Copyright Wiley-VCH Verlag GmbH, 69451, Weinheim, 2003
Chem. Eur. J. 2003

Supporting Information
for

Amphiphilic Bistable Rotaxanes

By

Jan O. Jeppesen, Kent A. Nielsen, Julie Perkins, Scott A. Vignon, Alberto Di Fabio, Roberto Ballardini, M. Teresa Gandolfi, Margherita Venturi, Vincenzo Balzani, Jan Becher, and J. Fraser Stoddart

Introduction

In this supplement, we provide details on calculations of the binding constants between CBPQT^{4+} and the semi-dumbbells $\mathbf{2 4}$ and $\mathbf{1 8}$ using the UV/Vis dilution method. We also provide more details on the separation of the two translational isomers of the slow two-station [2]rotaxane $\mathbf{2}^{4+}$ and the ${ }^{1} \mathrm{H}$ NMR spectroscopic characterization of $\mathbf{2} \cdot$ GREEN $^{4+}$. Finally, we provide synthetic details and experimental procedures for the two-station [2]rotaxane $\mathbf{2 9} \cdot 4 \mathrm{PF}_{6}$ that were discussed in ref. [54].

Determination of binding constant (K_{a}) using the UV/Vis dilution method.

Single-station [2]pseudorotaxane $24 \subset C B P Q T \bullet 4 P F_{6}$: Mixing $\mathrm{CBPQT}^{24} \cdot 4 \mathrm{PF}_{6}$ and the semidumbbell compound 24 in equimolar proportions in $\mathrm{Me}_{2} \mathrm{CO}$ at 298 K produced a green-colored solution as a result of the appearance of a CT absorption band, centered on $\lambda_{\max } 805$ (Figure S1). The absorbance A (at $\lambda_{\max }$) was measured at several different absolute concentrations (c)

Figure S1. Absorption spectrum $\left(\mathrm{Me}_{2} \mathrm{CO}, 298 \mathrm{~K}\right)$ recorded on a 1:1 mixture $\left(8.34 \times 10^{-4} \mathrm{M}\right)$ of the semi-dumbbell 24 and CBPQT^{4+}.
in the range of 2×10^{-4} to $9 \times 10^{-4} \mathrm{M}$. Measurements were carried out from dilutions of two different stock solutions, which resulted (Table S1) in 15 data points $\left[c / A, 1 / A^{1 / 2}\right]$.

UV/Vis dilution experiment for the semi-dumbbell 24 and CBPQT^{4+} in $\mathrm{Me}_{2} \mathrm{CO}$ at 298 K.

Optical path length:	$l=1 \mathrm{~cm}$	
CBPQT ${ }^{4+}$ in $\mathrm{Me}_{2} \mathrm{CO}$:	$=2 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$	nm
Semi-dumbbell 24 in $\mathrm{Me}_{2} \mathrm{CO}$:	$=0 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ at	805 nm
Total "background":	$=2 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$	$=805 \mathrm{~nm}$

Table S1. The absorbance A_{m} for a 1:1 mixture of CBPQT^{4+} and 24 was measured at max $=805 \mathrm{~nm}$ and subtracted the "backgroundabsorbance" (at $\mathbf{= 8 0 5} \mathbf{n m}$) equal to $A_{\mathrm{b}}=2 \mathrm{M}^{-1} \times c$ giving $A=A_{\mathrm{m}}-A_{\mathrm{b}}=A_{\mathrm{m}}-2 \mathrm{M}^{-1} \times c$.

