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Abstract
AMP-activated protein kinase (AMPK) is a key molecular player in energy homeostasis at both cellular and whole-body

levels. AMPK has been shown to mediate the metabolic effects of hormones such as leptin, ghrelin, adiponectin,

glucocorticoids and insulin as well as cannabinoids. Generally, activated AMPK stimulates catabolic pathways

(glycolysis, fatty acid oxidation and mitochondrial biogenesis) and inhibits anabolic pathways (gluconeogenesis,

glycogen, fatty acid and protein synthesis), and has a direct appetite-regulating effect in the hypothalamus. Drugs that

activate AMPK, namely metformin and thiazolidinediones, are often used to treat metabolic disorders. Thus, AMPK is

now recognised as a potential target for the treatment of obesity and associated co-morbidities.
Journal of Molecular Endocrinology (2010) 44, 87–97
Introduction

AMP-activated protein kinase (AMPK) has emerged as a
key molecular player in energy homeostasis at both
cellular and whole-body levels (Kahn et al. 2005).
Initially, AMPK was shown to have lipid-related effects:
it inactivates acetyl-CoA carboxylase (ACC; Carlson &
Kim 1973) and 3-hydroxy-3-methylglutaryl (HMG)-CoA
reductase (Beg et al. 1973), the key regulatory enzymes
of fatty acid and cholesterol synthesis. Later, the role of
AMPK in carbohydrate and protein metabolism, cell
cycle regulation and mitochondrial biogenesis was also
described. AMPK is an evolutionarily conserved serine/
threonine kinase with a catalytic a-subunit and
regulatory b- and g-subunits, forming a heterotrimeric
complex. The upstream regulation of AMPK is
summarised in Figs 1 and 2.
Role of AMPK in the central control of
appetite

AMPK is expressed throughout the brain: all isoforms
are expressed in neuronal tissues including areas that
are involved in the control of food intake and
neuroendocrine function, such as the hypothalamus
and the hindbrain (Turnley et al. 1999, Kola 2008).
In the last 5 years, AMPK has emerged as a nutrient and
glucose sensor in the hypothalamus (Momcilovic et al.
2006). Hypothalamic AMPK activity is increased during
Journal of Molecular Endocrinology (2010) 44, 87–97
0952–5041/10/044–087 q 2010 Society for Endocrinology Printed in Great Britain
fasting and decreased during refeeding (Minokoshi
et al. 2004). Pharmacological activation of AMPK in
the rodent hypothalamus with 5-aminoimidazole-4-
carboxamide riboside (AICAR) causes an increase
in food intake (Xue & Kahn 2006). Alteration in
ventromedial hypothalamic AMPK activity with recom-
binant adenoviruses expressing dominant negative
(DN) or constitutively active (CA) AMPK-a1/a2 subunit
(Minokoshi et al. 2004) changed body weight and food
intake. DN-AMPK adenovirus-treated mice ate less and
had lower body weight compared with control mice.
DN-AMPK mice also had decreased neuropeptide Y
(NPY) and agouti-related peptide (AgRP) mRNA levels
in the arcuate nucleus (ARC) under ad libitum
fed conditions. In contrast, CA-AMPK adenovirus-
treated mice ate significantly more and had higher
body weight with increased expression of NPY and
AgRP mRNA in ARC, as well as increased orexigenic
melanin-concentrating hormone expression in lateral
hypothalamus. This suggests that high AMPK activity
enhances orexigenic signals, whereas low AMPK activity
suppresses these signals under ad libitum fed conditions.
In agreement with this, deletion of AMPKa2 in AgRP
neurons led to the development of an age-dependent
lean phenotype.

