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Abstract
Most of the feature extraction methods in existing brain–computer interfaces (BCIs) are based
on the dynamic behavior of separate signals, without using the coupling information between
different brain regions. In this paper, amplitude and phase coupling measures, quantified by a
nonlinear regressive coefficient and phase locking value respectively, were used for feature
extraction. The two measures were based on three different coupling methods determined by
neurophysiological a priori knowledge, and applied to a small number of electrodes of
interest, leading to six feature vectors for classification. Five subjects participated in an online
BCI experiment during which they were asked to imagine a movement of either the left or
right hand. The electroencephalographic (EEG) recordings from all subjects were analyzed
offline. The averaged classification accuracies of the five subjects ranged from 87.4% to
92.9% for the six feature vectors and the best classification accuracies of the six feature
vectors ranged between 84.4% and 99.6% for the five subjects. The performance of coupling
features was compared with that of the autoregressive (AR) feature. Results indicated that
coupling measures are appropriate methods for feature extraction in BCIs. Furthermore, the
combination of coupling and AR feature can effectively improve the classification accuracy
due to their complementarities.

1. Introduction

A brain–computer interface (BCI) is a communication system
that does not depend on the normal output pathways consisting
of periphery nerves and muscles. A BCI transforms mental
decision and reaction into control commands by analyzing
the bioelectrical brain activity (Wolpaw et al 2002). The
technique can help patients, having totally lost motor ability
but having intact cognition (e.g., people with amyotrophic
lateral sclerosis, cerebral palsy or locked-in syndrome), realize
the control of external facilities, motor neuroprostheses,
wheelchairs and so on, to improve their living quality.

Most of the existing BCIs utilize electroencephalograms
(EEGs) recorded from the scalp as input signals because they

have the appeal of being both easily available and free from
procedural risks. Significant technological progress has been
achieved in the past decade toward developing an EEG-based
BCI system; its practical use, however, is still limited by a
low information transfer rate (ITR). The key to increase ITR
is to boost the classification accuracy of single-trial data. For
a chosen experiment paradigm, the classification performance
mainly depends on whether an appropriate feature vector is
extracted from the multi-channel EEG recordings that reflect
brain intention.

The commonly used features are extracted from band
power (Pfurtscheller et al 2000, Pfurtscheller and Neuper
2001), autoregressive (AR) model (Anderson et al 1998, Huan
and Palaniappan 2004, Dornhege et al 2004) or common
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Figure 1. Online feedback experiment paradigm of the motor imagery-based brain–computer interface.

spatial pattern (CSP) (Muller-Gerking et al 1999, Ramoser
et al 2000). All these methods are based on the dynamic
behavior of single signals; none of them make use of the
coupling information between two EEG signals. However,
brain signals also exhibit coupling phenomena between
different brain regions because cognitive acts require the
integration of different functional areas widely distributed
over the brain and the communication among them (Varela
1995, Friston et al 1997, Tononi and Eelman 1998, Rodriguez
et al 1999, Varela et al 2001). Therefore, coupling measures
might be a new method for feature extraction, and are drawing
increasing attention.

Signal coupling or interdependence can be described
by linear and nonlinear methods. Linear interdependence
is denoted by cross-correlation in a time domain and by
coherence in a frequency domain (Gersetein et al 1978,
Gotman 1987, Zaveri et al 1999), while nonlinear coupling
is represented by nonlinear regressive (NLR) coefficients
and phase locking value (PLV) (Le Van Quyen et al 1998,
Fernandes de Lima et al 1990, Chavez et al 2003, Bartolomei
et al 2001, Lopes da Silva et al 1989, Tass et al 1998, Lachaux
et al 1999, Mormann et al 2000, Spiegler et al 2004, Brunner
et al 2005). However, the dynamical behavior of
brain electrical activity is essentially nonlinear during a
cognitive task and can be better characterized by nonlinear
interdependences. Furthermore, coherence does not separate
the effects of amplitude and phase in the interrelation.
In contrast, NLR coefficients and PLV characterize the
nonlinear couplings of amplitude and phase respectively and,
consequently, could be discriminatory classification features.

