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O S T I  
ABSTRACT 

We have developed a two-dimensional Shack-Hartman wavefront sensor that uses binary optic lenslet 
arrays to directly measure the wavefront slope (phase gradient) and amplitude of the laser beam. 

This sensor uses an array of lenslets that dissects the beam into a number ofsamples. The focal spot 

location of each of these lenslets (measured by a CCD camera) is related to the incoming wavefront slope 

over the lenslet. By integrating these measurements over the laser aperture, the wavefront or phase 

distribution can be determined. Since the power focused by each lenslet is also easily determined, this 
allows a complete measurement of the intensity and phase distribution of the laser beam. firthermore, 
all the information is obtained in a single measurement. Knowing the complete scalar field of the 

beam allows the detailed prediction of the actual beam's characteristics along its propagation path. In 
particular, the space-beamwidth product, @, can be obtained in a single measurement. The intensity 

and phase information can be used in concert with information about other elements in the optical 

tiain to predict the beam size, shape, phase and other characteristics anywhere in the optical train. 
We present preliminary measurements of an Ar+ laser beam and associated @ calculations. 
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1 Introduction. 

In many instances where a laser beam is needed, 

it is important to  know something about the laser 

beam quality. The beam quality affects how the 
beam will propagate, as well as how tightly it will 

focus. Unfortunately, beam quality is a somewhat 

elusive concept. Numerous attempts have been 
made to  define beam quality, stretching back al- 

most to  the invention of the laser.'i2 In prac- 
tice, any one of these measures will have some flaw 
in certain situations, and many different measures 
are often used. Among these is the M2 parameter 
(space-beamwidth product) .193 

The intensity and phase distribution of a laser 
beam are sufficient for determining how the beam 

will propagate or how tightly it can be focused. 

Most of the beam quality measurements rely on 
characterizing the beam from only the intensity 

distribution, since obtaining this is a comparably 

straightforward process. However, if both the in- 

tensity and phase distribution could be obtained 
simultaneously, then all the information would be 

available from a single measurement. 

In general, phase is measured with an interfer- 

ometer. Interferometers are sensitive instruments 

that have been extensively de~eloped.~ They can 

be used to measure laser beams by using a shear- 
ing or filtered Mach-Zehnder arrangement, and can 
produce the desired intensity and phase distribu- 
tion. Unfortunately, these systems rapidly become 
complex, and are slow and unwieldy, as well as be- 

ing expensive. 

A Shack-Hartmann wavefront sensor is an al- 
ternative method for measuring both intensity and 

phase? Such sensors have been developed by the 

military for defense daptiveoptics programs over 

the last 25 ~ e a r s . 4 ~  This ensor is a simple de- 
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vice that is capable of measuring both intensity 
and phase distributions in a single frame of data. 
The advent of micro-optics technology for mak- 
ing arrays of lenses has allowed these sensors t o  

become much more sophisticated in recent years. 
In addition, advances in CCD cameras, computers 

and automated data acquisition equipment have 

brought the cost of the required components down 

considerably. With a Shack-Hartmann wavefront 

Sensor it is relatively straightforward to  determine 

the intensity and phase of a beam. This allows not 
only the derivation of various beam quality para- 

meters, but also the numerical propagation of the 

sampled beam to another location, where various 

parameters can then be measured. 

M2 has become a commonly used parameter 

to generally describe near-Gaussian laser beams. 
It is especially useful in that it allows a predic- 

tion of the real beam spot size and average in- 

tensity a t  any successive plane using simple ana- 
lytic expressions. This allows system designers the 

ability to know critical beam parameters at arbi- 

trary planes in the optical system. Unfortunately, 
measuring M2 is somewhat difficult. To date, ob- 

taining M2 has generally required measurements of 

intensity distributions at multiple locations along 
the beam path. Although efforts have been made 
to obtain this parameter in a single measurement,’ 

this still suffers from the need to  make simultane- 
ous measurements a t  more than one location. The 

technique presented here requires a single measure- 
ment at a single location. 

In succeeding sections, we will describe how a 

wavefront sensor is constructed along with prelim- 

inary experimental data. A method for computing 
M2 will be developed and applied to various sim- 
ulated and real beams. 

2 Wavefront sensor design 

and analysis. 

2.1 Beam characteristics from a sin- 
gle measurement and location. 

The time-independent electric field of a coher- 
ent light beam directed along the z-axis can in gen- 

eral be described by its complex amplitude profile, 

Figure 1: Basic configuration of a wavefront sen- 
sor. 

is referenced to the wavefront phase on the z-axis. 

