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Abstract 

Photonic Time Crystals (PTCs) – dielectric media with their refractive index 

modulated periodically in time – offer new opportunities in photonics arising from time-

reflections and momentum bandgaps. Here, we study the emission of light from a 

radiation source inside a PTC. We solve the general classical and quantum mechanical 

models of emission in a temporally-varying medium, and find that radiation is always 

exponentially amplified when associated with the momentum gap, whether initiated by a 

macroscopic source, an atom, or by vacuum fluctuations, drawing the amplification 

energy from the modulation. The radiation linewidth becomes narrower as time 

advances, and is centered in the middle of the momentum gap. We calculate the 

spontaneous decay rate of an atom embedded in a PTC and show that it vanishes at the 

band edge due to low density of photonic states. Finally, we propose the concept of non-

resonant tunable PTC lasers.  

 



Photonic Time Crystals (PTCs) are dielectric media whose refractive index experiences 

large ultrafast periodic variations in time [1-5]. Generally, a wave propagating in a medium 

undergoing an abrupt change in the refractive index experiences time-reflection and time-

refraction. In a spatially-homogeneous time-varying medium, momentum is conserved 

whereas energy is not, hence the frequencies of the time-reflected and time-refracted waves 

change due to the index variation. The time-reflection is especially interesting, because 

causality imposes that wave reflected from the temporal interface propagates backward in 

space (rather than in time, which is still unfortunately impossible) [6]. Time-refraction and 

reflection, fascinating wave phenomena on their own right, occur in many wave systems in 

electromagnetic (EM) waves [7], water waves [8], acoustic waves [9], elastic waves [10], and 

in principle can occur in any wave system. Periodic modulation of the refractive index makes 

these time-reflections interfere, giving rise to a band structure with bands and gaps in the 

momentum [11,12]. The most important feature of PTCs is the existence of a bandgap in 

momentum, because the modes associated with this momentum gap have two solutions, where 

the mode amplitude grows or decays exponentially, and both solutions are physical. The 

exponentially-growing gap mode offers an avenue for amplification of radiation, drawing 

energy from the modulation. The exponential growth of the gap modes is non-resonant: it 

occurs for all wavevectors associated with the momentum gaps. 

    The dispersion relation of PTCs, exhibiting bands and gaps, makes PTCs analogous to spatial 

photonic crystals (SPCs), where the refractive index is periodically modulated in space. 

However, despite the similarity, there are fundamental differences between SPCs and PTCs: 

SPCs are stationary in time, hence energy conservation governs most processes, whereas in 

PTCs energy is not conserved, and causality dictates the dynamics in the system. On the other 

hand, waves propagating in SPCs exchange momentum with the spatial lattice, whereas in 

spatially-homogeneous PTCs, momentum is conserved.  



Apart from the temporal reflection and refraction, and the momentum band structure, 

the abrupt temporal modulation of the EM properties also opens up a number of new 

possibilities such as a frequency conversion [4,5,12], photon pair creation from vacuum [13-

17], topological temporal edge states [18], antireflection temporal coatings [19], extreme 

energy transformations [20], and localization combined with amplification in temporally-

disordered media [21]. Experimentally, time-refraction was already observed in photonics [4], 

while time-reflection was thus far observed only with water waves [8] and elastic waves [10]. 

This is due to the highly demanding requirements for detectable time-reflections: the change 

in the refractive index should act as a "wall", in analogy to a spatial interface in SPC causing 

Fresnel reflection. Thus, the refractive index should vary on the order of unity at a rate 

comparable to the frequency of the EM wave experiencing the index modulation. For light in 

the near infrared, the modulation should be at a few femtosecond rates with an index change 

of >0.1, which is extremely difficult to realize in experiment. However, the recent progress 

with epsilon-near-zero materials exhibiting ultrafast carrier dynamics [4, 22-25] has brought 

these ideas close to meeting such requirements, to the extent that experimental observation is 

anticipated in the near future [26].  