Peripheral hormones from the gastrointestinal tract
(peptide YY, ghrelin, cholecystokinin, glucagon-like
peptide 1 (GLP-1) and oxyntomodulin) and adipose
tissue (leptin, resistin and adiponectin) are important
in influencing the activity of the appetite-regulating
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Figure 1 AMPK regulation: AMPK’s upstream kinases
phosphorylate the Thr172 residue of the a-kinase subunit.
LKB1, a tumour-suppressor gene (Hawley et al. 2003, Woods
et al. 2003, Shaw et al. 2004), calmodulin kinase kinase (CaMKK;
Hawley et al. 2005, Hurley et al. 2005, Woods et al. 2005), and the
recently described kinases transforming growth factor-b-activated
kinase (TAK1) and ataxia telangiectasia mutated (ATM) are the
known AMPK kinases. CaMKK2 (also known as CaMKKb) is
expressed primarily in the brain, suggesting that this Ca2C-
mediated pathway may be operating in neurons (Towler & Hardie
2007). TAK1 is a member of the mitogen-activated protein kinase
kinase kinase family and is reported to phosphorylate AMPK in
HeLa cells, which lack LKB1 expression (Momcilovic et al. 2006).
ATM, which stimulates mitochondrial biogenesis in response to
double-stranded DNA breaks, also can phosphorylate AMPK
(Fu et al. 2008). A rise in AMP:ATP ratio activates AMPK i)
allosterically and ii) by inhibition of dephosphorylation by protein
phosphatases (Hardie et al. 1999, Sanders et al. 2007). Recently,
it has been shown that AMPK can be regulated directly by
glycogen and may act as a glycogen sensor (McBride et al. 2009).
The a1–6 linkage-branched forms of glycogen allosterically inhibit
AMPK more potently than the linear a1–4-linked forms (Carling
2009, McBride et al. 2009). In addition to the allosteric effect,
the branched glycogen also inhibits LKB1- or CaMKK2-induced
Thr172 phosphorylation, while dephosphorylation is not affected
by glycogen. A new model of AMPK regulation, which is
independent of AMP, has recently been identified. It is shown that
cell death-inducing DFFA-like effector-a (Cidea) forms a complex
with the b-subunit of AMPK, eliciting a ubiquitination-mediated
degradation of AMPK (Qi et al. 2008).
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neuronal populations in the hypothalamus.
In addition, a number of these hormones have been
shown to influence AMPK activity. In the short term,
anorectic agents such as glucose, GLP-1 and oxynto-
modulin decrease hypothalamic AMPK activity
(Andersson et al. 2004, Minokoshi et al. 2004, Seo et al.
2008), leading to reduction in food intake during
satiation, while orexigenic agents such as ghrelin lead
to AMPK activation and increased food intake
(Andersson et al. 2004, Kola et al. 2005). In the long
term, the circulating anorectic insulin and leptin
determine the energy and adiposity profile.

The hypothalamus is not the only location in the
brain important for appetite regulation. Emerging data
suggest that the nucleus tractus solitarius (NTS) in the
hindbrain also has an important role. Fasting increases
AMPK activity in the NTS and leptin inhibits it (Hayes
et al. 2009a). Ghrelin is known to activate neurons in
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the NTS (Date et al. 2006). GLP-1 (7–36) amide, an
anorectic hormone, acts both in the hypothalamus
and the NTS (Goldstone et al. 2000, Seo et al. 2008,
Hayes et al. 2009b).
Role of AMPK in peripheral tissues

AMPK is ubiquitously expressed and plays an important
role in the peripheral metabolism of the skeletal
muscle, liver, fat, myocardium and other tissues.
In general, activated AMPK switches on catabolic
processes that produce ATP and switches off ATP-
consuming processes, thus restoring theAMP:ATP ratio.