	c	A_{m}	A	$1 / A^{1 / 2}$	$1000 c / A$
exp 1	0.000834	0.417	0.41533	1.55168	2.00803
-	0.000555	0.232	0.23089	2.08112	2.40374
-	0.000370	0.117	0.11626	2.93282	3.18252
-	0.000247	0.062	0.06151	4.03219	4.01587
-	0.000165	0.031	0.03067	5.71009	5.37985
-	0.000416	0.155	0.15417	2.54685	2.69836
-	0.000208	0.045	0.04458	4.73599	4.66535
exp 2	0.000727	0.377	0.37555		1.63181
-	0.000485	0.200	0.19903	1.93585	
-	0.000323	0.100	0.09935	2.24150	2.43682
-	0.000215	0.054	0.05357	4.3254	3.25100
-	0.000144	0.028	0.02771	6.01344	
-	0.000363	0.127	0.12627	6.8712	5.19631
-	0.000182	0.043	0.04264	2.81412	2.87470
-	0.000284	0.087	0.08643	4.84297	4.26869

Plotting c / A against $1 / A^{1 / 2}$ afforded a straight line with slope \quad of $\left(1 / K_{\mathrm{a}} \quad l\right)^{1 / 2}$ and a y intercept y_{0} of $1 / l$, where \quad is the molar extinction coefficient for the CT band of the complex and l is the optical path length, according ${ }^{[1]}$ to Equation S1 in Figure S2. The linear relationship (see Figure S2) between c / A and $1 / A^{1 / 2}$ was demonstrated by calculation of the correlation coefficient and a value of 0.984 was obtained. The K_{a} and . values were obtained from the
relationship $K_{\mathrm{a}}=y_{0} / \alpha^{2}$, where α and $y_{0}=1 / \quad l$ is the slope and y -intercept of the line, respectively.

Figure S2. A linear plot of c / A against $1 / A^{1 / 2}$ for a $1: 1$ mixture of CBPQT^{4+} and the semi-dumbbell 24. The absorbance A was measured (298 K) at different absolute concentrations c of CBPQT^{4+} (equal to that of 24) in the range 2×10^{-4} to $9 \times 10^{-4} \mathrm{M}$. The 15 data points which resulted from dilutions of two different stock solutions have been fitted to a best straight line, giving a correlation coefficient of 0.984 .

From the above plot, $y_{0}=0.7613 \times 10^{-3} \mathrm{M}$ and.$=0.7727 \times 10^{-3} \mathrm{M}$. Hence $K_{\mathrm{a}}=1300 \pm 200 \mathrm{M}^{-1}\left(\varepsilon=1310 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ for the association between CBPQT^{4+} and the semi-dumbbell 24 in $\mathrm{Me}_{2} \mathrm{CO}$ at 298 K , which corresponds to a free energy of complexation ${ }^{[2]}$ $\left(-G^{\circ}\right)$ of $4.2 \mathrm{kcal} \mathrm{mol}^{-1}$.

Two-station [2]pseudorotaxane $18 \subset C B P Q T \bullet 4 P F_{6}$: Mixing equimolar amounts of the semidumbbell 18 and CBPQT• $4 \mathrm{PF}_{6}$ in $\mathrm{Me}_{2} \mathrm{CO}$ at 298 K produced a brown-colored solution. CT absorption bands were observed at $545 \mathrm{~nm}\left(\mathrm{DNP} / \mathrm{CBPQT}^{4+}\right)$ and $745 \mathrm{~nm}\left(\mathrm{MPTTF} / \mathrm{CBPQT}^{4+}\right)$. The absorbance A was measured at 545 nm and at 745 nm at several different absolute concentrations (c) in the range of 10^{-5} to $10^{-3} \mathrm{M}$. Measurements were carried out from dilutions of two different stock solutions, which resulted in $22\left(\mathrm{DNP} / \mathrm{CBPQT}^{4+}\right)$, and 22
(MPTTF/CBPQT ${ }^{4+}$) data points $\left[c / A, 1 / A^{1 / 2}\right]$. For each probe the linear relationship between c / A and $1 / A^{1 / 2}$ was demonstrated by calculation of the correlation coefficients and values of $0.917\left(\mathrm{DNP} / \mathrm{CBPQT}^{4+}\right)$ and $0.959\left(\mathrm{MPTTF} / \mathrm{CBPQT}^{4+}\right)$ were obtained. Using a similar data treatment as described for $\mathbf{2 4} \subset \mathrm{CBPQT} \cdot 4 \mathrm{PF}_{6}$ gave the following and K_{a} values. Data for $18 \subset \mathrm{CBPQT} \cdot 4 \mathrm{PF}_{6}: \quad \mathrm{UV} / \mathrm{Vis} \quad\left(\mathrm{Me}_{2} \mathrm{CO}, \quad 298 \mathrm{~K}\right): \quad \lambda_{\text {max }}=545 \mathrm{~nm} \quad\left(\varepsilon=760 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$, $\left.K_{\mathrm{a}}=25000 \pm 3000 \mathrm{M}^{-1}\right), 745 \mathrm{~nm}\left(\varepsilon=590 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}, K_{\mathrm{a}}=25000 \pm 3000 \mathrm{M}^{-1}\right)$.

