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Abstract

High throughput sequencing (HTSeq) of small ribosomal subunit amplicons has the poten-

tial for a comprehensive characterization of microbial community compositions, down to

rare species. However, the error-prone nature of the multi-step experimental process

requires that the resulting raw sequences are subjected to quality control procedures.

These procedures often involve an abundance cutoff for rare sequences or clustering of

sequences, both of which limit genetic resolution. Here we propose a simple experimental

protocol that retains the high genetic resolution granted by HTSeq methods while effectively

removing many low abundance sequences that are likely due to PCR and sequencing

errors. According to this protocol, we split samples and submit both halves to independent

PCR and sequencing runs. The resulting sequence data is graphically and quantitatively

characterized by the discordance between the two experimental branches, allowing for a

quick identification of problematic samples. Further, we discard sequences that are not

found in both branches (“AmpliconDuo filter”). We show that the majority of sequences

removed in this way, mostly low abundance but also some higher abundance sequences,

show features expected from randommodifications of true sequences as introduced by

PCR and sequencing errors. On the other hand, the filter retains many low abundance

sequences observed in both branches and thus provides a more reliable census of the rare

biosphere. We find that the AmpliconDuo filter increases biological resolution as it increases

apparent community similarity between biologically similar communities, while it does not

affect apparent community similarities between biologically dissimilar communities. The fil-

ter does not distort overall apparent community compositions. Finally, we quantitatively

explain the effect of the AmpliconDuo filter by a simple mathematical model.
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Introduction

Amplicon-based environmental high-throughput sequencing (HTSeq) of markers such as SSU

rRNA [1] have become a standard in biodiversity research. These methods have the potential

to settle fundamental controversies about microbial diversity and distribution, including those

resulting from the key problem of massive under-sampling of diversity, especially of the rare

biosphere [2–5]. Consequently, large scale HTSeq projects have been initiated with high sample

numbers and sequencing depths [6–8].

Modern HTSeq platforms, for instance Illumina MiSeq [9], deliver unprecedented amounts

of clustered PCR fragments, leading to millions of single- or paired-end reads at moderate cost

per run. Still, several problems remain, such as the relative short read lengths, or non-negligible

error rates in PCR and sequencing steps. The latter potentially lead to overestimation and dis-

tortion of microbial biodiversity [10–12].

Two different kinds of errors are introduced during PCR amplification. First, polymerases

used in PCR have error rates of about 1 substitution per 105 to 106 bases, depending on the type

of polymerase [13]. Second, the PCR process can generate as a byproduct sequence chimeras by

artificial recombination. Different studies on SSU data showed varying fractions of chimeric

sequences [14, 15], from overall below 10% to more than 70% of sequence reads [11]. Moreover,

the sequencing process itself introduces errors, dependent on the sequencing method [12, 16].

These errors and the methods chosen to eliminate them can have a strong impact on the

biological interpretation of amplicon HTSeq data, and therefore great efforts have been

invested in the development of best practice procedures for the analysis of amplicon HTSeq

data [17–20]. Various strategies were devised to remove spurious sequences, such as (i) the

removal of sequences that could not be taxonomically classified [21], (ii) discarding sequences

with an abundance lower than a given threshold [22], and (iii) assignment of sequences by spe-

cialized clustering strategies [23]. Each of these strategies comes with its own drawbacks, for

instance (i) true sequences might not have been taxonomically assigned so far, (ii) low abun-

dance sequences might correspond to rare species, and (iii) sequence abundances are contami-

nated by reads from erroneous sequences and sequence resolution is decreased.

A basic assumption in the experimental sciences is that replicating an experiment under

identical conditions increases the trustworthiness of re-occurring observations and reduces

random noise. If we apply this assumption to a HTSeq experiment of a complex microbial

community, we can state that a real sequence originating from organisms in the community

should be observed in several replicates (except for extremely rare organisms). Moreover, we

expect that an artificial sequence introduced by errors in the complex experimental HTSeq pro-

cess should occur only in one replicate, if the error process is completely random and the error

rate not too high. This reasoning suggests a minimal filter (“AmpliconDuo filter”) to eliminate

artificial sequences: keep sequences that are observed in two replicates, discard sequences that

are observed in only one replicate. In this way we are likely to keep real sequences (except those

from extremely rare species), and to eliminate artificial sequences.

There are several important caveats that should be addressed in the above reasoning. First,

sampling under identical conditions in the field is very difficult. Thus, to eliminate biological

variability and focus on errors introduced by the technical process, we should take a single

sample, extract DNA and then split this material into two halves, corresponding to two techni-

cal replicates. These two halves are then submitted independently to the same technical process

of amplification by PCR and sequencing, so that we have two experimental “branches” for each

biological sample that can be compared to identify real sequences and to discard artificial

sequences, as we have argued above (Fig 1). Second, we have assumed that the errors are gener-

ated at random and not by a systematically biased error process. We will demonstrate that this
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assumption is likely to be correct for a fraction of errors, but that there are indications that it

could be violated in the case of PCR chimeras [24].

As for the previously described filtering approaches, there are problems that potentially

limit the scope of the split sample approach: First, the approach is either more expensive if

sequencing depth is kept constant, or it permits not the same sequencing depth if cost is kept

constant. As HTSeq becomes more affordable, this problem of cost/sequencing depth trade-off

will become less relevant. Second, as mentioned before, ultra-rare species can occur in only one

half of the split sample and are then eliminated. However, even if we acknowledge that the

problem of ultra-rare species imposes a limitation, the increased sequence resolution achieved

by omitting a pre-clustering step or stringent cutoff can still be valuable for studies of the fine

structure of microbial biodiversity.

Protocols with several independent PCR branches have been used before (see e.g. Refs. [25,

26]), but these protocols usually have pooled material from different PCR branches to increase

likelihood of true species recovery, and they did not exploit information from these branches

as a means of filtering out spurious sequences. Recently, Esling et al. have published a study

with mock communities in which they also demonstrate the benefits of combining different

PCR branches [27].