AMPK plays a key role in regulating lipid metabolism.
Activated AMPK phosphorylates and inhibits ACC1 and
HMG-CoA, decreases fatty acid synthase (FAS)
expression and activates malonyl-CoA carboxylase,
thereby leading to a decrease in fatty acid and
cholesterol synthesis (Woods et al. 2000, Kahn et al.
2005, Lopez et al. 2007). Activated AMPK stimulates
fatty acid oxidation by decreasing malonyl-CoA levels
through the inhibition of ACC2 (Merrill et al. 1997,
Kahn et al. 2005, Lopez et al. 2007). This leads to an
increase in carnitine palmitoyltransferase 1 (CPT1)
activity and the subsequent activation of fatty acid
oxidation (Kahn et al. 2005, Lopez et al. 2007). The
decreased AMPK activity in visceral fat could enhance
lipolysis as well as lipogenesis, although the effect on
lipogenesis prevails (Divertie et al. 1991, Djurhuus et al.
2002). AMPK thus plays a key role in regulating lipid
metabolism. AMPK has been suggested to inhibit
catecholamine-stimulated lipolysis in adipocytes
(Corton et al. 1995, Daval et al. 2005), thus lowering
the plasma level of fatty acids. Activated AMPK also
stimulates and upregulates the expression of peroxi-
some proliferator-activated receptor-g coactivator-1a,
which consequently increases mitochondrial biogenesis
(Terada et al. 2002, Zong et al. 2002).

AMPK also regulates glucose homeostasis. Activation
of AMPK by contraction in fast-twitching muscles
increases hexokinase II expression (Holmes et al.
1999), and enhances glucose uptake through the
translocation of glucose transporter 4 (GLUT4) to the
cell membrane and the upregulation of Glut4 gene
expression (Holmes et al. 1999, Derave et al. 2000,
Wright et al. 2005). Interestingly, these effects were not
observed in slow-twitching soleus muscle (Derave et al.
2000, Wright et al. 2005).

AMPK regulates hepatic gluconeogenesis by
inhibiting the transcription of phosphoenolpyruvate
carboxykinase (PEPCK) and glucose-6-phosphatase
(G6Pase; Lochhead et al. 2000, Cool et al. 2006).
AMPKa2-knockout (KO) and LKB1-KO mice were
shown to have glucose intolerance and fasting-induced
hyperglycaemia, possibly caused by increased
www.endocrinology-journals.org
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Figure 2 The g-subunit of AMPK contains three AMP-binding sites. These are formed
in the interface of its two pairs of CBS domains, also called Bateman domains. Two of
these binding sites can bind either AMP or ATP, whereas a third site contains a tightly
bound AMP that does not exchange (Xiao et al. 2007). When AMPK is inactive under
physiological conditions, it binds two ATP and one AMP molecule, while in low energy
states it binds three AMP molecules. It is now proposed that the interaction of the
catalytically active kinase domain with the AMP-bound g-subunit protects the
phosphorylated Thr172 residue from dephosphorylation.
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gluconeogenesis associated with increased PEPCK and
G6Pase activity (Lochhead et al. 2000, Cool et al. 2006).
Activated AMPK in skeletal muscle phosphorylates and
inhibits glycogen synthase, thereby leading to a decrease
in glycogen synthesis (Wojtaszewski et al. 2002).

Hypothalamic AMPK has been linked to the
regulation of peripheral metabolism, suggesting that
AMPK is a key enzyme in coordinating the interaction
between peripheral and central energy regulation.
Central AICAR treatment has been shown to increase
both insulin-mediated and non-insulin-mediated glyco-
gen synthesis (Perrin et al. 2004), thus implicating the
role of hypothalamic AMPK in regulating muscle
glycogen synthesis. Central insulin infusion also
increased muscle glycogen synthesis and this effect was
blocked by the co-administration of glucose, possibly
mediated by AMPK (Perrin et al. 2004). Central adipo-
nectin treatment leads to hypothalamic AMPK acti-
vation and decreases energy expenditure, possibly via
a reduced expression of uncoupling protein-1 (UCP-1)
in brown adipose tissue (Kubota et al. 2007). Central
a-lipoic acid, which inhibits hypothalamic AMPK
activity, increasesUCP-1 expression and energy expendi-
ture in brown adipose tissue (Kim et al. 2004b). Central
ghrelin treatment, independently from the effect on
food intake, has been shown to increase glucose
utilisation rate of white and brown adipose tissues and
counteract the effects of intracerebroventricular leptin
treatment on fat weight, plasma glucose and insulin
(Kim et al. 2004a, Theander-Carrillo et al. 2006).
www.endocrinology-journals.org
Role of AMPK as mediator of hormonal
signals

