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In this study we examine the impact of the strength of the large-scale motions on
the amplitude and frequency of the small scales in high-Reynolds-number turbulent
boundary layers. Time series of hot-wire data are decomposed into large- and small-
scale components, and the impact of the large scale on the amplitude and frequency
of the small scales is considered. The amplitude modulation effect is examined by
conditionally averaging the small-scale intensity (u2

S) for various values of the large-
scale fluctuation (uL). It is shown that u2

S increases with increasing value of uL in the
near-wall region, whereas, farther away from the wall, u2

S decreases with increasing uL.
The rate of increase in small-scale intensity with the strength of the large-scale signal
is neither symmetric (about uL = 0) nor linear. The extent of the frequency modulation
is examined by counting the number of occurrences of local maxima or minima in
the small-scale signal. It is shown that the frequency modulation effect is confined
to the near-wall region and its extent diminishes rapidly beyond y+ = 100. A phase
lag between the large- and small-scale fluctuations, in terms of amplitude modulation,
has also been identified, which is in agreement with previous studies. The phase lag
between large- and small-scale fluctuations for frequency modulation is comparable
to that of amplitude modulation in the near-wall region. The combined effect of
both amplitude and frequency modulation is also examined by computing conditional
spectra of the small-scale signal conditioned on the large scales. In the near-wall
region, the results indicate that the peak value of pre-multiplied spectra increases
with increasing value of uL, indicating amplitude modulation, while the frequency at
which this peak occurs also increases with increasing value of uL, revealing frequency
modulation. The overall trends observed from the conditional spectra are consistent
with the results obtained through statistical analyses. Finally, a physical mechanism
that can capture most of the above observations is also presented.

Key words: turbulent boundary layers

1. Introduction

It is well established that the outer region of turbulent boundary layers is
populated with energetic large-scale structures (Kovasznay, Kibens & Blackwelder
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1970; Blackwelder & Kovasznay 1972; Brown & Thomas 1977; Wark & Nagib 1991).
They are in the form of elongated low- and high-speed regions that meander in
the spanwise direction (Ganapathisubramani, Longmire & Marusic 2003; Tomkins &
Adrian 2003; Hutchins & Marusic 2007a) and have been found in a wide variety
of internal flows as well (Kim & Adrian 1999; Del Álamo & Jiménez 2003; Guala,
Hommema & Adrian 2006; Monty et al. 2007; Bailey et al. 2008).

These large-scale structures affect the smaller scales over a range of wall-normal
locations. Rao, Narasimha & Narayanan (1971) were perhaps the first to explore this
impact when they examined the characteristic value of the burst period in hot-wire
signals in the near-wall region and found that these periods scale with the outer
variables (boundary-layer thickness, δ, and free stream velocity, U∞), indicating that
bursting might be a large-scale phenomenon in which the large structures in the
outer region interact with the near-wall structures. Bandyopadhyay & Hussain (1984)
examined the interaction between large and small scales in numerous shear flows,
including boundary layers, mixing layers, wakes and jets, by studying short-time
correlations between the low- and high-frequency components computed based on
hot-wire time-series data. They correlated the low-pass-filtered time-series data with a
signal similar to the envelope of the high-frequency component and found significant
coupling between scales across all shear flows.

Hutchins & Marusic (2007b) examined the impact of large-scale superstructures on
near-wall small-scale structure. They found that the largest scales tend to modulate the
amplitude of the small-scale fluctuations. Subsequently, Mathis, Hutchins & Marusic
(2009) expanded upon these observations and explored this amplitude modulation
relationship in greater detail. These authors first split the streamwise velocity into
large- and small-scale components via a spectral filter and then used the Hilbert
transform to determine the envelope for the small-scale fluctuations. They then
correlated the large-scale fluctuations and the low-pass-filtered envelope of the small-
scale fluctuations and found that, near the wall, large-scale high-speed regions carry
intense superimposed small-scale fluctuations, but this correlation is reversed away
from the wall. The location where this reversal takes place appears nominally at the
geometric centre of the logarithmic region over a wide range of Reynolds numbers.
This amplitude modulation effect has also been captured in conditional analyses
performed based on wall shear stress (Hutchins et al. 2011). Recently, Marusic, Mathis
& Hutchins (2010) and Mathis, Hutchins & Marusic (2011) utilized the information
on the correlation between the large-scale fluctuation and the small-scale amplitude
and proposed a mathematical model to predict the near-wall turbulence given only
large-scale information from the outer boundary-layer region.

Chung & McKeon (2010) analysed large-eddy-simulation (LES) data to study the
interaction between the large and small scales and reported findings consistent with
Mathis et al. (2009). Guala, Metzger & McKeon (2011) used hot-wire data obtained
in an atmospheric surface layer to explore these scale interactions. They found similar
amplitude modulation effects to the aforementioned studies. They also found that
the envelope of the instantaneous dissipation is also correlated with the large-scale
fluctuation across various wall-normal locations, indicating that the signature of large
scales can be found in the whole wall region and that these scales interact with
the near-wall turbulence from the energy-containing eddies down to the dissipative
scales. It should be noted that Schlatter & Örlü (2010) indicated that the correlation
coefficient between the large-scale signal and the envelope of the small scales is
related to the skewness of the raw signal and hence may not be an independent tool
to detect or quantify the effect of large-scale amplitude modulation of the small scales.



Amplitude and frequency modulation in wall turbulence 63

Nevertheless, the authors indicated that there is indeed an interaction between the large
and small scales and therefore there is a need to explore these effects in detail. In
fact, in a recent study, Bernardini & Pirozzoli (2011) performed a systematic analysis
using two-point amplitude modulation correlation to confirm the top-down influence of
large-scale outer events on the inner part of the boundary layer, consistent with the
previous work of Hunt & Morrison (2000).

Although these aforementioned studies provide insights into the amplitude
modulation effects, the dependence of amplitude modulation on the strength of the
large-scale signal is not entirely clear, as the relative contribution of lower- and higher-
intensity large-scale fluctuation to amplitude modulation remains unknown. This is
primarily because the correlations computed by the aforementioned studies essentially
average over all intensities of the large scales. Given that almost all processes in
wall-bounded turbulent flows are nonlinear, it can be expected that the strength of the
small-scale intensity is strongly linked to the value of large-scale fluctuation. Moreover,
none of these previous studies have explored the frequency modulation aspect of the
small scales by the large scales. Guala et al. (2011) found that dissipation was low
when the large-scale fluctuation is negative, while the dissipation was high when the
large-scale fluctuation is positive. This suggests that frequency modulation could also
play an integral role. However, it must be noted that dissipation is in fact a reflection
of both small-scale amplitude and frequency. Therefore, there is a need to explore
these effects independently.

In this paper, we explore the role of the strength of large-scale fluctuation in
amplitude and frequency modulation of small scales in turbulent boundary layers.

2. Experiments

Experiments were performed in the high-Reynolds-number boundary-layer wind
tunnel at the University of Melbourne. This open-return blower wind tunnel has a
27 m long working section, with 2 m × 1 m cross-sectional area. Further details of the
facility are available in Nickels et al. (2005, 2007). The pressure gradient is nominally
zero, with pressure coefficient (Cp) variation along the entire 27 m length set to within
±0.7 %.

Measurements were performed in the turbulent boundary layer developing over the
tunnel floor downstream of the tripped inlet to the working section. The details of the
experimental parameters are listed in table 1. The boundary-layer thickness (δ) at the
measurement location was obtained by fitting the mean velocity profile to a modified
Coles wall/wake formulation. The friction velocity Uτ was calculated from a Clauser
fit (Clauser 1956) to mean velocity data using κ = 0.41 and A = 5.0. It should be
noted that use of these log law constants has recently come under increasing scrutiny.
In this instance, use of κ = 0.384 and A = 4.173, as suggested by Nagib & Chauhan
(2008), yields a Uτ that is 0.8 % lower than that obtained with κ = 0.41 and A = 5.0.
In any case, the precise value of the estimate for Uτ has no impact on the principal
conclusions of this work.