In the following we present conceptual and computational tools for the implementation of

the split sample approach that we have bundled in the R-package AmpliconDuo. Further, we

apply the approach to several microbial samples, and we study the effect of the split sample

approach on the apparent biodiversity and community composition. Since there is evidence

that the underlying assumption of uncorrelated randomness may be violated for PCR chime-

ras, we also test the effectiveness of the approach for the removal of these artifacts by compar-

ing outcomes with those of established methods for chimera detection.

Fig 1. Principle of split sample approach with AmpliconDuo filter. DNA extracted from a sample is split
into branches A and B. In each branch, an independent PCR and sequencing run is performed. Sequences
occurring in both branches pass the AmpliconDuo filter (upper green sequence ACC. . . with 4 reads in A and 7
reads in B), while sequences occurring in only one branch are discarded (lower red sequence CCG. . .). Read
numbers of both branches are retained for statistical analyses.

doi:10.1371/journal.pone.0141590.g001
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Materials and Methods

Samples

Seven aquatic samples were analyzed for eukaryotic diversity: one from a small pond (“Uni

pond”) at the University Campus in Essen, Germany, in July 2012, and six samples from Lake

Fuschlsee (Austria) were taken fortnightly between June and September 2007. For the latter

time series, we pooled for each time point three integrated samples covering the upper 10m

from the pelagic zone. Subsamples of 100mL were filtered onto 0.2 μm polycarbonate filters

for high-throughput sequencing. Filters were air dried and frozen at −80°C until further pro-

cessing. All aquatic samples were filtered onto 0.2 μm polycarbonate filters (Merck Millipore,

Billerica, MA, USA) until the filters clogged. Genomic DNA from aquatic samples was

extracted using a CTAB Protocol (adapted from Ref. [28]). Also for analysis of eukaryote diver-

sity, a soil sample was taken in July 2011 at a marsh near Gronau, Germany. Genomic DNA

from the soil sample was extracted using the Fast DNA Spin Kit for Soil (MP Biomedicals,

Santa Ana, California, USA) as recommended by the manufacturer, but with the following

changes in protocol: bead beating to break cells was carried out three times using the Fast Prep

24 (MP Biomedicals, Santa Ana, CA, USA), and washing step with SEWS-M was carried out

twice. Samples were split immediately after DNA extraction, and the following steps (PCR,

sequencing) were applied independently to both halves of each sample.

Sampling the marsh was authorized by the Biologische Station Zwillbrock, Germany. No

specific permissions were required for Lake Fuschlsee as confirmed by the Global Taxonomy

Initiative National Focal Point in Austria and the Bundesamt für Wasserwirtschaft (Scharfling,

Austria). The field studies did not involve endangered or protected species.

To test our protocol with prokaryotic data, we used material from a study on the effect of sil-

ver on microbial communities [29]. Shortly, the corresponding sample was taken from the

same University pond in June 2013. Four subsamples of this sample were generated and sub-

jected to treatment with silver nano-particles (here named “Pro4”), silver nitrate (“Pro3”), and

no silver (“Pro1”, “Pro2”). DNA was extracted using the my-Budget DNAMini Kit (Bio-bud-

get Technologies GmbH, Krefeld, Germany) according to the manufacturers instructions but

with an additional step, bead beating to break cells was carried out three times for 30 s using

the Fast Prep 24 (MP Biomedicals, Santa Ana, CA, USA).

PCR

PCR was carried out with the Phusion high fidelity DNA Polymerase (Thermo Scientific) with

35 cycles and an annealing temperature of 71°C. Samples were amplified using primers consist-

ing of Illumina-specific adapters, a sample identifier starting with a general poly-N region (S1

Table), and a user-defined primer (Fig 2). The applied amplicon strategy, based on user-defined

primers and sample identifiers was adapted to the Illumina MiSeq platform. In case of the

eukaryotic samples the forward primer Euk1391F (5’-GTA CAC ACC GCC CGT C-3’) and the

eukarya-specific reverse primer Medlin B (5’-TGA TCC TTC TGC AGG TTC ACC TAC-3’)

[30] were used to amplify the V9 region. For the prokaryotic data the SSU V2–V3 region was

amplified with the bacteria specific primers 104F (5’-GGC GVA CGG GTGMGT AA-3’) and

515R (5’-TTA CCG CGG CKG CTG GCA C-3’).

Sequencing

Sequencing of the different samples was carried out on a Illumina MiSeq platform at Eurofins

Genomics. Prokaryotic samples were sequenced in paired-end mode giving rise to 2 × 300

nucleotides, whereas the eukaryotic samples gave raw reads with a length of 151 nucleotides.

AmpliconDuo for High-Throughput Sequencing
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Quality filtering

For the eukaryotic diversity analysis, low quality tails were first removed from the reads. We

discarded reads trimmed in this way that had an average Phred quality score [31] of less than

25. Additionally, all reads with at least one base with a Phred quality score of less than 15 were

removed. Multiplex Identifiers (MIDs, S1 Table) were used to separate the different samples.

Sequences with a mismatch in the primer or MID were discarded as well.

Samples for the analysis of prokaryotic diversity (S2 Table) were demultiplexed by Eurofins

and required a perfect match in the MID sequence. The paired-end reads were assembled and

quality filtered using PANDASeq version 2.7 [32]. Reads with uncalled bases, an assembly

quality score below 0.8, a read overlap below 10, or a base with a recalculated Phread-score

below 5 were discarded.

Sequence clustering

The paired-end sequencing data were de-replicated with an R-script. For the single-end

sequencing data, sequences with less than 115 nucleotides after trimming were discarded.

Then, all remaining single-end reads were de-replicated with the same R-script. Sequence

lengths in single-end data differed only in very few cases (< 0.025% of sequences in less than

half of the samples with typically less than 20 reads). In those cases, shorter sequences were

clustered with the matching full-length sequence with the highest abundance. Chimeras were

identified using UCHIME [33] with its default settings either in de novo or reference mode. For

the reference mode the Silva SSU Ref NR database release 119 was used as reference [34].

Levenshtein distance

The generalized Levenshtein edit distance between sequences was calculated using the R func-

tion agrep in the R base package [35]. All editing costs were set to one, and the maximally

allowed distance was increased from 1 to 4 in steps of 1.

