T. Hosoh Nagoya Math. J. Vol. 66 (1977), 77-88

AMPLE VECTOR BUNDLES ON A RATIONAL SURFACE (HIGHER RANK)

TOSHIO HOSOH

Introduction

In the previous paper [1], we showed that the set of simple vector bundles of rank 2 on a rational surface with fixed Chern classes is bounded and we gave a sufficient condition for an H-stable vector bundle of rank 2 on a rational surface to be ample. In this paper, we shall extend the results of [1] to the case of higher rank.

Let k be an algebraically closed field of arbitrary characteristic. Throughout this paper, the ground field k will be fixed.

In $\S1$, we shall prove the following;

THEOREM 1. Let X be the projective plane P^2 or the rational ruled surface Σ_n . For a divisor C_1 on X and integers $C_2, r (\geq 2)$, put $\mathcal{F} = \{E; \text{ simple vector bundle of rank r on X with } C_i(E) = C_i \text{ for } i = 1, 2\},$ then \mathcal{F} is bounded.

For a vector bundle E of rank r on a non-singular projective surface, define an integer $\Delta(E)$ to be $(r-1)C_1(E)^2 - 2rC_2(E)$. It is easy to see that $-\Delta(E)$ is the second Chern class of End (E). Hence if L is a line bundle, then $\Delta(E \otimes L) = \Delta(E)$. Let H be a hyperplane of P^2 . For a vector bundle E of rank r on P^2 , there exists uniquely a line bundle L on P^2 such that $C_1(E \otimes L) = aH$ with $-r + 1 \leq a \leq 0$. Put a(E) = a. In §2, we shall prove the following;

THEOREM 2. Let E be an H-stable vector bundle of rank r on \mathbf{P}^2 . If $(C_1(E), H) \geq -\frac{1}{2}\mathcal{A}(E) + (a + 2r)(2 - a - r)/2$ then E is ample where a = a(E).

Let $\Sigma_n = P(O_{P^1}(-n) \oplus O_{P^1})$ be a rational ruled surface and let M be a minimal section of Σ_n and N be a fibre of Σ_n . The divisor class group

Received March 12, 1976.

of Σ_n is generated by the classes of M and N. For a couple of integers (α, β) , we denote $\alpha(M + nN) + \beta N$ by $H_{\alpha,\beta}$. $H_{\alpha,\beta}$ is ample if and only if $\alpha > 0, \beta > 0$. For a vector bundle E of rank r on Σ_n , there exists uniquely a line bundle L on Σ_n such that $C_1(E \otimes L) = aM + bN$ with $-r + 1 \leq a$, $b \leq 0$. Put a(E) = a and b(E) = b. In §3, we shall prove the following;

THEOREM 3. Let E be an $H_{\alpha,\beta}$ -stable vector bundle of rank r on Σ_n $(\alpha > 0, \beta > 0)$. If $(C_1(E), N) \ge -\frac{1}{2}\Delta(E) + c(a, b, r, n) + a$ and $(C_1(E), M) \ge -\frac{1}{2}\Delta(E) + c(a, b, r, n) - an + b$ then E is ample where a = a(E), b = b(E)and $c(a, b, r, n) = \frac{1}{2}an(a + r) - r(a + b + ab + r - 2)$.

In §4, we shall show that Theorem 2 is best possible in some cases. If E is an H-stable vector bundle of rank r on P^2 with $C_1(E) = \pm H$, then $C_2(E) \ge r - 1$ (Lemma 4.1). Conversely for any couple of integers (r, n) such that $n \ge r - 1 \ge 1$, there is an H-stable vector bundle E of rank r on P^2 with $C_1(E) = H$ and $C_2(E) = n$ such that E(t) is ample if and only if E(t) satisfies the condition of Theorem 2 and $E^*(t)$ is ample if and only if $E^*(t)$ satisfies the condition of Theorem 2 (Theorem 4).

§1. Simple vector bundles

Let S be a non-singular projective variety defined over k and E be a vector bundle (i.e. a locally free sheaf of finite rank) on S.

DEFINITION. E is called simple if any global endomorphism of E is constant i.e. $H^{0}(S, \text{End}(E)) = k$.

DEFINITION. A set \mathscr{F} of vector bundles on S is bounded if there are an algebraic k-scheme T and a vector bundle V on $T \times S$ such that each E in \mathscr{F} is isomorphic to $V_t = V|_{t \times S}$ for some closed point t in T.