Throughout this paper, x, y and z will be used to denote the streamwise, wall-
normal and spanwise axes, with u, v and w denoting the respective fluctuating velocity
components. Time is denoted by t and the sample interval by 1t. The superscript + is
used to denote viscous scaling of length (e.g. y+ = yUτ/ν), velocity (U+ = U/Uτ ) and
time (t+ = tU2

τ/ν).
The velocity measurements are made using a traversing hot-wire probe. The probe is

operated in constant-temperature mode with overheat ratio set to 1.8. Wollaston wires
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Reτ δ (m) Uτ (m s−1) U∞ (m s−1) l+ 1t+ No. of points Domain

14 150 0.326 0.665 20.33 22 0.47 40 y+ = 10.64 − y/δ = 1.38

TABLE 1. Experimental parameters for hot-wire traverses. All experiments were carried out
in the high-Reynolds-number boundary-layer wind tunnel (HRNBLWT) at the University of
Melbourne. Further details about these experiments can be found in Hutchins et al. (2011).

are soldered across the tips of the probe and etched to give a platinum filament of
the desired length. The diameter d and length l of the sensing element were adjusted
to give a constant viscous scaled length of l+ = 22 with l/d ≈ 200, in line with
recommendations from Ligrani & Bradshaw (1987) and Hutchins et al. (2009). The
non-dimensional time interval between samples is 1t+ ≈ 0.47. A sufficiently long
sample length T , approximately 18 950 boundary-layer turnover times (TU∞/δ, where
U∞ is the free stream velocity), was used to converge the energy contained in the
largest scales. Further details of the experimental set-up and the data can be found in
Hutchins et al. (2011).

3. Methods

In this paper, we focus on examining the interaction between the large and small
scales of the boundary layer. Therefore, for brevity, we have not included detailed
information on the unconditional flow statistics such as mean profiles. These mean and
root-mean-square (r.m.s.) profiles can be found in Hutchins et al. (2011).

3.1. Filter scheme

The goal is to examine the amplitude and frequency modulation effects of the large
scales on the small scales in wall turbulence. Therefore, a suitable filtering technique
is necessary to separate the large and the small scales. The fluctuating streamwise
velocity (u) across the boundary layer is decomposed into large- and small-scale
fluctuations using a spectral filter. The streamwise velocity is low-pass-filtered to
obtain the large-scale fluctuation (uL) and the small-scale signal (uS) is computed
by subtracting this large-scale velocity fluctuation from the raw streamwise velocity
fluctuation, i.e. uS = u − uL. The details of the filter are given in table 2. It must be
noted that the small scales in themselves includes a broad range of scales ranging
from the near-wall streaks down to the Kolmogorov scales. Although we can separate
the small scales further with subsequent filtering, the aim of this study is to identify
the overall relationship between large-scale structures and the small scales that are an
order of magnitude smaller than the large scales. Therefore, our filter is chosen to
ensure that we clearly separate the large scales from the near-wall small scales. This
filtering procedure is identical to the methodology followed in Mathis et al. (2009).

Previous studies have also used a box filter to separate the large- and small-scale
fluctuations (Bandyopadhyay & Hussain 1984; Chung & McKeon 2010; Guala et al.

2011). A box filter does not provide a sharp cutoff point between the large and small
scales and therefore could lead to contamination in the energy content of the large and
the small scales. Therefore, we only present the analyses carried out using the spectral
filter. However, we found that the results presented in this paper are qualitatively
similar regardless of the filtering technique used.
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Fluctuation Designation Time scales captured

u Streamwise velocity fluctuation λ+
t > 0.47

uL Large-scale fluctuation λtU∞/δ > 2
uS = u − uL Small-scale fluctuation λ+

t > 0.47 and λtU∞/δ 6 2

TABLE 2. Filter parameters for scale decomposition.
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FIGURE 1. Pre-multiplied energy spectra of the streamwise velocity fluctuations, f φuu/U2
τ ,

as a function of wall-normal location and time scale. The wall-normal location and the time
scale are normalized by both outer scales (U∞ and δ) and inner scales (Uτ and ν). The vertical
lines at λtU∞/δ = 0.5, 1, 2, 4 and 6 show the different filter time scales used to separate the
large scales from the small scales.

The filter length is important, as this choice enables us to separate the large
scales from the small scales. Consider the pre-multiplied energy spectrogram depicted
in figure 1. This spectrogram shows the energy content of the fluctuations as
a function of temporal scales and wall-normal location. The vertical lines at
λtU∞/δ = 0.5, 1, 2, 4 and 6 show a selection of different filter lengths that could be
used to separate the large scales and the small scales. The energy content to the left
of any of these vertical lines is attributed to small-scale fluctuations, and the energy
content to the right of these lines is the contribution from the large-scale structures.
The small-scale fluctuations account for the majority of the near-wall peak and their
energy content decays throughout the logarithmic region. The large-scale component,
on its own, makes a significantly lower contribution compared to the small-scale
component in the near-wall region. However, it should be noted that large scales do
make a contribution to the turbulent fluctuations near the wall, reinforcing the fact
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that large-scale structures maintain a footprint in the near-wall region. Farther away
from the wall, the large scales make an increasingly large contribution to the turbulent
fluctuations. It must be noted that, in this study, we present all our results in the
time/frequency domain. Converting time-domain data into spatial-domain data requires
a convection velocity and, since it is well established that this convection velocity
varies not just with scales but also with wall-normal location (Dennis & Nickels 2008;
Del Álamo & Jiménez 2009; Chung & McKeon 2010), we refrain from converting the
time-domain data into the spatial domain.

Figure 1 also indicates that a filter time scale of λtU∞/δ = 2 (depicted using the
solid vertical line) appears to clearly demarcate the high-energy lobe in the near-wall
region (with peak at λtU∞/δ ≈ 0.2 or λ+

t ≈ 100) from the high-energy lobe in the
outer region (with peak at around λtU∞/δ ≈ 5.5). All other filter scales infringe upon
the near-wall lobe (filters with length λtU∞/δ = 0.5 and 1) or extend into the lobe in
the outer region (λtU∞/δ = 4 and 6). Therefore, unless otherwise specified, the results
presented in this paper are obtained using a filter length of λtU∞/δ = 2 to distinguish
between the large and small scales. The quantitative effects of varying the filter length
are investigated in appendix B. However, it should be noted here that using any of
the filters described in figure 1 makes remarkably little difference to the overall results
and conclusions of this study. It is also worth noting that there is very little difference
in the filter length if it is calculated based on the local mean velocity rather than
on the free stream velocity. The filter scale based on local mean (as done by Mathis
et al. 2009) would be in the range 0.8 6 λtU∞/δ 6 2, since the local mean across all
wall-normal locations is in the range 0.4 6 U(y)/U∞ 6 1 (see Hutchins et al. 2011).

Figure 2(a) shows a comparison between the large-scale fluctuations and small-scale
velocity fluctuations at y+ = 15. The figure clearly indicates that the amplitude of
the small-scale fluctuations depends on the sign of the large-scale fluctuations. Two
examples, one for negative values of uL and the other for positive values of uL, are
depicted in figures 2(b) and 2(c), respectively. These two representative events are
marked with rectangles in figure 2(a). For negative values of large-scale fluctuations,
the amplitude of small-scale fluctuations appears diminished. On the contrary, the
amplitude of small scales is higher for positive fluctuations of the large scales.
This suggests that the large-scale fluctuations tend to modulate the amplitude of
the small scales in the near-wall region. In addition to the amplitude modulation
effects, figures 2(b) and 2(c) indicate that the frequency of the small-scale fluctuations
is also modulated. It can be visually confirmed that the frequency of small-scale
fluctuations for negative values of uL is lower compared to the frequency of small-
scale fluctuations for positive values of uL. This frequency modulation effect has not
been explored before. In the following sections, we will explore both the amplitude
and frequency modulation effects over a range of wall-normal locations in a high-
Reynolds-number turbulent boundary layer.

