 
paratus seems to be affected in both cases. 

Further support for a model where both the heparin- 
binding domain and the RGDS-containing domain contrib- 
ute to the stimulatory effect of FN on NC cell migration was 
obtained by the use of antibodies against different parts of the 
FN molecule. Anti-31-kD and anti-105-kD antibodies totally 
blocked migration on substrates of the 31- and 105-kD frag- 
ments, respectively, but were only partially inhibitory on in- 
tact FN. Used in combination, the anti-31-kD and anti-105- 
kD antibodies, however, markedly reduced NC cell migra- 
tion on intact FN molecule. 

It has been reported that soluble high molecular mass 
ChSP may accelerate the speed of movement of individual 

avian NC cells translocating within collagen gels (67). More 
recently it has been shown that addition of isolated chondroi- 
tin sulfate chains perturbs amphibian pigment cell migration 
within collagen gels (68). In spite of these observations, it 
was suggested in these and other in vivo and in vitro investi- 
gations (45, 48, 50, 66, 68) that enrichment of ChSP could 
have inhibitory effects during NC cell migration. In this 
study we show that NC cells are entirely unable to migrate 
on substrates containing the large cartilage ChSP. By ex- 
amining locomotion on substrates composed of both the 
ChSP and the 105-kD FN peptide in various relative propor- 
tions we found that the nonpermissive effect of ChSP on mo- 
tility was correlated to the amount of ChSP incorporated into 
the substrate. Closely related hyaluronate-binding ChSP is 
synthesized by a variety of embryonic and adult cell types 
(22, 27, 31). It is likely that this type of proteoglycan is also 
present along the migratory pathways of the NC in early em- 
bryos. Exogeneous administration of soluble ChSP to NC 
ceils migrating on FN substrates caused a dramatic dose- 
dependent reduction of locomotion. Soluble ChSP seemed 
to impede further progression of NC cells on FN-related 
substrates even when added to already moving NC cells 
(Figs. 16-19). Preincubation of NC cells or FN substrates 
with ChSP, followed by washing, did not alter the subsequent 
cell dispersion on the FN cell-binding domain. Hence, the 
inhibitory effect of ChSP could not be due to a stable binding 
of the molecule to the substrate or the cell surface. A low 
affinity binding of the ChSP to the 105-kD fragment cannot 
be excluded from these results but seems unlikely since: (a) 
interactions of glycosaminoglycans with this region of the 
FN molecule under physiological conditions have not been 
previously described and (b) heparin had no effect on NC cell 
migration on the 105-kD peptide. Thus, it seems plausible 
that a transient, rather than a stable, interaction of the ChSP 
with the cell surface may be the cause for inhibited migra- 
tion. Exogeneously administered ChSP from cartilage has 
been reported to inhibit adhesion of fibroblasts to FN (56) 
and to collagen (32), and of NC cells to FN in the presence 
of collagen (44). In our assa~v, cells arrested by the addition 
of ChSP never detached from the substrate, but some of them 
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attained a more rounded shape (Figs. 16 and 17) suggesting 
a partial decrease in cell substrate adhesion (67). It remains 
unclear whether the inhibitory effect of ChSP on NC cell mo- 
tility is solely due to local alterations of cell substrate con- 
tacts, presumably involving perturbation of FN receptor 
functions, or whether ChSP transduces specific intracellular 
signals directly affecting the motility apparatus. 

To conclude, our observations indicate that the inhibitory 
effect of high molecular mass ChSP on NC cell migration in 
vivo may counteract the motility-promoting activity of FN 
and may thereby influence directionality and final localiza- 
tion of NC cells. Thus it is important that further study be 
devoted to the detailed mechanisms for the inhibitory effect 
on cell migration as well as for the regulation of the extracel- 
lular local accumulation of ChSP along NC migratory 
pathways. 
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