Fig 2. Primer construct and amplification products. The primers are composed of sequences specific to
the sequencing platform (green), i.e. the P5 adaptor and the Illumina primer 1 for the forward primer and the
P7 adaptor and the Illumina primer 2 for the reverse primer. Downstream follows a sample identifier starting
with a poly-N (red) region and the custom defined primer (blue). In the reverse primer construct, the sample
identifier was replaced by a poly-N region.

doi:10.1371/journal.pone.0141590.g002
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Taxonomy assessment

For all clustered reads, we used BLAST 2.2.30+ [36] and the Silva SSU Ref database release 119

to obtain taxonomic information [34].

Statistical analyses

Significantly deviating read numbers between the two experimental branches (PCR and

sequencing of each branch of a split sample) were detected with Fisher’s exact test applied to

2 × 2 contingency tables for all sequences i:

riAS riBS
P

j6¼i rjAS
P

j 6¼i rjBS

 !

ð1Þ

with read number riAS of sequence i in experimental branch A of sample S, and the analogous for

branch B. The false discovery rates qiS for all sequences i in a sample S were computed from the p

values of all sequences present in that sample using the method of Benjamini and Hochberg [37].

Measures of the discordance between branches A and B for the same sample S are Dr

Sy

(“read-weighted discordance”) and Du

Sy (“unweighted discordance”), the fractions of reads and

sequences, respectively, with false discovery rate q below a chosen threshold θ, e.g. θ = 0.05:

D
r

Sy ¼

PnS
i¼1
ðriAS þ riBSÞdðqiS < yÞ
PnS

i¼1
ðriAS þ riBSÞ

ð2Þ

D
u

Sy ¼

PnS
i¼1

dðqiS < yÞ

nS

; ð3Þ

with dðqiS < yÞ ¼
1 for qiS < y

0 for qiS � y

ð4Þ

(

for number nS of sequences detected in sample S. Dr

Sy and D
u

Sy lie between 0 (no discordance, i.e.

no statistically significant deviations between experimental branches) and 1 (complete discor-

dance). Du

Sy ¼ 0means that both branches A, B of the split sample yield the same set of

sequences, Dr

Sy ¼ 0means that, additionally, for each of the sequences read numbers in A and

B are the same within an error margin determined by the chosen false discovery rate.

For the read-weighted discordance Dr

Sy > 0 the deviation of read numbers of a sequence

between the two branches is weighted with the average read number of that sequence in both

branches: the more abundant a sequence, the more do significant deviations of reads of this

sequence between A and B contribute to the read-weighted discordance Dr

Sy.

In each of the panels of the discordance plots Fig 3 and S1 Fig, Du

S;0:05 is the fraction of red

points, and Dr

S;0:05 is the fraction of sequence reads belonging to these points. Note that these

fractions depend on the chosen false discovery rate. A strict false discovery rate of 0.05 (as used

here) will generate higher Δ values than a more relaxed false discovery rate of e.g. 0.1 or 0.2.

In an ideal split sample, all points are black, meaning that for each sequence the fraction of

reads of this sequence is the same in both experimental branches, within a confidence interval

given by the false discovery rate. The higher the fraction of red points, the less reliable are com-

munity compositions or OTU abundances inferred from the respective sample.

Methods for the preparation of such figures and for the computation of the discordance val-

ues Δr, Δu are implemented in the R-package AmpliconDuo that is freely available as platform

independent source code from http://cran.r-project.org/web/packages/AmpliconDuo/.

AmpliconDuo for High-Throughput Sequencing
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The sets of part values at the end of the results section on “Discordance of split samples”

were statistically evaluated for significant differences with the Brunner-Munzel test imple-

mented in the R-package lawstat [38], and the effect size Cohen’s d as implemented in R-pack-

age effsize [39]. Given ranges for means and effect sizes of part are 95% confidence intervals

assuming normal distributions.

Community comparisons

For comparison of diversities between eukaryotic samples, sequence abundance vectors riXS
were set up, one for each combination of one of the sampling sites S and experimental branch X

2 {A, B}. Sequences assigned to Bacteria, Metazoa or Embryophyta were discarded. The vectors

were submitted to agglomerative clustering using the complete linkage algorithm in R-function

hclust. The distance measure used in the clustering procedure was the Jaccard distance measure

dkl of dissimilarity with values between 0 (samples k, l equal) and 1 (samples k, l dissimilar):

dkl ¼
2

1þ bkl
with bkl ¼

PN

i¼1
rik þ ril

PN

i¼1
jrik � rilj

; ð5Þ

as implemented in the R-package vegan [40]. Indices k, l here denote combinations of experi-

mental branch A, B and sampling site S. The Jaccard distance is a widely used measure of com-

munity similarity in ecology. It has several advantages over other measures, notably that it

fulfills the triangle inequality [41]. Thus, it can be interpreted intuitively like a distance.

For an overview of taxonomic composition in all eukaryotic samples, the following taxa

were grouped: Telonema (genus), Chrysophyceae, Diatomea (class), Kathablepharidae,

Fig 3. Discordance plot showing significant deviations of eukaryote read numbers between split samples. For each of the samples S an individual
panel shows the logarithmically scaled pairs of read numbers (riAS, riBS) of unique sequences i in PCR branches X 2 {A, B}. Red and black points correspond
to, respectively, sequences with and without significantly deviating riAS, riBS (false discovery rate q� 0.05 or q > 0.05, respectively).

doi:10.1371/journal.pone.0141590.g003
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Cryptomonadales, Ciliophora, Dinoflagellata, Cercozoa, Euryarchaeota, Prymnesiophyceae,

LKM11, Choanomonada, Chytridiomycota (phylum), Dikarya, Chlorophyta (subkingdom), Cryp-

tophyceae.rest, Alveolata.rest, Stramenopiles.rest (kingdom) and other/unassigned. Sequences

with an alignment length below 95 (80%) and an identity below 93 were assigned to the group

other/unassigned. Sequences assigned to Bacteria, Metazoa or Embryophyta were discarded.