4. Amplitude modulation

As mentioned previously, Mathis et al. (2009) found a high degree of correlation
between the envelope of the small-scale signal and the large-scale signal near the wall.
Chung & McKeon (2010) and Guala et al. (2011) used LES data from a channel flow
simulation and atmospheric surface layer data, respectively, in liaison with a filtering
technique identical to the one used in the current study, and also found a similar trend
in the relationship between large and small scales. Although this provides insights
into the amplitude modulation effects, the dependence of amplitude modulation on
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FIGURE 2. (a) Instantaneous example of amplitude and frequency modulation of the small
scales by the large scales at y+ = 15 (y/δ = 0.001). (b) A close-up view of the low-
and high-speed large-scale fluctuations (marked with rectangles) in figure 2(a). The grey
(cyan coloured) thicker lines show the large-scale fluctuation (u+

L ) and the black lines the
corresponding small-scale fluctuation (u+

S ). The large scale and the small scales are computed
based on a filter time scale of λtU∞/δ = 2.

the strength of the large-scale signal is not very clear. This link can be explored by
computing the small-scale amplitude conditioned on the value of large-scale intensity.

Figure 3 shows a schematic representation of the procedure followed to isolate the
effects of large scales on the amplitude of the small scales. As shown in the figure,
the aim is to compute the conditional amplitude of the small scales conditioned on
the intensity of the large-scale fluctuation. The step-by-step procedure used to compute
this conditional small-scale amplitude is as follows.

(i) The velocity fluctuation (u) is separated into large-scale (uL) and small-scale (uS)
fluctuations by using a spectral filter of length λtU∞/δ = 2.

(ii) Equally spaced bins with a spacing of 0.2 ranging from u+
L = −6 to u+

L = 6 are
created for the large-scale fluctuations. The bin spacing of 0.2 is chosen as a
balance between bin size and the number of samples within each bin. Bins with
smaller size encountered problems with statistical convergence, as fewer than
100 samples were detected for bins with smaller sizes.

(iii) The time series of both the large- and small-scale fluctuations are divided into
individual segments of length λtU∞/δ = 2 (which is the filter time scale that
delineates the large scale from the small scales). These individual segments are
used to analyse the relationship between large- and small-scale fluctuations.

(iv) The representative value of the large-scale fluctuation (u+
L ) in a segment is

chosen as the value at the centre of an individual segment.

(v) The variance of the small-scale signal over the same segment (u2
S

+
) is also

computed, and this small-scale variance is the amplitude of the small scales

conditioned on the strength of the representative large-scale signal, u2
S

+|u+
L

.
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FIGURE 3. Procedure followed to isolate the amplitude and frequency modulation effects of
the large scales on the small scales at a given wall-normal location. The schematic shows
the procedure followed to calculate the amplitude and frequency of the small scales for a
given value of the large-scale fluctuation. This procedure is repeated across all wall-normal
locations.
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FIGURE 4. Probability density function of the large-scale fluctuation across all wall-normal
locations.

(vi) Steps (iv)–(v) are repeated for all segments and across all wall-normal locations.

(vii) The number of occurrences of the representative fluctuation (u+
L ) within each bin

is also calculated across all wall-normal locations, N[u+
L (y)].

(viii) A mean small-scale variance for each bin of the large-scale fluctuation is
calculated at all wall-normal locations,

〈u2
S

+
(u+

L , y)〉 =

∑
u2

S

+
(y)|u+

L
(y)

N[u+
L (y)]

. (4.1)

This represents the amplitude of the small scales conditioned on the value of
large-scale fluctuation.

Prior to exploring these conditional variances, it is important to examine the
distribution of u+

L . Figure 4 shows the probability density function (p.d.f.) of u+
L

over all wall-normal locations. This probability distribution is computed based on the
number of occurrences of u+

L within a given threshold:

p.d.f.[u+
L (y)] =

N[u+
L (y)]∫

N[u+
L (y)] du+

L

. (4.2)

In order to ensure statistical convergence, we only utilize and present data if the
number of samples in any u+

L bin exceeds a minimum value (in this case, this value is
set to 100 samples per bin). The figure indicates that the p.d.f. is effectively symmetric
about u+

L = 0 across all wall-normal locations. The p.d.f. is relatively narrow in the
near-wall region consistent with the fact that the near-wall fluctuations are dominated
by the small scales. This p.d.f. is broader in the log region where the large scales



70 B. Ganapathisubramani, N. Hutchins, J. P. Monty, D. Chung and I. Marusic

0 1 2 3 4 5 6 7 8

10–3

10–2

10–1

100

–2 –1 0 1 2
101

102

103

104

1

2

3

4

5

6

7

101 102 103 104

10–3 10–2 10–1 100

–3 3
0

8

(a) (b)

FIGURE 5. (a) Small-scale variance as a function of large-scale fluctuation and wall-normal

location, 〈u2
S

+
(u+

L , y)〉. (b) Small-scale variance as a function of wall-normal location for

u+
L = −2, 0 and 2. The large- and small-scale fluctuations are based on a filter time scale of

λtU∞/δ = 2.

dominate the velocity fluctuations and becomes narrow again in the outer wake region
where the flow is intermittent.

Given this distribution in the large scales, the amplitude modulation of the small

scales by the large scales can now be explored in detail. Figure 5(a) shows 〈u2
S

+〉 as a
function of u+

L and wall-normal location. It is clear from this figure that the amplitude
of the small scales is indeed modulated by the large-scale fluctuation over a range
of wall-normal locations. In the near-wall region, the amplitude of the small scales is
markedly lower for negative values of u+

L compared to the positive values of u+
L .

The amplitude modulation effect can be further explored by examining the small-
scale variance in three representative bins of u+

L . Figure 5(b) shows the wall-normal
variation of small-scale variance for u+

L = −2, 0 and 2. Near the wall, the small-scale
fluctuations for u+

L = 2 possess higher intensity than the small-scale fluctuations for
u+

L = −2. This suggests that the near-wall small-scale fluctuations are strengthened in
the presence of a large-scale high-speed event. It must be noted that the differences
observed in figure 5(b) are significantly larger than the statistical uncertainty, which
is less than 1 % of the value (this is also true for the frequency modulation results

presented in subsequent sections). Figure 5(b) also shows that 〈u2
S

+〉 for u+
L = −2

becomes higher than 〈u2
S

+〉 for u+
L = 2 at y/δ ≈ 0.03 (y+ ≈ 400) and remains higher

throughout the outer log region. This cross-over point is consistent with the cross-
over location in the amplitude modulation coefficient found by Mathis et al. (2009),
where y+

c ≈ 3.9
√
Reτ ≈ 460. This indicates that, away from the wall, the presence

of a high-speed large-scale event leads to diminished small-scale turbulence activity.
Conversely, a low-speed large-scale event is associated with intense small-scale
fluctuations away from the wall. The trends exhibited by these profiles are consistent
with the conditional small-scale variance (conditioned on the presence of large-scale
skin-friction fluctuation) presented in Hutchins et al. (2011). It is also consistent with
the profiles in Guala et al. (2011), who computed small-scale variance conditioned on
u+

L > 0 and u+
L < 0.
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FIGURE 6. (a) Plot of 1u2
S as a function of wall-normal location and u+

L . (b) Plot of 1u2
S

at four wall-normal locations, y+ = 15, 143, 2750 and 7410. The large- and small-scale
fluctuations are based on a filter time scale of λtU∞/δ = 2.

The small-scale variance for u+
L = 0 depicts the behaviour of the small-scale

amplitude when the concurrent large scales are weak. Therefore, we can define

an amplitude difference parameter as the relative difference between 〈u2
S

+
(u+

L )〉 and

〈u2
S

+
(u+

L = 0)〉,

1u2
S(u

+
L , y) =

〈u2
S

+
(u+

L , y)〉 − 〈u2
S

+
(u+

L = 0, y)〉
〈u2

S

+
(u+

L = 0, y)〉
× 100, (4.3)

where a positive percentage difference indicates amplitude amplification relative to
u+

L = 0 and a negative difference should reveal amplitude attenuation. This u+
L = 0

bin is subsequently referred to in this paper as the unmodulated information because
the strength of the carrier signal (i.e. uL) is in fact zero. It must be noted that
the small-scale signal for the uL = 0 bin is only ‘locally’ unmodulated at a given
wall-normal location. The filtering and binning process does not account for non-local
modulation effects where the small scales at a given wall-normal location are affected
by the large-scale fluctuations above or below the given wall-normal location.