Due t o  rapid temporal oscillations at optical fre- 
quencies, it is not possible to directly measure the 

electric field. However, by using a Shack-Hartmann 

wavefront sensor, one can indirectly reconstruct a 

discrete approximation to  the electric field at a 

given plane normal to the z-axis. 

A Shack-Hartmann Sensor provides a method 
for measuring the phase and intensity of an inci- 
dent light beam. The sensor is based on a lenslet 

array that splits the incoming light into a Series of 
subapertures, each of which creates a focus on a 

detector (usually a CCD camera). (See Figure 1.) 
The wavefront of the incoming beam is defined as 

a surface that is normal to  the propagation direc- 
tion of the light. Hence distorted light will have a 

wide collection of propagation directions and the 
separate lenslets will focus the light into different 

positions on the detector. By determining the PO- 

sition of each of these focal spots the wavefront 
slope over the lenslet can be measured. The wave- 
front itself must be reconstructed by integrating 
these wavefront slope measurements. 

There are Several steps in wavefront Sensor data 
reduction. First the sensor is placed in a reference 

beam and data is acquired with a camera for cal- 
ibration. Since there are a large number of focal 
spots in the field, the image must be divided into 

a set of small windows, each centered on a focal 
spot peak, with one window per.lenslet. Once the 
windows have been found, a centroid is Computed . .  

. .  
* .  
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Figure 2: Image of data from Shack-Hartmann 

sensor. Centroid positions calculated from image. 

The light gray spots are the centroid positions of 
the calibration beam. 

using a center-of-mass algorithm: 

Figure 3: Vector plot displaying wavefront slopes 

of an expanding beam. 

an expanding beam. 

The final step is the wavefront reconstruction. 

This is the solution of the gradient equation, 

(3) 

Pz,l = ('1 where the data provides sampled values for the 

wavefront gradient, 

With pixels indicated by the i, j indices, a sum is 
made over the pixels in each window (Wl) where 
1 indicates a particular lenslet) of the intensity- 

weighted locations. (When not mentioned explic- 

itly, similar equations hold for the y-axis.) This 

results in a calibration set of centroids, p,,IICAL 

pletely calibrated and is ready for acquisition and 

Here 9, and gy are the measured slope data. The 

reconstruction proceeds by finding a set of 41 val- 
ues that obey the above equations. Commonly 

used methods include least-squares procedures and 
and p y , t l q ~ ~  * The sensor has now been 'Om- marching methods! 

measurement of actual data. Note that the Cali- in that it takes 
beam need not be a as 

account of the intensity distribution as well as the 
long as its characteristics are known; results are phase slopes is known as ,.he modal reconstruc- 

tor method. In this method the data is fit to  the 
then deviations from this reference. 

derivatives of an analytical surface described by an 

as that for the calibration data. The data is ac- simple case is the use of a polynomial expansion. 

quired and digitized and then centroids are com- Thus the phase 

puted using the windows calculated in the calibra- 

tion step. A typical image is shown in Figure 2. 4 = aoo + ulox + aoly + allw+. .. + uijxi$.  (5)  
Once these centroids have been obtained, and with 

the lenslet to  CCD distance, L, known, the wave- This description uses normal polynomials in x and 
front slopes can be calculated: y. We have also used different basis sets, such as 

Hermite and Zernike functions. The derivatives of 

One method that has 

The first step in data is the same expansion in terms of a set of basis functions. One 

might be described by 

a4 Pz,l - P2, l lCAL (2) the phase are then easily determined by 

. . .  . . c  

L 
e,,[ = - = 

' a4 
ax1 

Figure 3 displays an example of this calculation for %..= a10 + ally + 2(42oX 4- . .  *.+.i&jz?'$ (6) 
- .  . . .  
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2.2 M? from a single measurement 

point. 

One commonly used parameter for character- 
izing laser beam quality is the space-beamwidth 
product, or M2 parameter.' Let the complex elec- 

trical field distribution of a beam directed along 

the z-axis be given by (z, y, z), with the corre- 

sponding spatial frequency domain description of 

the beam, F(sZ,sy,z) given by its Fourier trans- 

form, F (s,, sy, z) = S {E (z, y,z)}. Beam inten- 

Figure 4: Phase map for Ar+laser beam, with tilt sities in each domain are then defined by I (z,y,z) 

removed. Curvature dominates the phase strut- El2 (z,Y, 2) and by I^ (s,, sy, z) 12 (s,, sy, z)1 . 
ture. 