Let X be the projective plane P^2 or a rational ruled surface $\Sigma_n = P(O_{P^1}(-n) \oplus O_{P^1})$ $(n \ge 0)$. Let M be a minimal section of Σ_n and N be a fibre of Σ_n . By the same symbol H, we denote a hyperplane of P^2 when $X = P^2$, $H_{1,1} = (M + nN) + N$ when $X = \Sigma_n$. H is a very ample divisor on X and a general member of the complete linear system |H|is isomorphic to the projective line P^1 . If K_X is the canonical divisor on X, then $K_X \sim -3H$ when $X = P^2$, $K_X \sim -2M - (n+2)N$ when $X = \Sigma_n$. For a divisor D on X and a coherent sheaf E on X, we denote $E \otimes O_X(D)$ by E(D), $E \otimes O_X(mH)$ by E(m) and the dual sheaf $\operatorname{Hom}_{O_X}(E, O_X)$ of E

by E^* . The aim of this section is;

THEOREM 1. Let X be P^2 or Σ_n . For a divisor C_1 on X and integers $C_2, r (\geq 2)$, put $\mathscr{F} = \{E; simple vector bundle of rank r on X with <math>C_i(E) = C_i \text{ for } i = 1, 2\}$ then \mathscr{F} is bounded.

Proof. For an integer d, let \mathscr{F}_d be the subset of \mathscr{F} which consists of E in \mathscr{F} such that $H^0(X, E(d)) = (0)$ and $H^0(X, E(d + 1)) \neq (0)$, then $\mathscr{F} = \bigcup \mathscr{F}_d$. We separate the proof into two steps;

- (a) For almost all d, \mathcal{F}_d is empty,
- (b) \mathscr{F}_d is bounded for all d.

If (a) and (b) are proved then \mathscr{F} is considered as a finite union of bounded families and so \mathscr{F} is bounded. Before proving (a) and (b), we introduce one more notation. For E in \mathscr{F} , let P be the numerical polynomial defined by $P(m) = \chi(X, E(m)) = \Sigma(-1)^i h^i(X, E(m))$ where $h^i(X, E(m)) =$ $\dim_k H^i(X, E(m))$. Since H is ample and X is a surface, P is of degree two and $P(m) \to \infty$ if $m \to \pm \infty$. P is independent from a choice of Ein \mathscr{F} .

(a) We shall prove that if \mathscr{F}_d is not empty then $P(d) \leq 0$. Hence such d's are finite. Assume that \mathscr{F}_d is not empty. Let E be an element of \mathscr{F}_d , then $H^0(X, E(d)) = (0)$ and $H^0(X, E(d+1)) \neq (0)$. We want to prove that $H^2(X, E(d)) = (0)$. If this is proved, then $P(d) = -h^1(X, E(d))$ ≤ 0 . The dual of $H^2(X, E(d))$ is isomorphic to $H^0(X, E(d)^* \otimes O_X(K_X))$ (Serre duality) and $E(d)^* \otimes O_X(K_X) \cong E(d+1)^* \otimes O_X(K_X+H)$. Since $-K_X - H$ is linearly equivalent to an effective divisor, $H^0(X, E(d)^* \otimes O_X(K_X)) \subset$ $H^0(X, E(d+1)^*)$. Therefore it suffices to prove that $H^0(X, E(d+1)^*) =$ (0). This follows from;

LEMMA 1.1. ((4) Proposition 1.) Let E' be a vector bundle on a non-singular variety S defined over k. If $H^{0}(S, E') \neq (0)$, $H^{0}(S, E'^{*}) \neq (0)$ and E' is not a line bundle than E' is not simple.

Since E is simple and $H^{0}(X, E(d+1)) \neq (0), H^{0}(X, (X, E(d+1)^{*}) = (0))$ by Lemma 1.1.

(b) By a theorem of Kleiman ((2) Theorem 1.13), it is sufficient to show that there are integers m_1, m_2 such that for any E in $\mathscr{F}_d(d)$, i) $h^0(X, E) \leq m_1$ ii) $h^0(\ell, E|_\ell) \leq m_2$ for a general member ℓ in |H| where $\mathscr{F}_d(d) = \{E(d); E \text{ in } \mathscr{F}_d\}$. By the definition of \mathscr{F}_d , $m_1 = 0$ satisfies i). We now show ii). For a general member ℓ in |H| and E in $\mathscr{F}_d(d)$,

there is a long exact sequence of cohomologies;

$$\cdots \to H^0(X, E) \to H^0(\ell, E|_{\ell}) \to H^1(X, E(-1)) \to \cdots$$

Since $H^{0}(X, E) = (0)$,

$$h^{0}(\ell, E|_{\ell}) \leq h^{1}(X, E(-1))$$
 (1)

If $X = P^2$ then $h^2(P^2, E(-1)) = h^0(P^2, E(-1)^* \otimes O_{P^2}(K_{P^2})) = h^0(P^2, E(1)^* \otimes O_{P^2}(-1))$. Since $h^0(P^2, E(1)) \neq 0$ and E is simple, $h^0(P^2, E(1)^*) = 0$ by Lemma 1.1. Hence $h_2(P^2, E(-1)) = 0$ and also $h^0(P^2, E(-1)) = 0$. Therefore $h^1(P^2, E(-1)) = -P(d-1)$. This and (1) show that $m_2 = -P(d-1)$ satisfies ii) when $X = P^2$. Now assume $X = \Sigma_n$. Put $F = E(1)^*$ and consider the following long exact sequence of cohomologies;

$$\cdots \to H^{0}(\Sigma_{n}, F) \to H^{0}(N, F|_{N}) \to H^{1}(\Sigma_{n}, F(-N)) \to \cdots$$

