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AmpliconMapping and Expression Profiling Identify the

Fas-Associated Death Domain Gene as a New Driver in

the11q13.3 Amplicon in Laryngeal/Pharyngeal Cancer

Johan H. Gibcus,1LorianMenkema,1Mirjam F. Mastik,1MarioA. Hermsen,6Geertruida H. de Bock,2

Marie-Louise F. van Velthuysen,7Robert P. Takes,9 Klaas Kok,5Cesar A. ÁlvarezMarcos,6

Bernard F.A.M. van der Laan,3Michiel W.M. van den Brekel,8 Johannes A. Langendijk,4

PhilipM. Kluin,1Jacqueline E. van der Wal,1and Ed Schuuring1

Abstract Purpose: Amplification of the 11q13 region is a frequent event in human cancer. The highest

incidence (36%) is found inhead andneck squamous cell carcinomas. Recently, we reported that

the amplicon size in 30 laryngeal and pharyngeal carcinomas with 11q13 amplification is deter-

mined by unique genomic structures, resulting in the amplification of a set of genes rather than a

single gene.

Experimental Design: To investigate which gene(s) drive the 11q13 amplicon, we determined

the smallest region of overlap with amplification and the expression levels of all genes within this

amplicon.

Results: Using array-based comparative genomic hybridization analysis, we detected a region

of f1.7 Mb containing 13 amplified genes in more than 25 of the 29 carcinomas. Quantitative

reverse transcription-PCR revealed that overexpression of 8 potential driver genes including,

cyclin D1, cortactin, and Fas-associated death domain (FADD), correlated significantly with

DNA amplification. FADD protein levels correlated well with DNA amplification, implicating

that FADD is also a candidate driver gene in the 11q13 amplicon. Analysis of 167 laryngeal carci-

nomas showed that increased expression of FADD (P = 0.007) and Ser194 phosphorylated

FADD (P = 0.011) were associated with a worse disease-specific survival. FADD was recently

reported to be involved in cell cycle regulation, and cancer cells expressing high levels of

the Ser194 phosphorylated isoform of FADD proved to be more sensitive toTaxol-induced cell

cycle arrest.

Conclusion: Because of the frequent amplification of the 11q13 region and concomitant over-

expression of FADD in head and neck squamous cell carcinomas, we hypothesize that FADD is a

marker to select patients that might benefit fromTaxol-based chemoradiotherapy.

Squamous cell carcinoma of the head and neck (HNSCC) is

the fifth most common cancer with a worldwide incidence of

f780,000 new cases per year. Traditionally, depending on

tumor stage, patients are treated with surgery, radiotherapy

alone, or a combination of both. In early to intermediate stages

of laryngeal carcinoma, radiotherapy is generally preferred

because of better organ preservation and high rates of locore-

gional tumor control. However, in the more advanced

carcinomas, radiotherapy fails in local control in up to 50%

of patients (1). A recent clinical trial showed that concomitant

chemotherapy and radiotherapy leads to improved locore-

gional control and laryngeal preservation in locally advanced

laryngeal cancer as compared with conventional radiotherapy

(2, 3). However, combining chemotherapy with radiotherapy

also has unfavorable effects because it results in a significant

increase in toxicity. Although various clinicopathologic varia-

bles have been validated to classify patients according to their

likelihood of responding to chemoradiation, they are still

generally of low predictive value (1). Therefore, there is a need

for (molecular) markers to predict therapeutic outcome.
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Chromosomal DNA amplification resulting in an increase in
gene copy number is a well-documented mechanism for cells to
increase gene expression and has been used successfully as a

prognostic marker for therapeutic outcome (4, 5). DNA
amplification has been reported in various human malignan-
cies and numerous (candidate) oncogenes have been identified.

Amplification of chromosome 11q13 is frequently found in
human cancer and is most prominent (36%) in HNSCC (6).
Within different cancer subtypes, this amplification is associ-

ated with poor prognosis (reviewed in refs. 6, 7). These studies
report HNSCC to be associated with the presence of lymph
node metastasis and decreased disease-free survival and overall
survival (8–11). In the last 15 years, many efforts were

undertaken to identify the gene that is responsible for the
biological behavior of the carcinomas with 11q13 amplifica-
tion (6, 7). We and others have identified several candidate

genes in the amplified 11q13 region that showed increased
expression on amplification, including CCND1 (cyclin D1;
refs. 12, 13), CTTN (EMS1/cortactin; ref. 13), MYEOV (14),