Intriguingly, several hormones have tissue-specific,
often opposite, effects on AMPK activity (Fig. 3).
Leptin

Leptin increases AMPK activity in the skeletal muscle
directly as well as indirectly through stimulation of the
hypothalamo-sympathetic axis (Minokoshi et al. 2002).
Chronic s.c. administration of leptin also increases the
expression of AMPK in skeletal muscle (Steinberg et al.
2003). Leptin- or leptin receptor-deficient rodents
showed a decreased AMPK activity in the liver (Yu
et al. 2004). In lean animals, leptin has been shown to
attenuate hepatic glucose production and insulin
resistance under normal conditions and to slightly
increase AMPK activity (Brabant et al. 2005). However,
these effects are lost in diet-induced obese rats, thereby
suggesting an important physiological dysregulation
of leptin effects in obese animals. Leptin inhibits
triacylglycerol storage and stimulates fatty acid oxi-
dation in the heart, and both AMPK-dependent
(Lee et al. 2004) and AMPK-independent (Atkinson
et al. 2002) pathways have been suggested.

Central injection of leptin into ventromedial hypo-
thalamus (VMH) of rats has been shown to increase
glucose uptake in the heart, brown adipose tissue and
skeletalmuscle, butnot inwhiteadipose tissue (Kamohara
Journal of Molecular Endocrinology (2010) 44, 87–97
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Figure 3 Hormones that activate (red) or inhibit (blue) AMPK in various tissues.
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et al. 1997, Haque et al. 1999, Minokoshi et al. 1999).
Central infusion of leptin decreases hepatic glycogen
content (Kamohara et al. 1997, Haque et al. 1999).

In the hypothalamus, leptin has an opposite effect: it
decreases AMPK activity in the ARC and paraventricular
(PVC) nuclei (Minokoshi et al. 2002, 2004, Andersson
et al. 2004, Mountjoy et al. 2007). By reducing the
appetite centrally and increasing the peripheral fatty
acid consumption, these tissue-specific effects of leptin
lead to an overall negative energy balance and
reduction in body weight.
Adiponectin

Adiponectin activates and stimulates liver and muscle
AMPK activity in vivo and in vitro, leading to stimulation
of glucose uptake, fatty acid oxidation and PEPCK
(Yamauchi et al. 2002). These lead to an improvement
in insulin sensitivity. Globular adiponectin was also
shown to activate AMPK in primary rat adipocytes
(Tomas et al. 2002, Yamauchi et al. 2002, Wu et al. 2003,
Huypens et al. 2005).

Adiponectin protects the heart from ischaemic injury
via AMPK- and cyclooxgenase-2-dependentmechanisms
(Shibata et al. 2005). Adiponectin is also suggested to
play a beneficial role in cardiac remodelling through
multiple mechanisms, one of which is possibly via the
activation of AMPK (Liao et al. 2005, Shibata et al. 2005).
Impaired regulation of AMPK and glucose metabolism
in adiponectin-deficient mice result in the development
of heart failure (Liao et al. 2005). In endothelial cells,
adiponectin stimulates nitric oxide production via
AMPK activation, leading to beneficial vasoprotective
effects (Chen et al. 2003).

It has been suggested that adiponectinmay be involved
in the stimulation of food intake (Kadowaki et al. 2008).
Serum and cerebrospinal fluid (CSF) adiponectin
concentrations increase under fasting conditions, as
does expression of adiponectin receptor-1 in ARC.
Central adiponectin administration leads to increased
Journal of Molecular Endocrinology (2010) 44, 87–97
phosphorylation of AMPK and ACC in the hypothalamus
(Carling 2005, Xue & Kahn 2006, Kadowaki et al. 2008).
Adiponectin KO mice were shown to have reduced
food intake and decreased AMPK activity in ARC
(Kadowaki et al. 2008). Thus, unlike leptin, adiponectin
stimulates both central and peripheral AMPK activity.
Adiponectin-transgenic ob/ob mice, which have serum
adiponectin levels two- to threefold higher than ob/ob
mice, have significantly higher body weight, but an
improved metabolic state compared with ob/ob mice
(Kim et al. 2007). Adiponectin is considered a starvation
hormone: under fasting conditions, high adiponectin
levels stimulate central and peripheral AMPK leading
to increased food intake and decreased energy expendi-
ture, promoting fat storage. After refeeding, adiponectin
levels would fall with a consequent decrease in AMPK
activity leading to reduced food intake and an increase
in energy expenditure.
Resistin