Since $H^0(\Sigma_n, F) = (0)$, we have $h^0(N, F|_N) \leq h^1(\Sigma_n, F(-N))$. On the other hand, $h^2(\Sigma_n, F(-N)) = h^0(\Sigma_n, F(-N)^* \otimes O_{\Sigma_n}(K_{\Sigma_n})) = h^0(\Sigma_n, E \otimes O_{\Sigma_n}(-M))$ = 0 and $h^0(\Sigma_n, F(-N)) = 0$, therefore $h^0(N, F|_N) \leq -\chi(\Sigma_n, F(-N))$. Note that $\chi(\Sigma_n, F(-N))$ is dependent only on \mathscr{F} and d. Since N is a fibre of Σ_n , $F(mN)|_N \simeq F|_N$ for any integer m. Now consider the following long exact sequences of cohomologies;

$$0 \to H^{0}(\Sigma_{n}, F((m-1)N)) \to H^{0}(\Sigma_{n}, F(mN)) \to H^{0}(N, F(mN)|_{N}) \to \cdots$$

for $m = 0, \dots, n$, then we have;

$$\begin{split} h^{0}(\Sigma_{n},F(nN)) &\leq h^{0}(\Sigma_{n},F((n-1)N)) + h^{0}(N,F(nN)|_{N}) \\ &= h^{0}(\Sigma_{n},F((n-1)N)) + h^{0}(N,F|_{N}) \\ & \cdots \\ &\leq nh^{0}(N,F|_{N}) \leq -n\chi(\Sigma_{n},F(-N)) \;. \end{split}$$

Since $h^{0}(\Sigma_{n}, E(-1)) = 0$ and $h^{2}(\Sigma_{n}, E(-1)) = h^{0}(\Sigma_{n}, E(-1)^{*} \otimes O_{\Sigma_{n}}(K_{\Sigma_{n}})) = h^{0}(\Sigma_{n}, E(1)^{*} \otimes O_{\Sigma_{n}}(nN)) = h^{0}(\Sigma_{n}, F(nN)), h^{1}(\Sigma_{n}, E(-1)) = -P(d-1) + h^{0}(\Sigma_{n}, F(nN)).$ Therefore, (1) and (2) show that $m_{2} = -P(d-1) - n\chi(\Sigma_{n}, F(-N))$ satisfies ii) when $X = \Sigma_{n}$.

§ 2. *H*-stable vector bundles on P^2

Let E be a vector bundle on a non-singular projective surface S defined over k and H be an ample divisor on S.

DEFINITION. E is H-stable if for every non-zero coherent subsheaf

F of E of rank $\langle r(E), (C_1(F), H)/r(F) \rangle \langle (C_1(E), H)/r(E) \rangle$ where r(F) is the rank of F.

We refer to [5] for basic properties of *H*-stable vector bundles. For a vector bundle *E* on *S*, put $\Delta(E) = (r-1)C_1(E)^2 - 2rC_2(E)$. This integer is equal to $-C_2(\text{End } E)$. If *E* is a vector bundle of rank *r* on P^2 then there exists uniquely a line bundle *L* on P^2 such that $C_1(E \otimes L) =$ aH with $-r+1 \leq a \leq 0$, where *H* is a hyperplane of P^2 . Put a(E) = a. The aim of this section is;

THEOREM 2. Let E be an H-stable vector bundle of rank r on P^2 . If $(C_1(E), H) \ge -\frac{1}{2}\Delta(E) + (a + 2r)(2 - a - r)/2$ then E is ample where a = a(E).

In order to prove Theorem 2, we need the following lemma.

LEMMA 2.1. Let E be an H-stable vector bundle of rank r on \mathbf{P}^2 such that $C_1(E) = aH$ with a = a(E) then;

(1) $h^{0}(\mathbf{P}^{2}, E) = 0,$

(2) $h^2(\mathbf{P}^2, E(m)) = 0$ for any $m \ge 0$,

(3) $h^{1}(\mathbf{P}^{2}, E(m)) \leq h^{1}(\mathbf{P}^{2}, E(m-1))$ for any $m \geq 1$,

(4) If $h^{1}(\mathbf{P}^{2}, E(m)) = h^{1}(\mathbf{P}^{2}, E(m-1))$ for some $m \ge 1$,

then E(m) is generated by its global sections.

