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Abstract

A sensitivity analysis displays the increase in uncertainty that attends an inference when a key
assumption is relaxed. In matched observational studies of treatment effects, a key assumption in
some analyses is that subjects matched for observed covariates are comparable, and this
assumption is relaxed by positing a relevant covariate that was not observed and not controlled by
matching. What properties would such an unobserved covariate need to have to materially alter the
inference about treatment effects? For ease of calculation and reporting, it is convenient that the
sensitivity analysis be of low dimension, perhaps indexed by a scalar sensitivity parameter, but for
interpretation in specific contexts, a higher dimensional analysis may be of greater relevance. An
amplification of a sensitivity analysis is defined as a map from each point in a low dimensional
sensitivity analysis to a set of points, perhaps a ‘curve,’ in a higher dimensional sensitivity
analysis such that the possible inferences are the same for all points in the set. Possessing an
amplification, an investigator may calculate and report the low dimensional analysis, yet have
available the interpretations of the higher dimensional analysis.
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1 Example: Is More Chemotherapy More Effective, or Just More Toxic?

In discussing what credence to give to an observational or nonrandomized study of treatment
effects, a central concern is that adjustments for measured covariates may fail to render the
treated and control groups comparable prior to treatment, so that differing outcomes in
treated and control groups may not be effects caused by the treatment. In this context, a
sensitivity analysis asks what attributes an unobserved covariate would have to have to
materially alter the conclusions.

Our purpose in the current paper is to discuss a new device we call ‘amplification’ which
can aid in interpreting the results of a sensitivity analysis without increasing the complexity
of the sensitivity analysis or the space in an empirical article needed to display it. By
mapping a one-dimensional sensitivity analysis into a higher dimensional sensitivity
analysis, the interpretations of the higher dimensional analysis are available when only the
one dimensional analysis is performed and reported. To illustrate these ideas, we use a study
by Silber, et al. (2007), and a brief summary of that study follows. The study asked whether
greater intensity of chemotherapy for ovarian cancer was beneficial to patients in terms of
survival, or whether it simply increased toxicity.
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Outside of clinical trials, where treatments are assigned at random, much of the variation in
the treatments that patients receive is a direct response to variations in the health of those
patients. The intensity of the chemotherapy may vary from patient to patient in response to
variations in the health of patients prior to treatment. Random treatment assignment is one
way, the best way, to create variation in treatment that is not a response to variation in the
health of patients, but this best source of unconfounded variation in treatment is not
available outside of randomized clinical trials. Is there a source of variation in the intensity
of chemotherapy that is not a reaction to variation in the health of patients?

Ovarian cancer is unusual in that two medical specialties provide chemotherapy, medical
oncologists (MOs) and gynecologic oncologists (GOs). To the extent that MOs and GOs
differ in the way they use chemotherapy, they may provide some variation in medical
practice that is not primarily a response to the health of their patients. Medical oncologists
have specialized training in the provision of chemotherapy for cancers of all kinds.
Gynecologic oncologists are trained first in gynecology and then receive additional training
in oncology, and they typically treat cancers of the ovary, uterus and cervix. As
gynecologists, GOs are surgeons, and they often perform the surgery that precedes
chemotherapy, whereas MOs are almost invariably not surgeons, so they provide
chemotherapy after someone else has performed the surgery. Silber, et al. anticipated
correctly that MOs would often use chemotherapy more intensively than GOs, and they
sought to use this variation in treatment style to ask whether greater intensity was beneficial.
Moreover, after surgery, the principal treatment for ovarian cancer is chemotherapy, so if
MO’s and GO’s produce differing clinical outcomes, it is very likely to be the result of
differences in their use of chemotherapy. The data merged U.S. Medicare claims and follow-
up with clinical information from the Surveillance, Epidemiology and End Results program
of the U.S. National Cancer Institute. Patients were classified as MO or GO patients based
on the dominant provider of chemotherapy during the first three months after diagnosis.
Using a matching procedure described in Rosenbaum, Ross and Silber (2007), they matched
344 patients of GOs to 344 similar patients of MOs, matching for 36 covariates, including
clinical stage, tumor grade, surgeon type, a variety of comorbid conditions such as
congestive heart failure and diabetes, demographic variables such age and race, SEER site,
and year of diagnosis. As seen in Tables 2 and 3 of Silber, et al. (2007), after matching, the
MO and GO patient groups were highly comparable on these 36 measured covariates, the
balance being somewhat better than obtained by complete randomization, but of course in an
observational study there may be systematic differences that were not measured. As seen in
Figure 1 and Table 4 of Silber, et al. (2007), survival was virtually identical in the two
groups, but MO’s provided more weeks of chemotherapy and produced more weeks of
reported chemotherapy related toxicity, such as anemia, neutropenia, thrombocytopenia, and
drug induced neuropathy, both during initial treatment and in later years following cancer
recurrence.