Results and Discussion

SSU amplicons were generated for eukaryotes (8 samples) and prokaryotes (4 samples). Each

sample was equally split into two branches, A and B, and processed as described in Materials

and Methods. In total we obtained 2577226 eukaryotic high-quality reads of 119 nucleotides,

and 1332240 prokaryotic reads of lengths between 253 and 518 nucleotides. As eukaryote and

prokaryote data showed the same overall patterns in the analyses, we have shifted most figures

presenting prokaryotic data to the Supplemental Information.

Discordance between split samples

We first determined for each split sample S the discordance values Dr

S;0:05 and D
u

S;0:05 between

branches A and B (Tables 1 and 2) to assess the overall consistency between the branches. The

unweighted discordance Δu was low in all cases, indicating a good consistency between the

sequence sets in A and B branches. Conversely, the read-weighted discordance values Δr were

much higher, reaching up to 83% (bog soil sample). This means that while there is little varia-

tion between the sets of sequences in A and B, the apparent sequence abundances reflected by

the read numbers vary much more strongly between A and B.

Table 1. Discordance measures for eukaryotic samples.

Sample S D
r

S;0:05
D

u

S;0:05

1 Bog Soil 0.832 3.75 × 10−2

2 FU25 0.000 0.00

3 FU28 0.104 4.18 × 10−4

4 FU31.2 0.000 0.00

5 FU31.1 0.014 5.60 × 10−5

6 FU34 0.285 6.55 × 10−4

7 FU37 0.658 2.01 × 10−4

8 Uni Pond 0.684 6.44 × 10−4

Discordance measures Δ
r (read-weighted), Eq (2)) and Δ

u (unweighted), Eq (3)) for eukaryotic samples.

For all samples S the same false discovery rate threshold of 0.05 was used to define discordance.

doi:10.1371/journal.pone.0141590.t001

Table 2. Discordance measures for prokaryotic samples.

Sample S D
r

S;0:05
D

u

S;0:05

1 Pro1 0.235 3.76 × 10−4

2 Pro2 0.276 8.53 × 10−4

3 Pro3 0.591 3.93 × 10−3

4 Pro4 0.314 1.29 × 10−3

Discordance measures Δ
r (read-weighted), Eq (2)) and Δ

u (unweighted), Eq (3)) for prokaryotic samples.

For all samples S the same false discovery rate threshold of 0.05 was used to define discordance.

doi:10.1371/journal.pone.0141590.t002
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The discordance plots Fig 3 and S1 Fig illustrate this finding in detail. Du

Sy in these figures is the

fraction of red points, and Dr

Sy is the read-weighted fraction of red points (red points in upper left

and right contribute more). It becomes immediately clear that two of the samples, the eukaryotic

bog soil sample and the prokaryotic Pro3 sample have a stronger discordance, possibly due to

problems in sample processing. Note that e.g. in the case of Pro3 there are many sequences that

are by about an order of magnitude more frequent in the B branch than in the A branch (upper

red spike), while others have about the same abundance (black spike along the diagonal), and still

others are somewhat less frequent in B (lower red rim of black spike). It is clear that quantitative

community compositions inferred from such discordant samples are highly questionable. Thus,

inspection of discordance quantities Δu, Δr and discordance plots such as Fig 3 and S1 Fig avail-

able in the split sample approach help to identify problematic samples, and to avoid wrong inter-

pretations of HTSeq microbial community data based on such problematic samples.

A note on why the discordance plots Fig 3 and S1 Fig are scaled logarithmically and which

consequences this has for their interpretation: Visually, the log-scaling gives more room to the

many low abundance sequences, while high abundance sequences are squeezed into a smaller

area. This scaling mirrors the typical power-law distribution of reads in microbial communi-

ties: there are many low read count sequences and much fewer high read count sequences.

The log-scaling has a consequence for the appearance of deviations of read counts between

PCR branches A, B. At the rare end in the lower left of the plot, even small absolute deviations

show up as large distances from the diagonal, while at the high read count end in the upper

right much larger absolute deviations that might be significant (red points) at the chosen false

discovery rate shrink to only small apparent distances from the diagonal.

AmpliconDuo filter

High-throughput sequencing brings us closer to discovering the complete composition of

microbial communities, including the rare microbial biosphere. However, with the technology

as of today, many sequences that could be interpreted as rare OTUs are actually sequences with

errors introduced in PCR or sequencing. In the following we test a simple filtering strategy

(“AmpliconDuo filter”) to eliminate such artifacts: we accept only sequences that occur in both

branches A and B of a split sample.

The sequences removed by the AmpliconDuo filter will contain many true negatives, i.e.

spurious sequences, induced by the introduction of random errors in the whole sequencing

process. Sequences passing the filter have therefore a higher probability of being true positives,

i.e. real sequences. On the other hand, the approach will suffer from false negatives as we miss

extremely rare real sequences that are sampled in only one branch of the split sample. At some

point, we have to accept this particular error as a natural consequence of the observation

method: we cannot observe arbitrarily rare sequences in a limited sample volume. It is beyond

the scope of this work to clarify how close we have come to this natural boundary. Instead, we

will in the following sections study the effect of the AmpliconDuo filter by analyzing properties

of removed and retained sequences.

All samples have approximately the same power law behavior of sequence abundance as

function of read number (Fig 4 and S2 Fig) showing up as a linear relationship in the log-log

plots of sequence counts vs. sequence abundance (or number of reads). By far most of the

sequences removed by the AmpliconDuo filter occur with low read numbers, especially single-

tons: 72–84% of eukaryotic singletons and 87–94% of prokaryotic singletons are removed as

they are observed in only one experimental branch of the split samples.

Beyond about ten reads (see also quantitative theoretical argument in section “Is Amplicon-

Duo filter effectively removing chimeras?”) the number of sequences is almost unaffected by

AmpliconDuo for High-Throughput Sequencing
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Fig 4. Effect of AmpliconDuo filter on spectrum of read numbers for eukaryotic data. Columns A and B are experimental branches of the split sample,
rows correspond to sampling sites. Number of sequences before and after AmpliconDuo filtering are plotted as black and orange dots, respectively. Both
axes have logarithmic scales.

doi:10.1371/journal.pone.0141590.g004
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the AmpliconDuo filter, except in those cases that have conspicuous discordance (Fig 3 and S1

Fig, Tables 1 and 2). Namely in the eukaryotic bog soil sample and the prokaryotic Pro3 and

Pro4 samples there are some apparent sequences with higher abundances that occur only in

one branch A or B and that are therefore discarded by the AmpliconDuo filter; in Fig 4 and S2

Fig these cases are visible as black dots at higher abundance that are not covered by orange

dots. For non-problematic samples, the AmpliconDuo filter has a perceivable impact only for

the measurement of the rare microbial biosphere. However, even after filtering, this rare end of

the abundance spectrum contributes the highest numbers of distinct sequences because the

AmpliconDuo filter accepts a considerable fraction of low abundance reads.