Proof. (1) If $h^0(\mathbf{P}^2, E) \neq 0$ then E contains $O_{\mathbf{P}^2}$ as a subsheaf but $(C_1(E), H) = a \leq 0$. Since E is H-stable, this cannot occur. (2) Since E^* is also H-stable and $(C_1(E(m)^* \otimes O_{\mathbf{P}^2}(-3)), H) = -a - r(m+3) \leq 0$ for any $m \geq 0$, $h^2(\mathbf{P}^2, E(m)) = 0$ for any $m \geq 0$ by the Serre duality. (3) Let F_m be the smallest subsheaf of E(m) such that $H^0(\mathbf{P}^2, F_m) = H^0(\mathbf{P}^2, E(m))$ and $E(m)/F_m$ is torsion free. Note that $H^0(\mathbf{P}^2, F_m(-1)) = H^0(\mathbf{P}^2, E(m-1))$. Let ℓ be a general member of |H| such that $F_m|_\ell$ is locally free on ℓ and $0 \to F_m(-1) \to F_m \to F_m|_\ell \to 0$ is exact. Since F_m is generically generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong \mathbf{P}^1, F_m|_\ell$ is generated by its global sections and $\ell \cong$

$$\cdots \to H^1(\mathbf{P}^2, F_m(-1)) \to H^1(\mathbf{P}^2, F_m) \to H^1(\ell, F_m|_{\ell})$$
$$\to H^2(\mathbf{P}^2, F_m(-1)) \to H^2(\mathbf{P}^2, F_m) \to 0$$

we have $h^{1}(\mathbf{P}^{2}, F_{m}) \leq h^{1}(\mathbf{P}^{2}, F_{m}(-1))$ and $h^{2}(\mathbf{P}^{2}, F_{m}) = h^{2}(\mathbf{P}^{2}, F_{m}(-1))$. Hence we have;

$$\begin{split} h^{1}(\boldsymbol{P}^{2}, E(m)) &- h^{1}(\boldsymbol{P}^{2}, E(m-1)) \\ &= h^{0}(\boldsymbol{P}^{2}, E(m)) - h^{0}(\boldsymbol{P}^{2}, E(m-1)) - (\chi(\boldsymbol{P}^{2}, E(m)) - \chi(\boldsymbol{P}^{2}, E(m-1))) \\ &= h^{0}(\boldsymbol{P}^{2}, F_{m}) - h^{0}(\boldsymbol{P}^{2}, F_{m}(-1)) - (r + (C_{1}(E(m)), H)) \\ &= h^{1}(\boldsymbol{P}^{2}, F_{m}) - h^{1}(\boldsymbol{P}^{2}, F_{m}(-1)) + (\chi(\boldsymbol{P}^{2}, F_{m}) \\ &- \chi(\boldsymbol{P}^{2}, F_{m}(-1))) - (r + (C_{1}(E(m)), H)) \\ &\leq (r' + (C_{1}(F_{m}), H)) - (r + (C_{1}(E(m)), H)) \end{split}$$

where $r' = \operatorname{rank}$ of F_m . Since E is H-stable and $(C_1(E(m)), H) = a + rm > 0, (C_1(F_m), H) \leq (C_1(E(m)), H)$ therefore $h^1(\mathbf{P}^2, E(m)) \leq h^1(\mathbf{P}^2, E(m-1))$. (4) If $h^1(\mathbf{P}^2, E(m)) = h^1(\mathbf{P}^2, E(m-1))$ then $F_m = E(m)$ by the above inequality. Hence for a general member ℓ in $|H|, E(m)|_{\ell}$ is generated by its global sections and $h^1(\ell, E(m)|_{\ell}) = 0$. Consider the following long exact sequence of cohomologies;

$$\cdots \to H^{\mathfrak{0}}(\mathbf{P}^{\mathfrak{2}}, E(m)) \to H^{\mathfrak{0}}(\ell, E(m)|_{\ell})$$

$$\to H^{\mathfrak{1}}(\mathbf{P}^{\mathfrak{2}}, E(m-1)) \to H^{\mathfrak{1}}(\mathbf{P}^{\mathfrak{2}}, E(m)) \to H^{\mathfrak{1}}(\ell, E(m)|_{\ell}) \to \cdots .$$

Since $h^{1}(\ell, E(m)|_{\ell}) = (0)$ and $h^{1}(\mathbf{P}^{2}, E(m)) = h^{1}(\mathbf{P}^{2}, E(m-1)), H^{0}(\mathbf{P}^{2}, E(m)) \rightarrow H^{0}(\ell, E(m)|_{\ell})$ is surjective. Hence for any closed point x in ℓ , $H^{0}(\mathbf{P}^{2}, E(m)) \rightarrow E(m) \otimes k(x)$ is surjective. On the other hand for any closed point y in $X - \ell$, take a member ℓ' in |H| such that ℓ' contains y and take x in $\ell \cap \ell'$. Now consider the following commutative diagram;

Since $H^0(\mathbf{P}^2, E(m)) \to E(m) \otimes k(x)$ is surjective, $H^0(\ell', E(m)|_{\ell'}) \to E(m) \otimes k(x)$ is surjective therefore $E(m)|_{\ell'}$ is generated by its global sections and $h^1(\ell', E(m)|_{\ell'}) = 0$. As the above argument for $E(m)|_{\ell}$, we have that $H^0(\mathbf{P}^2, E(m)) \to E(m) \otimes k(y)$ is surjective. Hence E(m) is generated by its global sections by Nakayama's lemma.

COROLLARY 2.2. Let E be as in Lemma 2.1 then $E(-\chi(P^2, E) + 2)$ is ample.