Amplitude and phase coupling measures have already
been employed for the recognition of different mental tasks
in BCIs. Gysels and Celka (2004) demonstrated that
phase coupling measure provided relevant information for the
classification of mental tasks in the framework of BCIs. They
successfully recognized three cognitive tasks by combining
PLVs and power spectral density estimation. Wei et al
(2006) presented amplitude coupling measurements to classify
single-trial electrocorticogram (ECoG) data. NLR coefficients
between signals on ten leads are extracted in two frequency
bands, 0–3 Hz and 8–30 Hz, as classification features. A
classification accuracy of 93% was achieved by selecting an
optimal feature subset from a high-dimensional feature space.

Also, Wang et al (2006) have applied the phase synchrony
measurement in motor cortex for classifying single-trial EEG
during motor imagery.

The purpose of this paper is to investigate whether
amplitude and phase couplings are appropriate methods for
feature extraction in an EEG-based BCI, and assess the
performance of coupling features by comparing classification
accuracies of the NLR coefficient and PLV with those of the
AR coefficients.

2. Method

2.1. Experimental paradigm and data acquisition

Five healthy right-handed volunteers (S1–S5), four males
and one female, aged between 22 and 25, took part in the
experiment. They were selected randomly from the students
in the department. Most of them had previously participated
in BCI studies and were familiar with the experimental
environment.

Figure 1 shows the experiment paradigm of online BCI
control with visual feedback, which is same as that utilized by
Wang et al (2006). During the experiment, the subject was
sitting in a comfortable armchair facing a computer screen
approximately 1 m in front of him/her. Each trial was 8 s long
and started with a blank screen during which the subject could
relax. At second 2, a visual cue (arrow) appeared on the screen,
indicating the cognitive task to be performed. Depending
on the direction of the arrow, the subject was instructed to
imagine a movement of either the left or the right hand. The
‘left hand’ and ‘right hand’ movements’ imagination were
designated to control the one-dimensional cursor movement,
up and down, respectively. Starting from second 3, feedback
information was provided at each sampling point by a cursor
movement from left to right of the screen. The cursor moves
at a steady rate, with its vertical movement controlled by
the power difference of µ rhythm between the signals on
electrodes C3 and C4, which was caused by contralateral
event-related desynchronization (ERD) during unilateral hand
motor imagery (Pfurtscheller and Lopes da Silva 1999). The
power difference was calculated using all samples before each
feedback point. At second 8, a true or false mark appeared
to display the final result of the trial, and then another trial
began. For the task ‘left’, if the cursor finally arrived at the
upper part of the designated right border, the mark is ‘true’,
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Figure 2. Electrode locations for EEG recordings. The 32
monopolar silver–silver chloride electrodes overlie the primary
sensorimotor area (SM1) and the supplementary motor area (SMA).
The ground electrode is positioned at G.

otherwise the mark is ‘false’. For the task ‘right’, marks are
just the contrary.

EEG was recorded with 32 monopolar silver–silver
chloride scalp electrodes, spaced with an approximately
2.5 cm distance, over the primary sensorimotor area (SM1)
and the supplementary motor area (SMA) as illustrated in
figure 2. The ground electrode is positioned at G. The EEG
signals were amplified and sampled at 1024 Hz with 24 bit
resolution by a BioSemi ActiveTwo system, subsampled to
256 Hz by Labview software and then stored.

The experiment was divided into four runs, consisting
of 60 trials each. The interval between two runs was about
5 min. The sequence of ‘left’ and ‘right’ trials was randomized
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Figure 3. The averaged amplitude spectra over all trials of each task on electrodes C3 and C4 from subject S1.

throughout each run, and the number of two tasks was equally
partitioned. No trials were discarded. Thus, the dataset for
each subject contained a total of 240 trials (120 trials per class)
and all trials were used for the following offline analysis.