Figure 6(a) shows contours of 1u2
S as a function of u+

L and wall-normal location.
Amplitude modulation (both amplification and attenuation) of over 30 % is realized in
the near-wall as well as outer regions. The fact that the contours are not symmetric
about u+

L = 0 indicates that the relative amplitude attenuation for negative values of
large-scale fluctuation is higher than the amplitude amplification for positive values of
u+

L . This feature can be further explored through a closer inspection of the percentage
difference at different wall-normal locations.

Figure 6(b) shows the 1u2
S profiles at four wall-normal locations, y+ = 15, 143,

2750 and 7410. The four locations are marked with horizontal lines in figure 6(a).
These profiles at all four locations emphasize the extent of symmetry (or lack thereof)
in amplitude modulation. In the near-wall region (i.e. y+ = 15), the difference reaches
a values of −20 % for u+

L = −2; however, it only reaches +10 % for u+
L = 2. Similar

asymmetric trends are observed in all other wall-normal locations. In addition to the
asymmetry, figure 6(b) also shows that the modulation effect is not linear. This is
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consistent with the results obtained by Mathis et al. (2009), where the correlation
between the large-scale signal and the filtered envelope of the small scales was never
one. This is also consistent with the correlation between the large and small scales
found in other studies (Bandyopadhyay & Hussain 1984; Chung & McKeon 2010;
Guala et al. 2011). It must be noted that a correlation coefficient is a measure of
the strength of linear dependence between two parameters. A correlation value of one
implies that a linear equation perfectly describes the relationship between the two
parameters. Deviation from one in the correlation coefficient reveals the existence of
a nonlinear relationship between the two parameters (if there is any relationship at
all). Therefore, the fact that the correlation between the large-scale signal and the
filtered envelope of the small scales was never equal to one (in Mathis et al. 2009;
Chung & McKeon 2010; Guala et al. 2011) is consistent with the current observations.
The correlation between the large-scale signal and the envelope of the small-scale
amplitude in Mathis et al. (2009) was as high as 0.7 in the near-wall region. This
indicates that the relationship between the large scales and the amplitude of the small
scales is probably dominated by linear dependence.

5. Frequency modulation

Figure 2(b) also reveals the presence of frequency modulation effects. It can be
seen that the frequency of small-scale fluctuations for negative large-scale fluctuation
is attenuated (together with the amplitude), with positive and negative excursions in
the small-scale fluctuation occurring at a relatively low frequency. Conversely, the
frequency of small-scale fluctuations for positive value of u+

L is relatively high, with
positive and negative excursions occurring in rapid succession at higher frequencies.
Perhaps, this effect was noted by Rao et al. (1971), who found that the band-pass-
filtered bursting frequency in the near-wall region increased with their amplitude
‘descriptor setting’. However, since the authors did not differentiate between positive
and negative excursions, they were unable to isolate the effects of this frequency
modulation.

The frequency characteristics of the small-scale instantaneous signal in figure 2 is
also consistent with Guala et al. (2011), who computed conditional dissipation as
a function of large-scale fluctuation and wall-normal location. They found that the
dissipation levels were indeed lower for uL < 0 and higher for uL > 0. It must be noted
that dissipation has both amplitude and frequency effects embedded in it. A high value
of dissipation, which occurs as a result of the presence of high gradients, can occur
due to either a large amplitude of fluctuation or the presence of higher frequencies.
Consequently, this conditional dissipation presented in Guala et al. (2011) includes
both frequency and amplitude modulation effects. Since we have already explored the
effects of amplitude modulation, we need a new metric to quantify the impact of
frequency modulation that is independent of amplitude modulation effects.

One way to determine a characteristic frequency of the small scales is to examine
the zero-crossing frequency in the small-scale fluctuation. This method has been
applied previously by various researchers to examine the time and length scale
distributions of various flows, including turbulent boundary layers (Sreenivasan, Prabhu
& Narasimha 1983; Kailashnath & Sreenivasan 1993). However, as pointed out by
Sreenivasan et al. (1983) and Sreenivasan (1985), various factors, including the
dynamic range of the signal, the value of the thresholds used, the filter frequency
and noise contamination, have a strong bearing on the results obtained. Moreover, the
zero-crossing frequency will exclude frequency information that is not associated with



Amplitude and frequency modulation in wall turbulence 73

zero crossings. Therefore, zero-crossing frequency may not be ideal to determine the
characteristic frequency of the small scales. Alternative time-domain cycle counting
procedures such as peak counting as well as peak–valley counting have also been
proposed to examine the frequency content (see e.g. Rychlik 1993). These methods
have their own set of drawbacks, as they tend to bias the signal towards higher
frequencies, and previous work has examined the relative merit of employing these
technique to broadband and bimodal signals (Repetto 2005). In the current study, we
propose to follow a method that is based on the peak–valley counting (PVC) procedure
to determine the relative extent to which the high frequencies (i.e. the frequency of
the small scales) depend on the strength of the large-scale fluctuation. The drawbacks
of using a method based on the PVC procedure (i.e. possible bias towards high
frequencies) are not relevant to our analysis since the small-scale signal is already
high-pass-filtered to include only high-frequency content. In our method, we count
the number of local maxima and minima over a given sample length and use it to
calculate a representative frequency for the same sample (by dividing the number of
local maxima or minima by the sample length). For a constant sample length (which
it is, in the current study, see below), the higher the number of local maxima and
minima per unit length, the higher the representative frequency of the signal.

Figure 3 showed a flowchart of the procedure followed to isolate the effects of large
scales on the small scales. The step-by-step procedure to compute the frequency of
occurrence of local maxima and minima (fm) in the small-scale signal per unit length
of the large scale is given below. It must be noted that the first three steps of the
procedure are identical to the one followed in § 4. For the sake of completeness, we
document the entire procedure here.

(i) The velocity fluctuation (u) is separated into large-scale (uL) and small-scale (uS)
fluctuations by using a spectral filter of length λtU∞/δ = 2.

(ii) Equally spaced bins with a spacing of 0.2 ranging from u+
L = −6 to u+

L = 6 are
created for the large-scale fluctuations.

(iii) The time series of both the large- and small-scale fluctuations are divided into
individual segments of length λtU∞/δ = 2 (which is the filter time scale that
delineates the large scale from the small scales). These individual segments are
used to analyse the relationship between large- and small-scale fluctuations.

(iv) The representative value of the large-scale fluctuation (u+
L ) in a segment is

chosen as the value at the centre of an individual segment.

(v) The number of local maxima or minima (i.e. ∂u+
S /∂t = 0) in the small-scale

signal over the same segment is computed (Nm).

(vi) A representative frequency of occurrence of local maxima or minima per
unit length is computed as fm = Nm/2λt, and this value is assigned to the
bin corresponding to the value of large-scale fluctuation. The frequency is in
fact the spacing between two successive maxima or minima. Since, we count
both maxima and minima in our procedure, the factor 2 is introduced in
the denominator. This frequency represents the frequency of the small scales
conditioned on the strength of the large-scale fluctuation, fm|u+

L
.

(vii) Steps (iv) and (vi) are repeated for all segments and across all wall-normal
locations.

(viii) The number of occurrences of the representative fluctuation (u+
L ) within each bin

is also calculated across all wall-normal locations, N[u+
L (y)].
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FIGURE 7. (a) Plot of 〈 f +
m 〉 as a function of u+

L and y/δ. (b) Plot of 〈 f +
m 〉 as a function of

wall-normal location at u+
L = −2, 0 and 2. The large- and small-scale fluctuations are based

on a filter time scale of λtU∞/δ = 2.