Proof. $h^{1}(\mathbf{P}^{2}, E) = -\chi(\mathbf{P}^{2}, E)$ by Lemma 2.1 (1) and (2). Put $c = -\chi(\mathbf{P}^{2}, E)$, then by Lemma 2.1 (3) we have;

RATIONAL SURFACE

$$c = h^{1}(\mathbf{P}^{2}, E) \ge h^{1}(\mathbf{P}^{2}, E(1)) \ge \cdots \ge h^{1}(\mathbf{P}^{2}, E(c)) \ge h^{1}(\mathbf{P}^{2}, E(c+1)) \ge 0$$
.

Hence there must be an integer $m (1 \le m \le c+1)$ such that $h^1(\mathbf{P}^2, E(m)) = h^1(\mathbf{P}^2, E(m-1))$. Hence E(m) is generated by its global sections by Lemma 2.1 (4) therefore $E(-\chi(\mathbf{P}^2, E) + 2)$ is ample.

Proof of Theorem 2. Let E be as in Theorem 2, then there is a line bundle L on P^2 such that for $E' = E \otimes L$, $C_1(E') = aH$. It is easily calculated that $(C_1(E'(-\chi(P^2, E') + 2)), H) = -\frac{1}{2}\Delta(E) + (a + 2r)(2 - a - r)/2$. For $E'' = E'(-\chi(P^2, E') + 2)$, there is a line bundle L' on P^2 such that $E = E'' \otimes L'$. By the condition of Theorem 2, we have $(C_1(E'' \otimes L'), H)$ $\geq (C_1(E''), H)$. Hence $(C_1(L'), H) \geq 0$. This is equivalent to that L' is generated by its global sections. Since E'' is ample by Corollary 2.2, $E = E'' \otimes L'$ is ample.

§3. $H_{\alpha,\beta}$ -stable vector bundles on Σ_n

Let $\Sigma_n = P(O_{P^1}(-n) \oplus O_{P^1})$ $(n \ge 1)$ be a rational ruled surface and let M be a minimal section of Σ_n and N be a fibre of Σ_n . The divisor class group of Σ_n is generated by the classes of M and N. For a couple of integers (α, β) , we denote $\alpha(M + nN) + \beta N$ by $H_{\alpha,\beta}$. The intersection numbers $(H_{\alpha,\beta}, N)$ and $(H_{\alpha,\beta}, M)$ are α and β respectively. $H_{\alpha,\beta}$ is ample if and only if $\alpha > 0, \beta > 0$ and the complete linear system $|H_{\alpha,\beta}|$ is base point free if and only if $\alpha \ge 0, \beta \ge 0$ ((1) Lemma (3.1)). For a vector bundle E of rank r on Σ_n , there exists uniquely a line bundle L on Σ_n such that $C_1(E \otimes L) = aM + bN$ with $-r + 1 \le a, b \le 0$. Put $\alpha(E) = a$ and b(E) = b. The aim of this section is;

THEOREM 3. Let E be an $H_{\alpha,\beta}$ -stable vector bundle of rank r on Σ_n $(\alpha > 0, \beta > 0)$. If $(C_1(E), N) \ge -\frac{1}{2}\Delta(E) + c(a, b, r, n) + a$ and $(C_1(E), M) \ge -\frac{1}{2}\Delta(E) + c(a, b, r, n) - an + b$ then E is ample where a = a(E), b = b(E)and $c(a, b, r, n) = \frac{1}{2}an(a + r) - r(a + b + ab + r - 2)$.

In order to prove Theorem 3, we need some lemmas.

LEMMA 3.1. Let E be an $H_{\alpha,\beta}$ -stable vector bundle of rank r on Σ_n with $C_1(E) = aM + bN$ such that a = a(E), b = b(E), then;

- (1) $h^{0}(\Sigma_{n}, E) = 0$
- (2) $h^2(\Sigma_n, E(D)) = 0$ for any effective divisor D on Σ_n .

Proof. The proof is similar to that of Lemma 2.1 (1), (2).

LEMMA 3.2. Let E be an $H_{\alpha,\beta}$ -stable vector bundle of rank r on Σ_n with $C_1(E) = aM + bN$ such that $a \ge a(E), b \ge b(E)$ and let F be the smallest subsheaf of $E(H_{1,1})$ such that $H^0(\Sigma_n, F) = H^0(\Sigma_n, E(H_{1,1}))$ and $E(H_{1,1})/F$ is torsion free, then;

(1) if r' = rank of F < r then $h^{1}(\Sigma_{n}, E(H_{0,1})) < h^{1}(\Sigma_{n}, E)$ or $h^{1}(\Sigma_{n}, E(H_{1,0})) < h^{1}(\Sigma_{n}, E)$,

(2) if r' = r (i.e. $E(H_{1,1})$ is generically generated by its global sections) then $h^1(\Sigma_n, E(H_{1,1})) \leq h^1(\Sigma_n, E)$ and if $h^1(\Sigma_n, E(H_{1,1})) = h^1(\Sigma_n, E)$ then $E(H_{1,1})$ is generated by its global sections.

