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Amplify-and-Forward Cooperative OFDM with Multiple-Relays:
Performance Analysis and Relay Selection Methods
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Abstract—In this paper, we investigate a cooperative system
with multiple relays and amplify-and-forward relaying over
frequency-selective channels. To extract the available multipath
diversity, we employ orthogonal frequency division multiplexing
(OFDM) with precoding. Through the derivation of pairwise
error probability (PEP), we demonstrate that PEP is not a simple
exponential function of the signal-to-noise ratio (SNR), but it
includes a term that involves some power of logarithm of the
SNR. If that term is ignored, the diversity order is given by
the summation of the channel length in the direct link and the
minimum of channel lengths in each relaying link confirmed by
simulation results. Based on the PEP expression, we also propose
two relay selection strategies; one is on a per-subcarrier basis
and the other is on an all-subcarrier basis. Our simulation results
indicate that both strategies result in performance improvements
although the per-subcarrier method performs better.

Index Terms—Amplify-and-forward relaying, OFDM, pairwise
error probability, precoding, relay selection.

I. INTRODUCTION

COOPERATIVE diversity [1] has emerged as a powerful
technique to reap the benefits of multiple-input multiple-

output (MIMO) communications in a wireless scenario with
single-antenna terminals. By creating a virtual antenna array
among the spatially distributed nodes through relaying, this
technique realizes the advantages of MIMO communications
in a distributed fashion. For example, the cooperation protocol
proposed in Laneman et al.’s pioneering work [1] effectively
realizes receive diversity (RD). Multihop relaying can be con-
sidered a special case of the RD protocol where the destination
node only switches on during the relaying phase [2]. Other
cooperation protocols such as TD (transmit diversity) and STD
(simplified transmit diversity) have also been proposed in the
literature [2]. These basic cooperation protocols can be used
with either amplify-and-forward (AF) or decode-and-forward
(DF) relaying. In DF relaying, the relay node fully decodes,
re-encodes, and retransmits the source node’s message. In AF
relaying, the relay retransmits a scaled version of the received
signal without any attempt to decode it.

Related Literature and Contributions of This Work: Pio-
neering works on the topic of cooperative diversity have been
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built upon the assumption of frequency-flat fading channels.
However, in broadband communication systems, the trans-
mission bandwidth is larger than the coherence bandwidth
of the channel which results in a frequency-selective chan-
nel. A widely used approach to overcome the degrading
effects of frequency-selectivity is OFDM which has been
recently applied to cooperative communications. Particularly,
OFDM-based multihop relaying has been studied by several
authors (see e.g., [3]–[6] and the references therein). The
integration of RD, TD, and STD protocols with OFDM has
also attracted some attention in the literature [7]–[9]. However,
these works are mainly limited to single-relay scenarios.

In contrast to most earlier work, this paper considers a
multi-relay scenario and investigates the performance limits
of a cooperative precoded OFDM system for RD cooperation
protocol. Specifically, we derive a PEP for the precoded co-
operative OFDM system under consideration and demonstrate
the asymptotical diversity order. Based on the PEP expression,
we further propose two relay selection methods which work on
a per-subcarrier basis and an all-subcarrier basis respectively.
Finally, we present Monte-Carlo simulations to demonstrate
the achievable diversity gains in the practical SNR range and
the impact of proposed relay selection methods on the error
rate performance.

Notation: Bold upper- and lower-case letters denote re-
spectively matrices and column vectors (e.g., A, a). (⋅)𝑇
and (⋅)𝐻 denote transpose and conjugate-transpose opera-
tions respectively. A vector s of length 𝑃 is expressed as
s = [s(1), s(2), ⋅ ⋅ ⋅ , s(𝑃 )], with ∥ s ∥ standing for its
2-norm. X(𝑖, 𝑗) denotes the (𝑖, 𝑗)th element of matrix X.
The 𝑖th diagonal element in diagonal matrix D is denoted
by D(𝑖). I𝐾 denotes a 𝐾 × 𝐾 identity matrix and 0 stands
for an all-zero matrix of appropriate dimensions. Q repre-
sents the 𝑃 × 𝑃 FFT (Fast Fourier Transform) matrix. VAB

denotes a 𝑃 × (𝐿AB + 1) matrix with elements given by
VAB(𝑘,𝑚) = exp

(−𝑗2𝜋(𝑘 − 1)(𝑚− 1)/𝑃
)
, 1 ≤ 𝑘 ≤

𝑃, 1 ≤ 𝑚 ≤ (𝐿AB + 1). 𝔼[⋅] is the expectation operator.
Notation 𝑓(𝑥) ≜ 𝑂

(
𝑔(𝑥)