The existence of momentum bands and gaps in a PTC raise fundamental questions on 

the emission of light by a radiation source embedded in a PTC. Thirty-five years ago, the 

analogous study in spatial photonic crystals led to the discovery of the inhibition of 

spontaneous emission in the EM bandgap of SPCs [27]. Since, generally in lasers, spontaneous 

emission into non-lasing modes is always considered as inevitable loss, this discovery had 

enormous significance, and, in fact, gave birth to the field of Photonic Crystals. One of its 

major consequences made it possible to realize threshold-less lasing into a defect mode in the 

photonic bandgap of SPCs [28, 29]. In this spirit, it would be interesting to explore the radiation 



emitted by a radiation source embedded in a PTC. Naturally, this can have many fundamental 

implications and offer exciting applications.   

Here, we formulate the quantum mechanical theory describing the emission of light by 

atoms in excited state and the classical theory of radiating dipoles embedded in PTCs. We show 

that radiation is always exponentially amplified when associated with the momentum gap, and 

its linewidth is becoming narrower with time. This discovery allows proposing the concept of 

non-resonant tunable PTC lasers, drawing their energy from the modulation.  

Consider a source of radiation embedded in a PTC – a homogeneous lossless dielectric 

material with permittivity 𝜀(𝑡) modulated externally in a determined way with a period 𝑇, as 

sketched in Fig. 1a.  First, we assume that the radiation source is a point dipole, i.e., acts as a 

temporally-oscillating point current 𝒋 = −𝑖𝜔𝛿(𝒓)𝒅 𝑒 . The emission pattern of a point 

dipole in SPC is well known: if its frequency 𝜔  resides in an "allowed" frequency band, it 

excites the respective Bloch modes in the bulk of the photonic crystal, whereas if 𝜔  resides 

within a photonic bandgap - no radiation occurs. But how does such a dipole emission behave 

in a PTC, where the bands and the bandgaps are defined with respect to the wavevector, rather 

than the frequency? As we show in Fig. 1b, the emission of a point dipole embedded in a PTC 

always grows exponentially with time, drawing its energy from the modulation. This is because 

the medium is homogeneous, hence a point dipole always radiates into all modes, including 

those associated with the momentum gap, where the Floquet eigenmodes have amplitudes that 

grow exponentially with time, as will be explained below. This growth barely depends on the 

frequency of the dipole, but it strongly depends on the amplitude of the permittivity 

modulation. Namely, the larger the modulation, the sooner the growth takes place and the 

steeper it is. This can be explained by the fact that larger modulation amplitude of the 

permittivity allows to import more energy in the system within a modulation cycle, since 



energy can be imported only when the permittivity varies. Another way to describe this is the 

band-structure of the PTC, Fig. 1c. 

 

 

Figure 1. Emission by a point dipole embedded in a PTC. a) A sketch of the PTC, with permittivity 

varying according to 𝜀(𝑡) = 𝜀 + 𝑐𝑜𝑠 (𝛺𝑡), 𝛺 = 2𝜋/𝑇, with a dipole antenna inside. b) Exponential 

growth of EM energy associated with the dipole emission for different dipole frequencies 𝜔  and 
modulation amplitudes. c) Complex dispersion relation (bandstructure) of the PTC for 𝜀(𝑡) = 2 ±
0.5𝑐𝑜𝑠 (𝛺𝑡). d) Power spectrum of dipole emission vs wavenumber, as it evolves with time. In each 
moment of time the spectrum is normalized by the total radiation power. 𝑘  is a wavenumber of the 
mode resonantly excited by the dipole with frequency 𝜔 : 𝜔 (𝑘 ) = 𝜔 . The emission linewidth 
initially occupies the whole bandgap, but becomes narrower with time reflecting the stronger emission 
at middle of the gap. The horizontal axes in c), d) coincide.  

Figure 1c shows the dispersion relation of the PTC, 𝜔 (𝑘), where 𝜔  is a Floquet frequency. 