Proof. (1) Put $C_1(E(H_{1,1})) = uM + vN$ and $C_1(F) = u'M + v'N$, then by the stability of E we have;

$$rac{eta u'+lpha v'}{r'} < rac{eta u+lpha v}{r}$$
 .

Since $\alpha > 0$, $\beta > 0$, u > 0, v > 0 and r' < r, we have u' < u or v' < v. We want to prove that (i) if u' < u then $h^1(\Sigma_n, E(H_{0,1})) < h^1(\Sigma_n, E)$ (ii) if v' < v then $h^1(\Sigma_n, E(H_{1,0})) < h^1(\Sigma_n, E)$.

(i) Assume u' < u. Let ℓ be a general member of $|H_{0,1}|$ such that $F|_{\ell}$ is locally free and $0 \to F(-H_{1,1}) \to F(-H_{1,0}) \to F(-H_{1,0})|_{\ell} \to 0$ is exact. Since ℓ is a fibre of Σ_n , ℓ is isomorphic to the projective line and since F is generically generated by its global sections, $F|_{\ell}$ is generated by its global sections for a suitable choice of ℓ . The intersection number $(-H_{1,0}, \ell)$ is -1 so we have $h^1(\ell, F(-H_{1,0})|_{\ell}) = 0$ for a suitable choice of ℓ . Considering the following long exact sequence of cohomologies;

$$\cdots \to H^1(\Sigma_n, F(-H_{1,1})) \to H^1(\Sigma_n, F(-H_{1,0})) \to H^1(\ell, F(-H_{1,0})|_{\ell})$$
$$\to H^2(\Sigma_n, F(-H_{1,1})) \to H^2(\Sigma_n, F(-H_{1,0})) \to 0$$

we have $h^{1}(\Sigma_{n}, F(-H_{1,0})) \leq h^{1}(\Sigma_{n}, F(-H_{1,1}))$ and $h^{2}(\Sigma_{n}, F(-H_{1,0})) = h^{2}(\Sigma_{n}, F(-H_{1,1}))$. Note that $h^{0}(\Sigma_{n}, E(H_{0,1})) = h^{0}(\Sigma_{n}, F(-H_{1,0}))$ and $h^{0}(\Sigma_{n}, E) = h^{0}(\Sigma_{n}, F(-H_{1,1}))$, hence we have;

$$\begin{split} h^{1}(\Sigma_{n}, E(H_{0,1})) &- h^{1}(\Sigma_{n}, E) \\ &= h^{0}(\Sigma_{n}, E(H_{0,1})) - h^{0}(\Sigma_{n}, E) - (\chi(\Sigma_{n}, E(H_{0,1})) - \chi(\Sigma_{n}, E)) \\ &= h^{0}(\Sigma_{n}, F(-H_{1,0})) - h^{0}(\Sigma_{n}, F(-H_{1,1})) - (r + (C_{1}(E(H_{0,1})), H_{0,1})) \\ &= h^{1}(\Sigma_{n}, F(-H_{1,0})) - h^{1}(\Sigma_{n}, F(-H_{1,1})) + (\chi(\Sigma_{n}, F(-H_{1,0})) \\ &- \chi(\Sigma_{n}, F(-H_{1,1})) - u \\ &\leq u' - u < 0 . \end{split}$$

RATIONAL SURFACE

(ii) Assume v' < v. A general member ℓ of $|H_{1,0}|$ is a section of Σ_n so ℓ is isomorphic to the projective line and $(-H_{0,1}, \ell) = -1$. Hence $h^1(\Sigma_n, E(H_{1,0})) < h^1(\Sigma_n, E)$ is similarly obtained as above.

(2) The proof is similar to that of Lemma 2.1 (3), (4).

COROLLARY 3.3. Let E be as in Lemma 3.1, then $E((-\chi(\Sigma_n, E) + 2)H_{1,1})$ is ample.

Proof. $h^{1}(\Sigma_{n}, E) = -\chi(\Sigma_{n}, E)$ by Lemma 3.1. Put $c = -\chi(\Sigma_{n}, E)$. By Lemma 3.2 (1), there are integers $p \ge 0, q \ge 0$ such that for $E' = E(H_{p,q}), h^{1}(\Sigma_{n}, E') \le c - (p+q)$ and $E'(H_{1,1})$ is generically generated by its global sections. Put $c' = h^{1}(\Sigma_{n}, E')$ then by Lemma 3.2 (2) we have;

$$c' = h^{1}(\Sigma_{n}, E') \ge h^{1}(\Sigma_{n}, E'(H_{1,1})) \ge \cdots$$
$$\ge h^{1}(\Sigma_{n}, E'(c'H_{1,1})) \ge h^{1}(\Sigma_{n}, E'((c'+1)H_{1,1})) \ge 0.$$

Hence there must be an integer m $(1 \le m \le c'+1)$ such that $h^{1}(\Sigma_{n}, E'((m-1)H_{1,1})) = h^{1}(\Sigma_{n}, E'(mH_{1,1}))$. Hence by Lemma 3.2 (2), $E'(mH_{1,1})$ is generated by its global sections, therefore $E'((c'+2)H_{1,1})$ is ample. On the other hand $E((c+2)H_{1,1}) = E'((c'+2)H_{1,1}) \otimes O_{\Sigma_{n}}(H_{q,p} + (c-(p+q) - c')H_{1,1})$ and $c - (p+q) - c' \ge 0$, so $E((c+2)H_{1,1})$ is ample.