ORAOV1 (TAOS1; ref. 15), EMSY (16), and SHANK2 (17).
CCND1 and CTTN were the genes identified first and studied
most extensively, and expression of both genes has been

correlated with prognosis (reviewed in refs. 6, 7). The functions
of cyclin D1, which is involved in cell cycle regulation, and
cortactin, a regulator for actin-polymerization and cell migra-
tion and invasion (18–20), make them both good candidates

of being the drivers of 11q13 amplification. However, the
function and role of the other amplified and overexpressed
11q13 genes are presently unknown. Furthermore, most studies

fail in comprehensively studying both the copy number and
expression of all genes present in the amplicon.
The completion of the human genome sequence has enabled

the use of new techniques like array-based comparative
genomic hybridization (aCGH) to study genomic aberrations
in more detail (4, 21, 22). The use of fluorescent probes in PCR
analysis can be used to study gene expression [quantitative

reverse transcription-PCR (RT-PCR)] or microsatellites [quan-
titative microsatellite analysis (QuMA)] quantitatively. These
techniques have previously been used successfully to identify

possible target genes in an amplicon (23, 24).
We generated a high-resolution aCGH specific for the long

arm of chromosome 11 (25). In this article, we used these data

to determine the core region of amplification (CRA). Second,
we used quantitative RT-PCR for genes located in the CRA to
search for candidate genes with a high relative expression. We

found that not a single gene but 8 of the 13 genes in the CRA
were overexpressed in at least 25 of 29 laryngeal/pharyngeal
carcinomas with 11q13 amplification. In addition to cyclin D1,
cortactin, and ORAOV1, this is the first study reporting on Fas-

associated death domain (FADD) as a potential driver in the
11q13 amplicon. The possible role of FADD in the prognosis of
laryngeal HNSCC was further studied immunohistochemically

with antibodies against FADD protein and its phosphorylated
isoform (pFADD) on a large subset of patients.

Materials andMethods

Patient material. For high-resolution aCGH analysis, we used snap-

frozen tissues of squamous cell carcinomas from 42 patients. Selected

carcinomas with a known 11q13 aberration originated from the larynx

(n = 19) or pharynx (n = 11). The remaining 12 patients without an

11q13 aberration were diagnosed with laryngeal carcinomas. Nineteen

patients (obtained from the Instituto Universitario de Oncologı́a del

Principado de Asturias, Oviedo, Spain) diagnosed with a laryngeal

(L13-L23) or pharyngeal (P01-P08) carcinoma were previously

screened for 11q13 abnormalities using conventional CGH (26). Five

patients (L09-L12 and A11; from the Leiden University Medical Center,

Leiden, the Netherlands) were included because of previous 11q13

amplification detected by Southern blotting (27). Eighteen patients

with laryngeal (n = 15) or pharyngeal cancer (n = 3) were obtained

from the University Medical Center Groningen, the Netherlands. These

patients were prescreened with whole-genome aCGH (25) for the

presence (L03-L07 and P09-P11) or absence (A01-A10) of 11q13

aberrations. For quantitative RT-PCR, only laryngeal carcinomas were

included (L01-L08 and A01-A10). The percentage of tumor cells in the

frozen sections used for DNA and RNA isolation was estimated by H&E

staining judged by an experienced pathologist (J.E.vdW). All patient

samples were primary tumors that had received no therapy before

surgery. DNA from these patients was isolated by a standard high-salt

extraction method.

A total of 167 laryngeal squamous cell carcinomas were used for

immunohistochemical analysis, including material from the laryngeal

carcinomas that were also used for high-resolution aCGH analysis

(L01-L23). Patient material and available clinicopathologic data were

obtained from the University Medical Center Groningen (n = 56); the

Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital,

Amsterdam, the Netherlands (n = 61); the Instituto Universitario de

Oncologı́a del Principado de Asturias (n = 22); and the Leiden

University Medical Center (n = 28). Patients were diagnosed at a

median age of 61 years (minimum, 34 years; maximum, 89 years) with

a gender distribution of 135 (88%) males and 19 (12%) females.

T status at diagnoses was subdivided into T1 (n = 16; 10%), T2 (n = 27;

17%), T3 (n = 38; 24%), and T4 (n = 75; 48%) according to the

American Joint Committee on Cancer TNM system. At the time of

diagnosis, 63 (41%) patients were lymph node positive (N1, 23; N2, 35;

N3, 5) and 92 (59%) were lymph node negative (N0). Patients were

treated with primary surgery (n = 54), primary radiotherapy (n = 24), or

a combination of both modalities (n = 64). All patient samples were

taken before treatment.