2.2. Data preprocessing

Considering the reaction time of a subject to visual stimulation,
we extracted a window of length 5 s from the data of each
electrode starting from 0.5 s after the appearance of the visual
cue (arrow). To save the computational load and reduce
the requirement for memory, all trials were downsampled
by keeping every other sample starting with the first. Thus
for each trial and each electrode, we obtained an EEG time
series consisting of 640 samples. To enhance the difference
between these two tasks and reduce the effect of artifacts,
common average reference (CAR) was used to re-reference
the resampled data.

Prior to the extraction of coupling features, all EEG
channels were filtered between 8 and 30 Hz by a band
pass digital filter of Chebysheve type I. The filtering was
performed forwardly and reversely to avoid amplitude and
phase distortion. The 8–30 Hz frequency range was chosen
because it contains all µ and β frequency components of the
EEG which are important for the discrimination task (Ramoser
et al 2000). Figure 3 shows the averaged amplitude spectra
over all trials of each task on electrodes C3 and C4 from subject
S1.

To extract features from AR coefficients, all EEG channels
were high pass filtered at 4 Hz. The 4 Hz high pass filtering
was performed to prevent the AR model from being distorted
by EEG baseline drifts and, meanwhile, to retain the oscillating
components in EEG signals as much as possible. In order to
sharpen the spectral information to focal brain sources, spatial
Laplacian filters were applied.
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2.3. Amplitude and phase coupling measures

The nature of the interdependence between EEG signals is
characterized both by the amplitude association and by the
corresponding phase relationship.

2.3.1. Amplitude coupling measure: NLR coefficient.
Assume x and y are the signals on two leads, respectively.
Given signal x, the expectation of signal y, denoted as µy|x , is
the regression curve of y on x:

µy|x(x) =
∫ +∞

−∞
yp(y|x) dy, (1)

where p(y|x) is the conditional probability of y given
signal x.

The reduction of variance of y that can be obtained by
predicting the y values from x according to the regression
curve is the coupling measure given by

η2
y|x = var(y) − E[(y − µy|x(x))2]

var(y)
. (2)

E[(y − µy|x(x))2] estimated from the regression curve is
called the explained variance, i.e. it is explained or predicted
on the basis of x. By subtracting the explained variance from
the total variance var(y), one obtains the unexplained variance.
The basic idea is that if the amplitude of signal y is thought
of as a function of the amplitude of signal x, given a certain
value of x, the value of y can be predicted according to a NLR
curve.

The estimation of this measure is called the NLR
coefficient h2. To obtain an approximation of the regression
curve, the x amplitude values are subdivided into M bins (M is
determined experimentally and taken as 20 in this study.) For
each bin, the x value in the midpoint (pi) and the average of
y values (qi) are calculated, and the resulting points (pi, qi)
are connected by segments of straight lines. Consequently,
the NLR coefficient h2 can be calculated according to the
following expression:

h2 =
∑N

n=1(yn − 〈y〉)2 − ∑N
n=1(yn − µ̂y|x(xn))

2∑N
n=1(yn − 〈y〉)2

, (3)

where µ̂y|x(xn) is the linear piecewise approximation of the
regression curve and 〈y〉 denotes the average of y values over
the N points of the time series. The estimator h2 represents
the strength of the association between the two signals and
can take values between zero (y is totally independent of x)
and one (y is totally dependent on x). The NLR coefficient
h2 can denote both linear and nonlinear relationships between
two signals. If the relationship is linear, then h2

y|x = h2
x|y ;

otherwise h2
y|x �= h2

x|y .

2.3.2. Phase coupling measure: PLV. Phase coupling
between two signals is quantified by PLV. This measure
requires first the estimation of the instantaneous phase of each
signal that can be obtained by means of either the analytic
signal or the wavelet analysis. Le Van Quyen et al (2001)
showed that these two methods are equivalent for the analysis
of EEG signals. Here, we follow the analytic signal method to
calculate the instantaneous phase of an arbitrary signal. Given

a signal x(t), the analytic signal ηx(t) is defined as

ηx(t) = x(t) + ix̃(t) = Ax(t) eiθx(t), (4)

where x̃(t) is the Hilbert transform of x(t):

x̃(t) = 1

π
p.v.