Separation of the two translational isomers of the slow two-station [2]rotaxane $\mathbf{2}^{\mathbf{4 +}}$.

Figure S3. A preparative thin-layer chromatogram, showing the separation of 2•RED ${ }^{4+}$ from 2• GREEN $^{4+}$.

UV/Vis spectrum of isolated $2 \cdot{ }^{-}$GREEN ${ }^{4+}$.

Figure S4. Absorption spectrum ($\mathrm{Me}_{2} \mathrm{CO}, 298 \mathrm{~K}$) recorded on a solution of the [2]rotaxane $2 \cdot \mathrm{GREEN}^{4+}$ immediately after its isolation.
${ }^{1} \mathrm{H}$ NMR spectroscopic characterization of 2•GREEN ${ }^{4+}$.

Figure S5. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of an equilibrium mixture of the [2]rotaxanes $2 \cdot \mathrm{GREEN}^{4+}$ and $2 \cdot \mathrm{RED}^{4+}$, recorded at 500 MHz in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ at 410 K .

Synthesis of the two-station [2]rotaxane 29•4 ${ }^{2} F_{6}$.

The [2]rotaxane $\mathbf{2 9} \cdot 4 \mathrm{PF}_{6}$ —in which the SMe group of $\mathbf{2} \cdot 4 \mathrm{PF}_{6}$ has been replaced by the more bulky SEt group - was synthesized according to Schemes S1 and S2. Monoalkylation of the bistosylate ${ }^{[3]} \mathbf{3 0}$ with the hydrophobic tetraarylmethane stopper ${ }^{[4]} \mathbf{1 1}$ in MeCN gave the tosylate $\mathbf{3 1}$ in 86% yield. Consequent treatment of the $\mathbf{3 1}$ with NaI in $\mathrm{Me}_{2} \mathrm{CO}$ gave the iodide 32 in almost quantitative yield (97\%). In order to obtain the semi-dumbbell 34 directly from the MPTTF building block ${ }^{[5]}$ 33, the following reaction sequence was carried out. A THF solution of $\mathbf{3 3}$ was treated with one equivalent of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. This procedure generated the MPTTF-monothiolate, which was subsequently alkylated with one equivalent of 32. The residue was then treated with another one equivalent of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, followed by addition of ethyl iodide, which effected the second deprotection/alkylation sequence. Finally, the tosyl

Scheme S1. Synthesis of the dumbbell compound 35.
protecting group on the MPTTF unit was removed using NaOMe in a THF-MeOH mixture affording $\mathbf{3 4}$ in an overall yield of 56% for the five steps. The resultant pyrrole nitrogen in $\mathbf{3 4}$ was alkylated with the chloride ${ }^{[4]} \mathbf{1 6}$ of the hydrophilic stopper and, following purification by column chromatography, the dumbbell 35 was isolated in 86% yield. In order to synthesize the [2]rotaxane $\mathbf{2 9} \cdot 4 \mathrm{PF}_{6}$, the tetracationic cyclophane CBPQT^{4+} was introduced using a clipping procedure as shown in Scheme S2. Formation of the [2]rotaxane 29•4PF 6 was achieved in 31% yield ${ }^{[6]}$ using the dumbbell $\mathbf{3 5}$ as template for the formation of encircling cyclobis(paraquat- p phenylene) tetracation from the dicationic precursor ${ }^{[7]} \mathbf{8} \cdot 2 \mathrm{PF}_{6}$ and the dibromide 9 .