High-resolution aCGH. A detailed description of the generation

of the high-resolution chromosome 11q13-specific aCGH and the

determination of the size of the amplified region as well as the copy

number of the 11q13 region in the same 30 carcinomas used in this

study were recently described elsewhere (25).

Quantitative RT-PCR. RNA was extracted from snap-frozen tumor

tissue or cell lines using Trizol (Invitrogen) and cDNA was prepared.

Quantitative measurements of mRNA content were done using an ABI

PRISM 7900HT and the SDS software 2.1 (Applied Biosystems).

TaqMan primers and probes are listed in Supplementary Table S1. No

appropriate primer/probe sets could be designed for the hypothetical

genes LOC390218, LOC399921 , and LOC653621 (Supplementary

Methods). No RNA-specific primer/probe sets could be designed for

MRGPRD and MRGPRF . The relative copy number of each unknown

sample (DC t) was obtained by normalization to TATA-box binding

protein (TBP). Patients were divided into two groups on a gene-by-gene

basis. The first group consisted of patients with 11q13.3 amplification

containing the gene of interest and the second group included patients

without the particular 11q13.3 amplification as determined by high-

resolution aCGH. For a detailed description of the quantitative RT-PCR,

see Supplementary Methods.

Immunohistochemistry. Paraffin-embedded, formalin-fixed sections

of laryngeal carcinoma were deparaffinized and antigen retrieval was

done by overnight incubation at 80jC in Tris-HCl pH 9.0 (for FADD)

or heating in a microwave oven for 15 min in EDTA pH 8.0 (for Ser194

phosphorylated FADD and cleaved caspase-3). After blocking endog-

enous peroxidases with 0.3% H2O2, the sections were stained for 1 h

with a mouse immunoglobulin G antibody against FADD (clone A66-2;

1:100; BD PharMingen) or caspase-3 (Asp175; 1:50; Cell Signaling) or
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Fig. 1. Detailed location of the CRA at11q13.3 as
identified with 30 patients. Mapping of the amplified
11q13 regions in laryngeal carcinomas using a
high-resolution chromosome11q13 aCGH as previously
reported (27). A, for each patient, the log 2 ratios
exceeding 0.5 that were detected by aCGH smooth (29)
are depicted as thick bars; detected gains (ratio below
0.5) are depicted as thin bars; normal ratios and deletions
(no gain or amplification) are not included. B, detailed
viewwith the CRA shownby a gray background.The gray
region illustrates part of the11q13.3 region amplified in at
least 25 of 29 cases.The highest overlap was found at
the dark gray region (amplified in 28 of 29 cases). C, the
genes localized in the CRA are visualized as bars
according to their location in megabases (Mb) on
chromosome11 (NCBI build 35.1).
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stained overnight with an antibody against Ser194 phosphorylated

FADD (1:25; Cell Signaling Technologies) diluted in 1% bovine serum

albumin-PBS. Secondary and tertiary antibodies were diluted 1:100 in

1% bovine serum albumin-PBS complemented with 1% human AB

serum or EnVision (DAKO). Antibodies were precipitated with 3,3¶-

diaminobenzidine tetrachloride as a substrate and the slides were

counterstained with routine hematoxylin treatment. Immunohisto-

chemistry for active caspase-3 was done on a specific subset of tumors

with a high or low FADD expression.

Statistics. Statistical analysis was carried out using Statistical

Package for the Social Sciences (SPSS) version 14.0.0. To determine

which factors were associated with the presence of FADD or Ser194

phosphorylated FADD protein, odds ratios were estimated by univariate

and multivariate logistic regression with the presence of FADD or

expression as dependent variable. To explore the effect of FADD or

Ser194 phosphorylated FADD expression on the prognosis, Kaplan-

Meier curves for overall survival (dead or alive) and disease-specific

survival (dead of disease against alive or dead by other causes) were

constructed and log-rank tests were done. To assess whether the effect

of FADD or Ser194 phosphorylated FADD was independent of other

well-known predictors, a forward-step multivariate Cox regression

analysis was done including the variables that contributed statistically

significantly in the univariate Cox regression analysis. A model

including FADD as well as a model including Ser194 phosphorylated

FADD was done. All tests were two sided and P < 0.05 was considered

significant.