∫ +∞

−∞

x(t)

t − τ
dτ . (5)

p.v. denotes that the integral is taken in the sense of Cauchy
principal value, and the instantaneous phase is calculated as
follows:

θx(t) = arctan

(
x̃(t)

x(t)

)
. (6)

The instantaneous phase θy(t) of signal y(t) can be determined
according to the same procedure as above.

Signals x and y are said to be n : m synchronized
if the difference of their instantaneous phases �θ(t) =
nθx(t) − mθy(t), for {n,m} ∈ Z, remains bounded for all
t . Since our goal is to measure the phase coupling between
signals derived from the same physiological system (i.e. the
brain), it is very likely that the phase locking ratio n : m equals
1:1. Thus we adopt the case of n = m = 1, and subsequently
phase locking is quantified as

PLVt = |〈ei�θ(t)〉t |, (7)

where 〈·〉t is the operator of averaging over time. For discrete
signals, the phase locking value is calculated as follows:

PLV =
∣∣∣∣∣

1

N

N∑
n=1

ei�θ(n)

∣∣∣∣∣ . (8)

A PLV is equal to the average length of all unit vector ei�θ(n)

in one window. PLVs are normalized and vary between zero
and one. A PLV of zero means that the phase of the two
signals is not coupled at all, while a PLV of one means that the
signals are perfectly coupled because there is a constant phase
difference over all time points.

Although the instantaneous phase can be obtained for
arbitrary broad band signals, this has a clear physical meaning
only for narrow band signals (Boashash 1992). As a result,
filtering is required to separate the frequency band of interest
from the wide band activity.

2.4. Feature extraction

To correctly translate brain intention into a control signal,
the most discriminative information must be extracted from
the EEG recordings. Feature extraction is the transformation
of the original data to a data set with a reduced number of
variables so that in the low-dimensional signal space, the
difference of brain state between two cognitive tasks is more
distinguished. It is here where neurophysiological a priori
knowledge is very beneficial.

2.4.1. Coupling-based features. Prior to coupling measures,
an important issue that must be solved is how to determine
meaningful associate areas for a given cognitive task.
Gerloff et al (1998) demonstrated that for both externally
and internally paced finger extensions, functional coupling
occurred between the primary sensorimotor cortex (SM1) of
both hemispheres and between SM1 and the mesial premotor
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(a) (b) (c)

Figure 4. Three coupling methods and corresponding electrodes of interest: (a) coupling between any two electrodes within each of the two
ellipses around C3 and C4 (CW), (b) coupling between each electrode within the ellipse around C3 and each electrode within the ellipse
around C4 (CB1), (c) coupling between each electrode within the ellipse around Fz and each electrode within the two ellipses around C3
and C4 (CB2).

Table 1. The corresponding relationship of each feature (dimension) with electrode locations for the three types of couplings: CW, CB1 and
CB2.

Feature 1 2 3 4 5 6 7 8 9 10

Electrode
CW 5–7 5–8 5–9 5–13 7–8 7–9 7–13 8–9 8–13 9–13
CB1 5–30 5–28 5–27 5–26 5–24 7–30 7–28 7–27 7–26 7–24
CB2 5–1 5–2 5–32 7–1 7–2 7–32 8–1 8–2 8–32 9–1

Feature 11 12 13 14 15 16 17 18 19 20

Electrode
CW 30–28 30–27 30–26 30–24 28–27 28–26 28–24 27–26 27–24 26–24
CB1 8–30 8–28 8–27 8–26 8–24 9–30 9–28 9–27 9–26 9–24
CB2 9–2 9–32 13–1 13–2 13–32 30–1 30–2 30–32 28–1 28–2

Feature 21 22 23 24 25 26 27 28 29 30

Electrode
CW
CB1 13–30 13–28 13–27 13–26 13–24
CB2 28–32 27–1 27–2 27–32 26–1 26–2 26–32 24–1 24–2 24–32

areas (PM), probably including the supplementary motor area
(SMA). The study of event-related coherence showed that
synchronization between µ rhythms occurred in the precentral
area and SM1 (Andrew and Pfurtscheller 1996). Spiegler et al
(2004) investigated phase coupling between different motor
areas during tongue-movement imagery and found that phase-
coupled 10 Hz oscillations were induced in SM1 and SMA.
These studies give convincing evidences that coupling within
hemispheres, coupling between hemispheres and coupling
between SM1 and SMA exist during different cognitive and
motor tasks.