(ix) A mean representative frequency of the small scales for every bin of the large-
scale fluctuation is calculated at all wall-normal locations,

〈 fm(u+
L , y)〉 =

∑
fm(y)|u+

L
(y)

N[u+
L (y)]

. (5.1)

This represents a characteristic frequency of the small scales conditioned on the
value of large-scale fluctuation.

The frequency of occurrence of local maxima or minima per unit length provides a
characteristic frequency for the small-scale fluctuations. A lower value of fm indicates
lower values of Nm, which in turn suggests the presence of lower frequencies in
the small scales, whereas a large value of fm shows higher frequencies (i.e. smaller
time scales). Figure 7(a) shows fm as a function of u+

L and wall-normal location. The
figure indicates that the characteristic frequency is lower in the near-wall region and
increases with increasing wall-normal location across all values of u+

L up to y+ = 100.
This is in contrast with amplitude modulation where the maximum modulation
decreases monotonically with increasing wall-normal distance.

The rate of increase in frequency modulation with increasing wall-normal location
depends on the value of u+

L . This varying rate of increase is clearly seen from the fact
the contours are inclined with respect to the u+

L axis. This increasing frequency with
wall-normal location can be examined in detail by looking at the wall-normal variation
of 〈 fm〉 at three representative bins of u+

L . Figure 7(b) shows the variation of fm with
wall-normal location for u+

L = −2, 0 and 2. The figure shows that, in the near-wall
region, the characteristic frequency is consistently higher with increasing value of u+

L .
It can also be seen that fm for all three bins collapses in the outer region, for y/δ > 0.1
(y+ > 1450). In the outer wake region there is no difference in the characteristic
frequency for different values of u+

L .
As is the case with amplitude modulation, the characteristic frequency for u+

L = 0
should provide the unmodulated small-scale frequency. Again, it must be noted that
the small-scale signal for the uL = 0 bin is only ‘locally’ unmodulated. The filtering
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FIGURE 8. (a) The percentage difference in 〈 f +
m 〉 computed relative to u+

L = 0. (b) Plot of
1fm at four different wall-normal locations. The large- and small-scale fluctuations are based
on a filter time scale of λtU∞/δ = 2.

and binning process does not account for non-local modulation effects where the small
scales at a given wall-normal location are affected by the large-scale fluctuations above
or below the given wall-normal location.

The relative difference between fm(u+
L ) and fm(u+

L = 0) should clearly show the
effects of frequency modulation. Therefore, we define a characteristic frequency
difference parameter as

1fm(u+
L , y) =

〈 fm(u+
L , y)〉 − 〈 fm(u+

L = 0, y)〉
〈 fm(u+

L = 0, y)〉
× 100. (5.2)

A positive percentage difference indicates an increase in frequency relative to the
‘unmodulated’ value, and a negative difference should reveal a decrease in frequency
of fluctuations.

Figure 8(a) shows contours of 1fm as a function of u+
L and wall-normal location.

Frequency modulation (both amplification and attenuation) of over 30 % is realized in
the near-wall region; however, the extent of frequency modulation diminishes in the
outer region and beyond. The contours appear to be symmetric in the near-wall region
(up to y+ ≈ 100), suggesting an equal and opposite effect for positive and negative
values of u+

L . This is perhaps understandable if we interpret negative values of u+
L as

essentially realizations of lower Reynolds numbers compared to those with positive
values of u+

L . This difference in ‘local’ Reynolds numbers should result in ‘lower’
frequencies in small scales for u+

L < 0. This feature can be further explored through a
closer inspection of the percentage difference at different wall-normal locations.

Figure 8(b) shows the variation of 1fm with u+
L for four wall-normal locations.

Near the wall (at y+ = 15), the characteristic frequency increases with increasing
large-scale fluctuation. In the log region (y+ = 143), the frequency still increases with
increasing value of u+

L ; however, the rate of increase (as determined by the slope
of the curve) is lower at this location compared to the rate of increase at y+ = 15.
Farther away from the wall at y/δ = 0.19, the characteristic frequency appears to be
constant across the entire range of u+

L . This suggests that the frequency modulation
effect is highest in the near-wall region and this effect decreases with increasing
wall-normal distance. Towards the edge of the boundary layer, frequency modulation
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effects reappear; however, owing to lack of statistical convergence in the data, we are
unable to further explore this in detail. Presumably, this effect towards the edge of
the boundary layer is an artefact of intermittency where irrotational flow from the free
stream penetrates the boundary layer due to entrainment.

The above observations on frequency modulation can be interpreted as follows.
If we consider positive large-scale fluctuations, they are observed to increase the
frequency of the small scales. This increase in small-scale frequency can be viewed
as follows: either the number of small-scale structures increases, or the small scales
are convected faster past our stationary probe by the positive large-scale fluctuations.
In fact, it is likely that we have a combination of these two scenarios, but the present
measurements cannot distinguish between them. Therefore, frequency modulation
should be viewed as a combination of both augmented small-scale activity and
convection of these small scales by the large-scale motions.

6. Phase information in amplitude and frequency modulation

It must be noted that all the analysis performed thus far does not account for
any phase difference between large and small scales. A phase difference between
large and small scales was first observed by Bandyopadhyay & Hussain (1984) and
more recently by Chung & McKeon (2010), Guala et al. (2011) and Hutchins et al.
(2011) for amplitude modulation. All these studies found that this phase difference
increases with increasing distance from the wall. In this section, we examine this
phase difference in detail and attempt to explain its dependence on the strength of the
large-scale fluctuation.

The phase difference (or time lag/lead) between the amplitude or frequency of the
small scales and the strength of the large-scale fluctuations can be easily computed
by conditionally averaging the amplitude and frequency of the small scales at various
time separations from a given large-scale fluctuation. These conditional averages can
be computed using the same procedure as outlined in the previous sections, but the
procedure now includes a temporal shift as well.

The amplitude and the frequency of the small scales can be computed as

〈u2
S

+
(u+

L , y, τ )〉 =

∑
u2

S

+
(y, t + τ)|u+

L
(y,t)

N[u+
L (y)]

, (6.1)

〈 f +
m (u+

L , y, τ )〉 =

∑
f +
m (y, t + τ)|u+

L
(y,t)

N[u+
L (y)]

, (6.2)

where N is the number of occurrences of u+
L within a certain bin and τ is the time

shift between the representative large-scale fluctuation at time t (which is located
at the centre of a segment of length λtU∞/δ = 2) and the small-scale amplitude or
frequency (which is also calculated over a segment of length λtU∞/δ = 2 and its
temporal location is the centre of that segment). In §§ 4 and 5, we presented the
data for τ = 0, where the representative large-scale fluctuation and the small-scale
amplitude or frequency were computed using the same segment of data. In this section
we will present the amplitude and frequency of the small scales as a function of
wall-normal location, the strength of large-scale fluctuation and time delay. This will
allow us to explore the phase difference between the large and small scales as a
function of the strength of the large-scale fluctuation.

Just as in previous sections, we define an amplitude or frequency difference
parameter as the relative difference between the amplitude or frequency of the small
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FIGURE 9. (a) The top plot shows 1u2
S as a function of phase difference (τ ) and wall-

normal location (y) for u+
L = −2; and the bottom plot shows 1u2

S

+
(τ, y) for u+

L = 2. (b) The

three plots show 1u2
S as a function of u+

L and wall-normal location at three different phases,
τU∞/δ = −1, 0 and 1.

scales for a given u+
L and time delay τ and the amplitude or frequency at u+

L = 0
at τ = 0:

1u2
S(u

+
L , y, τ ) =

〈u2
S

+
(u+

L , y, τ )〉 − 〈u2
S

+
(u+

L = 0, y, τ = 0)〉
〈u2

S

+
(u+

L = 0, y, τ = 0)〉
× 100, (6.3)

1fm(u+
L , y, τ ) =

〈 f +
m (u+

L , y, τ )〉 − 〈 f +
m (u+

L = 0, y, τ = 0)〉
〈 f +

m (u+
L = 0, y, τ = 0)〉

× 100. (6.4)

Figure 9(a) show contours of 1u2
S(u

+
L , y, τ ) for u+

L = 2 (top) and u+
L = −2 (bottom).