Results

The commonly amplified 11q13.3 region is restricted to 1.7 Mb
and contains 13 genes. Using high-resolution aCGH, we
recently showed gain (n = 1) and amplifications (n = 29) in
all carcinomas with previously identified 11q13 amplifications,
whereas normal copies were shown in all cases without
previously identified 11q13 amplifications (25). The amplified
region in all 29 cases was located within the same 5-Mb region
at 11q13.3 (position 67-72 Mb; NCBI Build 35; summarized in
Fig. 1A). EMSY (position 75.8 Mb), recently identified as a
BRCA2-inactivating protein, which is amplified independent of
CCND1 in breast cancer (16), was amplified only in two cases
(L19 and L21). The 11q22 gene cluster containing matrix
metallopeptidases and the inhibitors of apoptosis cIAP2 and
cIAP3 was amplified in 3 of our 29 carcinomas (P10, L19, and
L21). This finding is in agreement with a previous report in
esophagus cell lines (4 of 42 cases; ref. 28).
Within the 5-Mb commonly amplified region, we defined

CRA-containing amplifications in at least 25 of the 29 cases
(gray region in Fig. 1B). This region is flanked by genes that are
coamplified at lower frequency (<18 of 29; Table 1). The CRA
extends from TPCN2 to SHANK2 and is f1.7 Mb in size
(68.5-70.2 Mbp; build 35) containing 13 genes including

Table 1. Genes located at the 11q13.3 amplicon

#Start Stop Gene Gene ID Ref seq Description Amplification Expression

68281657 68339532 CPT1A 1374 NM_001876 Carnitine palmitoyltransferase 1A (liver) 8 of 29 0.002

68415323 68427879 MRPL21 219927 NM_181512 Mitochondrial ribosomal protein L21 8 of 29 0.005

68427948 68464635 IGHMBP2 3508 NM_002180 Immunoglobulin A binding protein 2 8 of 29 0.014

68504066 68505031 MRGPRD 116512 NM_198923 MAS-related GPR, member D 8 of 29 nd

68528443 68537311 MRGPRF 219928 NM_145015 MAS-related GPR, member F 18 of 29 nd

68572941 68612568 TPCN2 219931 NM_139075 Two pore segment channel 2 25 of 29 0.0001

68818198 68821330 MYEOV 26579 NM_138768 Myeloma overexpressed gene (in a subset

of t(11;14) positive multiple myelomas)

26 of 29 ns

68827449 68828818 LOC390218 390218 XM_497307 Similar to IFN-induced transmembrane

protein 3 (1-8U); IFN-inducible

27 of 29 nd

68949639 68953570 LOC399919 399919 XM_378299 Hypothetical LOC399919 27 of 29 nd

69165054 69178423 CCND1 595 NM_053056 Cyclin D1 (PRAD1: parathyroid adenomatosis 1) 27 of 29 0.0043

69177025 69183303 FLJ42258 440049 NM_001004327 Hypothetical protein supported by AK124252,

FLJ42258

27 of 29 0.0019

69189515 69199296 ORAOV1 220064 NM_153451 Oral cancer overexpressed 1, TAOS1 27 of 29 <0.0001

69222187 69228287 FGF19 9965 NM_005117 Fibroblast growth factor 19 27 of 29 0.019

69296978 69299352 FGF4 2249 NM_002007 Fibroblast growth factor 4 (heparin secretory

transforming protein 1, Kaposi sarcoma

oncogene)

27 of 29 ns

69333917 69343129 FGF3 2248 NM_005247 Fibroblast growth factor 3 (murine mammary

tumor virus integration site (v-int-2)

oncogene homologue)

27 of 29 ns

69579986 69589125 LOC399920 399920 XM_378300 Hypothetical LOC399920 27 of 29 nd

69602294 69713282 TMEM16A 55107 NM_018043 Transmembrane protein 16A, TAOS2 27 of 29 ns

69726917 69731144 FADD 8772 NM_003824 Fas (TNFRSF6)-associated via death domain 28 of 29 <0.0001

69794471 69908150 PPFIA1 8500 NM_003626 Protein tyrosine phosphatase, receptor type,

f polypeptide (PTPRF), interacting protein

(liprin), a1

27 of 29 <0.0001

69922292 69960338 CTTN 2017 NM_005231 Cortactin, EMS1 27 of 29 0.013

69991609 70185520 SHANK2 22941 NM_012309 SH3 and multiple ankyrin repeat domains 2 25 of 29 ns