Resistin is an adipokine secreted in rodents and
humans, which generally seems to have opposite effects
to those of adiponectin. Resistin induces insulin
resistance and stimulates hepatic glucose production.
These effects are thought to be mediated by a reduction
in liver AMPK activity (Banerjee et al. 2004, Muse et al.
2004). It has been shown to decrease fatty acid uptake
and oxidation in skeletal muscle via a reduction in the
membrane content of fatty acid translocase/CD36,
possibly mediated by inhibition of AMPK (Palanivel &
Sweeney 2005). Resistin, despite its anorectic effect, has
been shown to phosphorylate hypothalamic AMPK and
ACC. The consequent inactivation of ACC, after AMPK
activation, might represent a physiological compensa-
tory mechanism that prevents deleteriously high levels
of malonyl-CoA occurring in the hypothalamus after
resistin-induced FAS inhibition in the VMH (Vazquez
et al. 2008). Time course-dependent resistin treatments
would probably be needed to clarify this issue.
www.endocrinology-journals.org
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Ghrelin and cannabinoids

Ghrelin has been shown to regulate AMPK activity in
hypothalamus and peripheral tissues (Andersson et al.
2004, Kola et al. 2005). Cannabinoids are known to
regulate appetite and peripheral metabolism, and
AMPK has been shown to mediate these effects (Kola
et al. 2005, 2008). Both ghrelin and cannabinoids have
similar effects on AMPK activity in various tissues: they
stimulate hypothalamic and heart AMPK activity, while
inhibit adipose tissue and liver AMPK activity (Kola et al.
2005, 2008).

The mechanism of central effect of ghrelin includes
the activation of Ca2C signalling in NPY neurons in the
ARC (Kohno et al. 2003, 2008). The Ca2C rise leads to
CAMKK2 activation, which can stimulate hypothalamic
AMPK (Anderson et al. 2008, Sleeman & Latres 2008).
AMPK activation leads to inhibition of malonyl-CoA
and stimulation of CPT1, leading to increased
mitochondrial oxidation and activation of the UCP-2,
which can increase NPY/AgRP neuronal activity and
ultimately stimulate appetite (Andrews et al. 2008,
Lopez et al. 2008).

Endocannabinoids are synthesised locally on
demand, and the level in the hypothalamus varies in
response to feeding and fasting (Kirkham et al. 2002).
The variation in hypothalamic endocannabinoid levels
seems to play an important role in mediating the
anorectic effects of leptin (Di Marzo et al. 2001) and the
orexigenic effects of ghrelin (Kola et al. 2008). Recently,
we have shown that the effects of ghrelin on hypo-
thalamic AMPK activity and appetite are abolished in
the absence of cannabinoid type 1 receptor (CB1) or
in the presence of a CB1 antagonist rimonabant (Kola
et al. 2008). These data suggest that an intact
cannabinoid-signalling pathway is required for the
effects of ghrelin on AMPK activity and appetite.
Interestingly, i.p. injection of cannabinoids in rats
results in increased plasma ghrelin levels (Zbucki et al.
2008). This suggests that the stimulation of appetite by
cannabinoids may be connected to an increase in
ghrelin secretion from the gastric X/A-like cells (Zbucki
et al. 2008). Further studies are needed to elucidate the
details of the ghrelin–cannabinoid interaction.