)
, 𝑓(𝑥), 𝑔(𝑥) > 0 denotes the

existence of a positive constant 𝑐 such that 𝑓(𝑥) ≤ 𝑐𝑔(𝑥)
when 𝑥 is large.

II. SYSTEM MODEL

We consider a cooperative wireless communication sce-
nario where the source node S transmits information to the
destination node D with the assistance of 𝑁 relay nodes
R1,R2, ⋅ ⋅ ⋅ ,R𝑁 . All nodes are equipped with a single antenna
and operate in half-duplex mode. Any linear modulation tech-
nique such as PSK (phase shift keying) or QAM (quadrature
amplitude modulation) can be used. The cooperation is based
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on the RD protocol with AF relaying: In the broadcasting
phase, the source node transmits to the destination and the
relay nodes. In the relaying phase, the relay nodes take turns
to forward a scaled noisy version of the signals received from
the source.

To take into account the effect of relay geometry, we
consider an aggregate channel model which consists of both
long-term path loss and short-term fading effects. The path
loss is proportional to 𝑑−𝛼 where 𝑑 is the propagation
distance and 𝛼 is the path loss coefficient. Normalizing
the path loss in the source-to-destination (S → D) link
to be unity, the relative gains from source-to- 𝑛threlay (S
→ R𝑛) and from the 𝑛threlay-to-destination (R𝑛 → D)
links are defined, respectively, as 𝐺SR𝑛

= (𝑑SD/𝑑SR𝑛
)𝛼

and 𝐺R𝑛D = (𝑑SD/𝑑R𝑛D)
𝛼, 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 [2]. They

can be further related to each other by 𝐺
−2/𝛼
SR𝑛

+ 𝐺
−2/𝛼
R𝑛D −

2𝐺
−1/𝛼
SR𝑛

𝐺
−1/𝛼
R𝑛D cos 𝜃𝑛 = 1 through the law of cosines, where

𝜃𝑛 is the angle between links S → R𝑛 and R𝑛 → D. The ratio
𝐺SR𝑛

/𝐺R𝑛D in dB reflects the effect of relay location. The
more negative this ratio in dB, the closer that particular relay is
placed to the destination terminal. The underlying channels are
modeled as quasi-static frequency-selective Rayleigh fading
with a uniform delay profile. The channel impulse responses
(CIRs) for S → R𝑛, R𝑛 → D and S → D links are given
by hSR𝑛 = [hSR𝑛(1), hSR𝑛(2), ⋅ ⋅ ⋅ , hSR𝑛(𝐿SR𝑛 + 1)],
hR𝑛D = [hR𝑛D(1), hR𝑛D(2), ⋅ ⋅ ⋅ ,hR𝑛D(𝐿R𝑛D + 1)], and
hSD = [hSD(1), hSD(2), ⋅ ⋅ ⋅ ,hSD(𝐿SD + 1)]. The entries
of random vectors hSR𝑛

,hR𝑛D, and hSD are independent
identically distributed (i.i.d) zero mean Gaussian random
variables with variances of 1/(𝐿SR𝑛 + 1), 1/(𝐿R𝑛D + 1) , and
1/(𝐿SD + 1) respectively. The CIRs remain constant over a
period of one block transmission and vary independently from
block to block.

