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A theory of phase conjugation in asymmetric materials that allow a phase shift between the grating and the light-
interference pattern is developed. We find that when this phase is nonzero, maximum phase-conjugate reflectivity
occurs for unequal pump intensities. The conditions for self-oscillation are studied.

The application by Yariv and Pepper' of the formal-
ism of nonlinear optics to the study of four-wave mixing
in phase-conjugate optics led to the prediction of a va-
riety of phenomena, including amplified (phase-con-
jugate) reflection, amplified transmission, and mirror-
less self-oscillation. These phenomena were later ob-
served by a number of investigators. 2' 3 Also, the ki-
nematic similarity between phase-conjugate optics and
real-time holography has been noted,4 and a large
number of experiments have been performed recently
in photorefractive crystals. 5'6

There exists a fundamental difference between
four-wave mixing in holographic, say photorefractive,
media7 and in media, such as atomic vapors and an-
istropic molecular liquids, used in phase-conjugate
optics; in the second case the nonlinearity that gives rise
to four-wave interaction is due to a local atomic, or
molecular (nonlinear), electronic response. A complex
susceptibility Xijkl(-W, O, w, -w) in this case reflects a
temporal displacement between the induced polariza-
tion and the product of optical fields that drive that
polarization. This displacement is large when the fre-
quency a' is near that of an atomic or molecular transi-
tion.8 In the holographic case the mixing is due to
spatial holograms written by the four interacting waves.
Here the complex coupling constant reflects a spatial
displacement between the interference pattern of a pair
of beams and the resultant holographic grating. The
physically distinct origin of the temporal phase and the
spatial phase leads to fundamental and hence qualita-
tive differences in the mechanisms of energy exchange
between the interacting waves in two cases.

In this Letter we formulate the nonlinear four-wave
coupled-mode equations of real-time holography in a
manner that is close to the spirit of phase-conjugate
optics.1 We then proceed to solve these equations in
a number of important special cases and obtain ex-
pressions for oscillation thresholds, amplified reflection,
and amplified transmission.

The basic interaction geometry is illustrated in Fig.
1. Four waves of equal frequency a' and, for simplicity,
of the same polarization, are propagating through the
nonlinear medium. Let the electric-field amplitude
associated with the jth beam be

Ej = Aj(r) exp[i(kj - r - cot)] + c.c. (1)

We solve the problem in steady state so that the A1 may

be taken to be time independent. The propagation
directions come in two oppositely directed pairs, k1 =
-k 2 and k3 =-k 4 , whereas the relative direction of k3
and k1 is arbitrary.

It is the fringes in the time-independent part of the
light intensity that generate the hologram, whose fringes
have the same periodicity as the light-interference
pattern. In general, the holographic fringes of refrac-
tive index will have a spatial phase shift with respect to
the light-interference pattern,7 so we can write the
fundamental components of the intensity-induced
grating as

= no + nieiol (A,*A4 + A2A3*) exp(ik, . r) + c.c.
2 Io~1

+ ntiei~ (A1 A3 * + A2*A4 )
2 So

exp(ikl, -r) + c.c.

+ niii ' (AlA2*) exp(ikii, * r) + c.c.
2 0o

+nlveiQIv (A3*A4) exp(ikiv . r) + c.c.,
2 10

where
4

Io= Z1A12,
i=1

(2)

(3)

I4, 44I, 'kin, and XIv are real, nI, nil, niii, and nIV are real
and positive, k1 = k4 -k = k2- k3, kII = k- k3 = k4
- k2, ki, = 2k,, and kiv = 2k4. The complex constant
nleikI, as an example, characterizes the spatial hologram
written by the stationary intensity-interference pattern
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Fig. 1. Scheme of the four beams involved in phase conju-
gation.
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of beams 1 and 4 and also that of beams 3 and 2. These
two pairs of waves are characterized by the same con-
stant because k4 - k, = k2- k3.

The expressions for njeioI' niieio/i, nnileill", and
nIvei>lv are obtained by solving the specific physical
process responsible for the hologram formation. In the
case of photorefractive crystals, such as Bi12 SiO2 0 and
BaTiO3 as examples, the hologram is due to a refrac-
tive-index modulation produced by trapped charges
that are excited by the intensity-interference pattern.

This charge distribution gives rise to a spatially al-
ternating electric field, which in turn spatially modu-
lates the index through the electro-optic effect. Ex-
pressions for nj and XI, for example, derived from two
theories of the process areg9 10

flI =-ref n0
3 (EO2 + Ed 2) 11/2ni = -reff no3Ep L +(Ed +Ed E)2] ' (4)

Ed(Ed + EP) + E0
2

__~p)+Etan 'ki E- ~

where reff is the relevant electro-optic coefficient, E 0 is
an applied electric dc field directed along ki, and Ed and
Ep are electric fields characteristic of diffusion and
maximum space charge, respectively.