Scheme S2. Synthesis of the [2]rotaxane $29 \cdot 4 \mathrm{PF}_{6}$.

Experimental details for the synthesis of the [2]rotaxane $29 \cdot 4 \mathrm{PF}_{6}$.

General methods: As described in the Experimental Section, except that the compounds 1,5-bis[2-(2-(tosyl)ethoxy)ethoxy]naphthalene ${ }^{[3]} \quad$ (30) (Scheme S1) and 2-\{4,5-bis(2-cyanoethylthio)-1,3-dithiole-2-yliden $\}$ - N-tosyl-(1,3)-dithiolo[4,5-c]pyrrole ${ }^{[5]}$ (33) (Scheme S1) both were prepared according to literature procedures.

Compound 31: A mixture of the bistosylate $30(1.61 \mathrm{~g}, 2.50 \mathrm{mmol})$ and $11(0.40 \mathrm{~g}, 0.84 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(150 \mathrm{~mL})$ containing $\mathrm{K}_{2} \mathrm{CO}_{3}(0.23 \mathrm{~g}, 1.67 \mathrm{mmol})$ was heated under reflux for 3.5 d . After cooling down to room temperature, the mixture was filtered. The filtrate was concentrated in vacuo and the oily residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1\right)$. The colorless band $\left(R_{f}=0.1\right)$ was collected and the solvent evaporated, affording the title compound $\mathbf{3 1}(0.67 \mathrm{~g}, 86 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \quad=1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $2.65(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.99(\mathrm{~m}, 2 \mathrm{H}), 4.04-4.06$ $(\mathrm{m}, 2 \mathrm{H}), 4.14-4.18(\mathrm{~m}, 4 \mathrm{H}), 4.21-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.31(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), 7.26-7.29 (m, 4H), 7.34 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), 7.78 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$; MS (FAB): $m / z(\%): 948$ (100) $[M]^{+}$.

Compound 32: Compound $31(0.51 \mathrm{~g}, 0.55 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{Me}_{2} \mathrm{CO}$ $(50 \mathrm{~mL})$ and $\mathrm{NaI}(0.82 \mathrm{~g}, 5.46 \mathrm{mmol})$ was added in one portion. The reaction mixture was heated under reflux for 40 h , before being cooled to room temperature and the solvent removed in vacuo. The white residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}$ $(3 \times 100 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration in vacuo gave a colorless oil, which was
purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ The colorless band ($R_{f}=0.4$) was collected and concentrated to give the title compound $32(0.46 \mathrm{~g}, 97 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \quad=1.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}), 2.71(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.38(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.07(\mathrm{~m}, 4 \mathrm{H}), 4.11-4.13(\mathrm{~m}, 2 \mathrm{H})$, $4.21-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.39(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.93(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.20(\mathrm{~m}$, $10 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \quad=2.9,15.3,28.2,31.3,34.2$, $63.1,67.3,67.8,67.9,69.3,69.9,70.0,72.1,105.7,105.7,113.1,114.6,114.7,124.0,125.0$, 125.1, 126.6, 126.7, 126.7, 130.6, 131.0, 132.1, 139.9, 141.3, 144.1, 144.5, 148.2, 154.1, 154.3, 156.5; MS (EI): $m / z(\%): 905(33)[M+\mathrm{H}]^{+}, 771$ (25) 128 (100); elemental analysis calcd (\%) for $\mathrm{C}_{53} \mathrm{H}_{61} \mathrm{IO}_{5}$ (905.0): C 70.34, H 6.79; found: C 69.98, H 6.73.