We consider an OFDM relay system in which a linear
precoder [10] is used to extract the maximum diversity
gain. Let s denote the information symbol block of length
𝑃 . The precoded data block is expressed as x = Θs
where Θ is the precoding matrix satisfying power constraint
tr(ΘΘ𝐻) = 𝑃 , where 𝑃 is the total number of subcarriers.
To avoid inter block interference, a cyclic prefix of length
𝐿 = max(𝐿SD, 𝐿SR𝑛

, 𝐿R𝑛D) is added between adjacent in-
formation blocks. Subcarriers are divided into 𝑀 groups in
order to reduce the decoding complexity and simplify the
precoder design. Each group contains 𝐿 + 1 equally spaced
sub-carriers. The precoder Θ can be expressed as Θ =∑𝑀

𝑘=1 Ψ
𝑇
𝑘 ΦΨ𝑘 [10], where Ψ𝑘 = I𝑃 (𝑖𝑘,ℓ , :) is a (𝐿+1)×𝑃

permutation matrix obtained from the rows of identity matrix
of size 𝑃 , i.e., {𝑖𝑘,ℓ = (ℓ − 1)𝑀 + 𝑘, ℓ = 1, ⋅ ⋅ ⋅ , 𝐿 + 1},
and Φ is a matrix of size (𝐿 + 1) × (𝐿 + 1) that performs
precoding within one group.

Since the FFT operation at the relay nodes is cancelled by
the IFFT (inverse FFT) operation in the relaying phase, it is
reasonable to assume that FFT processing takes place only at
the destination, but not at the relays, to reduce the complexity.
After removing the cyclic prefix, the received data block at
the 𝑛threlay node is given by rR𝑛 =

√
𝐺SR𝑛𝐸HSR𝑛Q

𝐻x +
nR𝑛

, 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 , where 𝐸 is the average power
per transmitting symbol, HSR𝑛

is a circulant channel matrix

with entries of HSR𝑛
(𝑖, 𝑗) =

(
hSR𝑛

(𝑖 − 𝑗)mod𝑃
)
, 𝑖, 𝑗 =

1, 2, ⋅ ⋅ ⋅ , 𝑃 , and nR𝑛
, 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 denotes the zero mean

white Gaussian noise vector (with covariance matrix of 𝑁0I𝑃 )
at the 𝑛th relay node. To ensure that the power budget is not
violated, each relay node normalizes the respective received
vector rR𝑛 by a factor of

√
𝔼[∥ rR𝑛 ∥2]/𝑃 =

√
𝐺SR𝑛𝐸 +𝑁0

and then forwards the resulting signal to the destination. The
received signals at the destination during the broadcasting and
relaying phases are therefore given by

rD0
=

√
𝐸QHSDQ

𝐻x+ n0

rD𝑛=𝐴𝑛

√
𝐺SR𝑛𝐸QHR𝑛DHSR𝑛Q

𝐻x+𝐴𝑛HR𝑛DnR𝑛+n𝑛 (1)

where 𝐴𝑛 =
√
𝐺R𝑛D𝐸/(𝐺SR𝑛

𝐸 +𝑁0), and n𝑞, 𝑞 =
0, 1, ⋅ ⋅ ⋅ , 𝑁 , are Gaussian noise vectors at the destination with
zero mean and covariance matrix of 𝑁0I𝑃 . Here, HSD and
HSR𝑛

are circulant channel matrices with their (𝑖, 𝑗)th entry
being HSD(𝑖, 𝑗) =

(
hSD(𝑖 − 𝑗)mod𝑃

)
and HR𝑛D(𝑖, 𝑗) =

hR𝑛D(𝑖− 𝑗)mod𝑃
)
, 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑃 respectively.

Now, let DAB(𝑝) =
∑𝐿AB+1

𝑘=1 hAB(𝑘) exp(−𝑗2𝜋(𝑘− 1)(𝑝−
1)/𝑃 ), 𝑝 = 1, 2, ⋅ ⋅ ⋅ , 𝑃 , denote the frequency response
evaluated at the FFT grid for the A→B link with channel
length 𝐿AB + 1. We can rewrite (1) as

rD0 =
√
𝐸DSDx+ n0

rD𝑛
= 𝐴𝑛

√
𝐺SR𝑛

𝐸DR𝑛DDSR𝑛
x+ ñ𝑛, 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 (2)

where the noise vector ñ𝑛 = 𝐴𝑛HR𝑛DnR𝑛
+n𝑛 is condition-

ally (conditioned on HR𝑛D) zero mean Gaussian distributed
with covariance matrix 𝑁0Σ𝑛 and Σ𝑛 = 𝐴2

𝑛DR𝑛DD
𝐻
R𝑛D+I𝑃 .