Ed = kBTkI/e and Ep = epd/ (ekj), where Pd is the
density of traps in the material, kB is Boltzmann's
constant, T is the temperature, e is the electron charge,
and E is the permittivity of the material. Now, by using
expression (2) for n and the scalar-wave equation, we
can derive, by the standard slowly varying field ap-
proximation, 1' the following four coupled-wave equa-
tions:

2c cos a,, dA= inje (AIA4 * + A2 *A3)A4
co dz Io

_iniiell (AA 3* + A2*A4)A3
Io

inilei (AlA 2 *)A 2 , (6)
Io

2c dA2 inle-io'
Cos dz 2 10 (Ai*A 4 +A 2 A3*)A3

+ mnieikIo (A,*A3 + A2A4*)A4

+ mnIIo (Ai*A 2 )Al, (7)
'0

2c os a2 dA3 = inle (AlA 4* + A2 *A3 )A2
a, dz Io

+ Io (A,*A3 + A2A4*)AI

+ i7?ive irkV (A 3A4 *)A 4 ,
Io

2c os dA4 _ine-i- (A,*A4 + A2 A*)A,
a, dz Io

inlieitII (AA3* + A2*A4)A2

Io

- (A3*A4)A3.
Io

(8)

When A3 and A2 are taken to be zero in the above
equations, we recover the well-known and analytically
soluble theory of holographic two-beam coupling.7
There too, the spatial phase difference 44 between the
light interference pattern and the grating plays an im-
portant role. Its sign determines the direction of energy
transfer from one beam to the other. The effect of the
phase is to shift the spatial pattern of refractive index
toward one beam and away from the other. It intro-
duces an asymmetry that allows one beam to accept and
the other to donate power. In the present analysis of
phase conjugation, we will show that this leads to an
asymmetry between the roles of the counterpropagating
pump beams Al and A2. The problem may be simpli-
fied by making two assumptions. First we take only ni
# 0. That is, we consider a holographic system whose
spatial-frequency response is such that of all the grat-
ings present in the system, only one grating, in this case
the one created by the interference of beams 1 and 4 and
2 and 3, which is characterized by ni exp(ioj), gives rise
to strong beam coupling. This predominance of one
grating is common in many practical situations and is
due to the directions, polarization, and coherence re-
lationships of the four beams relative to the crystal axes
and to the application, in some cases, of an electric field
that enhances certain gratings.

Second, we use the nondepleted pump approxima-
tion, in which jA1j2, jA2j2 >> A3j 2, 1A42. In this case, the
derivatives in Eqs. (6) and (7) are of the order of A4

2 or
A3A4, and the approximation (dA,/dz) = (dA2/dz) =
0 becomes reasonable. Moreover, as can be seen from
its definition, Eq. (3), the normalization factor 1o be-
comes constant. With these assumptions, the equa-
tions reduce to

2c dA 3 nje [I A 212A 3 + (AlA 2)A 4 *],
a, dz Io

(10)

cos dA4 = In [IA,1
2A4* + (AA 2)*A3].

(11)

With the boundary conditions A3(1) = 0 and A4*(0), the
solutions of Eqs. (10) and (11) are

A3 (z) = A 4*(0) el/A21 + 1 (e'(z4 1
- 1),

A4*(z) = A4*(O) r'e-' + 1 (rleY(z-1) + 1),

where r is the pump-beam intensity ratio,

A2 A2* I2

A1A1* I,
iwonleioi 

y = e - iaeio,
=2c cos ae2 E

(12)

(13)

(14)

(15)

with a positive and 0 real. The phase-conjugate re-
flectivity is thus

R- A3(0j2= | sinh) 7 2

A4*(0) |cosh |a1+ In r)
(9)

(16)
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Fig. 2. Phase-conjugate reflectivity as a function of pump-
intensity ratio for 4 = wr/2 and different coupling strengths
al.

If al sin 0 is not small compared to unity, the maximum
reflectivity, Eq. (25) occurs at a value of a pumping ratio
r that differs from unity by a large factor. The case in
which ' = 7r/2 is of special interest, for it occurs in
photorefractive materials that operate by diffusion
only7 (Eo = 0). If we use symmetric pumps, then the
reflectivity tanh2(al/2) never exceeds unity. Large
reflectivities may, however, be reached simply by using
asymmetric pumps. The maximum reflectivity obtains
with r = exp(at) and is equal to sinh2(al/2). In Fig. 2
we show plots of reflectivity versus r for various values
of the coupling constant. These values are large but
nevertheless obtainable in certain crystals with large
electro-optic coefficients, such as BaTiO3.' 2

The threshold conditions for self-oscillation (R = a)
in holographic phase conjugation may be obtained from
Eq. (16). We see that the phase-conjugate reflectance
becomes infinite for

at cos 0 = 7r,

0~~~~~ 4

Fig. 3. Phase-conjugate reflectivity for coupling strength at
= 3.627 and, peaking from left to right, 4) = 0, 7r/6, ir/3, and
r/2. Oscillation here occurs for 4 = 7r/6 and r = 6.13.

the transmittivity of A4 is

_ AS]) ~e7112 cosh (in L 2~

T = nAj) 2 2 2 7)
A4*(0) cosh i- + I

2 2

and we see that only the intensity-independent quantity
4yl and the pump-intensity ratio r enter the expressions

for R and T. The coupling constant in the second
coupled-wave equation is the same as that in the first;
it is not its complex conjugate, as is the case with the
coupled-wave equations associated with four-wave
mixing by third-order nonlinear susceptibility.4 This
is because the complex coupling constant in the holo-
graphic case represents a spatial phase shift, whereas,
in the case of a third-order nonlinearity, a complex
coefficient is due to absorption; that is, it represents a
temporal phase shift.

We find that the maximum phase-conjugate reflec-
tivity occurs when r = exp(al sin '):

2
R max = (18)

r = exp(al sin ').

In Fig. 3, we plot, for a given value of at, the phase-
conjugate reflectivity as a function of r for several values
of t. We find, for the value of at chosen, that self-os-
cillation occurs for 0 = 7r/6 and r c 6.

In order to achieve self-oscillation, it is necessary
according to Eq. (18) that cos 0 # 0. In particular, we
find that our model predicts that self-oscillation is im-
possible for X = 7r/2 (the pure diffusion case), no matter
how strong the coupling constant is.

When an ordinary mirror of amplitude reflectivity p
is used to reflect the output AS]) in the direction of A3,
we find that the oscillation threshold is simply RI p 12 =
1.
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