As shown there, in certain ranges of wavenumber 𝑘,  𝜔  has a nonzero imaginary part. This 

imaginary part is responsible for gain and loss in the system during the modulation cycle, and 

we refer to these ranges of 𝑘 as to the PTC bandgaps. Generally, the larger the modulation of 

𝜀, the wider PTC bandgaps it opens, and the larger |𝐼𝑚(𝜔 )| in these bandgaps. The power 

spectrum (in 𝑘) of the dipole emission and its evolution with time are depicted in Fig. 1d. 

Initially, the point dipole with frequency 𝜔  efficiently excites all the eigenmodes with proper 

wavenumber 𝑘 = 𝜔 〈𝑛〉/𝑐, where 〈𝑛〉 is the effective refractive index – some mean value 

through the modulation cycle, and 𝑐 is the speed of light in vacuum. This is because these 

waves lie on dispersion curve, and thus are perfectly phase-matched. But, within a few 



oscillation cycles, the gap modes start to dominate in the spectrum, even if 𝑘  does not belong 

to the gap. These modes are not phase-matched with the dipole frequency, but they nevertheless 

grow exponentially in time (extracting energy from the modulation), which overshadows any 

phase-matching. In the next section we explain in more details the possibility of exponentially 

growing emission by rigorously solving the Maxwell equations and finding the eigenmodes 

of the PTC analytically.  

 First, we consider an empty PTC medium (no radiation source), and derive the eigenmodes, 

and then add an arbitrary radiation source. Starting with curl Maxwell equations with 𝜀 =

𝜀(𝑡), 𝜇 = 1, we write the wave equation for the magnetic field as 

                                                             (𝜕 (𝜀(𝑡)𝜕 ) + 𝑐 𝑘 )𝑯𝒌 = 0                                                   (1) 

where we use a Fourier transform in space, since the system is homogeneous and 𝑘 is a good 

quantum number. Physically, this means that the eigenmodes are shaped as plane-waves, 

defined by their wavenumber 𝑘. For each wavenumber 𝑘 this equation has two Floquet 

eigenmodes: 

                                                               𝐻 , (𝑡) = 𝐻 (𝑡)𝑒
,

                                                         (2) 

where 𝜔 ,  are Floquet quasi-frequencies and 𝐻 (𝑡) is a periodic function in time, constructed 

from harmonics of the modulation period 𝑇. Since 𝜀 is real (the medium is lossless), if 𝐻(𝑡) is 

an eigenmode, i.e., solution of (1), so is 𝐻∗(𝑡), which means 𝜔 = −𝜔 = 𝜔 . Solving for 

the dispersion relation, we find that the dispersion curve forms a band structure, Fig. 1c. In the 

bands – the frequency 𝜔  is real and the two modes are oscillating at the same frequency, 

whereas in the band gaps 𝜔  has an imaginary part, with one mode exponentially growing with 

time while the other mode is exponentially decaying. Up to this point, the properties of the 

system seem to be analogous to the properties of Photonic Crystals. The interesting difference 



here is that the exponentially growing modes in the gaps of PTCs are not unphysical (as they 

are in dielectric SPCs). Rather, in PTCs radiation sources can actually couple to these diverging 

modes, and lead to the extraction of energy from the modulation. To explore this, we add to 

Eq. (1) a radiation source associated with a temporally-dependent current density 𝒋(𝒕): 

                                            (𝜕 (𝜀(𝑡)𝜕 ) + 𝑐 𝑘 )𝑯𝒌(𝑡) = 4𝜋𝑖𝑐𝒌 × 𝒋𝒌(𝑡)                                      (3) 

where 𝒋𝒌(t) is a Fourier 𝒌 component of current. Physically, the field 𝑯𝒌(𝑡) is the response of 

the medium to this current. We can express it in a general form through the Green function of 

the system as  

𝑯𝒌(𝑡) = 4𝑖𝜋𝑐 𝐺 (𝑡, 𝑡 )𝒌 × 𝒋𝒌(𝒕 )𝑑𝑡′ (4) 