After pre-whitening at the destination, the input signals to the
maximum likelihood (ML) detector are given by

r = diag
[√

𝐸DSD, 𝐴1

√
𝐺SR1

𝐸Σ
−1/2
1 DR1DDSR1

, ⋅ ⋅ ⋅ ,
𝐴𝑁

√
𝐺SR𝑁

𝐸Σ
−1/2
𝑁 DR𝑁DDSR𝑁

]
x+ n (3)

where noise vector n in (3) is zero mean white Gaussian with
covariance matrix 𝑁0I𝑃 .

III. DERIVATION OF PEP

For a given channel realization and transmitted symbol
block s, conditional PEP denotes the probability of deciding
in favor of another block s′ and is given by

𝑃𝑒

(
s → s′∣hSD,hSR𝑛

,hR𝑛D
)
= 𝑄

(𝑑(s, s′)
2

)
(4)

where 𝑑(s → s′) is the Euclidean distance between s and s′

and 𝑄(𝑥) is the Gaussian-𝑄 function [11]. Let error vector
e = s − s′ represent the difference between s and s′. Then,
the precoded error vector is u = Θe. Therefore, we have

𝑑2(s → s′)

=𝜌
(
∥DSDu∥2+

𝑁∑
𝑛=1

∥𝐴𝑛

√
𝐺SR𝑛

Σ−1/2
𝑛 DR𝑛DDSR𝑛

u∥2
)

(5)

where 𝜌 = 𝐸/𝑁0 denotes SNR. Notice DABu = UABhAB,
where DAB is a diagonal matrix of size 𝑃 × 𝑃 , UAB =
diag(u)VAB, and VAB is of the size of 𝑃 × (𝐿AB + 1) as
defined earlier in Notation. Applying Chernoff bound on (4),
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i.e., 𝑄(𝑥) ≤ 1
2 exp

(− 𝑥2

2

)
, we obtain an upper bound for the

average PEP as

𝑃𝑒

(
s → s′)≤ 1

2
𝔼hSD

[
exp

(−𝜌h𝐻
SDU

𝐻
SDUSDhSD

8

)] 𝑁∏
𝑛=1

𝐽𝑛 (6)

where

𝐽𝑛=𝔼hSR𝑛 ,hR𝑛D

[
exp

(−𝜌∥√𝐺SR𝑛𝐴𝑛Σ
−1/2DR𝑛DDSR𝑛u∥2
8

)]
.

(7)

Following steps in the Appendix, we obtain

𝑃𝑒

(
s →s′) ≤ 𝛽𝜌−

(
𝐿SD+1+

∑𝑁
𝑛=1 𝑘𝑛

)
(ln 𝜌)

∑𝑁
𝑛=1 𝑘𝑛

+𝑂
(
𝜌−

(
𝐿SD+1+

∑𝑁
𝑛=1 𝑘𝑛

)
(ln 𝜌)

∑𝑁
𝑛=1(𝑘𝑛−1)

)
(8)

where 𝛽 is defined as

𝛽 =
8𝐿SD+1(8𝜋)

∑𝑁
𝑛=1 𝑘𝑛(𝐿SD + 1)𝐿SD+1

∏𝑁
𝑛=1(𝐿SR𝑛 + 1)𝑘𝑛

2 det
(
U𝐻

SDUSD
)(∏𝑁

𝑛=1𝜛𝑛

)
(𝜐𝐺R𝑛D)

∑
𝑁
𝑛=1 𝑘𝑛

(9)

and 𝑘𝑛 = min(𝐿SR𝑛 + 1, 𝐿R𝑛D + 1), 𝜐 = (2
1

𝐿+1 − 1)Δ2
𝑚𝑖𝑛,

Δ𝑚𝑖𝑛 is the minimum Euclidean distance among the con-
stellation points, and 𝜛𝑛 = det