Here, we focus on intensity of initial treatment and toxicity during the first year after
diagnosis. In particular, we focus on matched pair differences, MO-minus-GO, because the
pairs are closely matched for important clinical variables, such as stage and grade and
surgeon type. Figure 1 is a plot of 344 matched pair differences in toxicity weeks against
344 matched pair differences in chemotherapy weeks, so both differences can take integer
values between −52 and 52. Figure 1 also displays the lowess smooth (using the defaults in
R) and the marginal boxplot of the 344 matched pair differences in toxicity weeks.
Incidentally, tinkering with the settings of the lowess smooth does not alter its qualitative
appearance, except for introducing small wiggles. There are several notable patterns in
Figure 1. First, there is a dense cloud of points near the origin, (0, 0), suggesting that in
many matched pairs of two similar patients, the MOs and GOs produced similar toxicity
with treatments of similar intensity, perhaps following regimes evaluated in the clinical trials
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that usually guide initial treatment for cancer. In the upper right quadrant, however, a subset
of patients treated by MOs received more weeks of chemotherapy than their matched GO
patients and experienced substantially more toxicity. This might suggest the model of
Conover and Salsburg (1988) in which a treatment (here, the MO vs GO distinction) affects
only a subset of patients. What attributes would an unmeasured covariate have to possess to
produce the difference in toxicity seen in Figure 1?

2 Notation and Review

2.1 Treatment Effects and Treatment Assignments

There are I matched pairs, i = 1,…, I, of two subjects, j = 1, 2, one treated, denoted Zij = 1,
the other control, denoted Zij = 0, matched for observed covariates, xij, so that 1 = Zi1 + Zi2
and xi1 = xi2 for each i. There is concern about the possible impact of failing to match for a
covariate uij that was not observed, where typically ui1 ≠ ui2. Following Neyman (1923) and
Rubin (1974)’s notation for treatment effects, each subject ij has two potential responses,
(rTij, rCij), and this subject would exhibit response rCij if assigned to control, Zij = 0, or
response rTij if assigned to treatment, Zij = 1, so the response actually observed from this
subject is Rij = ZijrTij + (1 − Zij) rCij, and the effect of the treatment, namely rTij − rCij, is not
observed for any subject ij. Write Z = (Z11,…, ZI2)T, R = (R11,…, RI2)T, rC = (rC11,…,
rCI2)T, rT = (rT11,…, rTI2)T and u = (u11,…, uI2)T for the 2I-dimensional vectors. Fisher’s
sharp null hypothesis of no treatment effect asserts that the response of each subject ij is
unchanged by receiving the treatment, H0 : rTij = rCij, ∀ij or H0 : rC = rT, and if the
hypothesis is true then R = rC.

Write ℱ = {(rTij, rCij, xij, uij), i = 1,…, I, j = 1, 2}, and write for the set containing the 2I

possible treatment assignments Z, so that z ∈ if each zij is 0 or 1 and zi1 + zi2 = 1 for each
i. The number of elements in a set S is denoted |S|, so |  = 2I.

2.2 Randomization Inference in Randomized Experiments

In a randomized, paired experiment, randomization ensures that Pr (Z = z | ℱ) = 2−I for each
z ∈  In Fisher’s (1935) phrase, randomization forms the “reasoned basis for inference” in
such an experiment, in the specific sense that the distribution of any test statistic, t(Z, R),
under the null hypothesis of no effect, H0, is its permutation distribution

(1)

because under H0, R = rC is fixed by conditioning on ℱ and Z is uniformly distributed on 
Write YCi = rCi1 − rCi2, so Yi = YCi when the null hypothesis, H0, of no treatment effect is
true.

The results discussed here apply to most of the commonly used statistics for matched pairs,
including Wilcoxon’s signed rank statistic, McNemar’s test for paired binary responses, the
permutational t-statistic, permutation distributions for Huber’s m-estimates, and others.
Some specifics follow. Let Vi = Zi1 − Zi2, Yi = Ri1 − Ri2, A = (|Y1|,…, |YI|)

T, and let qi = qi
(A) ≥ 0 be a function of A for each i such that |Yi| = Ai = 0 implies qi = qi (A) = 0. Test
statistics widely use for permutation inference in matched pairs are of the form

 sign (ViYi) or are linear functions of a such a statistic, where sign (w) = 1, 0
or −1 as w > 0, w = 0, or w < 0. For instance, if qi = |Yi|, then t (Z, R) / I is the mean treated-
minus-control difference in responses, and (1) is equivalent to the permutational t-test
(Fisher 1935, Welch 1937). In the absence of ties, if qi is the rank of |Yi|, then t (Z, R) /2 + I
(I + 1) /4 is Wilcoxon’s signed rank statistic, and similar considerations apply to
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Stephenson’s (1981) generalization of Wilcoxon’s statistic which is particularly Effective
when only some subjects respond to treatment (Conover and Salsburg 1988, Rosenbaum
2007a).