Compound 34: A solution of $33(0.091 \mathrm{~g}, 0.16 \mathrm{mmol})$ in anhydrous THF (30 mL) was degassed (Ar, 10 min) before a solution of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.028 \mathrm{~g}, 0.17 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(1 \mathrm{~mL})$ was added dropwise via a syringe over a period of 1 h . The mixture was stirred for 15 min , whereupon a solution of the iodide $32(0.15 \mathrm{~g}, 0.17 \mathrm{mmol})$ in anhydrous THF (5 mL) was added in one portion and the reaction mixture was stirred for 20 h at room temperature. Then a new solution of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.028 \mathrm{~g}, 0.17 \mathrm{mmol})$ in anhydrous MeOH $(1 \mathrm{~mL})$ was added dropwise via a syringe over a period of 1 h . The mixture was stirred for 15 min , whereupon ethyl iodide (0.13 mL , excess) was added in one portion and the reaction mixture was stirred for 24 h at room temperature. The solvent and excess ethyl iodide were removed in vacuo and the resulting yellow residue was redissolved in anhydrous THF/MeOH $(1: 1 \mathrm{v} / \mathrm{v}, 90 \mathrm{~mL})$ and degassed $(\mathrm{Ar}, 10 \mathrm{~min})$ before $\mathrm{NaOMe}(25 \%$ solution in $\mathrm{MeOH}, 0.55 \mathrm{~mL}$, $0.13 \mathrm{~g}, 2.4 \mathrm{mmol}$) was added in one portion. The yellow solution was heated under reflux for 25 min before being cooled to room temperature, whereupon the solvent was evaporated. The
yellow residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration in vacuo gave a yellow foam, which was subjected to column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The yellow band $\left(R_{f}=0.4\right)$ was collected and concentrated to provide the title compound $34(0.10 \mathrm{~g}, 56 \%)$ as a yellow foam. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$, $500 \mathrm{MHz}):=1.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}), 2.57(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.82(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.91$ $(\mathrm{m}, 2 \mathrm{H}), 3.92-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.26(\mathrm{~m}, 4 \mathrm{H}), 6.73-$ $6.75(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.11(\mathrm{~m}, 10 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 5 \mathrm{H})$, $7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.30(\mathrm{bs}, 1 \mathrm{H})$; MS (FAB): m / z (\%): 1111 (100) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{63} \mathrm{H}_{69} \mathrm{NO}_{5} \mathrm{~S}_{6}$ (1112.6): C 68.01, H 6.25, N 1.26: found: C 68.29, H 6.32, N 1.17 .