70221832 70350510 LOC399921 399921 XM_374904 Similar to SH3 and multiple ankyrin repeat

domains protein 2 (Shank2)

16 of 29 nd

NOTE: Genes are ordered by their position on the chromosome (start-stop; Build 35). The number of patients with amplification of each gene as

determined by aCGH is shown in the column ‘‘Amplification’’ (29 cases tested). The column ‘‘Expression’’ shows the P value given by a Mann-

Whitney U test comparing the expression level by quantitative RT-PCR of patients with amplification of this gene determined by aCGH compared

with those cases without (see Fig. 2). The CRA includes all genes that are amplified in more than 25 of 29 cases.

Abbreviations: nd, not determined; ns, not significant.
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previously identified 11q13.3 genes,MYEOV, CCND1, ORAOV1,

FGF3, FGF4, and CTTN (12–15), and three hypothetical genes
(not further analyzed in this study; Fig. 1C). Of these 13 genes,

9 are coamplified in 27 of 29 cases (Table 1). The smallest
overlapping region of amplification, found in 28 of 29
carcinomas, was restricted to a very small region of f50 kb at

position69.7Mb (NCBIbuild 35) andonly contains a single gene,
FADD (dark gray region in Fig. 1B and C; Table 1).

DNA amplification results in increased expression of numerous

11q13.3 genes. DNA amplification is generally accepted as a

mechanism resulting in increased gene expression in drug

resistance or carcinogenesis (4, 29). Based on these findings, we
hypothesized that the key gene in the commonly amplified

11q13.3 region should not only be amplified most frequently

but also be overexpressed when amplified. To identify the gene
that fulfills this criterion the best, we designed a quantitative

RT-PCR for all 13 genes (hypothetical genes were excluded)
within the 1.7-Mb CRA. As a control, we also included three

genes immediately centromeric of the CRA that were coampli-

fied in only 9 of 29 cases (CTP1a, MRPL21 , and IGHMBP2) as
well as five genes on the telomeric side of the CRA that were not

frequently (co-)amplified in our series of carcinomas but have

been described to be overexpressed in other studies (WNT-11,

UVRAG, EMSY, GARP , and PAK1). From 8 patients (Fig. 1: L03-

L07 and P09-P11) and 10 without 11q13.3 amplification (A01-

A10), total RNA was isolated from snap-frozen primary
laryngeal carcinomas. To calculate the effect of DNA amplifi-

cation on gene expression of each separate gene, the normal-

ized DC t ratios from the 10 patients without amplification were
used as a calibrator (set at 1). FGF3 and FGF4 were excluded

from further analysis because these genes were expressed in

only 2 and none of the 18 carcinomas, respectively (not
shown). Relative expression analysis per patient revealed that

every patient with 11q13.3 amplification showed an increased

expression for multiple amplified genes. To identify the gene
with the best relation between amplification and expression, we

compared the relative expression levels for each gene in the

amplified and nonamplified groups by one-tailed Mann-
Whitney U test (Fig. 2). This analysis revealed significant

differences in gene expression for 8 of the 11 genes located in

the CRA (Fig. 2A; Table 1). From these eight genes, the most
significant relation (P < 0.0001) between increased expression

and amplification was observed for TPCN2, ORAOV1, PPFIA1 ,

and FADD . Correlating gene copy number to relative gene
expression by linear regression analysis further confirmed this

relation for these four genes (data not shown). Interestingly,
high expression of CPT1a, MRPL21 , and IGHMBP2 was

significantly correlated with amplification despite coamplifica-

tion in only 8 of the 29 cases (Fig. 2B; Table 1). On the other
hand, expression of WNT-11, UVRAG, EMSY, GARP , and PAK1

(all located far outside the CRA) was not increased in

carcinomas with amplification of the CRA (data not shown).
FADD is a new potential driver gene within the 11q13

amplicon in head and neck carcinoma. When combining the

findings obtained by high-resolution aCGH mapping and
expression analysis (summary given in Table 1), FADD was
one of the most likely potential driver genes. Of the eight genes

with a significant correlation between gene amplification and
increased expression, FADD is amplified with the highest
frequency (in 28 of 29 cases). To determine whether an increase
in FADD mRNA due to DNA amplification also results in

increased FADD protein expression, we carried out immuno-
histochemistry on formaldehyde-fixed/paraffin-embedded tissues
from the same laryngeal carcinomas used for both RT-PCR

and high-resolution aCGH analysis. We used an anti-FADD
antibody that was previously used to detect total FADD
expression on archive material (30). Normal epithelium

present in most samples showed cytoplasmic staining of the
suprabasal layer. In carcinoma cells, FADD protein expression
was found mainly in the cytoplasm also and very homoge-

neously distributed in most tumors. In cases with the strongest
expression, the FADD protein was not only detected in the
cytoplasm but also nuclear staining became apparent. However,
the staining intensity was variable between different carcinomas.