Many other statistics can be put in the same form, with their randomization distributions
developed in a parallel way. If ψ (·) is an odd function, ψ (−y) = −ψ (y), then

 sign (ViYi) for qi = ψ (|Yi|) yields the permutation distribution of a
test based on Huber’s m-estimate; see Maritz (1979) and Rosenbaum (2007b). The sign test,
Noether’s (1973) quantile average test, and Brown’s (1981) combined quantile average test
also have this form. In the special case in which Rij is binary, Yi is 1, 0, or −1, with qi = |Yi|
= 0 for concordant pairs, qi = |Yi| = 1 for discordant pairs, yielding McNemar’s test, in
which (1) gives {t (Z, R) + n} /2 a binomial null distribution with sample size n = ∑ qi and

probability of success .

For all of these statistics, under the null hypothesis, H0, both Yi = YCi = rCi1 − rCi2 and qi are
fixed in (1) by conditioning on ℱ, and in a randomized experiment Vi is 1 or −1 each with

probability , so the distribution of  sign (ViYi) in (1) is the sum of I
independent random variables each having support on one point (if qi = 0) or two equally
probable points ±qi. This yields simple approximations to (1) using the central limit
theorem. Alternatively, exact calculations may use the method of Pagano and Tritchler
(1983).

2.3 Observational Studies and Sensitivity Analysis

In the absence of randomization, there may be little basis for believing that Pr (Z = z | ℱ) =
2−I. A sensitivity analysis considers departures from random assignment of various
magnitudes and their impact on inferences about treatment effects. Let = [0, 1]2I be the 2I-
dimensional unit cube. A convenient one parameter family of departures from random
assignment is

(2)

for z ∈  see Rosenbaum (1987) for the case of matched pairs and Rosenbaum (2002, §4)
for extensions to other cases. It is easy to show (Rosenbaum 2002, §4.2) that model (2) is
equivalent to assuming the following model: (i) in the population prior to matching,
treatment assignments are independent, with πij = Pr (Zij = 1 | ℱ) as the probability of
treatment; (ii) two subjects, ij and ij′, with the same observed covariates, xij = xij′, may
differ in their odds of receiving the treatment by at most a factor of Γ = exp (γ) ≥ 1,

(3)

then, the distribution of Z is restricted to by conditioning on Zi1 + Zi2 = 1, ∀i; finally, in
(2), uij = {log (πij) − mink log (πik)} / γ. Expressed in the form (3), the sensitivity analysis
is similar in spirit to the first sensitivity analysis proposed by Cornfield, et al. (1959); see
also Gastwirth (1992) and Wang and Kreiger (2006). Under the null hypothesis H0 and (2),
the distribution of t (Z, R) = t (Z, rC) is given by f
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(4)

where χ (E) = 1 if the event E occurs and χ (E) = 0 otherwise. For the statistics

 sign (ViYi) defined in §2.2, define TΓ̿ to be the sum of I independent
random variables taking value qi with probability Γ / (1 + Γ) and value −qi with probability
(1 + Γ)−1, where Γ = exp (γ). In parallel, define T̅Γ to be the sum of I independent random
variables taking values qi with probability (1 + Γ)−1 and value −qi with probability Γ / (1 +
Γ). Notice that T̅1/Γ and TΓ̿ have the same distribution. It is straightforward to show (e.g.,
Rosenbaum 1987; 2002, §4.3) that under H0 and (2) with Γ = exp (γ) ≥ 1,

(5)

where, again, R = rC when H0 is true. Of course, the inequalities in (5) are reversed for Γ =
exp (γ) ≤ 1. Under H0, with Γ = 1, the bounds in (5) are equal Pr (T̅1 ≥ k) = Pr (T1̿ ≥ k) and
are equal to the randomization distribution (1), but as Γ increases, there is greater
uncertainty about the correct null distribution for t (Z, R). For each fixed Γ ≥ 1, (5) yields an
interval of possible significance levels, and by inversion, an interval of point estimates or an
interval of endpoints for confidence intervals. The bounds in (5) are sharp in the sense that
they are attained for particular covariates u ∈  so the bounds cannot be narrowed unless
additional information is provided about u. Specifically, the upper bound in (5) is attained
for a u ∈ with |ui1 − ui2| = 1 and sign (ui1 − ui2) = sign (rCi1 − rCi2) for all i, so uij is both as
imbalanced as it can be and also as strongly associated with rCi1 − rCi2 as it can be. The
amplification in §3 will describe the same bounds (5) in terms of unobserved covariates u
with very different properties.