Although every electrode recording in these three areas
provides relevant information for classification, the use of
fewer electrodes is desired for a practical BCI. Thus we
selected five electrodes surrounding C3 or C4 in each
hemisphere and three electrodes in SMA, as illustrated in
figure 4. The coupling measures were based on these
electrodes of interest and, accordingly, three coupling methods
were defined: (a) coupling between any two electrodes within
each of the two ellipses around C3 and C4 (CW), (b) coupling
between each electrode within the ellipse around C3 and each
electrode within the ellipse around C4 (CB1), (c) coupling
between each electrode within the ellipse around Fz and each
electrode within the two ellipses around C3 and C4 (CB2).

These coupling methods were separately used for calculating
the NLR coefficient and PLV, and thus six different feature
vectors were obtained.

Each feature vector was constructed by concatenating
NLR coefficients or PLVs from all electrode pairs. The
dimensions of feature vectors derived from CW, CB1 and CB2
are 20, 25 and 30 respectively for phase coupling measure
(quantified by PLV) and double respectively for amplitude
coupling measure (quantified by NLR). Although the strengths
of amplitude couplings in two directions are not equivalent,
their difference is small. For a fair comparison of classification
performance of amplitude coupling with phase coupling,
we measured unidirectional amplitude coupling to make the
dimensions of NLR and PLV feature vectors equal.

Coupling measures could be used for feature extraction
because the coupling strength is different for different mental
tasks. Figure 5 illustrates the averaged NLR coefficients and
PLVs over all trials of each task for subject S3 based on the
three coupling methods. We can see from this figure that
both NLR vectors and PLV vectors of the two tasks evidently
differ in most dimensions for each coupling method. The
corresponding relationship of each feature (dimension) with
electrode locations for the three types of couplings is listed in
table 1.
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Figure 5. Averaged feature vectors over all trials of each task
derived from the NLR coefficient and PLV for subject S3 based on
three coupling methods: (a) coupling method CW, (b) coupling
method CB1, (c) coupling method CB2.

2.4.2. Features extracted from the AR model. When used
as classification features in BCIs, AR coefficients reflect the
spectral distribution of the most prominent brain rhythms. In

Table 2. The value of r2 for each subject and for each feature
derived by reducing each coupling feature vector to one dimension.
r2 is the proportion of the total variance in the signal feature that is
accounted for by the user’s intent, and thus its values reflect the
correlation between features or feature vectors and left and right
motor imagery tasks.

CW CB1 CB2

Subject NLR PLV NLR PLV NLR PLV

S1 0.815 0.772 0.793 0.742 0.863 0.821
S2 0.543 0.539 0.533 0.544 0.656 0.677
S3 0.829 0.792 0.779 0.766 0.853 0.791
S4 0.562 0.474 0.341 0.279 0.582 0.609
S5 0.955 0.913 0.891 0.840 0.767 0.833
All 0.741 0.698 0.667 0.634 0.744 0.746

The values show a significance at the P < 0.001 level.

an AR model of order p, each data point of a time series
is denoted as a linear combination of the last p data point.
The Burg algorithm was utilized to estimate AR coefficients.
Compared to other methods such as Levinson–Durbin, the
Burg algorithm is more accurate because it minimizes both
forward and backward errors by using more data points. The
model order was chosen as six because the AR process of such
an order is proved most suitable for mental task classification
(Anderson et al 1998, Keirn and Aunon 1990).

Unlike the NLR coefficients and PLVs, AR coefficients
are computed from single EEG signals. The most useful
electrodes for differentiating between left and right motor
imageries are located in SM1. To compare the performance
of AR features with that of coupling features, we selected the
same ten electrodes as used for coupling measures in SM1.
The AR coefficients from all ten electrodes were concatenated
to form a 60-dimensional feature vector.