Dumbbell 35: Compound $34(0.085 \mathrm{~g}, 0.076 \mathrm{mmol})$ and the chloride $16(0.083 \mathrm{~g}, 0.092 \mathrm{mmol})$ were dissolved in anhydrous DMF (10 mL) and degassed ($\mathrm{Ar}, 10 \mathrm{~min}$) before $\mathrm{NaH}(0.009 \mathrm{~g}$ of a 60% suspension in mineral oil, 0.23 mmol) was added. The reaction mixture was stirred for 35 min at room temperature, causing the initially yellow solution to become more orange. $\mathrm{H}_{2} \mathrm{O}$ (20 mL) was added (dropwise until no more gas evolution was observed), followed by addition of brine (40 mL). The yellow precipitate was filtered, redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration in vacuo gave a yellow oil, which was purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 2: 1\right)$. The yellow band $\left(R_{f}=0.4\right)$ was collected and the solvent evaporated affording a yellow oil, which was repeatedly dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and concentrated providing the title compound $\mathbf{3 5}$ $(0.13 \mathrm{~g}, 86 \%)$ as a yellow foam. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 500 \mathrm{MHz}\right): \quad=1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 6 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.51(\mathrm{~m}, 6 \mathrm{H}), 3.64-3.66(\mathrm{~m}, 6 \mathrm{H})$,
$3.78-3.83(\mathrm{~m}, 8 \mathrm{H}), 3.92-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.99-4.00(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.14(\mathrm{~m}$, $6 \mathrm{H}), 4.25-4.28(\mathrm{~m}, 4 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 4 \mathrm{H}), 6.71$ and 6.74 $(\mathrm{AB} \mathrm{q}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 6.89-6.96(\mathrm{~m}, 8 \mathrm{H}), 7.09-7.16(\mathrm{~m}$, $12 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H})$; MS (FAB): m / z (\%): 1981 (100) $[M]^{+}, 1772$ (25), 1562 (23), 1218 (33); elemental analysis calcd (\%) for $\mathrm{C}_{113} \mathrm{H}_{129} \mathrm{NO}_{18} \mathrm{~S}_{6}$ (1981.6): $\mathrm{C} 68.49, \mathrm{H} 6.56, \mathrm{~N} 0.71$; found: $\mathrm{C} 68.41, \mathrm{H}$ 6.41, N 0.56 .
[2]Rotaxane 29•4PF6: A solution of $\mathbf{3 5}(0.12 \mathrm{~g}, 0.061 \mathrm{mmol}), \mathbf{8} \cdot 2 \mathrm{PF}_{6}(0.17 \mathrm{~g}, 0.24 \mathrm{mmol})$ and $9(0.065 \mathrm{~g}, 0.24 \mathrm{mmol})$ in anhydrous DMF (5 mL) was stirred for 7 d at room temperature (after approximately 1 d the color changed to reddish brown and a white precipitate was formed). The reddish brown suspension was directly subjected to column chromatography $\left(\mathrm{SiO}_{2}\right)$ and unreacted 35 was eluted with $\mathrm{Me}_{2} \mathrm{CO}$, whereupon the eluent was changed to $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{NH}_{4} \mathrm{PF}_{6}\left(1.0 \mathrm{~g} \mathrm{NH}_{4} \mathrm{PF}_{6}\right.$ in 100 mL Me 2 CO$)$ and the green/red band was collected. Most of the solvent was removed in vacuo $\left(T<30^{\circ} \mathrm{C}\right)$ followed by addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The resulting precipitate was collected by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and dried, affording the title [2]rotaxane $29 \cdot 4 \mathrm{PF}_{6}(0.060 \mathrm{~g}, 31 \%)$ as a brown solid. M.p. $210^{\circ} \mathrm{C}$ (decomposed without melting). The data given below are for the mixture of the two translational isomers; UV/Vis $(\mathrm{MeCN}, 298 \mathrm{~K}): \quad \max (\varepsilon)=540 \mathrm{~nm}\left(806 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right), 810 \mathrm{~nm}$ ($505 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$); elemental analysis calcd (\%) for $\mathrm{C}_{149} \mathrm{H}_{161} \mathrm{~F}_{24} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{P}_{4} \mathrm{~S}_{6}$ (3082.1): C 58.06, H 5.27, N 2.27; found: C 57.86, H 5.33, N 2.18 .