Exact calculation of the bound (5) is feasible (see Rosenbaum 2003, Appendix, for
software); however, for moderately large I, an approximation based on the central limit
theorem is convenient and adequate. In particular, Pr (TΓ̿ ≥ k) is approximated by

where Φ (·) is the standard Normal cumulative distribution.

Alternative methods of sensitivity analysis are discussed by Cornfield, et al. (1959),
Rosenbaum and Rubin (1983), Yanagawa (1984), Gastwirth, et al. (1992, 1999), Robins, et
al. (1999), Copas and Eguchi (2001), and Imbens (2003). For several applications, see
Aakvik (2001), Diprete and Gangl (2004), Silber, et al. (2005), and Slade, et al. (2008).

3 Amplification of a one-dimensional sensitivity analysis

3.1 Unobserved covariate with a limited relationship with both treatment and response

The one parameter sensitivity model (2) limited the strength of the association between uij
and Zij using the parameter Γ = exp (γ), and the bounds in (5) were attained for a uij with an
extremely strong, near perfect, relationship with rCij. This bounding covariate may not be the
one of greatest concern in a particular observational study, because a near perfect
relationship between uij and rCij may be implausible. The alternative model considered in
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this section has two parameters, Λ = exp (λ) controlling the strength of the relationship
between uij and Zij, and Δ = exp (δ) controlling the relationship between uij and rCij.
Because uij is related to both Zij and rCij, it can lead Zij and rCij to be associated in the
absence of adjustment for uij. The amplification will map a value of Γ into a set or curve of
values of (Λ, Δ) such that the one-dimensional analysis for Γ in §2.3 is correct for the entire
curve of values of (Λ, Δ). Therefore, an investigator may perform and display the one-
dimensional analysis in terms of Γ, yet interpret that analysis in terms of the two-
dimensional (Λ, Δ) without further calculation and display. The parameter Δ = exp (δ) is
the scalar parameter in a semiparametric family of distributions introduced by Wolfe (1974),
which is briefly reviewed in §3.2.

Gastwirth, Krieger and Rosenbaum (GKR 1998) proposed a two-parameter sensitivity
analysis involving natural parameter exponential family distributions, in which the one
parameter analysis in §2.3 is the limiting case as the other parameter increases to infinity.
However, except in the case of binary responses, the GKR analysis does not permit an
amplification, in the sense that finite values of the two parameters do not correspond with
values of Γ in §2.3, so one must report a two-dimensional array of statistical analysis,
perhaps an array of upper bounds on significance levels or an array of intervals of point
estimates. In contrast, the model in §3.3 permits a one-dimensional sensitivity analysis to be
given a two-dimensional interpretation. The two approaches agree for binary responses
using McNemar’s test, but not in other cases.

3.2 Wolfe’s semiparametric family of asymmetric distributions

Wolfe (1974) introduced a semiparametric family of asymmetric distributions in which a
scalar parameter Δ > 0 deforms an arbitrary symmetric distribution. Let W be a random
variable symmetric about zero, so that Pr (W ≤ −w) = Pr (W ≥ w) for each w > 0; here, W
may be continuous or discrete or some combination of the two. Let WΔ be a random
variable such that Pr (WΔ = 0) = Pr (W = 0) and for w > 0,

(6)

The support of WΔ and W are the same for all Δ > 0. For instance, in §1, the support or set
of possible MO-minus-GO differences in weeks with toxicity in year one was the set of
integers from −52 to 52, and a family of the form (6) would retain this support as Δ varies.
Also, Pr (WΔ ≤ −w) + Pr (WΔ ≥ w) = Pr (W ≤ −w) + Pr (W ≥ w) = 2 Pr (W ≥ w) for each w
> 0. The family is stochastically ordered by Δ in the sense that Δ < Δ′ implies Pr (WΔ ≥ w)
≤ Pr (WΔ′ ≥ w) for all w, so a larger Δ is associated with higher values of WΔ.

Now (6) implies

(7)

Wolfe (1974) introduced condition (7) calling it ‘population weighted symmetry’. In
particular, he showed that (7) is a necessary and sufficient condition for the sign of a random

variable to be independent of its absolute value, sign  in Dawid’s (1979) notation.