2.5. Classification

The classifier used for single feature vectors is the Fisher
discriminant analysis (FDA) (Webb 2002). FDA is a linear
discriminant analysis whose purpose is to project data from
high dimension onto a line so that the new data in one-
dimensional space are more manageable. To obtain good
separation of the projected data, FDA maximizes the difference
of the sample means between two classes and minimizes the
total within-class variance of the projected samples. When
two feature vectors are combined for classification, they are
first reduced to one dimension by FDA, and then a linear
support vector machine (SVM) is employed as the classifier.
In contrast to FDA, SVMs separate data by trying to find such
an optimal hyperplane that maximizes the margin between the
nearest samples of two categories (Vapnik 1995).

Linear classifiers are less prone to overfitting than their
nonlinear counterparts when limited samples are available
(Muller et al 2003). Linear classifiers are preferred also
because of their low computational complexity that is desired
especially in the case of online application.

To assess classification performance, the generalization
accuracy is estimated by a 10 × 10-fold cross validation.
Specifically, the original training set is randomly permuted
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Table 3. The classification accuracy and standard deviation (%, rounded) of 10 × 10-fold cross validation derived from NLR-, PLV- and
AR-based feature vectors for five subjects. The NLR- and PLV-based feature vectors are obtained from three coupling methods. The best
result of each subject and their average for the six coupling feature vectors are set in bold face.

Subject

Feature vector S1 S2 S3 S4 S5 Average

NLR-CW 96.1 ± 3.6 84.7 ± 7.9 98.7 ± 2.0 84.0 ± 6.9 99.6 ± 1.3 92.6 ± 4.3
NLR-CB1 94.3 ± 4.4 82.2 ± 6.4 94.3 ± 4.9 71.7 ± 8.6 99.5 ± 1.4 88.4 ± 5.1
NLR-CB2 97.3 ± 3.1 89.3 ± 6.8 97.4 ± 3.2 84.4 ± 7.2 94.5 ± 4.2 92.8 ± 4.9
PLV-CW 92.3 ± 5.7 84.7 ± 5.8 95.2 ± 3.8 79.2 ± 7.7 99.6 ± 1.3 90.2 ± 4.9
PLV-CB1 92.5 ± 5.2 85.8 ± 6.5 93.9 ± 4.3 67.0 ± 8.9 97.7 ± 2.8 87.4 ± 5.5
PLV-CB2 95.7 ± 4.1 89.6 ± 6.2 98.0 ± 2.9 84.2 ± 8.2 97.2 ± 3.2 92.9 ± 4.9
AR 95.8 ± 4.0 85.4 ± 7.9 98.7 ± 2.3 87.1 ± 5.5 99.6 ± 1.3 93.3 ± 4.2

for ten times and each time the randomly permuted data are
split into ten parts: each part is used for testing and the
remaining parts are used for training the classifier. This cross
validation procedure leads to 100 classification tests, and the
generalization accuracy is decided by averaging the 100 test
accuracies.

3. Results

To see the coupling correlation between coupling features and
the task from all users, each feature vector was reduced to one
dimension using FDA, and a statistical measure r2 (Winer et al
1991), the proportion of the total variance in the signal feature
that is accounted for by the user’s intent, was conducted on
the basis of these dimension-reduced features. The values
of r2 are listed in table 2. An analysis of variance (ANOVA)
revealed that the significance level is all at P < 0.001. Among
the three coupling methods, the CB2 achieves the best results
(largest values of r2), while the CB1 is the poorest. As to the
two measures, there is no distinct difference.

Table 3 shows the classification accuracy and standard
deviation (%, rounded) of 10 × 10-fold cross validation
derived from NLR-, PLV- and AR-based feature vectors for
five subjects. The NLR- and PLV-based feature vectors
are obtained from three coupling methods. The averaged
classification accuracies of the five subjects range from 87.4%
to 92.9% for the six feature vectors and the best classification
accuracies of the six feature vectors range between 84.4%
and 99.6% for the five subjects. These results indicate that
coupling measures are appropriate feature extraction methods
for differentiating two brain tasks in BCIs.