Using the normal epithelium as a reference for normal expres-
sion levels, we categorized all samples as low FADD (FADD-
and FADD+) and high FADD (FADD++ and FADD+++)

expressing (Fig. 3). All 8 cases with high levels of FADD RNA
also showed high FADD protein expression levels, whereas
only 2 of 10 cases with low FADD RNA levels had elevated

protein expression. Western blot analysis with the same anti-
FADD antibody of lysates from frozen tissues of two cases with
high and five cases with low FADD protein levels showed

similar results (data not shown). Because RNA levels correlated
significantly with DNA amplification and protein levels were
significantly increased at high RNA expression, logistic regres-
sion analysis revealed a significant relation between amplifica-

tion and protein expression (P = 0.008, Mann-Whitney U test).
Because FADD is involved in regulation of apoptosis, we
stained a subset of carcinomas for cleaved caspase-3 and found

no correlation with FADD (not shown).

To investigate whether FADD expression is associated with

clinicopathologic features, we determined expression levels in a

series of 167 primary advanced-stage laryngeal carcinomas of

patients who did not receive other therapy before surgery. High

FADD levels were observed in 62 of 140 (44%) tested laryngeal

cases. Univariate Cox regression analysis revealed that high

FADD levels were related to an increased hazard ratio (HR)

for worse overall survival [HR, 1.74; 95% confidence interval

(95% CI), 1.07-2.83; P = 0.025] and disease-specific survival

(HR, 3.29; 95% CI, 1.39-7.80; P = 0.007; Fig. 4A). Lymph node

positivity (HR, 4.45; 95% CI, 1.94-10.20; P < 0.001) and radio-

therapy treatment (HR, 3.42; 95% CI, 1.24-9.43; P = 0.018)

also predicted a worse prognosis. A multivariate Cox regression

model including FADD, lymph node metastasis, and treatment

revealed that high FADD expression was significantly related to

a worse prognosis (HR, 4.59; 95% CI, 1.56-13.47; P = 0.004).

Furthermore, survival curves stratified for FADD expression and

lymph node positivity showed that high FADD expression

independent of the lymph node status identifies patients with

poor prognosis (Fig. 4B).
Recently, nuclear localization of FADD has been ascribed to

FADD phosphorylation at Ser194 and is important for its
function in cell cycle control (31). Because the antibody against

FADD used in this study does not discriminate between Ser194

phosphorylated (pFADD) and nonphosphorylated FADD, we
also studied expression of pFADD with a specific anti-pFADD

antibody. The immunohistochemical staining of pFADD was
more heterogeneously distributed within tumor tissues com-
pared with FADD and predominantly found within the

nucleus. High pFADD levels were observed in 61 of 133
(46%) cases. Although FADD and pFADD stainings were
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Fig. 2. Gene expression in18 patients with or without amplification. A, expression of genes in the CRA. B, expression of genes near the CRA. Patients are divided into two
groups based on the copy number status of the gene. Gene expression levels for each patient (w , amplification;!, normal) are shown as 2-DC t on the y-axis.The median
expression is indicated per group by a horizontal line. Statistical analysis was done with a Mann-WhitneyU test comparing gene expression for patients with amplification to
those without.
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morphologically different, (logistic regression revealed a relation
between the two stainings relative risk, 2.26; 95% CI, 1.11-4.59;
P = 0.025). High expression of pFADD marked a worse overall

survival (HR, 1.62; 95% CI, 0.98-2.68; P = 0.061) and disease-
specific survival (HR, 3.05; 95% CI, 1.29-7.22; P = 0.011). When
comparing patients with a low FADD to patients with

a high expression of both protein isoforms, survival rates
declined even further (Fig. 4C).
In summary, we show for the first time that amplification of

the 11q13.3 region in head and neck cancer results in increased
levels of the phosphorylated and nonphosphorylated FADD
protein and that these increased levels are associated with a
worse prognosis independent of the presence of lymph node

metastasis.