3.3 Model and Amplification

Write = {(xij, uij), i = 1,…, I, j = 1, 2} for the data on covariates, where again the pairs are
matched for x but not for u. Unlike the model in §2.3, the amplified model conditions on
covariates rather than on ℱ, viewing both treatment assignment Zij and response (rTij, rCij)
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as random variables, and it assumes that the dependence between rCij and Zij within pair i is
due to the failure to match on uij.

The model has the following components. First, the I distinct pairs, i = 1,…, I, are mutually
independent of one another given  for instance, (YCi, Zi1, Zi2) and (YCj, Zj1, Zj2) are
conditionally independent when i ≠ j. Second, YCi = rCi1 − rCi2 and (Zi1, Zi2) are
conditionally independent given  this expresses the idea that any dependence between YCi
and (Zi1, Zi2) remaining after matching on x is due to the failure to match also on the
unobserved u. The third component is a model relating (Zi1, Zi2) and (ui1, ui2) that is similar
to (2), except that it conditions on rather than on ℱ and has parameter λ rather than γ,
namely:

(8)

The final component relates YCi and (ui1, ui2) using the semiparametric family in §3.2:

(9)

In (9), the distribution of each of the I random variables, YCi, i = 1,…, I, is a different
parametric deformation of possibly different underlying symmetric distributions.
Specifically, the degree exp {δ (ui1 − ui2)} of asymmetry in YCi is determined by the
magnitude of difference in the unobserved ui1 − ui2; it may vary with i. The symmetric
distribution that was deformed to produce (9) may also vary with i, so that Pr (YCi ≥ y |  +
Pr (YCi ≤ −y |  may vary with i. Because (9) describes a relationship among unobservable
quantities, it is not a model that might be checked against observed data, but rather a
description of the types of statements about unobservable quantities that are warranted by
specific results in a sensitivity analysis. Write Δ = exp (δ) and Λ = exp (λ).

An amplification is an aid to interpretation, and so it is important to consider the meanings
of the parameters Γ, Λ and Δ. The parameters Γ and Λ are similar in form and both refer to
the ability to guess the treatment assignments Zij from certain information; specifically, both
refer to bounds on the odds (12) of a bet involving the treatment assignments for two
individuals with the same observed covariates, x; however, Γ refers to a guess based on the
greater information in ℱ, which includes uij and rCij and implicitly YCi = rCi1 − rCi2, while
Λ refers to a guess based on reduced information,  which includes uij but does not include
rCij. It will turn out, perhaps unsurprisingly, that a stronger association Λ based on reduced
information corresponds with a weaker association Γ based on more information, even
though the forms of the two parameters are similar. Expressed differently, if you were trying
to bias the association between treatment assignment and YCi, you could create more bias
for a given strength of association if you knew YCi than if you knew only a variable uij with
which YCi is associated. Because u ∈  the parameter exp (|δ|) = max (Δ, 1/Δ) is an upper
bound and exp (−|δ|) = min (Δ, 1/Δ) is a lower bound on the quantity exp {δ (ui1 − ui2)},
which is the degree of asymmetry (9) of the difference in outcomes YCi produced by the
imbalance ui1 − ui2 in the unobserved covariate. The form of Wolfe’s family permits exp (|
δ|) to be characterized in English as the maximum odds of a positive difference in outcomes
under control, YCi > 0, due to failure to match for the unobserved u. For instance, if Δ = 2,
then in a pair matched for x, the individual with the higher uij might be twice as likely as the
individual with the lower uij to have the higher potential response to control, rCij. In Wolfe’s
family, the odds Pr (YCi > y |  / Pr (YCi < y |  are the same for all y, so within this family,
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the parameter Δ may characterized by the value of the odds for any one y, for instance, y =
0, that is, Pr (YCi > 0 |  / Pr (YCi < 0 | .

In thinking about expressions (10) and (11) in Proposition 1 below, recall that when Γ = 1,
Pr (T1̅ ≥ k) = Pr (T̿1 ≥ k) are both equal to the randomization distribution (1) under the null
hypothesis H0.