Among the three coupling methods, the best averaged
classification accuracies are achieved by the coupling method
CB2 for amplitude and phase coupling measures (92.8% and
92.9% respectively). Note that CB2 utilizes three more
electrodes than the other two coupling methods. With the
same ten electrodes, the averaged classification accuracy of
the coupling method CW is higher than that of CB1 for
amplitude and phase coupling measures (i.e. NLR and PLV).
This means that the coupling measures obtained from CW can
separate these two classes of imagined movements more easily
than CB1.

As for the two methods for coupling measurement, the
averaged classification accuracies of NLR coefficients over

Table 4. The classification accuracy and standard deviation (%,
rounded) of 10 × 10-fold cross validation derived from the
combinations of AR-based feature vector with NLR- or PLV-based
feature vectors for three subjects. The NLR- and PLV-based feature
vectors are obtained from three coupling methods.

Subject

Feature combination S1 S2 S4

AR+NLR-CW 99.0 ± 1.8 89.1 ± 6.0 94.5 ± 5.1
AR+NLR-CB1 99.1 ± 1.7 89.0 ± 5.4 90.1 ± 5.9
AR+NLR-CB2 99.3 ± 1.4 90.7 ± 6.0 94.2 ± 4.6
AR+PLV-CW 98.6 ± 2.7 89.0 ± 5.9 92.3 ± 5.5
AR+PLV-CB1 98.0 ± 2.6 89.9 ± 5.7 89.8 ± 6.1
AR+PLV-CB2 99.2 ± 1.7 91.9 ± 5.2 93.5 ± 5.0

five subjects are slightly better than those of PLV for CW and
CB1, but they do not have statistical distinction for CB2.

When only coupling methods CW and CB1 are considered
(i.e. the same ten electrodes in SM1 as the estimation of AR
coefficients are exploited), the best averaged classification
accuracy of coupling measures (92.6%) is a little lower than
that of AR coefficients (93.3%). In terms of individual
subjects, however, the best classification accuracy of coupling
measures is equal to or higher than that of the AR coefficient
for three subjects (96.1% for S1, 98.7% for S3 and 99.6%
for S5). This suggests that the classification performances of
coupling features and AR features are comparable; they do not
exhibit a clear distinction.

Since coupling measures and AR coefficient reflect
different electrical physiological processes, the features
extracted from them are at least partially independent.
Their combination can provide complementary information
and consequently increase classification accuracy. The
classification accuracy and standard deviation (%, rounded) of
10 × 10-fold cross validation derived from the combinations
of AR-based feature vector with NLR- or PLV-based feature
vectors for three subjects (S1, S2 and S4) are listed in table 4.
The NLR- and PLV-based feature vectors are obtained from
three coupling methods. For each measuring method, each
coupling method and each subject, the classification accuracy
of feature combination is clearly higher than that of the best
single feature vector. Especially for subject S4, the maximal
gain of 7.4% was achieved when the feature vectors AR and
NLR-CW were combined.

Figure 6 illustrates one feature vector distribution of
training and test set derived from 10 × 10-fold cross validation
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Figure 6. One feature vector distribution of training and test sets derived from 10 × 10-fold cross validation for subject S2 and the
corresponding decision line for two methods of feature combination: (a) features f1 and f2 are obtained from AR and NLR coefficients
respectively, (b) features f1 and f2 are obtained from AR coefficients and PLV respectively. Each decision line is determined by an SVM
classifier derived from training data. The NLR coefficients and PLV are calculated by the coupling method CB2.

for subject S2 and the corresponding decision line for two
methods of feature combination: (a) features f1 and f2 are
obtained from AR and NLR coefficients respectively and (b)
features f1 and f2 are obtained from AR coefficients and
PLV respectively. Each decision line is determined by an
SVM classifier derived from the training data. The NLR
coefficients and PLV are calculated by the coupling method
CB2. Obviously, if only one feature vector (f1 or f2) is used for
classification, the decision line will be perpendicular or parallel
to the abscissa axis. No matter what position it is located
at, greater classification errors will result. The combination
of two features f1 and f2, however, makes the decision line
deflect toward the best position for separating two classes of
samples and, subsequently, the classification accuracy will be
improved.