Proof of Theorem 3. Let E be as in Theorem 3, then there is a line bundle L on Σ_n such that for $E' = E \otimes L$, $C_1(E') = aM + bN$. It is easily calculated that for $E'' = E'((-\chi(\Sigma_n, E') + 2)H_{1,1}), (c_1(E''), N) =$ $-\frac{1}{2}\Delta(E) + c(a, b, r, n) + a$ and $(C_1(E''), M) = -\frac{1}{2}\Delta(E) + c(a, b, r, n) - an + b$. There are integers p, q such that $E = E''(H_{p,q})$. By the condition of Theorem 3, we have $(C_1(E''(H_{p,q})), N) \ge (C_1(E''), N)$ and $(C_1(E''(H_{p,q})), M)$ $\ge (C_1(E''), M)$. Hence $(H_{p,q}, N) = p \ge 0$ and $(H_{p,q}, M) = q \ge 0$. This is equivalent to that $O_{\Sigma_n}(H_{p,q})$ is generated by its global sections. Since E'' is ample by Corollary 3.5, $E = E''(H_{p,q})$ is ample.

§ 4. Examples of *H*-stable vector bundles on P^2

In this section we shall show that Theorem 2 is best possible when a = -r + 1 or -1. Let *H* be a hyperplane of P^2 . We begin with a simple lemma.

LEMMA 4.1. Let E be an H-stable vector bundle of rank r on P^2 . If $C_1(E) = H$ or -H then $C_2(E) \ge r - 1$.

Proof. Since $C_1(E^*) = -C_1(E)$ and $C_2(E^*) = C_2(E)$, we may assume

 $C_1(E) = -H$. By Lemma 2.1 (1), (2), $h^0(P^2, E) = h^2(P^2, E) = 0$. Hence $-h^1(P^2, E) = \chi(P^2, E) = r + (C_1(E), 3H)/2 + (C_1(E)^2 - 2C_2(E))/2 = r - 1 - C_2(E)$ by the Riemann-Roch theorem. Therefore $C_2(E) \ge r - 1$.

The following lemma is due to Maruyama ((3) Theorem 4.6).

LEMMA 4.2. Let ℓ be a line on P^2 and $n \ge 1$ be an integer, then there is an H-stable vector bundle of rank 2 on P^2 such that $C_1(E) = H$, $C_2(E) = n$ and $E|_{\ell} \cong O_{\ell}(-n+1) \oplus O_{\ell}(n)$ where $O_{\ell}(n)$ is the line bundle on ℓ with deg $(O_{\ell}(n)) = n$.

LEMMA 4.3. Let E be an H-stable vector bundle of rank r on \mathbf{P}^2 with $C_1(E) = H$. If there is a short exact sequence of vector bundles;

$$0 \to O_{p^2} \to E' \to E \to 0 \tag{(*)}$$

and this is not split then E' is H-stable.

Proof. Let F be a non-trivial subsheaf of E' such that the rank of F < r + 1 and E'/F is torsion free. Since $C_1(E') = H$, it is sufficient to show that $(C_1(F), H) \leq 0$. Put $L = F \cap O_{P^2}$ and F' be the image of F in E, then there is a short exact sequence $0 \to L \to F \to F' \to 0$. Since O_{P^2} and E are H-stable, $(C_1(L), H) \leq 0$ and $(C_1(F'), H) \leq 1$ hence $(C_1(F), H)$ ≤ 1 . Therefore it is sufficient to show that $(C_1(F), H) \neq 1$. If it were happened then $(C_1(L), H) = 0$ and $(C_1(F'), H) = 1$. This is possible if and only if L = (0) and dim supp $(E/F') \leq 0$, by the H-stability of E. Since (*) is not split, $E/F' \neq (0)$. There is a short exact sequence $0 \to O_{P^2} \to$ $E'/F \to E/F' \to 0$. But $H^0(P^2, (E/F')(m)) \neq (0)$ and $H^1(P^2, O_{P^2}(m)) = (0)$ for all m and since E'/F is torsion free, $H^0(P^2(E'/F(m)) = (0)$ for $m \ll 0$. This is a contradiction.

The aim of this section is the following theorem which shows that the converse of Lemma 4.1 and that Theorem 2 is best possible when a = -r + 1 or -1.