We assume that many of the spurious sequences occurring in only one experimental branch

of the split sample are the results of artificial random point mutations introduced into real

sequences by errors in PCR or sequencing. If this assumption is true, many of the sequences

removed by the AmpliconDuo filter should be closely related to real sequences that pass the fil-

ter. We have tested this with our data (S3 and S4 Figs) by counting the number of removed

sequences with Levenshtein distances of one to four editing operations (single nucleotide

mutations, deletions or insertions) to retained sequences. With a Levenshtein distance L = 1 we

recovered 47–71% of discarded eukaryote and 23–43% of discarded prokaryote sequences.

Allowing an editing distance of up to L = 4 recovered 64–91% and 40–62% of eukaryote and

prokaryote sequences, respectively, removed by AmpliconDuo filtering.

The pattern of fractions of filtered-out sequences explained by increasing L to sequences

passing the AmpliconDuo filter is remarkably consistent over all samples, including both

eukaryotes and prokaryotes: Most bars in S3 Fig are dominated by L = 1, followed by decreas-

ing contributions from L = 2 to L = 4. This is a pattern that could arise from two plausible

causes: (1) If the experimental procedure (mainly PCR and sequencing) introduces single ran-

dom mutations in a Poisson-like process with a low rate, we expect the greatest contribution

from L = 1 (one artificial mutation), followed by L = 2 (two artificial mutations), etc. (2) The

grading of frequencies from L = 1 to higher L could reflect the real distribution of genetic

changes in SSU sequences in microbial populations.

If the first of these two plausible causes is true, we expect a certain pattern of artificial mutants:

each real sequence will be accompanied by a number of artificial mutants that differ from the

original real sequences by one mutation or a few mutations, i.e. a kind of “halo” of artificial

mutants around the real sequence. The density and size of this halo will depend not so much on

the origin of the sample or the type of organism, but mainly on the features of the experimental

protocol, especially PCR and sequencing. Since we have only two variants of the protocol, namely

the single-read sequencing in the eukaryote samples and paired-end sequencing in the prokary-

ote samples (see Methods), we expect only two types of halos of artificial randommutants.

If the probability of an artificial mutation per nucleotide part is small, most artificially

mutated sequences will differ by one artificial mutation from real sequences. (Note that part
quantifies the artificial mutation rate per nucleotide that remains after quality filtering of

sequences (see Methods); the corresponding error rate in the raw sequences before quality fil-

tering is likely to be much higher). Under this assumption we anticipate:

nL¼1;rej � part
X

nacc

i¼1

‘iri; or ð6Þ

part �
nL¼1;rej
Pnacc

i¼1
‘iri

ð7Þ

with the number nL = 1, rej of sequences rejected by the AmpliconDuo filter that have a
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Levenshtein distance L = 1 to an accepted sequence, the sequence lengths ℓi, and the numbers

ri of reads of the nacc accepted sequences. Eq (6) expresses that the rejected sequences with

L = 1 to accepted sequences are dominated by artificial random point mutations, generated

with a probability part per nucleotide. The longer a sequence is and the more reads it has, the

more probable that an artificial mutation is introduced into that sequence.

If our model is correct, part will mainly depend on the experimental protocol, i.e. it will be

more or less the same for different samples as long as the same experimental protocol is used.

Fig 5 supports this model: For each of the two protocols we can estimate a mean part with 95%

confidence intervals that do not overlap: For the single-read protocol (eukaryotes) we have part
= (1.9 ± 0.4) × 10−4. For the paired-end protocol (prokaryotes) we have part = (3.3 ± 0.7) ×

10−4. A Brunner-Munzel test between the two part distributions yields a p-value of 5.7 × 10−5

for the null hypothesis of equal means of the two distributions. Cohen’s d is estimated at 1.79 ±

1.1, indicating a medium to large effect of the experimental protocol on part.

The difference in part could also be due to the fact that we have applied each of the two dif-

ferent protocols to one specific taxonomic group, i.e. microbial eukaryotes vs. prokaryotes so

that the difference in part could be a consequence of biology rather than of technology. To test

this possibility, we have analyzed in the same way metazoan sequences that were obtained as

bycatch in the eukaryote samples. It is reasonable to assume that the true genetic SSU diversity

in this metazoan bycatch is much lower than the genetic SSU diversity in the microbial eukary-

otes in these samples. This means that if part is mainly influenced by the true genetic diversity,

we should see a trend to lower part values in metazoans. Conversely, if our hypothesis of a halo

of artificial sequences described by part is correct, we should see the same value of part in the

metazoans, irrespective of their lower genetic diversity since the experimental protocol for

microbial eukaryotes and metazoans is the same. This outcome should not be influenced by a

possible PCR bias introduced by the primers that had been optimized for microbial eukaryotes,

since this bias should affect both experimental branches A and B in the same way. The middle

column in Fig 5 shows that microbial eukaryotes and metazoans have about the same part: for

microbial eukaryotes part = (1.9 ± 0.4) × 10−4, and for metazoans part = (1.7 ± 0.5) × 10−4. A

Brunner-Munzel test cannot reject the null hypothesis that the microbial eukaryote and meta-

zoan part are the same (p-value 0.78).

These results are consistent with the model that at least the dominating group of sequences

with L = 1 rejected by the AmpliconDuo filter can be explained as arising mainly from artificial

random mutations introduced by the experimental process.