4. Discussion

The method of feature extraction is of great importance in the
recognition of mental tasks of a BCI system. The classification
performance mainly depends on the quality of features or
feature vectors used. This paper presents a study on the use
of coupling measures as classification features in an EEG-
based BCI during motor imagery. The performance of NLR
coefficients and PLVs for classifying two mental tasks of
motor imagery is evaluated and compared with that of AR
coefficients.

The averaged classification accuracies of the five subjects
for six different coupling vectors are between 87.4% and
92.9%. This was achieved in the case that only a small number
of recording electrodes and training samples were exploited.
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The averaged classification accuracy of five subjects for the
coupling feature NLR-CW is 92.6%, only 0.7% less than that
for the AR feature. There is no statistical difference between
them. Hence, the classification performance of coupling
measures could be said to be satisfactory. Although the
classification performance of PLV-based features is slightly
poorer than that of NLR-based features for the two coupling
methods CW and CB1, the computation of PLV is very fast.
This is an important asset in the framework of BCIs, especially
for online application.

The classification results gave further evidence that
short-range and long-range couplings exist, and subsequent
measures can be utilized for classification features in an
EEG-based BCI during motor imagery. Short-range coupling
occurs between electrodes within regions, whereas long-
range coupling exists between regions which are a bit
widely separated. Some authors argued that whereas long-
range couplings do reflect cognitive processing, short-range
couplings might be caused by the volume conduction of
neighboring electrodes (Lachaux et al 1999). Since the
electrode interval in this study is larger than 2 cm, the electrode
couplings within regions are basically due to cognitive tasks.

The good classification performance of feature vectors
NLR-CB2 and PLV-CB2 (see table 3) demonstrated that
the long-range coupling between SMA and SM1 provided
discriminatory information for different tasks. SMA has long
been recognized to play an important role in the planning
or preparation of a movement behavior (Dechent et al 2004,
Roland et al 1980), whereas its value in motor imagery-based
BCIs was rarely explored. SMA activation and its coupling
with SM1 related to two motor imagery tasks were validated
by the classification results in this study.

When amplitude and phase coupling measures are used for
feature extraction, the neurophysiological a priori knowledge
could help us to determine the functional coupling areas
associated with specific mental tasks. Without considering
the coupling regions, high-dimensional feature vectors would
result and subsequently, an intricate observation would arise.
In contrast, the method in this study for the selection of
coupling regions and electrodes of interest has the benefits
of convenient electrode preparation, fast data processing and
high feasibility for application.

In general, two steps cannot be absent from coupling
measures, i.e. data intercepting and statistical significance
test. For the analysis of a large amount of continuous data,
a moving-window technique is needed to intercept the data
into multiple segments in order to ensure that each segment of
data is approximately stationary. In a BCI, the data of single
trials are a few seconds in length (5 s in this study) and can be
considered as quasi-stationary. As a result, it is not necessary
to window the single-trial data. The purpose of the statistical
significance test is to differentiate significant couplings against
background fluctuations. The results from all subjects indicate
that the coupling correlation between features and the two
imagined hand movements exists and the significance level is
high.

The number of subjects is relatively limited, and the
validity of the methods should be tested on data sets from more

extensive subjects. However, the subjects used in this study
were randomly selected from the students in the department.
Thus, this study, to some extent, is reasonable.

Future work is to carefully pick out the electrode pairs
with a significant difference of coupling strength between
different mental tasks on the basis of individuals and test
the performance of current classification algorithms in online
experiments.

5. Conclusion

Although the technology of BCIs developed rapidly, they
still have a long way to go before practical application.
Coupling measures between two EEG signals subserve a
further understanding of the neuro physiological mechanisms
underlying cognitive activities, whereas the finding of
most discriminatory features is the pivotal work of BCI
research. This study demonstrated that coupling measures
are appropriate methods for feature extraction, and the
combination of coupling features and AR feature could
effectively improve classification performance in an EEG-
based BCI during motor imagery.
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