2 

The @ parameter is then defined by: 

Figure 5: Intensity map for an Ar+ laser. 

where a,, is intensity standard deviation at  the 
beam waist (zzo) in the z-direction, defined by 

and a,, the spatial-frequency standard deviation 
of the beam along the z-axis 

* (9) 
J.J. (32 - GI2 i (sz, sy) &&, 

J.J. Î  (z, Y, 2) dszdsv 
= 

Note that a:, is not a function of z, and can be 
with a similar expression for the y-derivative. Q u a -  obtained using the Fourier transform of the electric 
tion 6 is then fit to the wavefront slope data us- 

ing a least-squares method. Since equation (5) 
determines the wavefront phase in terms of these 
aij (with an arbitrary constant of integration, QO, 

which is set equal to zero), the complete wavefront 

has been determined. Figures 4 and 5 illustrate a 
typical phase and intensity distribution obtained 
by this method. 

The above provides a complete measurement 

of the beam intensity and phase, sampled by the 
lenslets. This measure is from a single time and 
location. It can be used for calculation of other 

parameters of interest, such as M2 as shown in the 

next section. In addition, the reconstructed wave- 
front can be propagated to  another location using 
a standard propagation code (e.g., LightPipesa' 

or GLAD@'). 

field. 

(The first moments of the beam along the z- 
axis and the s,-axis are indicated by 3 and S,, 
respectively. The spot size of the beam is w, (2) E 

2a,. The corresponding y-axis quantities hold for 
ago, asv, etc., mutatis mutandis, throughout this 

paper. In addition, the normalizing factor in the 
denominators shall be indicated by P = 1J.I (z,~, Z) 

&dY = JJ. I^ (2, Y, 2) dszds,.)) 

In the case of a paraxial beam in the z-direction, 
with an arbitrary reference plane (zl), it has been 
shown by Siegman" that the intensity standard 
deviation will have an axial distribution given by, 

ai (2) = a2 (21) - A J  x (Z - 21) (10) 
2 2  +&.%, x (2- S I 2  

where. Az,l is dven by the function 

- .  .. 



(We have followed Siegman in suppressing the phase 
tilt term.) The beam waist, or location of mini- 

mum intensity variance, is obtained from equation 

(10) : 

Substituting back into Equation (10) yields the re- 
lationship 

Mg folIows immediately from equation (7). 

It should be noted that equations (13) and (11) 

are not derived from series expansions in the vicin- 
ity of the beam waist, but are analytical deriva- 
tions dependent only upon the paraxial wave equa- 
tion, the paraxial propagation assumption, and the 
Fourier transform relationships between the com- 
plex electric field amplitude (@ (z, y, z)) and the 

spatial-frequency beam description (p (sZy sy, 2)). 

As shown in section 2.1, it is possible to  obtain 

a discrete description of the beam electric field am- 

plitude and phase in a given plane normal to the 

z-axis. As art of the measuring process, discrete 
values for & and 2 are also obtained. By means 

of the above formulz and standard numerical inte- 

gration techniques one can then obtain values for 
M 2  and the waist locations, ZO,,~. 

The sequence is as follows. (See Figure 6.) 
From the Shack-Hartmann sensor, the distribution 

of intensity, I ( z , y , q )  and wavefront slope, 

and $ are obtained. From these, the electric field, 

lated. The spatial-frequency eledric field distribu- 

tion, P (s,, sy, zl), is derived using a Fourier trans- 
form algorithm, such as the fast Fourier transform 
(FFT). F’rom these the intensity distributions in 

both domains, I (z,gy 21) and f (s,, sy, q), are ob- 

tained, whence numerical values for the variances, 

u: (zl) and a:, , are calculated. Concurrently, the 
integral of equation (11) is computed, with the 

@ (.,?A 21) = E (.,Y, zl)exP[i4 (.Y Y, 4 1  is cab- 

Figure 6: Computing waist location and M2 in a 
single measurement. The Shack-Hartmann sensor 

gives a set of wavefront slopes and intensities; these 
are used to  reconstruct an electric field wavefront 

(normalized to  zero phase on the z-axis). The spa- 

tial frequency field is obtained by Fourier trans- 

form. Application of other relationships described 

in the text yield waist location and the M2 para- 

meter. 

results being used in equations (13) and (12) to 
produce the waist location and intensity variance. 
The waist intensity standard deviation and the 
spatial-frequency standard deviations immediately 

yield the M 2  parameter per equation (7). 