Insulin

Insulin has a range of metabolic effects in addition to its
main role of stimulating glucose uptake into the cells.
Centrally, insulin is an anorectic hormone, which has
been shown to inhibit hypothalamic AMPK activity
(Minokoshi et al. 2004). Insulin deficiency has been
proposed as one of the factors causing hypothalamic
AMPK activation and the subsequent increase in food
intake seen in streptozotocin-induced diabetic rats
(Namkoong et al. 2005). In the periphery, insulin
inhibits AMPK in fat by activating protein kinase B/Akt
www.endocrinology-journals.org
complex, which can phosphorylate alphaAMPK at
Ser485/491, thus leading to reduced phosphorylation
at Thr172 (Kovacic et al. 2003, Horman et al. 2006).
Insulin inhibits myocardial AMPK activity during
ischaemic events alone or when co-administered with
glucose, suggesting that the inhibitory effect of insulin
on myocardial AMPK activity might be caused by
enhanced glucose metabolism (Russell et al. 2004).

Insulin resistance is characterised by the inability of
insulin to increase glucose uptake and repress glucose
production in the liver, and it often leads to hypergly-
caemia. The role of AMPK in this condition has to be
considered. While activated AMPK stimulates catabolic
pathways and inhibits the energy-consuming anabolic
processes, insulin promotes glycogen, lipid and protein
synthesis. However, both upregulate glucose uptake in
muscle via an effect of GLUT1 or GLUT4 translocation
and increase in GLUT4 transcription (Zheng et al. 2001,
Barnes et al. 2002). In skeletal muscle, the two pathways
also phosphorylate the protein AS160, which has a Rab
GTPase-activating protein domain that can increase
translocation of GLUT4 to the plasma membrane
(Kurth-Kraczek et al. 1999, Kramer et al. 2006, Treebak
et al. 2006). These factors will lead to an increase in
glucose uptake, which is an important homeostatic
feature of plasma glucose regulation. Furthermore,
AMPK activation is thought to upregulate insulin
receptor substrate-1 (Harrington et al. 2004, Shah et al.
2004, Um et al. 2004) through inhibition of the insulin–
mammalian target of rapamycin (mTOR) pathway
(Fisher et al. 2002, Inoki et al. 2003). This will improve
the insulin sensitivity profile. Both insulin and activated
AMPK repress the expression of the gluconeogenic
enzymes PEPCK and G6Pase (Lochhead et al. 2000).
Phosphorylation of AMPK is thought to result in
translocation of the transcriptional coactivator TORC2
to the cytoplasm (Koo et al. 2005), thus repressing the
expression of the TORC2-target enzymes
Glucagon-like peptide-1

GLP-1 is produced from pre-proglucagonmRNA, which
is expressed in NTS cell bodies in the brainstem, with
projections to the PVN and other hypothalamic nuclei
involved in the control of feeding (Goldstone et al.
2000). Central nervous system GLP-1 is an endogenous
inhibitor of feeding acting via the GLP-1 receptor.
Hypothalamic GLP-1 peptide content is decreased
during fasting. Fasting-induced increase in hypo-
thalamic AMPK activity is inhibited by GLP-1 and this
could be the mechanism of its anorectic effects (Seo
et al. 2008). It has been shown that the anorectic effects
of leptin are at least partly via GLP-1. GLP-1 acts in both
the hypothalamus and the NTS, as GLP-1 receptors
located in the NTS are also suggested to regulate food
intake (Hayes et al. 2009b).
Journal of Molecular Endocrinology (2010) 44, 87–97
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Glucocorticoids