(
Q𝑛Q

𝐻
𝑛

)
. Here, matrix Q𝑛

contains the 1st, (𝑀+1)th, ⋅ ⋅ ⋅ , (𝑀𝐿SR𝑛
+1)th rows in VSR𝑛

.
It is observed from (8) that the PEP is not a sim-

ple exponential function of the SNR. It involves the term
(ln 𝜌)

∑𝑁
𝑛=1 min(𝐿SR𝑛+1,𝐿R𝑛D+1) due to the cascaded nature of

channels in the relaying links. This is in line with the observa-
tion of the term (ln 𝜌)𝑁 reported in [12], [13] for frequency-
flat channels. From (8), we also observe that an asymptotical
diversity order of 𝐾 = 𝐿SD+1+

∑𝑁
𝑛=1 min(𝐿SR𝑛

+1, 𝐿R𝑛D+
1) is available for the precoded OFDM multi-relay system.

IV. PEP-BASED RELAY SELECTION METHODS

So far, we have assumed the participation of all 𝑁 relay
nodes in the relaying phase for the considered multi-relay
scenario. As described in Section II, the relay nodes take turns
to forward the received signals from the source. A potential
alternative transmission scheme is relay selection which yields
a higher throughput, because fewer time slots are required to
complete the transmission of one block. Most of the current
work on relay selection assumes frequency-flat channels with a
few exceptions such as [5] and [6] which focus on frequency-
selective channels. In [5], Siriwongpairat et al. have considered
an OFDM cooperative system with a fixed number of relays in
DF relaying and proposed a relay assignment scheme for the
RD protocol based on the outage probability. In [6], a multi-
hop scenario has been considered for DF relaying based on
the outage probability. In the following, we propose two relay
selection methods based on the PEP expression.

The first method is on a per-subcarrier basis in which the
“best" relay is chosen for each subcarrier. The second method
is on an all-subcarrier basis in which a single relay is selected
for all subcarriers. From (4) and (5), we readily check that the
PEP depends on the following quantity associated with the 𝑝th

subcarrier for the 𝑛threlay, 𝑝 = 1, 2, ⋅ ⋅ ⋅ , 𝑃, 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 ,

𝜁𝑛(𝑝) = ∣𝐴𝑛

√
𝐺SR𝑛

Σ𝑛(𝑝)
−1/2DR𝑛D(𝑝)DSR𝑛

(𝑝)∣2
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Fig. 1. Comparison of exact and derived PEP.

=
𝐴2

𝑛𝐺SR𝑛
∣DR𝑛D(𝑝)DSR𝑛

(𝑝)∣2
1 +𝐴2

𝑛∣DR𝑛D(𝑝)∣2 (10)

where Σ𝑛(𝑝), DR𝑛D(𝑝), and DSR𝑛(𝑝) denote the 𝑝th diagonal
elements in matrices Σ𝑛, DR𝑛D, and DSR𝑛

respectively.
Based on (10), we propose two strategies for relay selection:

∙ Relay Selection Method 1 (RSM-1): For each subcarrier
in the relaying phase, we select the relay which provides
the largest 𝜁𝑛(𝑝) for that subcarrier.

∙ Relay Selection Method 2 (RSM-2): For each relay, we
calculate

∑𝑃
𝑝=1 𝜁𝑛(𝑝) and choose the relay that provides

the highest sum. The chosen relay will be used for all
subcarriers in the relaying phase.

In RSM-1, the relays are selected on a per-subcarrier basis,
therefore, the number of active relays in the relaying phase can
be as high as 𝑁 . On the other hand, in RSM-2, there is only
one relay active in the relaying phase. Therefore, RSM-2 has
lower operation cost and complexity than RSM-1. However,
as demonstrated later, the performance for RSM-2 is not as
good as RSM-1.

V. NUMERICAL RESULTS

A. Diversity Gain

To verify the diversity gain predicted by the derived PEP,
we calculate the exact PEP by taking the average of (4) (with
respect to random channels) through a Monte-Carlo simulation
and compare it with (8). We consider a single relay system in
which the relay is located at an equal distance to the source and
to the destination, i.e., 𝐺SR/𝐺RD = 0dB, 𝜃 = 60∘, and assume
QPSK modulation. For the convenience of evaluating (4), we
set 𝑃 = 𝐿+ 1 where 𝐿 = max(𝐿SD, 𝐿SR, 𝐿RD). We consider
an error event of length 4 with s = 1√

2
[1+𝑗 1+𝑗 1+𝑗 1−𝑗]𝑇

and s′ = 1√
2
[1 + 𝑗 − 1 + 𝑗 1− 𝑗 − 1− 𝑗]𝑇 assuming two

channel configurations:

Channel A: 𝐿SD = 2, 𝐿SR = 1, 𝐿RD = 3;
Channel B: 𝐿SD = 2, 𝐿SR = 3, 𝐿RD = 1.