2.3 Algorithm sensitivity. 

In order to  determine the sensitivity of the al- 

gorithms developed in Section 2.2, a number of 

different modelled beams were created. This al- 

lowed for a check on the algorithm with known 
conditions, without having t o  consider the effects 

of noise or experiment errors. To this end, the 

laser beam was modelled with either a Gaussian 

or sech2 intensity profile, and the effect of various 
parameters was considered. The modelled beam 
was broken into the appropriate samples to  model 
the lenslet array and detector, and the equations 
of section 2.land 2.2 were used to  determine M2. 
For calculations to  obtain beam characteristics, 

the integrals in Equations (S) ,  (9), and (11) are 
replaced with discrete sums over.validly measured 
values. All Fourier transforms are performed using 

standard discrete Fourier transform methods, and 
the fast Fourier transform (FFT) algorithm when 

. .  
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possible. All calculations were performed using a 

standard numerical computation software package 

(MATLAB14) on standard desktop computers. 

Initial results with modeled Gaussian beams 
have been very encouraging. Elliptical Gaussian 
beams were modeled, adjusted in piston by setting 

the phase equal to zero on the z-axis. Figure 7 de- 
tails the results of modeling two Gaussian beams 

of differing waist size. For these beams, the M2 
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parameter is unity. The smaller beam was propa- 
gated over several Rayleigh ranges, and the larger 
over a full Rayleigh range. In each case the algo- aberrations* 
rithm correctly calculated the M2 parameter based 

solely on a sampling of the wavefront a t  a given 

(but unknown to the algorithm) distance from the 

waist. A similar computation was conducted with 
a Gaussian beam with a constant 1.3 milliradian 

tilt, or roughly one wave across the beam diam- 

eter. Again the algorithm correctly calculated a 

value of unity for the M2 parameter throughout 

the range tested. 

Figure 9: Effect on M2 for various levels of selected 

The model was also tested on non-Gaussian 
beam profiles. Figure 8 depicts the results for a 

beam with a hyperbolic secant squared intensity 

profile, which has a theoretical M2 of 1.058. The 
beam was modeled with a flat phase front a t  z = 0, 

simulating a beam waist, and then propagated over 
the distance shown (roughly one Rayleigh range) 

using Lightpipea? 

As another check on the algorithm, beams with 

various levels and types of aberration were exam- 

ined, as shown in Figure 9 (MZ values are shown). 
Four types of aberration were examined, based 

upon four Zernike polynomial aberration functions4: 

astigmatism with axis at f45' (U~O), astigmatism 

with axis at 0" or 90" (U22); triangular astigma- 

tism with base on z-axis (U30); and triangular 
astigmatism with base on y-axis (U,). The algo- 
rithm correctly calculated an M2 value near unity 

for U22 (or y2 - z2) astigmatism, as well as show- 
ing increasing values of M2 for increased U20 (2q), 

U30 (3q2 -z3), and U33 (y3 -3z2y) astigmatism. 

Of concern in the use of this method is the 
granularity of the reconstructed wavefront and the 

effect this would have on the computation of M2. 
This was tested by examining the result+ of the al- 
gorithm when sampling a modeIed Gaksian b&m . . .  

L .  
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Figure 10: Gaussian beam modeled at waist; M2 
calculation for a detector consisting of a 40 x 32 

array of lenslets, each 250pm on a side. Once de- 

tectable beam energy no longer falls on the detec- 

tor, there is a loss of intensity in the higher spatial 
frequencies, resulting in a decrease in the M2 pa- 

rameter. 

Figure 11: 
lenslets across the aperture. 

Effect of increasing the number of 

3 Experimental 

measurement. 

at  the waist. The algorithm correctly calculated 
the M2 parameter once information was available 

from several lenslets. Accuracy remained within a 

few percent until the beam size (2a) reached about 
45% of the total aperture. (See Figure 10.) At this 

point, in a zero noise environment, detectable en- 
ergy from the beam just reaches to  the edge of the 

aperture. Thus all beam energy outside the aper- 

ture is below the sensitivity threshold of the detec- 
tor. However, once energy which would otherwise 

be detectable fell outside of the detector aperture, 

the value of the M2 parameter determined by the 

algorithm drops. We also found, as shown in Fig- 

ure 11, that there was no need to  go to an extreme 

number of lenslets in order to obtain good results 
in a low-noise environment. It is important to  note 
that this set of results are for a Gaussian beam 

at the waist, and as a result there were no beam 

aberrations. Further analysis is needed to examine 
the behavior of the algorithm for other conditions. 
We expect that the algorithm should correctly cal- 
culate M2 as long as the spatial structure of the 

aberration is larger than twice the lenslet spacing. 