  (𝜕 (𝜀(𝑡)𝜕 ) + 𝑐 𝑘 )𝐺 (𝑡, 𝑡 ) = 𝛿(𝑡 − 𝑡 ) (5) 

and then express this Green function through the system's eigenmodes from Eq. (2) 

𝐺 (𝑡, 𝑡 ) =

0,                                                                                               𝑡 < 𝑡′

𝐻 (𝑡 )𝐻 (𝑡) − 𝐻 (𝑡 )𝐻 (𝑡)

𝜀(𝑡 )(𝐻 (𝑡 )𝜕 𝐻 (𝑡 ) − 𝐻 (𝑡 )𝜕 𝐻 (𝑡′))
, 𝑡 > 𝑡′

                          (6) 

The Green function 𝐺 (𝑡, 𝑡 ) represents the response of the medium at time 𝑡 to a single 

homogeneous “flash” at time 𝑡′. The detailed derivation of Eq. (6) is provided in the 

Supplementary Information [30]. It should be noted that the analogous spatial Green function 

for SPCs, 𝐺 (𝑥, 𝑥 ), is defined similar to Eq. (5). A closer look at the expression (5) reveals 

that - in the momentum band gap, where 𝐼𝑚(𝜔 ) ≠ 0 - the medium responds with 

exponentially growing emission even to the slightest flash of radiation emitted from the current 

source. This seemingly counterintuitive feature is a consequence of the lack of energy 

conservation in the medium. In fact, the energy deposited into the exponentially growing gap 

modes comes not from the source but from the external modulation of the medium.  



We can qualitatively describe the exponentially growing response in a PTC with the help of 

Fig. 2. The figure shows the difference between excited gap modes in SPC and in PTC, where 

the excitation in the SPC is by a point source in real-space, and the excitation in the PTC is by 

a "flash" in time. Mathematically, the solution of Eq. (5) has two degrees of freedom, and 

therefore should be expressed through two eigenmodes on either side of the excitation moment 

𝑡 = 𝑡′, and stitched with two stitching conditions at this point. To understand the physical 

consequences without solving the equation, we must use the physical constraints in both cases. 

In the case of SPC, Fig. 2a, the solution must obey energy conservation, so only evanescent 

waves are allowed on either side of the excitation point in space. Hence, the response to the 

excitation at a frequency in the gap of a photonic crystal is evanescent waves.  On the other 

hand, in the PTC, Fig. 2b, two of the four modes are propagating back in time, therefore cannot 

be excited – restricted by causality. At the same time, energy conservation does not apply for 

PTCs, thus the Green function must be expressed with two forward-propagating waves in time, 

one of which is exponentially decaying and the other exponentially growing.  



 

This analysis explains the exponentially growing dipole emission in a PTC. The dipole 

excites the gap modes, which, once excited, grow exponentially regardless the dipole, even 

when mismatched. The key issue here is that we assumed a point dipole. Hence, because it is 

a point, it excites modes with all 𝑘, including the exponentially growing gap modes. Thus, any 

point source in a PTC results in exponentially growing emission, even when the excitation is a 

single flash in time. The emission from this flash will grow exponentially, drawing energy from 

the modulation. In the next section we describe the radiation in PTCs in a quantum picture. We 

describe the emission by an atom initially in the excited state and the influence of the PTC 

bandstructure on the decay time to the ground state, and discuss the evolution of the photon 

numbers in the modes at the PTC bandgap. 

Fig. 2. Comparison between the excitation of gap modes in SPC and PTC. (a) The 1D SPC is excited by a point 
source at position 𝑥  and emits at a given frequency within the photonic bandgap. The source can couple 
only to the spatially- evanescent part on either side of 𝑥 , due to energy conservation. (b)  In the PTC, the 
source is a flash at  𝑡 , and it can excite only to the parts of the modes that evolve forward in time, as dictated 
by causality. One of these two modes is exponentially growing in time. 