Figure 9(b) reveals contours of 1u2
S(u

+
L , y, τ ) for different phase lags τU∞/δ = −1
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(left), 0 (middle) and 1 (right). These temporal locations are marked with vertical
black lines in figure 9(a). It must be noted that the contours for τU∞/δ = 0 are
identical to those in figure 6(a). Figure 9 shows an inclined structure that indicates
that the amplitude attenuation for negative u+

L and the amplitude amplification for
positive u+

L lag the large-scale fluctuation till the middle of the log region, and this
lag increases with increasing wall-normal location. Beyond this location, the amplitude
difference goes through zero and becomes positive. However, the maximum positive
difference occurs for a positive time shift and this shift decreases with increasing
wall-normal location. The figure also shows that the time shift appears to be a constant
across all values of u+

L . This is explored in greater detail later in this section. The
general trends in figure 9 are consistent with the phase difference observed by
Bandyopadhyay & Hussain (1984) and more recently by Chung & McKeon (2010).
This is also consistent with the results of Hutchins et al. (2011), who found that the
amplitude of the small scales remains in phase (or similarly out of phase) with the
streamwise gradient of large-scale fluctuation (∂uL/∂x).

Figure 10(a) show contours of 1fm(u+
L , y, τ ) for u+

L = 2 (top) and u+
L = −2 (bottom).

Figure 10(b) reveals contours of 1fm(u+
L , y, τ ) for different time shifts, τU∞/δ = −1

(left), 0 (middle) and 1 (right). These temporal locations are marked with vertical
black lines in figure 10(a), and it is noted that the contours for τU∞/δ = 0 are
identical to those in figure 8(a). The contours in figure 10 are seen to be markedly
different from the contours in figure 9, suggesting that the temporal shifts in frequency
modulation are very different to amplitude modulation. The contours reveal that there
is a time delay between the increased or decreased frequency of the small scales
and the strength of the large scales. The peak in 1fm appears to be at around
τU∞/δ = −0.2 in the near-wall region. This time delay is explored in greater
detail later in this section. It can also be seen that the frequency modulation effect
is diminished beyond y+ = 100 over all time shifts. This is consistent with the
observations in the previous section.

The phase lag of amplitude and frequency modulation can be further examined
by extracting the time shifts at which the absolute values of 1u2

S and 1fm attain
a maximum. This phase lag is determined at each wall-normal location for various
values of u+

L . Figures 11(a) and 11(b) show the time shifts over a range of wall-
normal locations at which 1u2

S and 1fm attain a maximum for different values of
u+

L , respectively. The time shift for amplitude modulation is negative and it decreases
with increasing wall-normal distance until the middle of the log region (i.e. up to
y+ ≈

√
15Reτ ). Beyond this location, the temporal shift is positive and the shift

decreases with increasing distance from the wall. The time shifts for amplitude
modulation appear to remain constant at a given wall-normal location over all values
of u+

L . This suggests that the phase difference between the large-scale fluctuation and
the small scales does not depend on the strength of the large-scale fluctuation. It must
be noted that farther away from the wall the data are scattered, especially for intense
large-scale fluctuations, due to lack of statistical convergence.

The time shift for frequency modulation is approximately −0.2δ/U∞ in the near-
wall region, and this delay decreases, reaching zero at around y+ = 100. Beyond this
location, the time shift data are scattered. This is mostly due to the fact that there is
very limited (or no) frequency modulation in the outer region. Just as in amplitude
modulation, the time shifts appear to remain constant at a given wall-normal location
over all values of u+

L . It must be noted that, in the near-wall region, the time shift
for frequency modulation is comparable to that for amplitude modulation. A high local
shear, correlated with positive u+

L , results in higher vorticity and consequently higher
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FIGURE 10. (a) The top plot show 1fm as a function of phase lag (τ ) and wall-normal
location (y) for u+

L = −2; and the bottom plot shows 1fm(τ, y) for u+
L = 2. (b) The three

plots show 1fm as a function of u+
L and wall-normal location at three different phase-lags,

τU∞/δ = −1, 0 and 1.

amplitude and frequency for the small scales compared to u+
L = 0. On the other hand,

a low value of shear, correlated with negative u+
L , suppresses the generation of smaller

scales, resulting in lower amplitude or frequency. Farther away from the wall (i.e. in
the log region), shear is much smaller, since the mean shear decreases dramatically (i.e.
∂U+/∂y+ ∝ 1/y+) and therefore the extent of frequency modulation diminishes rapidly
farther away from the wall.

7. Spectral analysis: overall modulation effects

In previous sections, the effects of amplitude and frequency modulation were
explored separately. However, it would be useful to be able to represent the combined
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FIGURE 11. Phase lag as a function of wall-normal location for both (a) amplitude
modulation and (b) frequency modulation. The phase lag for amplitude or frequency
modulation is determined as the lag at which the absolute value of 1u2

S/1fm is a maximum at
a given wall-normal location.

effect. The combined effects of amplitude and frequency modulation can be captured
by examining the conditional spectra of the small-scale fluctuations conditioned on the
large-scale fluctuation. This is analogous to computing the short-time correlation, as
done by Bandyopadhyay & Hussain (1984), Chung & McKeon (2010) and Guala et al.

(2011); however, we present the results as a function of u+
L . It must be noted that

this spectral analysis will not capture the phase difference between the large and small
scales identified in the previous section.

The procedure to compute the conditional spectrum of the small scales is similar to
the procedure outlined in the preceding sections, and is as follows.

(i) The velocity fluctuation (u) is separated into large-scale (uL) and small-scale (uS)
fluctuations by using a spectral filter of length λtU∞/δ = 2.

(ii) Equally spaced bins with a spacing of 0.2 ranging from u+
L = −6 to u+

L = 6 are
created for the large-scale fluctuations.

(iii) The time series of both the large- and small-scale fluctuations are divided into
individual segments of length λtU∞/δ = 2 (which is the filter time scale that
delineates the large scale from the small scales).

(iv) The representative value of the large-scale fluctuation (u+
L ) in a segment is

chosen as the value at the centre of an individual segment.

(v) The small-scale signal, u+
S (t), within the same segment is used to compute

the pre-multiplied energy spectrum, where the maximum frequency obtained
is determined by the sampling frequency (one-half of the sampling frequency)
while the minimum frequency captured is λt/2.

(vi) This spectrum is assigned to the bin corresponding to the value of large-scale
fluctuation.

(vii) Steps (iv)–(vi) are repeated for all segments across all wall-normal locations.
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(viii) A mean conditional spectrum over the samples in every bin is calculated and this
represents a conditional energy spectrum of the small scales conditioned on the
value of large-scale fluctuation.

Figure 12 shows pre-multiplied conditional energy spectra of the small scales
conditioned on the value of the large-scale fluctuation at y+ = 15. The spectra for
u+

L = −3, − 2, − 1, 0, 1, 2 and 3 are shown in the figure. It can be seen
that the peak value of the pre-multiplied spectrum increases with increasing value of
u+

L (as you go from negative u+
L to positive u+

L ). This is the spectral manifestation
of amplitude modulation where the energy content in the small scales increases
with increasing value of the large-scale fluctuation. In addition, it can be seen in
figure 12 that the location of the maximum (i.e. time scale band of maximum energy)
appears to decrease with increasing value of u+

L . The changing location of the peak
is an indication of frequency modulation where the frequency of small scales with
the highest energy content increases with increasing large-scale fluctuation. This is
consistent with the observations in the previous sections, and the current result is
a spectral representation of frequency modulation. Therefore, the conditional energy
spectrum of the small scales provides information on both amplitude and frequency
modulation effects. The combined effect of amplitude modulation (i.e. higher overall
energy content in the smaller scales) and frequency modulation (i.e. higher and higher
frequencies contain more energy) manifests as higher or lower dissipation depending
on the value of u+

L . Indeed, Guala et al. (2011) found that dissipation is locally higher
for positive u+

L and lower for negative u+
L in the near-wall region.