Discussion

Chromosomal DNA amplification is a well-documented
mechanism for cells to increase gene expression of a driver
gene involved in oncogenesis, development, or multidrug

resistance (4, 29). In many amplicons, the driver gene has yet
to be identified. In search for such gene, any driver gene for
amplification should fulfill at least two criteria: it should be

most frequently amplified and it should have the most
significant correlation between DNA amplification and expres-
sion levels. In the last 15 years, many efforts were undertaken to
identify the driver gene in the 11q13 amplicon (6, 7) and

numerous candidate genes were reported that showed increased
expression on DNA amplification, including CCND1 (12, 13),

CTTN (13), MYEOV (14), ORAOV1 (15), EMSY (16), and
SHANK2 (17). In this study, we carried out a comprehensive
analysis of DNA amplification using high-resolution aCGH of

the 11q13 region in combination with quantitative expression
levels using quantitative RT-PCR of all genes in the 11q13
amplicon on a large series of laryngeal/pharyngeal carcinomas

with 11q13 amplification (n = 29). The CRA contains 13 genes.
Quantitative RT-PCR analysis revealed that not a single gene
but eight genes showed overexpression on DNA amplification

(Table 1).
In agreement with our findings, very recently, Järvinen et al.

(32) proposed that FADD and PPFIA1 are likely candidates,
implicating that these two genes are located near the core of the

amplicon. However, our comprehensive analysis of all genes
in the 11q13 region revealed that, in addition to FADD and
PPFIA1 , six other likely candidate genes (TPCN2, CCND1,

FLJ42258, ORAOV1, FGF19 , and CTTN) within the 11q13.3
CRA are coamplified in at least 25 of 29 cases and show a strong
correlation between expression and amplification (Table 1).

Of the genes in the 11q13.3 amplicon, CCND1 (12, 13) and
CTTN (10, 18–20) were studied most extensively in the last
15 years. They have been reported to be the best candidates for
driving 11q13.3 amplification because they are both frequently

coamplified and amplification correlates well with overexpres-
sion. Furthermore, the characterization of the cell biological
properties of both these genes provided clear evidence for a

function in processes related to tumorigenesis such as cell cycle
control and cell migration (18, 19, 33, 34). ORAOV1 was
described as a candidate in one study using quantitative copy

Fig. 3. Immunohistochemical comparison of FADDand pFADD expression. Protein expression for FADDand Ser194 phosphorylated FADD is shown on sequential sections
for four patients. Patients are ordered from left to right by their relative FADD expression (FADD-, FADD+, FADD++, and FADD+++). FADD- and FADD+ are considered
FADDLow and FADD++ and FADD+++ are considered FADDHigh in this study.
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number analysis (QuMA) with 11q13.3 markers in oral
carcinoma cell lines (15). Here, we show that also in primary

carcinomas of the head and neck ORAOV1 seems a good
candidate (Table 1; Fig. 2A), although the function of this
gene is still unknown. PPFIA1 is involved in regulating the

disassembly of focal adhesions (35) but its function has not
yet been studied in relation to 11q13.3 amplification. The
functions of TPCN2, FGF19 , and FLJ42258 have not yet been
studied in relation to 11q13.3 amplification.

A general increase in the expression of numerous genes
within an amplicon, known as a gene dosage effect, has
previously been shown by several groups for other amplified

chromosomal loci (24, 36–38). Recently, we reported on the
structural analysis of the amplified 11q13 region in the same
29 laryngeal carcinomas using a high-resolution 11q13-specific

aCGH (25). We found that the boundaries of the commonly
amplified region were restricted to four segments, coinciding
with segmental duplications and syntenic breakpoints. These

findings imply that the selection of genes in the 11q13.3
amplicon is determined by the ability to form DNA breaks
within specific fragile regions and consequently would result in
large amplicons containing multiple genes. Because of coinci-

dental coamplification, the increased gene dosage will result in
increased expression of genes that either act as driver or are not
harmful. To identify those overexpressed gene(s) that are

relevant to tumor progression, functional analysis of all the
eight genes would be necessary. At present, the cell biological
properties of CCND1 (33), CTTN (39), and FADD (ref. 40 and

see below) have been reported. On the other hand, the
existence of multiple driver genes cooperating at different time
points in carcinogenesis or selected for at different stages of
carcinogenesis is an attractive alternative when considering

gene functions within in this amplicon. For instance, CCND1
might cause growth advantage and genetic instability at early
stages (41); CTTN could enhance cell migration (18–20, 34);

and FADD may be involved in survival and therapy resistance

(see below). In this way, the same 11q13.3 amplicon is selected
for at multiple stages of carcinogenesis.