The problem of quantization of EM waves in a time-varying medium is related to the 

dynamical Casimir effect (DCE) [31], since a periodic change of the permittivity of a dielectric 

medium installed in a cavity effectively acts as a periodic change of the boundary conditions, 

such as the distance between the mirrors forming the cavity [14,15,31-35]. The PTC 

Hamiltonian we are using is  

    𝐻 = ℏ
𝑐𝑘

𝑛(𝑡)

⎝

⎜
⎛

𝑛(𝑡)
𝑛
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𝑛
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𝑛

−
𝑛

𝑛(𝑡)

2
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⎟
⎞

𝒌

     (7) 

where 𝑛(𝑡) = 𝜀(𝑡) is the time-varying refractive index, and 𝑛  is the mean value of refractive 

index obtained by averaging through one modulation cycle. This Hamiltonian is derived in the 

Supplementary Information [30] following the quantization procedure described in [36], and it 

qualitatively coincides with [37, 38]. It follows our intuition gained in the classical case: it is 

time-dependent through 𝑛(𝑡), it conserves momentum, 𝐻 , ∑ 𝒌 𝑎𝒌𝑎𝒌 = 0, but does not 

conserve the number of photons. The structure of the Hamiltonian (7) allows us to describe the 

dynamics of the free field for each photon pair {𝒌, −𝒌} separately. Doing so, we find that the 

resulting dynamics agrees with classical case: for modes 𝑘 associated with the band of the PTC, 

the expectation value of the number of photons 〈𝑁 〉(𝑡) = 〈𝜓(𝑡) 𝑎 𝑎 + 𝑎 𝑎 𝜓(𝑡)〉 

oscillates near some constant value, whereas if 𝑘 belongs to the PTC bandgap, 〈𝑁 〉 grows 

exponentially with time at the same rate as in the classical case. The observation holds even if 

the initial state is vacuum, which is in agreement with known results on the photon generation 

rate in DCE under resonant conditions, 〈𝑁 〉 ∝ sinh(𝛾𝑡) [34]. The periodic variation of 𝑛(𝑡) 

allows us to introduce the Floquet eigenmodes |𝜓 (𝑡)〉 = 𝑒 |𝜙 (𝑡)〉 of the Hamiltonian 

(7), with 𝜔  being the Floquet eigenfrequency. In the band, 𝜔  coincides with the Floquet 

frequency calculated in the classical analysis, and the Floquet eigenstates do not differ much 



from the corresponding Fock states. On the other hand, in the bandgap, the eigenstates of the 

quantum Hamiltonian cannot exist: by correspondence with the classical case, 〈𝑁 〉 in the gap 

eigenmodes should grow exponentially, which is impossible with Hermitian Hamiltonians, 

such as the one in Eq. (7). The absence of eigenstates in the gap brings complexity in studying 

the dynamics of the excited atom due to light-atom interaction, which is described below, but 

the exponential growth of the number of photons in the momentum gap and the 

classical/semiclassical intuition allow to make safe statements on the dynamics in this unusual 

quantum system. 

To describe the emission from excited atoms in PTC, we add the atomic and the interaction 

parts in Hamiltonian (7) 

                                                                    𝐻 = 𝐻 + 𝐻 + 𝐻                                                           (8) 

                                                                         𝐻 = ℏ𝜔 𝜎                                                                    (9) 

                                                     𝐻 =
ℏ𝑔

𝜀(𝑡)
𝑎 + 𝑎 (𝜎 + 𝜎 )                                         (10) 

where we assume a two-level atom and dipole interaction. We first want to analyze what 

happens with an initially excited atom interacting with the vacuum field. In the stationary case 

(of a static medium) this problem is solvable analytically, and results in the exponential decay 

of the atom from the excited state to the ground state, known as spontaneous emission. In a 

PTC, no analytic solution is feasible, at least because vacuum is not an eigenstate of the light 

field. The bigger problem, however, is the fact that the number of photons in the initially empty 

gap modes will grow exponentially regardless of the atom. This means that the atom emission 

into these modes cannot be clearly divided into spontaneous and stimulated emissions: the rate 

of transitions will grow with time as a consequence of the photons already created by the PTC. 