3.1 Wavefront sensor design. 

Shack-Hartmann wavefront sensors have been 

used for many years as sensors for adaptive optics 
in military high energy laser and atmospheric com- 
pensation. However, recently they have been ap- 

plied to measurement applications in thermal flow, 

turbulence and surface measurement." While these 
early sensors were one dimensional in order t o  make 

high bandwidth measurements, recently fully two 

dimensional sensors have been 

One of the chief limitations on making wave- 

front sensors is the fabrication of an appropriate 

lenslet array. Early lenslet arrays were either in- 
dividually ground and polished lens segments that 
were assembled together, or were fabricated with 
step and repeat processes. With the advent of dif- 

fractive (or binary) optics technology, the meth- 

ods for fabricating lenslet arrays have greatly im- 
proved. 

DifFractive optics technology is the application 
of integrated circuit manufacturing technology to  

the fabrication of optics. Photolithography and 

etching are used to  create the desired lens surface 
profile as described in Figure 12. The basic steps 
are as follows: 

. .. . 
- . .. -. - 

1. The design of the optic is developed using a 
. .  . .  . - .  



Fabrication Sequence for Binary Optic 
with 4 Phase Levels 

AtlW*chhg 

f””y”-”””””i a d m v d  
&phot& 

/ I 

=phot-lyw Figure 13: Test setup for calibrating wavefront 

sensor. The second lens, L2, is adjusted t o  pro- 
vide different amounts of wavefront curvature to  

rgz 
the sensor. 

N mask steps =a Phase Levels 

~i~~~ 12: Fabrication sequence for binary optics. to compensate for other effects in the optical sys- 
tem.13 

2. Photomasks are fabricated that discretize the 
desired surface profile into a number of lev- 
els. With four masks, this will result in six- 3.2 
teen levels (2N). These masks are typically 

ebeam written directly from the data. 

Lenslet positioning procedure. 

In addition to the wavefront calibration dis- 

3, A thin layer of photoresist is spun onto the cussed in Section 2.1, the lenslet-to-CCD distance, 

fused silica substrate.. The mask pattern is L in equation (2), must be determined experimen- 

transferred to  this layer by uv contact or pro- tab’. TO accomplish this objective, we used 8x1 
jmtion lithography. Once the photoresist is optical system 8s shown in Figure 13 to  introduce 

develop& this results in the desired pattern various amounts of wavefront curvature in a known 

in photoresist on the substrate. fashion. In this arrangement we used a pair of 
Spindler and Hoyer 250 mm focal length achro- 

4. The substrate is etched in an anisotropic etch mats space 2f apart. BY adjusting the position 

system t o  8 Praise depth. ‘Thus the  ask of the second achromat slightly (with a microme 

Pattern is ~ ~ m s f e r r e d  into the substrate- ter driven translation stage) we were able to  ob- 

tain data with known curvature as shown in Fig- 
ure 14. It is important t o  note that, even though 5. The process of steps 2-4 is repeated for each 

mask with each successive etch being twice we used high quality achromats, there was signifi- 
cant residual wavefront error on the resulting im- 

the depth of the preceding etch. This will 

build up the profile to  the required shape. 
age due to the finite aberrations of the lens pair. 
Ray-tracing analysis and experiment verified that 

high precision about 2.5 waves of error were expected. This error 

praise surface profile, with features down to 1 mi- calibration (Section 2.1) with light that had pass 

crometer and 100% fill factor. Furthermore, they through the same lenses at 
can be arranged in many different configurations 

With this technology 
lens arrays a n  be made, They have an extremely was dealt with by conducting the’wavefront Sensor 

2f spacing. . 

- .  ._ . - _ _  



Figure 14: Curved wavefront measured with wave- 
front sensor for a 60m radius of curvature wave- 
front. 
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Figure 16: The lenslet position after adjustment. 
The slope of near unity indicates the lenslet array 

is positioned one focal length from the detector. 

Figure 17: Display of Ar+ beam measured with 
wavefront sensor. (a) Beam intensity. (b) Beam 

phase. 