FADD, a new driver within the amplified 11q13.3 region in

head and neck cancer. In this study, FADD was identified as
one of the eight potential driver genes in the 11q13 amplicon

in head and neck cancer. In fact, FADD was amplified the
highest (28 of 29) and its expression strongly correlated with
DNA amplification. FADD was originally identified as a protein
that binds to the cytosolic tail of the FAS receptor (reviewed in

ref. 42). The proapoptotic adapter molecule recruits caspase-
8 and caspase-10 to initiate the formation of the death-
inducing signal complex that mediates receptor-induced

apoptosis. The recruitment of these caspases to the death-
inducing signal complex leads to intracellular processing and
activation of caspases, eventually resulting in cleavage of

downstream targets and apoptosis. Thus, increased expression
should correlate with increased apoptosis. However, more
recent studies showed that FADD also plays an important role

in growth and regulation of the cell cycle (reviewed in ref. 43).
In both FADD-knockout and transgenic mice expressing
human dominant-negative FADD, T cells are defective in
proper cell cycle entry in response to mitogens (44). In vitro

experiments showed that FADD was regulated during cell cycle
progression. Cells treated with agents blocking the G2-M
transition have higher levels of Ser194 phospho-FADD (45).

Furthermore, expressing a Ser194 phospho-mimicking FADD
mutant caused G2-M cell cycle arrest (46), suggesting a key role
in cell cycle regulation (40, 46–48).

Chen et al. (30) showed that increased expression of FADD
and Ser194 phosphorylated FADD were both associated with
decreased survival of patients with lung adenocarcinoma. In
contrast to head and neck carcinomas, in these lung adeno-

carcinomas DNA amplification of FADD was not detected (30).
Furthermore, patients with laryngeal/pharyngeal carcinomas
with high levels of FADD and pFADD have a significantly

decreased survival (Fig. 4C). In patients with carcinomas

Fig. 4. Survival analysis related to FADDand pFADD expression. Kaplan-Meier analysis was done for disease-free survival. A, patients are shown as high or low FADD
expressing. B, the survival of lymph node positive (N+) and lymph node negative (N-) tumors stratified for FADD expression. C, disease-specific survival for FADD stratified
for Ser194 phosphorylated FADD expression.The number of patients remaining after 5 y is shown underneath the plots. Significance was calculated using univariate Cox
analysis and P values are displayed on the bottom left of the plot.
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containing high FADD expression and lymph node metastases,

the prognosis is even worse (Fig. 4B). This indicates that high

FADD expression defines a worse prognosis for patients

independent of other classic predictors such as lymph node

status. Interestingly, in lung adenocarcinoma, the staining of

pFADD was correlated with Ki-67, cyclin B1, and CCND1

staining, indicating that high pFADD levels are associated with

increased cell proliferation at the G2-M phase of the cell cycle

(30). This is in concordance with in vitro studies (30, 31, 45,

47, 49). Because this amplification is prominent in head and

neck carcinoma (6) and results in increased expression of

FADD (this study), FADD might be one of the genes to regulate

cell cycle progression in laryngeal carcinomas with 11q13

amplification.

Future perspectives on the role of FADD and chemotherapeutic

drugs in head and neck cancer. The role of FADD in cell cycle

regulation suggests that FADD is also implicated in the

response to cytotoxic drugs. As previously described, Taxol

treatment arrests tumor cells at G2-M with concomitant

phosphorylation of FADD (47). Interestingly, both the G2-M

arrest and cell growth suppression on Taxol treatment were
abolished in transfected cells expressing a non–phospho-
mimicking mutant of FADD (31, 40, 48). Taken together,

these data show that cells expressing high levels of phospho-
FADD are (30) more sensitive to Taxol-induced cell cycle arrest
(31, 40) than cells expressing nonphosphorylated FADD. Our

data revealed that in HNSCC carcinomas with 11q13.3
amplification, both FADD and pFADD are overexpressed (this
work). Several recent clinical studies in HNSCC have under-

lined a positive effect of chemoradiation over radiotherapy
alone (3, 50). We hypothesize that patients with HNSCC
carcinomas with 11q13.3 amplification and concomitant
pFADD overexpression might benefit from Taxol-based chemo-

radiotherapy over radiotherapy alone.
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