Glucocorticoids increase appetite and lead to increased
availability of metabolic fuels such as amino acids and
fatty acids. Chronic or excessive exposure to glucocorti-
coids will result in insulin resistance, truncal obesity,
hyperlipidaemia and symptoms similar to the metabolic
syndrome. We have suggested that AMPK is involved in
the central and peripheral effects of glucocorticoids.
Glucocorticoids activate hypothalamic AMPK activity
in vivo (Christ-Crain et al. 2008) either directly or via
stimulation of endocannabinoid synthesis (Di et al.
2005, Christ-Crain et al. 2008), and these effects could
lead to appetite stimulation (Tataranni et al. 1996).
In the periphery, glucocorticoids inhibit AMPK activity
in adipose tissue, leading to increased lipogenesis and
fat storage (Christ-Crain et al. 2008). Glucocorticoids
also inhibited AMPK activity in the heart, which might,
at least in part, mediate the detrimental effects of
glucocorticoid excess on the heart. Surprisingly, and
somewhat unexpectedly, glucocorticoids were shown to
stimulate AMPK activity in rat liver in vivo as well as in a
liver cell line (Viana et al. 2006, Christ-Crain et al. 2008).
This could be the result of the balance of local lipolysis,
lipid oxidation and the flux of fatty acids into the liver
(Foretz et al. 2005). It has been shown that an increase
in free fatty acids leads to fatty acid esterification, an
energy-demanding process, and this can increase the
cellular AMP:ATP ratio and therefore AMPK activity
(Gauthier et al. 2008).
Inflammatory mediators and AMPK

Interleukin-6 (IL-6) treatment was shown to increase
AMPK phosphorylation in cultured rodent myocytes
and adipocytes, as well as in muscle, liver and adipose
tissue in vivo (Keller et al. 2001, Park et al. 2002, Kahn
et al. 2005). Moreover, IL-6-KO mice have decreased
AMPK activity in muscle (Kelly et al. 2004). Conversely,
adiponectin was shown to increase IL-6 production in
human synovial fibroblasts partly via AMPK regulation
(Tang et al. 2007). Exercise increases AMPK activity in
skeletal muscle primarily in response to changes in the
AMP:ATP ratio (Ruderman et al. 2006). Exercise affects
AMPK activity in fat and liver tissue (Takekoshi et al.
2006) possibly due to an increase in circulating levels of
IL-6 (Keller et al. 2001). Furthermore, AMPK activity is
often still increased after exercise at times when the
energy state of the muscle is presumably no longer
altered, and IL-6 is suggested to be involved in AMPK
activation during this ‘late-phase’ stage (Ruderman
et al. 2006).

Ciliary neurotrophic factor (CNTF) is a cytokine,
whichwas found to induce severe anorectic effect (Miller
et al. 1996), possibly via hypothalamic neurogenesis that
Journal of Molecular Endocrinology (2010) 44, 87–97
leads to sustained reduction in caloric intake and
prolonged maintenance of weight loss (Kokoeva et al.
2005). CNTF was shown to activate AMPK through the
CNTFRa-IL-6R-gp130b receptor complex and ulti-
mately increasing fatty acid oxidation and reducing
insulin resistance in skeletal muscle (Steinberg et al.
2006b). CNTF can also suppress inflammatory signalling
cascades associated with lipid accumulation in the liver
and skeletal muscle (Febbraio 2007).

The ischaemic heart releases macrophage inhibitory
factor (MIF), an upstream regulator of inflammation.
MIF stimulates AMPK through CD74 during ischaemia,
and shows impaired ischaemic AMPK signalling in the
heart of mice with germline deletion of the MIF gene
(Miller et al. 2008). MIF promotes glucose uptake and
protects the heart during ischaemia–reperfusion injury
(Miller et al. 2008). Human fibroblasts with a low-activity
MIF promoter polymorphism also have diminished MIF
release and AMPK activation during hypoxia, thus
linking inflammation with metabolism in the heart
(Miller et al. 2008).

Tumour necrosis factor a (TNFa) signalling via TNF-
receptor has been shown to suppress skeletal muscle
AMPK activity both in vivo and in vitro (Steinberg et al.
2006a). This happens via upregulation of protein
phosphatase 2C transcription, which in turn reduces
ACC phosphorylation and fatty acid oxidation as well as
increasing diacylglycerol accumulation in the muscle.
Suppressive effects of TNFa on AMPK activity, seen in
obese mice with pathologically elevated levels of TNFa,
could be reversed in null mice for both TNF receptor-1
and -2 or following treatment with a TNFa-neutralising
antibody (Steinberg et al. 2006a). This indicates that
AMPK is an important target for TNFa signalling.
Metabolic syndrome and AMPK