Proposition 1 Under model (8)–(9) with fixed λ and δ, if the null hypothesis H0 of no

treatment effect is true, then for a statistic  sign (ViYi), if δλ ≥ 0

(10)

whereas if δλ ≤ 0

(11)

where

(12)

Moreover, the bounds in (10) and (11) are sharp in the sense that they are each attained for
particular u ∈ 

Proof. Under the null hypothesis of no effect, H0, Rij = rCij and Yi = YCi, and these
equalities are assumed throughout the proof. Write YC = (YC1,…, YCI)

T, AC = (|YC1|,…, |
YCI|)

T, and S = {sign (YC1),…, sign (YCI)}
T, and qCi = qi (AC) ≥ 0. The model assumed

 , Wolfe’s (1974) Theorem 2.1 applied to YCi in (9) implies , and

combining these two facts yields  by Dawid’s (1979) lemma 4. Write ρi = Pr
(Vi = 1 |  = Pr (Vi = 1 | C, AC), so that using (8),

Also, write ηsi = Pr {sign (YCi) = s |  AC} for s = 1, 0, −1, so that using (9),

(13)

with η0i = 1 if |YCi| = 0. If |YCi| > 0 then sign (Vi YCi) is 1 or −1 and

otherwise, if |YCi| = 0 then sign (Vi YCi) = 0. Straightforward manipulations then show that
if δλ ≥ 0 then
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where the lower bound is attained for ui1 = ui2 and the upper bound is attained for ui1 = 0,
ui2 = 1; whereas if δλ ≤ 0 then

where the lower bound is attained at ui1 = 0, ui2 = 1 and the upper bound is attained at ui1 =

ui2. It follows that  is the distribution of the sum of I
conditionally independent random variables, where qCi sign (ViYi) = 0 if ACi = 0 and

otherwise qCi sign (ViYi) = ±qCi with probabilities bounded by  and (ΔΛ + 1) / {(1 + Δ) (1

+ Λ)}. The bounds (10) and (11) for  sign (ViYi) follow immediately from the
bounds on the I conditionally independent components by a standard probability inequality
(e.g., Ahmed, Leon and Proschan 1981, Lemma 3.3). Finally, for (12),

The amplification or set of solutions to (12) has the following properties.

Irrelevant covariates: In a familiar way, the value Γ = 1 for the randomization distribution
amplifies into two curves by way of (12), namely (Λ, Δ) = (1, Δ) for Δ ∈ (0, ∞) and (Λ, Δ)
= (Λ, 1) for Λ ∈ (0, ∞). In words, an unobserved covariate uij biases the randomization
inference only if uij is relevant to both treatment Zij and response YCi in the absence of
treatment.

Limits: Equation (12) defines the correspondence between the one and two parameter
sensitivity analyses. It is interesting to note that the one parameter analysis is also the limit
of the two parameter analysis, because as Δ → ∞ in (12), Λ → Γ. In other words, the one
parameter bounds (5) may be understood as a special of the two parameter bounds (10) for a
covariate uij strongly related to YCi.

Reduction: If (Λ, Δ) is a solution of (12) then (Λ−1, Δ−1) is another solution; this
corresponds with replacing uij by 1 − uij. In practice, it will rarely be necessary to discuss
both solutions, as they are mirror images.

To know the sign of λδ in Proposition 1 is to know the direction of the bias induced by u,
and this is often not known. If the sensitivity analysis specifies only the magnitudes, |λ| and |
δ|, and not the signs, then Corollary 2 follows by combining (10) and (11).

Corollary 2 Under model (8)–(9) with fixed |λ| and |δ|, if the null hypothesis H0 of no

treatment effect is true, then a statistic  sign (ViYi) satisfies the bounds (5)
with

Rosenbaum and Silber Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2012 August 10.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Moreover, the bounds are sharp in the sense of being attained for some u ∈ and for some
signed λ and δ with the fixed magnitudes |λ| and |δ|.

Proposition 1 concerned the hypothesis of no effect, H0 : rTij − rCij = 0 for all ij. To test
Hτ0 : rTij − rCij = τ0ij, ∀ij, where τ0 = (τ011,…, τ0I2)T is specified, apply Proposition 1 to the
adjusted responses, rCij = Rij − Zij − τ0ij. This test may be inverted to obtain confidence
statements and point estimates (Rosenbaum 1993), for instance for an constant effect, τ0 =
θ0 (1,…, 1)T, or for an attributable effect summarizing nonconstant effects (Rosenbaum
2003, 2007a).

4 Intensity and Toxicity in Ovarian Cancer

For illustration and in light of the discussion in §1, the sensitivity analysis for the 344
matched pair differences toxicity is conducted using three test statistics, t (Z, R). In
particular, this illustrates the point that the considerations in §3 apply without change to a
wide variety of statistics. The first statistic is Wilcoxon’s signed rank statistic, which is
familiar and is a good choice for detecting a shift in location.