Apart from stimulated emission, stimulated absorption also takes place. The overall dynamics 



of an atom interacting with gap modes does not result in the decay of the excited state to the 

ground state, but rather it is stabilizing at 50% probability in the excited and 50% in the ground 

state, with a constantly growing number of photons. As in the classical case, the growth of the 

number of photons barely depends on the frequency of atomic transition, and, even if the two-

level atom is not in resonance with the middle of the momentum-gap, i.e. 𝜔 ≠ Ω/2, the 

emission into gap modes eventually governs the dynamics of the atom.    

It is now natural to ask if there are any particular circumstances under which we can still talk 

about spontaneous emission (in the usual sense of being induced by quantum fluctuations with 

no photons around) in a PTC, and if there are, what are the physical consequences. This 

question can be answered partially by addressing the Floquet modes associated with the band, 

while the influence of the gap modes is omitted. This assumption can be justified if decay time 

of the atom is shorter than inverse growth rate of the number of photons in the gap modes 𝜏 <

1/𝐼𝑚(𝜔 ), or if the PTC with the embedded atom is placed in a resonator with all resonator 

eigenmodes residing inside the PTC bands (rather than in the gaps). In this case, we show in 

the Supplementary Information [30] that the spontaneous emission rate is 

                                                         𝛾 =
𝑉

ℏ 𝜋
𝑉

𝑘

𝜕𝜔
𝜕𝑘

                                                 (11) 

where 

                                     𝑉 =
1

𝑇
𝜙 (𝑡)|𝐻 (𝑡)|𝜙 (𝑡) 𝑒 𝑑𝑡                                               (12) 

  



is the coupling constant between the initial and final Floquet eigenstates through 𝐻 , and 

𝑘 : 𝜔 (𝑘 ) = 𝜔 + 𝑚Ω is the wavenumber of the mode corresponding to 𝑚  harmonic of 

the atomic transition. Analyzing the wavenumber dependence of the emission rate 𝛾(𝜔) within 

the band, Eq. (11) shows that there are two competing effects when we move closer to the band 

edge. On the one hand, the closer to the band gap the larger the amplitude of the field 

oscillations in Floquet eigenstate, which is manifested in a larger 𝑉 . On the other hand, the 

density of photon states, 𝜌 ∝ 𝑘 , vanishes near the band edge, which can be seen by 

the vertical slope of the dispersion relation near the gap in the Fig. 1c. Surprisingly, the second 

effect is stronger than the first. Thus, the spontaneous emission rises up to some wavenumber 

but then vanishes completely near the very edge, where the curvature of the band structure 

determines the outcome. The implication is very intriguing: despite the fact that the Floquet 

Figure 3.  Spontaneous emission rate into the Floquet modes associated with the first band. a) 
Dispersion in the first band of the PTC. b) Spontaneous emission rate in the same first band. Starting at 
low wavenumber, the emission rate increases, reaches a maximum but then declines and goes to zero 
at the band edge, 𝑘 , where the bandstructure is curved. 



modes have larger oscillations closer to the band edge, which naturally increases the strength 

of light-matter interaction, the emission rate at the edge goes to zero because there are no states 

to radiate into. Thus, an "atom" or a nano-antenna with directional emission at the band edge 

would stay in the excited state forever, unable to relax to the ground state through spontaneous 

emission.  

In conclusion, we formulated the foundations of light-matter interaction in a one-dimensional 

photonic time-crystals. The presence of a gap in the momentum alters light-matter interactions 

in a profound way, bringing to question foundational issues such as the meaning of spontaneous 

and induced emission in such media, and the lifetime of an atom in excited states. The 

exponential growth of the energy in the modes associated with the PTC gap and the non-

monotonous growth rate raise the exciting of idea of PTC lasers, which extract their energy 

from the modulation. The main idea is that a controllable periodic change of the permittivity 

can give rise to coherent radiation from an almost arbitrary source, and, under some conditions, 

the emission can be shaped into pulses by designing the permittivity modulation.   
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