Fig. 1 shows the comparison of exact and derived PEP.
The derived PEP expression is able to precisely reflect the
slope of the exact PEP, which quantifies the diversity gain.
The discrepancy between the derived and exact PEP is mainly
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Fig. 2. BER performance of precoded cooperative OFDM with one relay.

due to the deployed Chernoff bound. For the specific channel
lengths under consideration, we observe that the PEP behaves
in the form of 𝜌−5(ln 𝜌)2. We have also included a plot of 𝜌−5

as a benchmark curve to demonstrate the degradation resulting
from (ln 𝜌)2.

B. BER Performance

In this section, we present Monte-Carlo simulation results
to demonstrate the error rate performance of the precoded
cooperative OFDM system under consideration. We again
assume QPSK modulation, and set 𝜃𝑛 = 60∘ for all relays. In
order to perform the grouping technique [10], the number of
subcarriers is chosen rounded to the nearest integer of 𝑃 = 64
depending on the value of 𝐿 + 1 = max(𝐿SD + 1, 𝐿R𝑛D +
1, 𝐿SR𝑛

+ 1). Specifically, we investigate Scenarios 1 − 4 for
the single relay system and Scenarios 5− 8 for the two-relay
system with the following channel orders:

Scenario 1: 𝐿SD = 1, 𝐿SR = 1, 𝐿RD = 2;
Scenario 2: 𝐿SD = 1, 𝐿SR = 1, 𝐿RD = 1;
Scenario 3: 𝐿SD = 1, 𝐿SR = 2, 𝐿RD = 1;
Scenario 4: 𝐿SD = 2, 𝐿SR = 2, 𝐿RD = 2;
Scenario 5: 𝐿SD = 1, 𝐿SR𝑛

= 1, 𝐿R𝑛D = 2, 𝑛 = 1, 2
Scenario 6: 𝐿SD = 1, 𝐿SR𝑛

= 1, 𝐿R𝑛D = 1, 𝑛 = 1, 2
Scenario 7: 𝐿SD = 1, 𝐿SR𝑛

= 2, 𝐿R𝑛D = 1, 𝑛 = 1, 2
Scenario 8: 𝐿SD = 2, 𝐿SR𝑛

= 2, 𝐿R𝑛D = 2, 𝑛 = 1, 2

As clearly seen from Figs. 2 and 3, without the use of
precoding, diversity gain is limited to spatial diversity (which
is equal to 2 and 3 for the single relay system and the two-
relay system, respectively), and is independent of channel
lengths. Through the deployment of precoding, OFDM is able
to extract the underlying rich multipath diversity.

For the single relay system, it is observed from Fig. 2 that
an identical diversity order is achieved for the Scenarios 1,
2, and 3, as predicted by our diversity gain analysis (i.e.,
minimum of channel lengths over relaying link determines the
diversity order of this link). The diversity order increases for
Scenario 4, where the channel lengths of both source-to-relay
and relay-to-destination links are equal to 3. The maximum
diversity order available for these scenarios is obtained as
𝐿SD + 1 + min(𝐿SR + 1, 𝐿RD + 1) = 4 and 6, respectively.
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Fig. 3. BER performance of cooperative precoded OFDM with two relays.
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Fig. 4. Performance of relay selection methods for a three-relay system with
𝐺SR𝑛/𝐺R𝑛D = 0 dB, 𝑛 = 1, 2, 3.

However, the cascaded nature of Rayleigh channels in relaying
links allows only partial diversity to be observed in the
practical SNR range under consideration [14]. This can be
observed better through a comparison with the performance
of maximum ratio combining (MRC) with 4 and 6 co-located
antennas, which is also included in Fig. 2, for benchmarking
purpose.