As noted in the discussion of Figure 1 in §1, it may not be appropriate to describe the
differences in toxicity as a shift in location that affects all matched pairs by the same
constant amount; rather, the alternative suggested by Conover and Salsburg (1988) may be
more appropriate. Specifically, Conover and Salsburg (1988) considered a treatment that has
no effect on many people but does affect some people. Their locally most powerful ranks
have substantially higher power than Wilcoxon ranks against this alternative. Conover and
Salsburg (1988)’s ranks have a form that is not easy to interpret, but they are highly
correlated with and practically equivalent to a second set of ranks proposed by Stephenson
(1981) who was motivated by different considerations; see Rosenbaum (2007a) for
discussion of the relationship. Conceptually (though not computationally), Stephenson

suggested looking at all  subsets of m of the I pairs of patients, or about 3.9 × 1010

subsets for I = 344 and m = 5, or about 5.6 × 1018 subsets for I = 344 and m = 10. In effect,
Conover and Salsburg suggested using m = 5. In each subset of m pairs, find the one pair
with the largest absolute difference in toxicity. For that one pair, which is the largest of m
pairs, a 1 is scored if the higher toxicity was for the MO patient, a positive difference, and a
0 is scored if the higher toxicity was for the GO patient, a negative difference. When
Wilcoxon’s signed rank statistic is expressed approximately as one of Hoeffding’s U-
statistics, it is equal to Stephenson’s statistic with m = 2. Taking m = 5 rather than m = 2 is
saying, in effect, that our interest is in differences in toxicity that are somewhat large, that is,
larger than m − 1 = 4 others, although in the spirit of U-statistics, the computation is

repeated for all subsets of m = 5. In point of fact, the computations do not involve the 

subsets directly, and are equivalent to using a signed rank statistic  sign

(ViYi), where if |Yi| has rank ℓ then  is defined to equal 0 if a < b.

That is, if |Yi| has rank ℓ, then it has the largest absolute difference in 
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subsets of m pairs, and  sign (ViYi) is linearly related to Stephenson’s statistic. In the
example, the second and third statistics will be Stephenson’s statistic with m = 5 or m = 10.
(Actually, we use the U-statistic form of Wilcoxon’s procedure, with m = 2, the difference
being trivial for I = 344.)

Table 1 presents a one-parameter sensitivity analysis in terms of Γ, specifically the upper
bound on the one sided significance level from (5) for testing the null hypothesis H0 of no
treatment effect. We describe the one-parameter analysis, then describe its amplification. All
three statistics are highly significant when compared to their usual randomization
distributions (1) which are equivalent to (5) when Γ = 1. An unobserved covariate strongly
related to toxicity that increased the odds of treatment by an MO by 50% or Γ = 1.5 could
increase the significance level for Wilcoxon’s signed rank statistic to at most 0.036;
however, if it doubled the odds of treatment by an MO, Γ = 2, then it could explain the
observed association as measured by the Wilcoxon statistic. Because in Figure 1 it appeared
that only a small fraction of MO patients experienced substantially increased toxicity, it is
not surprising that the results are much less sensitive to bias with m = 5 or m = 10; that is,
relatively high toxicity is more common among MO patients. In particular, when thinking
about the largest difference in toxicity in ten pairs, an unobserved covariate strongly related
to toxicity would need to more than triple the odds of treatment by an MO to explain the
observed association between toxicity and provider specialty.

The analysis in Table 1 is implicitly about an unobserved covariate difference uij strongly
associated with the difference Yi in toxicity. The amplification reexpresses the very same
analysis in terms of two parameters, Δ controlling the association between the covariate uij
and toxicity Yi, and Λ controlling the association between the covariate uij and provider
specialty Vi = Zi1 − Zi2. For instance, if Δ = Λ = 2, then uij can double the odds of treatment
from a MO and double the chance of a positive difference in toxicity, Yi > 0, inducing a
spurious association between provider speciality and toxicity when there is no actual effect
of provider specialty.

As seen in Proposition 1, the sign of λδ determines the direction of the bias. To produce the
higher levels of toxicity found among patients of MO’s, the unobserved covariate u needs to
be either (i) positively associated with both toxicity and treatment by an MO, so Δ > 1 and
Λ > 1, or (ii) negatively associated with both toxicity and treatment by an MO, so Δ < 1 and
Λ < 1. However, it suffices to consider Δ > 1 and Λ > 1, as (Λ, Δ) and (Λ−1, Δ−1)
correspond with the same Γ, and the movement from (Λ, Δ) to (Λ−1, Δ−1) is the same as
replacing uij by 1 − uij.