The extension of the rejection pattern to higher abundances, especially for the rather discor-

dant bog soil samples (top row in S3 Fig) and the prokaryotic samples (S4 Fig) again highlights

a property that distinguishes the AmpliconDuo filter from filter schemes that merely cut off

low abundance reads. While AmpliconDuo filters out many low abundance sequences, it still

retains many of these sequences and thus offers the possibility of a more reliable detection of

rare OTUs. On the other hand, AmpliconDuo discards also higher abundance sequences that

are not reliably occurring in the two branches of a sample and that thus may be PCR artifacts.

To conclude this section, we compare our results to independent results published recently

by Esling et al. [27]. They applied intersections between split samples (“replicate intersections”)

to several mock communities of known composition. If applied to samples that are split in two

replicates, filtering by such replicate intersections is identical to the application of the Ampli-

conDuo filter. Esling et al. report for their mock communities, composed of mixtures of 4 to 40

known clones, that intersections of two replicates on average remove 87.4% of erroneous

sequences, corresponding to 35.5% of the reads. In the experiments by Esling et al., the total

number of sequences in these mock community experiments is by far dominated by erroneous

sequences, with real sequences making up at most about 10% of total sequences, typically
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much less. Hence, we can approximately equate the percentage of removed sequences with the

percentage of total sequences, which we can directly compare with our results.

For our microbial community data, the AmpliconDuo filter removes in the eukaryote sam-

ples (single-end sequencing protocol) on average 62.1% (±4% sample standard deviation) of

the total sequences and 4.3% (±1.9%) of reads (S3 Table). For the prokaryote samples,

Fig 5. Distribution of probability part of artificial randommutations. Each dot corresponds to one part value computed for one experimental branch A or B
according to Eq (6). In the plot, part values are binned in intervals of 1/30 of their total range. Eukaryotes and metazoans (first two columns) have both been
analyzed with the same single-read protocol, and the mean part of these two groups are not significantly different. For the prokaryotic samples that have been
analyzed with a paired-end protocol, we have a higher part.

doi:10.1371/journal.pone.0141590.g005
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sequenced with a paired-end protocol as in Ref. [27], the AmpliconDuo filter removes 84.0%

(±3.3%) of total sequences and 29.0 (±6.0%) of reads.

Thus, there is an overall qualitative agreement between the low complexity mock commu-

nity data of Esling et al. [27] and our high complexity microbial community data as far as the

disparity between fractions of removed sequences and reads are concerned: both mock and

microbial community data show preferential removal of many low abundance sequences, lead-

ing to fractions of rejected sequences clearly above 50%, and lower fractions of rejected reads,

clearly below 50%.

Moreover, the numbers above show good quantitative agreement between Esling et al. and

our prokaryote data, both of which were generated with a paired-end sequencing protocol on

the same Illumina MiSeq platform. Conversely, the quantitative agreement with our eukaryote

single-end data is less good. This is consistent with our results for part, which was on average

significantly lower for the single-end protocol than for the paired-end protocol.

Community comparisons

A filtering procedure should preferentially remove spurious sequences and thus emphasize

true biological effects. One way of testing this is to observe how the filtering affects apparent

similarities of microbial communities. Application of a filtering procedure that removes ran-

dom errors in community sequence data should have two effects. First, since random errors

diminish apparent similarity between communities, removal of random errors should generally

increase similarities between communities. Second, this increase should grow with true similar-

ity: for samples that are biologically close to identical (for instance the two halves of a split sam-

ple), random noise explains most of the apparent community difference and thus removal of

random noise should increase apparent similarity, or, in terms of the Jaccard distance dkl
between communities k and l (Eq (5)): dkl should drop to a small value. On the other hand, for

samples that are truly dissimilar, removal of random noise will diminish dkl only slightly.

In fact, we observe that AmpliconDuo filtering, i.e. removal of sequences that occur only in

one branch of a split sample, has the predicted effects on community (dis-)similarities as

expressed by Jaccard distances (Fig 6). We compared community compositions based on unfil-

tered data across all eukaryotic samples (see Methods section on community comparisons),

including the two branches of each split sample that should be close to identical, and biologi-

cally different samples from different sites (left panel of Fig 6). Then we repeated all these com-

parisons after application of AmpliconDuo filtering (right panel of Fig 6). For clarity we

emphasize that the AmpliconDuo filter was only applied to branches A and B of the same sam-

ple, not to combinations of branches of different samples. The comparison of the two dendro-

grams shows that AmpliconDuo filtering generally decreases Jaccard distances, i.e. it increases

apparent similarities: all agglomeration distances in the dendrogram drop. Moreover, the

strongest drops of Jaccard distances, or increases in similarity, occur between biologically most

similar samples, namely between the A and B branches of split samples. For instance, the Jac-

card distance between FU37A and FU37B drops from 0.2 to 0.1 as we apply the AmpliconDuo

filter. For the biologically more distinct samples with their higher Jaccard distances, e.g.

between sampling sites FU25, FU28, and FU31 where we have an agglomeration distance of

about 0.75 before the filtering step and only slightly less afterwards (compare change of branch

point relative to yellow dashed visual helper line). The larger drops in Jaccard distance between

more similar samples, combined with smaller drops for less similar samples, emphasize true

biological community differences.

Fig 6 also shows that AmpliconDuo filtering does not completely erase Jaccard distances

between corresponding A and B branches. This cannot be expected since there remains a
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sampling error between both halves of a split sample. This sampling error causes many small

read number variations between the sample halves that add up in Eq (5) to a finite Jaccard dis-

tance. The only way a Jaccard distance of zero can be obtained is by a denominator of zero in

bkl in Eq (5), leading to 1 + bkl!1 in the denominator of dkl and thus to dkl ! 0. The sam-

pling error makes such a perfect fit between split samples very unlikely. Consequently, there is

a trend to larger residual Jaccard distances for higher sequence richness, especially for rare

sequences with their relatively high sampling errors (compare Fig 6 and S4 Table). For

instance, FU34 has by far the highest sequence richness and also the highest residual Jaccard

Fig 6. Effect of AmpliconDuo filtering on apparent eukaryote community similarities. Comparison of samples with respect to Jaccard distances dkl, Eq
(5), between sequence abundance vectors. Left panel: Sequences clustered at 100% identity. Right panel: Sequences clustered at 100% identity and
excluding sequences observed in only one branch of a split sample (AmpliconDuo filter).

doi:10.1371/journal.pone.0141590.g006
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distance, while UniPond has the lowest sequence richness of all aquatic samples and the lowest

residual Jaccard distance. For the problematic, high-discordance BogSoil sample this relation

does not hold: it has relatively high residual Jaccard distance but low sequence richness.