For the two-relay system (i.e., Scenarios 5-8), the maximum
diversity orders are calculated as 𝐿SD+1+

∑𝑁
𝑛=1 min(𝐿SR𝑛+

1, 𝐿R𝑛D + 1) = 6 and 9. As expected, Scenarios 5-7 yield an
identical diversity order while in Scenario 8, a higher diversity
order is obtained. The performance of MRC schemes with
6 and 9 co-located antennas are also included in Fig. 3 for
comparison purposes. In comparison to these point-to-point
links, a performance degradation is observed in the two-relay
system, similar to that observed in Fig. 2.

C. Relay Selection Methods

In Fig. 4, we investigate the performance of relay selec-
tion methods RSM-1 and RSM-2 described in Section IV.
Subcarrier sorting in the relaying phase is adopted in our
schemes [4], [15]. We consider a three-relay system with
𝐿SD = 𝐿SR𝑛

= 𝐿R𝑛D = 1 and relay locations 𝐺SR𝑛
/𝐺R𝑛D =
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0dB, 𝑛 = 1, 2, 3. We observe from Fig. 4 that RSM-2 provides
about 0.5dB performance improvement (at BER = 10−3 )
over the original scheme in which all relays participate in
the relaying phase. The performance gain climbs up to about
1.5 dB for RSM-1, where the relay selection is performed
on a subcarrier basis. We note that RSM-1 brings gains of
3dB and 4dB gains respectively for 𝐺SR𝑛

/𝐺R𝑛D = 10dB and
30 dB, respectively (these results are omitted due to space
constraints). This demonstrates that having reliable S → R
links becomes a favorable condition for relay selection.

VI. CONCLUSION

In this paper, we have investigated the performance of a pre-
coded cooperative OFDM system with AF relaying in a multi-
relay scenario. Through the derivation of PEP, we have identi-
fied that the diversity order for the OFDM multi-relay system
is worsened by a factor of (ln 𝜌)

∑𝑁
𝑛=1 min(𝐿SR𝑛+1,𝐿R𝑛D+1),

where channel lengths in underlying source-to-𝑛th relay, and
𝑛th relay-to-destination are given by 𝐿SR𝑛

+ 1 and 𝐿R𝑛D +
1), 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 , respectively. If that factor is ignored,
the maximum diversity order for the multi-relay system is
𝐿SD + 1 +

∑𝑁
𝑛=1 min(𝐿SR𝑛

+ 1, 𝐿R𝑛D + 1) where 𝐿SD + 1
is the channel length from the source-to-destination. Based on
the PEP expression, we have also proposed two relay selection
methods which provide further performance improvements.
Finally, we have presented Monte-Carlo simulations to cor-
roborate the analytical results and to provide performance
comparisons.

APPENDIX

Using the result in [17, Eq (4a), page 200], we upper bound
the expectation in (6) with respect to hSD by

𝔼hSD

[
exp

(−𝜌h𝐻
SDU

𝐻
SDUSDhSD

8

)]

≤ (8𝐿SD + 8)𝐿SD+1

det
(
U𝐻

SDUSD
) 𝜌−(𝐿SD+1). (11)

Next, taking expectation with respect to hSR𝑛
, we obtain 𝐽𝑛

in (6) as

𝐽𝑛 = 𝔼hR𝑛D

[
det

(
I+

𝜌𝐺SR𝑛𝐴
2
𝑛

8(𝐿SR𝑛 + 1)
V𝐻

SR𝑛
(I+ 𝐴2

𝑛DR𝑛DD
𝐻
R𝑛D)

−1

×DR𝑛DD
𝐻
R𝑛Ddiag(∥u∥2)VSR𝑛

)−1]
(12)

For a given error vector e = s−s′ ∕= 0, errors occur in at least
one group. The precoded error vector in a group has all non-
zero entries if the error vector in that group is non-zero [10].
Suppose the 𝑚th group is one of the erroneous groups, i.e.,
s𝑚 ∕= s′𝑚, 1 ≤ 𝑚 ≤ 𝑀 . Then we have u𝑚(𝑞) ∕= 0, ∀𝑞 ∈
{1, 2, ⋅ ⋅ ⋅ , 𝐿 + 1}. Noting 𝐿 = max(𝐿SD, 𝐿SR𝑛