8. Discussion

In the previous sections, the effects of both amplitude and frequency modulation of
the small scales by the large-scale structures was established. The extent of modulation
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varies with distance from the wall. In the near-wall region, amplitude modulation of
up to ±30 % is observed and its extent is higher for higher values of large-scale
fluctuation. Amplitude modulation also exhibits a phase difference, indicating that
the small scales are amplified a given time delay after the occurrence of the large-
scale fluctuation. This time delay increases with increasing wall-normal distance. The
frequency modulation effect appears to be confined to the near-wall region, with the
effect diminishing rapidly for y+ > 100. Frequency modulation also exhibits a time
delay, where the frequency of the small scales is increased or decreased after the
occurrence of the large-scale fluctuation, but this delay remains a constant across all
wall-normal locations. It is useful at this point to reiterate that the true modulation
of frequency and amplitude (in the strictest definition of the large-scale structure
actively steering the small-scale behaviour) may be confined to the near-wall region
(y+ < 100). Beyond this region, the correlation (and phase shift) between the large-
scale fluctuations and small-scale amplitude may be more indicative of a preferential
arrangement between these two scales rather than a true modulating influence exerted
by the large scales.

An overall summary of the key results in this paper is schematically presented
in figure 13. The upper plot gives a kinematic overview across the entire boundary
layer. This plot utilizes the knowledge gained about the structure of boundary layers
from the broader literature. The plot shows alternating large-scale low- and high-speed
forward-leaning structures that are consistent both with observations of superstructure-
type events (Chung & McKeon 2010; Hutchins et al. 2011) and with the hairpin
packet paradigm (Adrian, Meinhart & Tomkins 2000). Meinhart & Adrian (1995),
Adrian et al. (2000) and Tomkins & Adrian (2003) show that these large-scale uniform
momentum regions are separated by vortical structures that exist as a result of the
shear layer between high- and low-speed events. The clockwise patterns in the plot
indicate increased vorticity contribution above the mean, and anticlockwise indicate a
reduced contribution to mean vorticity. In this physical representation, the only true
modulation occurs close to the wall due to the modified velocity gradient imposed by
the large scales onto the near-wall cycle. The temporal dynamics of amplitude and
frequency modulation in the near-wall region is represented in detail in the bottom plot
in figure 13. This plot is depicted in the frame of reference of the small scales, i.e. the
small scales are stationary while the large-scale structure convects through at a relative
convection velocity of URCLS = ULC − USC (where ULC and USC are the convection
velocities of large- and small-scale motions).

In the near-wall region, as the large-scale high-speed structure convects through the
small scales, the small scales experience a sudden change in velocity. This change,
which is a velocity gradient, induces a higher shear stress compared to the mean
flow – see Hutchins et al. (2011) (the conditional mean profiles from that paper are
reproduced as figure 14a). This increase in the local skin friction, i.e. an increase
in the local Reynolds number, results in an increase in the frequency of the small
scales as shown in figure 13. This change in frequency reaches a maximum after a
time delay of approximately 0.2δ/U∞ (as seen in figure 11b). This delay is equivalent
to the turnover time of the near-wall cycle (i.e. τ+ ≈ 100). This phase difference (or
time delay) for frequency modulation remains relatively unchanged across wall-normal
locations (in the near-wall region), as seen in figure 11(b). It must also be noted that
the time delay to achieve maximum amplitude modulation in the near-wall region is
comparable to that of frequency modulation, as seen in figure 11(a). This is primarily
because both amplitude and frequency modulation are a response of the small scales
to a sudden change in large-scale velocity (i.e. large-scale velocity gradient). This is
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FIGURE 13. (a) An overall kinematic representation of amplitude and frequency modulation.
The solid contours (red middle area) represent a large-scale high-speed region. The
dashed contours (two blue outer areas) indicate a large-scale low-speed region. Arrows
represent vorticity fluctuation due to the shear layer between high- and low-speed
events (clockwise indicating increased vorticity contribution above the mean, anticlockwise
indicating a reduced contribution to mean vorticity). The synthetic velocity trace (thicker
solid black line) illustrates the amplitude and frequency modulation of the small-scale
eddies in the near-wall cycle. (b) A schematic representation that illustrates the temporal
dynamics of amplitude and frequency modulation of the small scales by a large-scale
high-speed event in the near-wall region (i.e. y+ < 100). The schematic is shown in
the frame of reference of the small scales (therefore, they are stationary) as the large-
scale high-speed structure convects through with a relative convection velocity of URCLS =
ULC − USC, where ULC and USC are the convection velocities of large- and small-scale
motions.

consistent with a scenario where small scales are generated by the footprint of the
large high-speed structure (i.e. the high shear compared to the mean flow) and the
time taken for this process to be completed is equivalent to the time scale of the
near-wall cycle.
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FIGURE 14. (a) Unconditional (—) and conditionally averaged mean velocity profiles on
low- (◦) and high-shear-stress (�) events. This shows the near-wall impact of the large-scale
positive and negative velocity fluctuations. (b) Convection velocity of the large- and small-

scale motions in a turbulent channel flow (reproduced from Del Álamo & Jiménez 2009).
The figure shows that the convection velocity of the large scales relative to the small scales,
URCLS = ULC − USC, decreases with increasing wall-normal location. Although the current
study is concerned with turbulent boundary layers, the convection velocities are expected to
follow a similar trend.

Farther away from the wall, the shear induced by the large-scale structure is

comparable to that of the mean flow – see Hutchins et al. (2011) and figure 14a,

which shows that the mean profile conditioned on the existence of a high-shear-stress

event at the wall has the same slope as the unconditional mean profile in the log

region. Therefore, the frequency of the small scales remains relatively unchanged in

the outer region as observed in the previous sections. However, amplitude modulation

persists and it demonstrates an increasing phase difference (or time delay) with

distance from the wall as seen in figure 11(a). This feature can be explained through

two possible scenarios, both of which are consistent with the physical model presented

in figure 13. First, the increasing phase difference could be the change in the

convection velocity of the large scale relative to the small scales (URCLS) with wall-

normal location. Evidence presented in Del Álamo & Jiménez (2009) for a turbulent

channel flow (figure 4 in their paper, which is reproduced as figure 14b) shows that

the difference between the convection velocity of the large scales and the small scales

decreases with increasing wall-normal location. Therefore, for a given length scale of

the large high-speed structure (say L), the time taken for the large structure to convect

past the small scales (L/URCLS) will increase with increasing wall-normal distance.

This will manifest itself as an increase in phase difference with wall-normal location

for amplitude modulation. An alternative interpretation for the phase difference in

amplitude modulation is provided by the top plot in figure 13. The increasing phase

difference can be considered as a manifestation of the preferential spatial arrangement

of small-scale vortical activity within the inclined shear layers separating the large-

scale high- and low-speed regions. In time-series data (such as those presented in the

current study), this preferential arrangement will result in a phase difference between

large-scale and small-scale motions.
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The physical model shown in figure 13 reconciles a near-wall cycle, the amplitude

and frequency of which are believed to scale on the skin friction at the wall, and

the packet model of inclined vorticity-rich shear layers separating inclined uniform

momentum zones. The schematic explains why the frequency modulation would be

confined to the near-wall region, while also providing an explanation for the increasing

phase difference with distance from the wall for the amplitude modulation. Given

that the magnitude of the large-scale fluctuations increases with Reynolds number,

and given that these large-scale fluctuations modulate the amplitude and frequency of

the near-wall cycle, it seems reasonable to assume that both modulation effects will

strengthen with Reynolds number.

9. Conclusions

In this study we examined the impact of the strength of the large-scale fluctuation

on the small scales in wall-bounded turbulence. Time series of hot-wire data were

decomposed into large- and small-scale components using a spectral filter of a given

length (in this case, λtU∞/δ = 2), and the impact of the large-scale signal on the

small scales was examined. The large-scale signals were separated into individual

bins of different values ranging from strong negative fluctuation to strong positive

fluctuation. The small-scale signals within these large-scale bins were analysed to

examine both amplitude and frequency modulation of the small scales by the large

scales.