The metabolic abnormalities observed in metabolic
syndrome are insulin resistance, hypertriglyceridaemia,
abdominal obesity, hypertension, reduced levels of the
beneficial high-density lipoprotein and disturbances in
glucose metabolism (Trevisan et al. 1998). Patients with
metabolic syndrome have higher risks of developing
cardiovascular disease (Isomaa et al. 2001) and have
higher rates of mortality from all causes (Trevisan et al.
1998). Downstream targets of AMPK such as genes
regulating carbohydrate metabolism (e.g. glycogen
synthetase, ChREBP) or lipid metabolism (e.g. HMG-
CoA, FAS, ACC, SREBP1) play an important role in
features of the metabolic syndrome. Therefore, AMPK
emerged as a target for treatment of the metabolic
syndrome. Two major anti-diabetic drugs that exert
effects via the AMPK pathway will be considered in this
review: metformin and rosiglitazone.
www.endocrinology-journals.org
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Metformin

Metformin, a biguanide agent, is widely used as an anti-
diabetic drug. The biguanide class of anti-diabetic drugs
originates from the French lilac (Galega officinalis) plant,
known for several centuries to reduce the symptoms of
diabetes mellitus (Witters 2001). These were first
introduced in 1957 and marketed in France in 1979.

Metformin is shown to stimulate AMPK in the liver
and in the muscle (Zhou et al. 2001, Zang et al. 2004,
Shaw et al. 2005). This consequently stimulates glucose
uptake in themuscle, induces hepatic fatty acidoxidation
and inhibits hepatic glucose production and expression
of lipogenic enzymes.Metformin does not activate AMPK
directly, but indirectly via inhibition of complex I of
the respiratory chain and the consequent increase in
AMP:ATP ratio. LKB1 has also been reported to mediate
the activation of AMPK in the liver by metformin
(Zhou et al. 2001, Zang et al. 2004, Shaw et al. 2005).

In contrast, metformin inhibits AMPK in the
hypothalamus (Chau-Van et al. 2007). Metformin
inhibits low glucose-induced AMPK phosphorylation
and NPY mRNA expression. These may explain the
anorectic effects of metformin.

Metformin is shown to reduce mitochondrial ATP
synthesis in the pancreatic b-cell, resulting in impaired
glucose responsiveness, inhibition of insulin release
and possibly apoptosis (Kefas et al. 2004, Leclerc et al.
2004). These findings of metformin are clearly
undesired and further studies are needed to reassess
the long-term effects of metformin on b-cells.
Rosiglitazone

Rosiglitazone belongs to a class of anti-diabetic drugs
known as thiazolidinediones (TZDs). TZDs are used to
reverse insulin resistance and improve glucose toler-
ance. It is known that TZDs improve insulin sensitivity
by activating nuclear PPAR-g and the consequent
regulation of gene transcription. However, it is also
believed that TZDs can improve insulin sensitivity via
PPAR-g-independent mechanisms, one of which is
AMPK activation (Kahn et al. 2005).

Rosiglitazone was shown to increase AMPK activity in
muscle cell lines (Fryer et al. 2002), and chronic
rosiglitazone treatment was reported to restore skeletal
muscle AMPKa2 activity in obese, insulin-resistant
Zucker rats (Lessard et al. 2006). Rosiglitazone activates
AMPK indirectly by inhibiting complex I of the
respiratory chain, which consequently leads to an
increase in cellular AMP:ATP ratio (El-Mir et al. 2000,
Owen et al. 2000, Brunmair et al. 2004).

TZDs also decrease the levels of resistin and stimulate
release of adiponectin via action on PPAR-g in adipo-
cytes (Samaha et al. 2006). These effects might also
contribute to the stimulatory effect of TZDs on AMPK.
www.endocrinology-journals.org
Conclusion

AMPK is one of the key regulators in energy
homeostasis and is known to mediate the effects of
several metabolic hormones. AMPK is now recognised
as a potential target for the treatment of obesity and the
metabolic syndrome.
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