Figure 15: Position of lenslet array using both 

white light and laser light sources. The slope error 
reprents a displacement of the lenslet array by 4 

mm from the nominal focal plane. 
3.3 Laser beam measurement 

Data was acquired with different lens pair spac- 

ing as a function of the position of lens 2. A sum- 
mary of this data is presented in Figure 15, as a 

plot of measured wavefront curvature verses input 

curvature. This plot is not exactly linear: the vari- 
ations are due t o  variations in the real wavefront 

caused by the finite aberrations of the lens pair. 
The slope of this line is related t o  the exact dis- 
tance between the lenslet array and the detector. 
Using this information, this distance was adjusted 

to produce an exact match between nominal lens 
focal length and camera t o  lens spacing. Setting 
L = f (where f is the lenslet focal length) pro- 
duces the smallest spot size, allowing the largest 

dynamic range on the sensor. This positioning pro- 
cedure allowed for an accurate determination of L. 
The post-positioning data is shown on Figure 16. 

Once the wavefront sensor was calibrated, a se- 
ries of laser beams were measured to  experimen- 

tally determine M2. The reference beam was an 

expanded, collimated HeNe laser. The laser source 

was an Ar+ laser that was approximately 2 m away 

from the detector. This laser was chosen because 
it had intracavity aperture and alignment adjust- 

ments that would allow us to produce aberrated 
beams. Figure 17 is an example of an aberrated 

beam intensity and phase distribution measured 
with the wavefront sensor. In this case the laser 

was deliberately misaligned. The algorithms de- 

veloped previously predicts an MZ of 3.73 and an 
M i  of 5.09; the RMS wavefront error is 0.11 um. 
A number of data sets were taken where the laser 
current, beam power, and cavity alignment were 

varied to  produce various quality beams. Repre- 
sentative data is tabulated in Figure 18. 

In this table, the M2 values . ,  are calculated in 

- .  
~ . -  



Aperture 204 

Current: 20A 

Aperture 204 

Cu~ent: 20A 

Aperture 355 (fill open) 
Current: 25A 

Horizontal misalignment 

Aperture 355 (full open) 
Current: 25A 

More misalignment 

Aperture 150 
Current: 25A 

Misaligned as above 

~ 2.97 
-~ 

2.99 

2.64 

3.29 

3.73 

1 
5.09 

Figure 18: Calculated M2 obtained from various 

Ar+ laser beams. 

both the x and y directions. The initial entries 

are for relatively good beams, but with a large in- 
tracavity aperture setting. The two separate cal- 

culations of the M2 parameters of the laser under 
the same operating conditions are consistent with 

each other, indicating the repeatability of the mea- 
surements. For the last three entries, the beam 

was deliberateIy misaligned to produce an aber- 

rated beam, The M2 values reflect this, and show 

the evolution of the misalignment compared to  the 

initial settings. 

In all cases, the M2 parameters are higher than 
expected based upon the smooth spatial profiles of 

the beams. No independent method of M2 mea- 
surement was available when the data were taken. 

The higher than expected values are most likely 
due to noise in the wins,  which have a large ef- 
fect on second moment calculations. Addition- 

ally, noise in the spatial domain af€ects the Fourier 

transform, and can result in increased values at the 
higher spatial frequencies in the spatial-frequency 
domain. Analysis of these problems is in the initial 
stages; current results are discussed in section 2.3. 

1 .. . . 
. *  

4 Conclusions 

We have developed a 2D wavefront sensor that 

is capable of obtaining detailed intensity and phase 
values from a single measurement. This sensor 

is based on a microlens array that is built using 
binary optics technology to provide fine sampling 

and good resolution. We have developed a method 

for calculating M2. Since the full beam intensity 

and phase distribution is known, a complete beam 

intensity and phase distribution can be predicted 
anywhere along the beam. 

We have used this sensor to analyze various 

laser beams, calculate M2, and propagate a beam. 
Calculated values of M2 are believed to  be high 

for unestablished reasons. Further work includes 

determination of the noise characteristics of the 

sensor, and an evaluation of the effects of noise and 

other errors for both real and simulated beams. 

Using this sensor a laser can be completely 
characterized and aligned. The user can imme- 

diately tell if the beam is single or multimode, 

and can predict the spot size and full intensity and 
phase distribution at any plane in the optical sys- 
tem. The s e m i  is easy to  use, simple, robust and 
low cost. 
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