For fixed Γ > 1 the amplification is the set

For Γ = 1.5, the amplification 1.5 includes (2, 4), (2.618, 2.618), and (4, 2), among many
other values. That is, for either Γ = 1.5 in (5) or (Λ, Δ) = (4, 2) in (10), Wilcoxon’s signed
rank statistic would have the same upper bound 0.036 on the one sided significance level.
Here, (Λ, Δ) = (4, 2) refers to a u that quadrupled the odds of treatment by an MO rather
than a GO and doubled the odds of greater toxicity. The upper bound on the P-value from
Wilcoxon’s signed rank statistic is 0.0497 for Γ = 1.532, and Figure 2 depicts the
corresponding amplification.
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Similarly, for Γ = 2, the amplification 2 includes (Λ, Δ) = (3, 5), (3.732, 3.732) and (5, 3).
For Stephenson’s test with m = 5, for a covariate u that was associated with a five-fold
increase in the odds of treatment by an MO rather than a GO and a three-fold increase in the
odds of greater toxicity, the upper bound on the one-sided significance level is 0.011, the
same as for Γ = 2 in Table 1. For Γ = 3, the amplification 3 includes (Λ, Δ) = (4, 11), (5,
7), (5.828, 5.828), (7, 5) and (11, 4), and all of these yield the upper bound of 0.031 in Table
1 for Stephenson’s test with m = 10. For instance, 0.031 is an upper bound on the
significance level if there were an unobserved covariate associated with an eleven-fold
increase in the odds of treatment by an MO rather than a GO and associated with a four-fold
increase in the odds of greater toxicity.

5 Discussion

When an observational study is discussed in a scientific meeting or journal, it is quite
common that a skeptic or critic will raise the possibility that the difference in outcomes is
due to failure to control for a specific unobserved covariate u which the skeptic claims is
associated with both treatment assignment and outcome. As Bross (1961) emphasized, the
skeptic has the responsibility for making this claim specific and plausible in terms of what
might reasonably be true of the variable u under discussion. Now it may happen that this
unobserved u is very strongly related to the outcome, so the one parameter sensitivity
analysis in terms of Γ speaks directly to the issues raised by the skeptic. It may happen,
however, that the critic is discussing a covariate u with only a moderate relationship with the
outcome, and in this case it is useful to have an amplification that translates the sensitivity
analysis in terms of Γ into all corresponding sensitivity analyses in terms of (Λ, Δ). Here,
the parameter Λ describes the relationship between an unobserved covariate u and treatment
assignment Z, while the parameter Δ describes the relationship between u and the responses
rC that would be exhibited under control. It is convenient that the two-parameter analysis
may be determined by simple arithmetic from a reported one-parameter analysis without
doing further analysis of the data.

An analysis involving a single sensitivity parameter, here Γ, may be concisely displayed and
easily examined, and this is important in empirical papers where many aspects of an
investigation must be described in limited space. However, in some contexts, the use of
several sensitivity parameters may aid interpretation. An amplification maps a one-
dimensional sensitivity analysis into sets of two-dimensional analyses in such a way that the
one dimensional analysis accurately describes the corresponding set of two-dimensional
analyses; that is, it maps values of Γ into sets Γ of values of (Λ, Δ) such that the one
analysis for Γ describes all of the analyses for (Λ, Δ) ∈ Γ. For instance, if an empirical
paper said simply that the upper bound on the significance level for Wilcoxon’s signed rank
statistic exceeds 0.05 for Γ > 1.532, then from this one fact a reader could construct Figure
2. In this way, one may calculate and display a one-dimensional analysis, yet have available
the interpretations for a two dimensional analysis.
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Figure 1.
Matched Pair Difference, MO-GO, in Toxicity Weeks Plotted Against Matched Pair
Difference in Chemotherapy Weeks in the Year After Diagnosis for 344 Pairs of Patients.
The curve is a lowess smooth, and the boxplot displays the marginal distribution of the MO-
GO difference in toxicity.

Rosenbaum and Silber Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2012 August 10.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2.
Amplification (Λ, Δ) of Γ = 1.532. In the ovarian data, Wilcoxon's signed rank statistic has
a maximum P-value of 0.05 at Γ = 1.532. The dotted lines are the twin asymptotes of Λ =
1.532 and Δ = 1.532.
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Table 1

Upper Bounds on One-Sided Significance Levels Testing for No Effect On Toxicity in Year 1.

Γ Wilcoxon
m = 2

Stephenson
m = 5

Stephenson
m = 10

1 6.3 × 10−7 5.0 × 10−9 1.8 × 10−8

1.5 0.036 0.00013 0.000027

2 0.62 0.011 0.0010

2.5 0.11 0.0080

3 0.031
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