In summary, AmpliconDuo filtering in general decreases Jaccard distances, and it does so the

more the closer the biological relatedness. This increases the Jaccard distance gaps between bio-

logically similar and dissimilar communities, and thus effectively increases biological resolution.

We checked whether the dendrograms in Fig 6 can be understood based on the fractions of

taxonomic groups. Fig 7 shows that in general branches A and B of the same sample are more

similar to each other than to samples of other sites. As in the dendrograms, the bog soil sample

is the least similar sample to the remaining samples. The surprising agglomeration of FU34

with the Uni pond sample instead of the other samples from lake Fuschlsee becomes under-

standable if we consider that FU34 is extreme among the FU samples because it has the highest

fractions of Ciliophora and Cryptomonadales, and the lowest fractions of Dinoflagellata, Chry-

sophyceae, and Diatomea. All these differences to the other FU samples bring FU34 closer to

the composition of the Uni pond sample.

Fig 7. Taxonomic composition of eukaryotic communities before (top) and after (bottom) AmpliconDuo filtering. In the bog soil sample, many
archaean taxa were captured by the broad eukaryotic primers used in this study. Archaea were therefore not discarded from the bog soil sample for this
community comparison.

doi:10.1371/journal.pone.0141590.g007
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At the resolution of Fig 7, only a few changes between top and bottom panel are clearly visi-

ble, e.g. the loss of some of the rarer groups in bog soil branch B. Overall, comparison of the two

panels suggests that application of the AmpliconDuo filter does not change community compo-

sitions. This is consistent with the conserved topology between the two dendrograms in Fig 6.

Together with the discussion of S3 Fig where we saw that most of the sequences eliminated by

the AmpliconDuo filter were slight, probably random variants of non-eliminated sequences, we

conclude that these variants are spread homogeneously over all taxonomic groups.

Is AmpliconDuo filter effectively removing chimeras?

As outlined in the introduction, formation of chimeras, i.e. artificial recombination of unre-

lated nucleotide sequences, is a well-known PCR artifact. If this process was completely sto-

chastic with random breakpoints between randomly recombining sequences, we could hope

for low numbers of chimeras that occur in both independent PCRs of the two branches of each

split sample. Alternatively, chimera formation could be biased towards specific breakpoints

and specifically recombining sequences [24], in which case we would expect recurrent chimeric

sequences in the two branches. In the first scenario, the AmpliconDuo filter would effectively

remove chimeras, in the alternative scenario, the filter would be not as effective against chime-

ras but let a fraction of them pass (false positives).

To test the suitability of the AmpliconDuo filter as means for chimera removal, we analyzed

sequences before and after AmpliconDuo filtering with the established UCHIME method [33]

for chimera identification.

For the eukaryotic samples studied here, the fraction of sequences recognized by

UCHIME as chimeras was always below 1.5% with a maximum number of 242 reads, no

matter whether we used UCHIME in de novo or in reference mode (data not shown). This

small fraction could be explained by the short effective sequence lengths of 119 nucleotides,

which might have limited the chance of observing artificial recombination or of confident

recognition of chimeras by UCHIME.

Conversely, in the prokaryotic samples, with sequences almost three times as long as the

eukaryotic ones, the fractions of chimeras were much higher. Depending on whether we used

UCHIME in de novo or reference mode (see Methods), 11–23% or 23–52%, respectively, of the

sequences were labeled as chimera. While UCHIME in reference mode identified much more

low abundance chimeras, the agreement between the two UCHIME modes was overall high.

The read numbers of chimeric sequences reached up to 799.

When we studied the effect of the AmpliconDuo filter on the prokaryotic chimeras, we

found that the AmpliconDuo filter removed only low abundance chimeras, and even there the

removal was incomplete. Generally, effectiveness of the AmpliconDuo filter for chimera

removal decreased with increasing chimera abundance and was negligible for sequences with

read numbers of ten or more. The top part of Fig 8 illustrates this for a prokaryotic sample (see

S5 Fig for a detailed breakdown of samples Pro1 and Pro3).

This result indicates that the alternative scenario of biased chimera formation cannot be

rejected, since this scenario explains the frequent recurrence of the same chimera in both

branches of the split sample. With our experimental data we also cannot reject the hypothesis

that a fraction of sequences labeled as chimeras correspond to real prokaryotes.

The decreasing filtering effect of AmpliconDuo on chimeras, ceasing altogether for chime-

ras with ten or more reads can be quantitatively explained as a consequence of random sam-

pling, as will be shown in the following. In order to pass the AmpliconDuo filter, we have to

observe a chimera sequence i in each of the two branches A, B of the split sample at least once,

which means that for the corresponding read numbers of i in these branches we have to have
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riA, riB � 1. The probability of a sequence i occurring in one branch of the split sample at least

once is one minus the probability of that sequence not occurring in that branch, i.e. P(ri � 1) =

1 − P(ri = 0). The probability P(riA, riB � 1) of a sequence i occurring at least once in each of

the two independent branches A, B is then P(riA, riB � 1) = P(ri � 1)2 = (1 − P(ri = 0))2. If we

assume that the probability of each chimera i is governed by a Poisson distribution with a spe-

cific λi, the probability P(riA, riB � 1) becomes:

PðriA; riB � 1Þ ¼ 1�
l
0

i

0!
e�li

� �2

¼ ð1� e�liÞ
2
: ð8Þ

This is the probability that a sequence i with read number expectation value λi is not filtered

out by the AmpliconDuo filter. We can estimate this probability directly from our experimental

data by dividing the number of chimeras passing the AmpliconDuo filter by the total number

of chimeras (as labeled by UCHIME). The example of Pro2 shows that the agreement between

theoretical prediction and experimental values is good (bottom panel of Fig 8): Both start at

probabilities of a 0.3 to 0.5 for chimeras with expected read numbers of 1 and all converge to

probability 1 at about read numbers of 10. The lower than expected values for experimental

branch B in that figure are in agreement with the non-negligible discordance of sample Pro2

Fig 8. Effect of AmpliconDuo filtering on chimeras for prokaryotic sample Pro2. Chimeras defined by
being recognized by UCHIME in de novomode with score� 1. Top: Frequency of chimeras in branches A, B
of split sample as function of their read numbers, before (dashed lines) and after (solid lines) application of
AmpliconDuo filter. Bottom: Fraction of chimeras passing the AmpliconDuo filter (ffiltered/funfiltered) for read
numbers 1 to 20 in both branches A, B, and corresponding prediction P(riA, riB � 1) using the Poisson model
in Eq (8) with λi = 1, 2, . . ., 20.

doi:10.1371/journal.pone.0141590.g008
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(Table 2), and the clearly manifest red rim in the Pro2 panel of the discordance plot S1 Fig

below the black diagonal spike.