THEOREM 4. Put $A = \{(r, n); n \ge r - 1 \ge 1\}$. Let ℓ be a line on P^2 . Then there is a set $S = \{E_{(r,n)}\}_{(r,n)\in A}$ of vector bundles on P^2 which satisfies the following conditions;

(1) S consists of H-stable vector bundles,

(2) the rank of $E_{(r,n)}$ is $r, C_1(E_{(r,n)}) = H$ and $C_2(E_{(r,n)}) = n$ for all $(r, n) \in A$,

(3) there is a short exact sequence $0 \to O_{P^2} \to E_{(r,n)} \to E_{(r-1,n)} \to 0$ and

RATIONAL SURFACE

this is not split,

(4) $h^{1}(\mathbf{P}^{2}, E^{*}_{(r,n)}) = n - r + 1,$

(5) $E_{(r,n)}|_{\ell} \cong O_{\ell}(-n+1) \oplus O_{\ell}(n-r+2) \oplus \sum_{\ell=1}^{r-2} O_{\ell}(1)$ where $\sum_{\ell=1}^{r-2} O_{\ell}(1) = O_{\ell}(1) \oplus \cdots \oplus O_{\ell}(1)$ $(r-2 \ times),$

(6) $H^{1}(\mathbf{P}^{2}, E^{*}_{(r,n)}) \cong H^{1}(\ell, E^{*}_{(r,n)}|_{\ell})$ canonically,

(7) $E_{(r,n)}(t)$ is ample if and only if $E_{(r,n)}(t)$ satisfies the condition of Theorem 2,

(8) $E^*_{(r,n)}(t)$ is ample if and only if $E^*_{(r,n)}(t)$ satisfies the condition of Theorem 2.

Proof. The above conditions are not independent each other. In fact;

(i) (1), (2) and (3) for $E_{(r-1,n)} \Rightarrow (1)$ for $E_{(r,n)}$ by Lemma 4.3,

(ii) (2) and (3) for $E_{(r-1,n)} \Rightarrow (2)$ for $E_{(r,n)}$,

(iii) (1) and (2) \Rightarrow (4) by the Riemann-Roch theorem and Lemma 2.1 (1), (2),

(iv) (1), (2), (4) and (5) \Rightarrow (6),

(v) (1), (2) and (5) \Rightarrow (7),

(vi) (1), (2) and (5) \Rightarrow (8).

(v) and (vi) are easily checked by considering $E_{(r,n)}(t)|_{\ell}$ and $E_{(r,n)}^{*}(t)|_{\ell}$ respectively. We now show (iv). Consider the following long exact sequence of cohomologies;

$$\cdots \to H^1(\boldsymbol{P}^2, E^*_{(r,n)}) \to H^1(\ell, E^*_{(r,n)}|_{\ell}) \to H^2(\boldsymbol{P}^2, E^*_{(r,n)}(-1)) \to \cdots$$

Since $(C_1(E_{(r,n)}(-2)), H) < 0$ by (2), $H^2(\mathbf{P}^2, E^*_{(r,n)}(-1)) = (0)$ by (1). Moreover $h^1(\mathbf{P}^2, E^*_{(r,n)}) = n - r + 1$ by (4) and $h^1(\ell, E^*_{(r,n)}|_{\ell}) = n - r + 1$ by (5) hence we have $H^1(\mathbf{P}^2, E^*_{(r,n)}) \cong H^1(\ell, E^*_{(r,n)}|_{\ell})$ canonically.

By Lemma 4.2, for any $n \ge 1$, there is a vector bundle $E_{(2,n)}$ such that $E_{(2,n)}$ satisfies (1), (2) and (5). Lastly we constant $E_{(r,n)}$ which satisfies (3) and (5) by (5) and (6) for $E_{(r-1,n)}$. There is a short exact sequence;

$$0 \to O_{\ell} \to O_{\ell}(-n+1) \oplus O_{\ell}(n-r+2) \oplus \sum_{i=1}^{r-1} \oplus O_{\ell}(1) \to E_{(r-1,n)}|_{\ell} \to 0 \quad (*)$$

of vector bundles on ℓ by (5) for $E_{(r-1,n)}$. (*) has an obstruction in $H^1(\ell, E^*_{(r-1,n)}|_{\ell})$ hence there is a short exact sequence $0 \to O_{P^2} \to E_{(r,n)} \to E_{(r-1,n)} \to 0$ such that its restriction to ℓ is isomorphic to (*) by (6) for $E_{(r-1,n)}$. This short exact sequence is not split and $E_{(r,n)}$ satisfies (5) by

(*). All these together we have constructed $S = \{E_{(r,n)}\}_{(r,n) \in A}$ which satisfies (1)-(8).

REFERENCES

- [1] Hosoh, T., Ample vector bundles on a rational surface, Nagoya Math. J., 59 (1975), 135-148.
- [2] Kleiman, S., Les théorèmes de finitude pour foncteur de Picard, SGA 6, exposé 13.
- [3] Maruyama, M., On a family of algebraic vector bundles, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo (1973), 95-146.
- [4] Schwarzenberger, R. E. L., Vector bundles on algebraic surfaces, Proc. London Math. Soc., (3), 11 (1961), 601-622.
- [5] Takemoto, F., Stable vector bundles on algebraic surfaces, Nagoya Math. J., 47 (1972), 29-48.

Nagoya University