, 𝐿R𝑛D) and
introducing a matrix P which contains the first 𝐿SR𝑛 +1 rows
in Ψ𝑚, we rewrite (12) as

𝐽𝑛 = 𝔼hR𝑛D

[
det

(
I+

𝜌𝐺SR𝑛𝐴
2
𝑛

8(𝐿SR𝑛 + 1)
V𝐻

SR𝑛
P𝑇PG𝑛P

𝑇PVSR𝑛

)−1]

(13)

where G𝑛 = (I + 𝐴2
𝑛DR𝑛DD

𝐻
R𝑛D)

−1DR𝑛DD
𝐻
R𝑛Ddiag(∥u∥2).

Since the matrix inside the determinant bracket of (13) is

positive definite, an upper bound for 𝐽𝑛 can be written as

𝐽𝑛 ≤ (𝐿SR𝑛 + 1)2(𝐿SR𝑛+1)

𝜛𝑛
𝔼hR𝑛D

[ 𝐿SR𝑛+1∏
ℓ=1

1

1 + 𝜌𝛼𝑛∣u(𝑖𝑚,ℓ)∣2

×
(
1 +

𝜌𝛼𝑛∣u(𝑖)∣2
𝐴2

𝑛+𝜌𝛼𝑛∣u(𝑖𝑚,ℓ)∣2𝐴2
𝑛

∣DR𝑛D(𝑖𝑚,ℓ)∣2 + 1
𝐴2

𝑛+𝜌𝛼𝑛∣u(𝑖𝑚,ℓ)∣2𝐴2
𝑛

)]

where 𝛼𝑛 = (𝐿SR𝑛
+ 1)𝐺SR𝑛

/8, and 𝑖𝑚,ℓ = (ℓ − 1)𝑀 +
𝑚, ℓ = 1, ⋅ ⋅ ⋅ , 𝐿SR𝑛 + 1. Since the components in hR𝑛D

are i.i.d. Gaussian with variance 1/(𝐿R𝑛D + 1), we have
DR𝑛D(𝑖𝑚,ℓ) ∼ 𝒞𝒩 (0, 1). Taking the expectation with respect
to hR𝑛D, we obtain the following two cases at high SNR:

Case 1 ( 𝐿SR𝑛
≤ 𝐿R𝑛D):

𝐽𝑛 case1 ≤ 𝑎𝑛 case1(𝜌
−1 ln 𝜌)𝐿SR𝑛+1 +𝑂

(
𝜌−(𝐿SR𝑛+1)(ln 𝜌)𝐿SR𝑛

)

where 𝑎𝑛 case1 =

(
8𝜋(𝐿SR𝑛+1)

)(𝐿SR𝑛+1)

𝜛𝑛(𝜐𝐺R𝑛D)
𝐿SR𝑛+1 . Here, we have used

the fact ∣u(𝑖𝑚,ℓ)∣2 ≥ 𝜐 [10].

Case 2 (𝐿SR𝑛
> 𝐿R𝑛D):

𝐽𝑛 case2 ≤ 𝑎𝑛 case2(𝜌
−1 ln 𝜌)𝐿R𝑛D+1 +𝑂

(
𝜌−(𝐿R𝑛D+1)(ln 𝜌)𝐿R𝑛D

)

where 𝑎𝑛 case2 =

(
8𝜋(𝐿SR𝑛+1)

)𝐿R𝑛D+1

𝜛𝑛(𝜐𝐺R𝑛D)
𝐿R𝑛D+1 .

An upper bound of 𝐽𝑛 for both cases can be defined as,

𝐽𝑛≤
(
8𝜋(𝐿SR𝑛

+1)
)𝑘𝑛

𝜛𝑛(𝜐𝐺R𝑛D)𝑘𝑛
(𝜌−1ln𝜌)𝑘𝑛+𝑂

(
𝜌−𝑘𝑛(ln𝜌)𝑘𝑛−1) (14)

Replacing (14) and (11) in (6), we obtain (8).
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