Separation of the translational isomers of $29.4 P F_{6}$: The two translational isomers were separated using preparative thin-layer chromatography (PTLC), which was performed at room temperature with $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{NH}_{4} \mathrm{PF}_{6}\left(1.0 \mathrm{~g} \mathrm{NH}_{4} \mathrm{PF}_{6}\right.$ in 100 mL Me 2 CO$)$ as eluent. After elution, the red band containing $29 \cdot 4 \mathrm{PF}_{6} \cdot$ RED was extracted into $\mathrm{Me}_{2} \mathrm{CO}$. The solvent was removed in
vacuo ($T<10^{\circ} \mathrm{C}$) and the red residue dissolved in $\mathrm{CD}_{3} \mathrm{CN}$, giving a red solution, which was used for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{UV} / \mathrm{Vis}$ spectroscopies. Although $29 \cdot 4 \mathrm{PF}_{6} \cdot$ GREEN appears to be less polar than $\mathbf{2 9} \cdot 4 \mathrm{PF}_{6} \cdot \mathrm{RED}$, it was not possible to extract a sufficient amount of $\mathbf{2 9} \cdot 4 \mathrm{PF}_{6} \cdot \mathrm{GREEN}$ from the silica on the PTLC plate to carry out a characterization of $29 \cdot 4 \mathrm{PF}_{6} \cdot{ }^{\text {GREEN }}$ by ${ }^{1}$ H NMR and UV/Vis spectroscopies.

Data for $29 \cdot 4 \mathrm{PF}_{6} \cdot$ RED. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}, 300 \mathrm{~K}\right): \quad=1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.22(\mathrm{~s}, 18 \mathrm{H}), 1.29(\mathrm{t}, ~ J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.31-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.57(\mathrm{~m}, 4 \mathrm{H}), 2.92$ $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) 3.27(\mathrm{~s}, 9 \mathrm{H}), 3.31-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.48(\mathrm{~m}, 6 \mathrm{H}), 3.58-3.61(\mathrm{~m}, 6 \mathrm{H})$, 3.72-3.75 (m, 6H), 4.02-4.11 (m, 8H), 4.19-4.21 (m, 4H), 4.25-4.28 (m, 4H), 4.37-4.38 (m, $2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 4 \mathrm{H}), 5.55-5.68(\mathrm{~m}, 8 \mathrm{H}), 5.83(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.37 and $6.54(\mathrm{AB} \mathrm{q}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.81(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{bs}, 2 \mathrm{H}), 6.91-6.97(\mathrm{~m}, 12 \mathrm{H})$, 7.04-7.10 (m, 12H), 7.20-7.25 (m, 6H), 7.32-7.33 (m, 2H), 7.38-7.40 (m, 4H), $7.87(\mathrm{~s}, 2 \mathrm{H})$, $7.92(\mathrm{~s}, 4 \mathrm{H}), 8.03(\mathrm{~s}, 2 \mathrm{H}), 8.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.64(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.67(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{UV} / \mathrm{Vis}(\mathrm{MeCN}, 298 \mathrm{~K}): \max =540 \mathrm{~nm}$.

References and notes

[1] M. B. Nielsen, J. O. Jeppesen, J. Lau, C. Lomholt, D. Damgaard, J. P. Jacobsen, J. Becher J. F. Stoddart, J. Org. Chem. 2001, 66, 3559-3563.
[2] The G° values were calculated using the relationship $G^{\circ} \stackrel{\sim}{=} R T \ln K_{\mathrm{a}}$ where R is the gas constant and T is the absolute temperature.
[3] P. R. Ashton, M. Blower, D. Philp, N. Spencer, J. F. Stoddart, M. S. Tolley, R. Ballardini, M. Ciano, V. Balzani, M. T. Gandolfi, L. Prodi, C. H. McLean, New J. Chem. 1993, 17, 689-695.
[4] C. P. Collier, J. O. Jeppesen, Y. Luo, J. Perkins, E. W. Wong, J. R. Heath, J. F. Stoddart, J. Am. Chem. Soc. 2001, 123, 12632-12641.
[5] J. O. Jeppesen, K. Takimiya, F. Jensen, T. Brimert K. Nielsen, N. Thorup, J. Becher, J. Org. Chem. 2000, 65, 5794-5805.
[6] Unreacted dumbbell can be recovered and reused.
[7] P.-L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, C. Vicent, D. J. Williams, J. Am. Chem. Soc. 1992, 114, 193-218.