The amplitude of the small scales was computed as the mean square of the

small-scale signal within the given filter length. It was shown that this small-scale

amplitude increases with increasing value of the large-scale fluctuation (from negative

to positive) in the near-wall regions, whereas farther away from the wall the small-

scale amplitude decreases with increasing large-scale fluctuation. This clearly reveals

that the amplitude modulation effect increases with increasing strength of the large-

scale fluctuation. However, the rate of increase in small-scale amplitude with the

strength of large-scale signal is nonlinear. The increase in amplitude of small scales

for positive values of large-scale fluctuation is not as high as the attenuation of the

small-scale amplitude for comparable negative values of large-scale fluctuation.

A new analysis method that counts the number of occurrences of local maxima or

minima in the small-scale signal was used to examine frequency modulation effects.

The mean separation in time between maxima and minima was used to infer the

localized frequency of the small scales. The number of local maxima or minima is

conditionally averaged based on the value of the large-scale fluctuation. It was shown

that frequency (i.e. number of local maxima or minima) is higher for positive large-

scale fluctuations, while it is lower for negative large-scale fluctuations, indicating

the presence of frequency modulation. This frequency modulation effect is largely

restricted to the near-wall region (y+ < 100).

A phase difference between the large and small scales, in terms of amplitude

modulation, was also identified, which is in agreement with previous studies

(Bandyopadhyay & Hussain 1984; Chung & McKeon 2010; Hutchins et al. 2011).

The time shifts for amplitude modulation appear to remain constant at a given wall-

normal location over all values of u+
L . This suggests that the phase difference between

the large-scale fluctuation and the small scales does not depend on the strength of

the large-scale fluctuation. The phase difference between large and small scales is
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markedly different for frequency modulation when compared to amplitude modulation.
The phase lag for frequency modulation appears to be much smaller compared to
amplitude modulation and does not have the characteristics of an inclined structure.
This suggests that the frequency modulation observed in the near-wall region is
perhaps a result of local changes in shear and is not necessarily dependent on the
overall spatio-temporal structure of the large scales.

The combined effect of both amplitude and frequency modulation was considered
by computing conditional spectra of the small-scale signal conditioned on the value of
large-scale fluctuation. In the near-wall region, the results indicate that the peak value
of the pre-multiplied spectra increases with increasing value of large-scale fluctuation,
indicating amplitude modulation, while the frequency at which this peak occurs also
increases with increasing value of large-scale signal, revealing frequency modulation.
The overall trends observed from the conditional spectra are consistent with the results
obtained through statistical analyses.

Finally, a physical mechanism that can reconcile the observations made in the
current study is also presented. This mechanism consists of very large-scale motions,
consistent with hairpin packet-type models. The footprint from these features imposes
a large-scale modulation of the near-wall velocity gradient, which in turn modulates
the amplitude and frequency of the near-wall cycle.
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Appendix A. Validation of analysis tools with synthetic signals

In this appendix, we use synthetic signals to show that amplitude and frequency
modulation are not artefacts of the data processing tools, but are intrinsic features of
the turbulent wall flow.

Synthetic signals are generated using the original hot-wire signals. The original
signal is first transformed to the Fourier domain and its amplitude is retained. The
phase information of the original signal is discarded and a new phase angle is
generated for each Fourier coefficient by randomly generating a number between
−π and π. The signal with the new phase information is transformed back to the time
domain, which is then used to carry out further analysis.

Figure 15(a) shows a trace from the original hot-wire signal and the corresponding
synthetic signal. On first glance, both time traces appear to be ‘turbulent’. Since the
amplitude of the synthetic signal is identical to the amplitude of the original signal for
each Fourier coefficient, the turbulence intensity as well as the energy spectra obtained
from the synthetic data are identical to those of the original hot-wire data. However,
the scrambled phase information should remove any correlation that may exist between
the large and small scales in the flow. Therefore, these synthetic data can be used to
ascertain if the amplitude and frequency modulation analysis presented in the paper are
artefacts of the mathematical tools used.

Figures 15(b) and 15(c) show contours of 〈u2
S

+〉 and 〈 f +
m 〉 as a function of u+

L and
wall-normal location for the synthetic signals. It can be seen that the amplitude and
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FIGURE 15. (a) Instantaneous sample of original and synthetic signals at y+ = 15. Plots

of (b) 〈u2
S

+〉 and (c) 〈 f +
m 〉 as a function of u+

L and wall-normal location. (d) Plots of 1u2
S

for u+
L = −2 and 1f +

m for u+
L = 2 as a function of phase lag (τ ) and wall-normal location.

The data presented in panels (b–d) are calculated using the synthetic signal. The large- and
small-scale fluctuations are calculated from the synthetic signal based on a filter time scale of
λtU∞/δ = 2 (this filter scale is identical to the one used to analyse the original data in this
paper).
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the frequency across all values of u+
L are equal to each other. This shows that there is

no measurable amplitude or frequency modulation in the synthetic signals. Also, the

contours in these two figures are markedly different from the corresponding contours

in figures 5(a) and 7(a), which are evaluated using the original signal, indicating that

the observed amplitude and frequency modulation are indeed intrinsic features of the

flow.

Figure 15(d) shows 1u2
S(u

+
L , y, τ ) and 1fm(u+

L , y, τ ) from different u+
L bins. The

contours for 1u2
S are taken from the bin corresponding to u+

L = −2, and the

contours for 1f +
m are from the u+

L = 2 bin. It can seen that both 1u2
S(u

+
L = −2, y, τ )

and 1fm(u+
L = 2, y, τ ) are essentially zero for all time delays. The bins of u+

L in

figure 15(d) are only chosen as an example. In fact, 1u2
S and 1fm are zero across all

time delays for all bins of u+
L . This further shows that the amplitude and frequency

modulation is an intrinsic feature of the flow and is not an artefact of the processing

tools.

The results in this appendix are consistent with the validation carried out using

synthetic signals in Mathis et al. (2009).

Appendix B. Filter scale effects on amplitude or frequency modulation

All the results presented in this paper used the data based on a filter time scale

of λtU∞/δ = 2. This filter scale was chosen as it appears to clearly demarcate the

high-energy lobe in the near-wall region from the high-energy lobe in the outer

region.

In this appendix, we show the effect of this filter time scale on amplitude

and frequency modulation. We consider five different filter time scales, between

the inner and outer high-energy lobes seen in figure 1. The five vertical lines at

λtU∞/δ = 0.5, 1, 2, 4 and 6 as shown in figure 1 are used as filter time scales.

Figure 16 shows the effect of these different filters on amplitude and frequency

modulation. The large- and small-scale fluctuations are computed as outlined in § 3.1

for each filter case. The figures in the left column show 1u2
S and the figures in the

right column show 1fm, respectively, for various filter time scales. The filter time

scales are indicated in the figure. As the filter time scale increases, the number of

data samples within higher values of u+
L decreases, and consequently we encounter

statistical convergence issues. Despite this issue, the general trends of amplitude and

frequency modulation can still be observed.

For amplitude modulation (left column), it is observed that near the wall the

amplitude of the small scales is attenuated for u+
L < 0 and amplified for u+

L > 0.

Also, the location where the modulation effect experiences a change in behaviour (i.e.

going from amplification to attenuation for u+
L > 0) appears to remain unchanged with

increasing filter time scale. This is consistent with the results of Mathis et al. (2009),

who found that the correlation between the large-scale fluctuation and the envelope of

the small scales is only weakly dependent on the filter.

For frequency modulation (right column), we observe that the filter scale does not

alter the general trends, and the location where frequency modulation effects diminish

(y/δ ≈ 0.1) does not appear to change with increasing filter scale. This suggests

that the general trends of amplitude and frequency modulation noted in this study

only weakly depend on the choice of the filter time scale. Obviously, the essential

requirement is the presence of separation of scales between the large and small scales,

which will enable us to decompose the fluctuations.
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