Note that the Poisson argument also explains why in Fig 4 and S2 Fig raw data and data

filtered with AmpliconDuo consistently converge at around read numbers of five to ten. Due

to the sampling error, we will lose a fraction of rare real sequences that by chance are sampled

in only one of the two branches. This sampling error can be neglected for rare sequences with

more than about five to ten reads according to this Poisson argument. On the other hand, the

AmpliconDuo filter will remove many artificial sequences irrespective of abundance, as dis-

cussed above.

Conclusions

In this study we have developed methods for the characterization of HTSeq data frommicrobial

communities, using a split sample protocol. This included, firstly, numerical and graphical

means for characterizing discordance between the two branches of the split sample, as imple-

mented in the R-package AmpliconDuo, and secondly, the application of the “AmpliconDuo fil-

ter”, a simple filter protocol for the removal of sequences with random errors. Both are

generally applicable to HTSeq amplicon data and neither restricted to microbes nor to the SSU

gene and Illumina MiSeq data. They are equally suitable for the analysis of HTSeq data from

other diverse genetic systems, e.g. RNA viruses in a patient, or antibody or T-cell receptor genes.

The numerical and graphical characterization allowed a rapid identification of problem-

atic samples, such as the eukaryotic bog soil sample (Fig 3) and the prokaryotic Pro3 sample

(S1 Fig).

The AmpliconDuo filter protocol increased the biological resolution in the sense that the

similarity of biologically more similar samples was increased, while the distance between dis-

similar samples was unaffected. The filter protocol did not distort overall community

compositions.

The AmpliconDuo filter was not an effective means for the removal of chimeras, especially

not for the astonishingly frequent chimeras with relatively high read numbers in prokaryotic

data. The latter fact points to a high degree of non-randomness in chimera generation. Thus, if

chimera removal is required, application of other specialized methods is necessary.

We have demonstrated with a simple model based on the Poisson distribution, that the

AmpliconDuo filter in most cases removes sequences with read numbers of up to ten. This

does not mean that working with a non-split sample and removing all sequences with up to ten

reads has the same effect. First, this would remove many more rare true positive sequences that

occur in both branches. Second, there are some instances where the filter removes sequences

with much higher read numbers that occur in only one branch, a pattern expected e.g. from

artifacts that were formed in early PCR cycles.

As HTSeq has made great strides in terms of cost efficiency and sequencing depth, and as

there is still no end to this development, the argument that split samples sacrifice too much of

the sequencing depth becomes less and less relevant. On the contrary, as we have demonstrated

in this work, important information to assess and improve the quality of the data, in particular

for rare OTUs where sequencing depth is critical, becomes available with the split sample

approach and is difficult to obtain in other ways.

Supporting Information

S1 Fig. Discordance plot showing significant deviations of prokaryote read numbers

between split samples. For legend see Fig 3.

(TIF)
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S2 Fig. Effect of AmpliconDuo filter on spectrum of read numbers for prokaryotic data.

Axes as in Fig 4.

(TIF)

S3 Fig. Relatedness of eukaryote sequences discarded by AmpliconDuo filter to sequences

passing the filter. The two columns A, B are the experimental branches, rows are sampling

sites. Horizontal axes are read numbers of discarded sequences. Vertical axes are percentages

of discarded sequences in a Levenshtein distance of 1 to 4 editing operations to passing

sequences. Numbers above bars are absolute numbers of sequences. Example: first bar in

branch A of bog soil sample contains 733 sequences (=100%) that were removed by Amplicon-

Duo filter. 62% of these 733 sequences have a Levenshtein distance of L = 1 to retained

sequences (brown bar), 78% have a distance of L� 2 (upper edge of red bar), for 85%: L� 3

(upper edge orange bar), for 87%: L� 4 (upper edge yellow bar). The remaining 100%-87% =

13% have L> 4 to sequences that pass AmpliconDuo filter.

(TIF)

S4 Fig. Relatedness of prokaryote sequences discarded by AmpliconDuo filter to sequences

passing the filter. Legend as in S3 Fig.

(TIF)

S5 Fig. Effect of UCHIME and AmpliconDuo filter on prokaryotic data. For the two pro-

karyotic samples Pro1 and Pro3 (left and right column), the figure compares numbers of

sequences discarded by the AmpliconDuo filter (top row), by removal of all sequences recog-

nized by UCHIME de novo as chimeras (middle row), and by the combination of both (bottom

row). Numbers on top of the bars are absolute frequency counts of sequences with the numbers

of reads indicated on the horizontal axis. AmpliconDuo filter has a perceivable effect only on

low abundance chimeras. For higher abundance chimeras (again above about 10 reads), the

middle and bottom rows are virtually the same.

(TIF)

S1 Table. Poly-N region and sample identifiers for all eukaryotic samples and respective

experimental branches A and B.

(PDF)

S2 Table. Poly-N region and identifiers for all prokaryotic samples and respective experi-

mental branches A and B.

(PDF)

S3 Table. Percentages of sequences and reads removed by application of the AmpliconDuo

filter from both branches A and B of each split sample.

(PDF)

S4 Table. Sequence richness in all eukaryotic samples before and after application of

AmpliconDuo filter. Taxa not addressed in the analysis (Bacteria, Metazoa or Embryophyta)

were discarded (see also section Community comparison in Materials and Methods).

(PDF)
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