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Abstract — This paper investigates the real-valued sine-wave amplitude and phase estimates returned by 

two Frequency-domain Linear Least-Squares (FLLS) algorithms. Both algorithms are based on Discrete 

Time Fourier Transform (DTFT) samples evaluated at the sine-wave frequency in order to maximize the 

immunity to wideband noise. One of the analyzed procedures, called FLLS algorithm, is affected by the 

contribution of the spectral image component on the estimated parameters. The other one, called 

enhanced-FLLS (e-FLLS) algorithm, compensates this detrimental contribution which is particularly 

significant when a small number of sine-wave cycles is observed. The image component interference 

compensation is obtained at the cost of a lightly higher computational effort and noise immunity. Closed 

form relationships for both the analyzed estimators and their variances are provided. Analytical 

expressions for the estimators which avoid matrix operations are also derived under conditions of practical 

interest. Finally, the accuracies of the analyzed algorithms are compared with a state-of-the-art estimator 

based on the classical three-parameter sine-fit algorithm, through both theoretical and simulation results. 

 

 

Index terms — Frequency-domain analysis, least-squares approach, parameter estimation, real-valued 

sine-wave, windowing.  
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I. INTRODUCTION  

 

Sine-waves are often used in engineering applications because they are easy to generate and to handle 

mathematically. Both time-domain and frequency-domain based procedures have been proposed to estimate 

sine-wave parameters. Very accurate estimates of the parameters of noisy sine-waves are returned by time-

domain algorithms based on the least-squares approach such as the three-parameter sine-fit (3PSF) and the 

four-parameter sine-fit (4PSF) algorithms [1]-[12]. The 3PSF algorithm assumes the sine-wave frequency 

a-priori known and estimates for the sine-wave amplitude, phase, and offset are obtained by means of 

closed form expressions [3], [10]. Conversely, the 4PSF algorithm assumes also the sine-wave frequency as 

an unknown parameter and it requires the implementation of an iterative procedure involving matrix 

operations. Therefore, the required processing effort is much higher as compared to that required by the 

3PSF algorithm. When sine-waves are corrupted by a zero-mean white Gaussian noise the 3PSF and the 

4PSF algorithms provide statistically efficient estimators. However, the accuracy of both estimators is 

negatively affected by the presence of spurious tones like harmonics and inter-harmonics and the best 

accuracy is achieved when coherent sampling occurs [1]-[3], [12]. To reduce the adverse effect of 

disturbance tones, the acquired data are firstly weighted by a suitable window function and then the adopted 

sine-fit algorithm is applied [4], [10]. The related procedures are called windowed sine-fit algorithms.  

Many engineering applications require to accurately estimate sine-wave parameters in real-time without 

a-priori knowledge on the sine-wave frequency. In such situations the windowed 4PSF algorithm can be 

hardly applied due to its high processing burden. Thus, the application of the least-squares approach to 

frequency-domain data has been proposed in the scientific literature [13], [14]. Similarly to the time-

domain approach, two different procedures have been defined: the so called Frequency-domain Linear 

Least-Squares (FLLS) algorithm [13] if the sine-wave frequency is known a-priori, and the Frequency-

domain Nonlinear Least-Squares (FNLS) algorithm [14], when the sine-wave frequency must be estimated. 

The FLLS algorithm estimates the sine-wave amplitude and phase through close-form matrix expressions, 

while the FNLS algorithm requires a computationally expensive iterative procedure. However, both 

algorithms still require a significant computational burden. A proposal that allows a significant reduction of 

the processing complexity of the FLLS sine-wave parameter estimators has been recently published [15]. In 

that paper analytical expressions for the classical FLLS amplitude and the phase estimators have been 

derived in the case when a complex-valued sine-wave, three DFT samples, and the Maximum Sidelobe 

Decay (MSD) windows are considered [16], [17]. Also, a new FLLS algorithm which maximizes the 

immunity of amplitude and phase estimates to wideband noise has been proposed. It processes DTFT 

samples related to the normalized sine-wave frequency instead of using DFT samples as in the classical 

FLLS algorithm [13].  
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This paper aims at investigating the performance of the FLLS algorithm proposed in [15] when it is 

applied to real-valued sine-waves. Moreover, an algorithm which compensates the detrimental contribution 

of the sine-wave image component on the estimated parameters is proposed. That algorithm, called 

enhanced FLLS (e-FLLS) algorithm since it ensures an optimum noise immunity, while the effect of the 

image component doesn’t need to be reduced by windowing. It is based on the rectangular window.  

Analytical expressions for both the frequency-domain least-squares amplitude and phase estimators and 

their statistical efficiencies are determined. Moreover, FLLS estimators based on the two-term MSD 

window and more than three DFT samples are analyzed. The accuracies of the proposed estimators and the 

Weighted three-Parameters Sine-Fit (W3PSF) algorithm [1]-[5] are also compared with each other.  

The paper is organized as follows. In Section II both the FLLS and the e-FLLS algorithms are 

presented and analytical expressions for the variances of the returned estimates are obtained in the case of 

sine-wave corrupted by additive white Gaussian noise. Also, analytical expressions for both the FLLS 

algorithm based on the Hann window and the e-FLLS algorithm based on the rectangular window which 

avoid matrix operations are derived. In Section III the statistical efficiencies and the computational 

complexities of the frequency-domain least-squares algorithms and the W3PSF algorithm are compared 

with each other. In Section IV the accuracies of all the considered algorithms are analyzed through 

computer simulations when the acquired signal is affected by white Gaussian noise and harmonics. Finally, 

Section V concludes the paper.                     

 

 

II. THE FLLS AND e-FLLS ALGORITHMS 

 

A. The Analyzed Signal   

The analyzed real-valued discrete-time noisy sine-wave is modeled as: 

1,,1,0),()2cos()( −=++= MmmrfmAmx φπ  (1) 

where A, f, and φ are the sine-wave amplitude, normalized frequency, and initial phase, r(⋅) is a wideband 

noise, assumed to be white, Gaussian with zero mean and variance ,2σ and M is the number of acquired 

samples. The normalized frequency f is defined as: 

,
M

l
Mf

ff
s

in δν +
===  

(2) 

where fin and fs are the continuous-time sine-wave frequency and sampling rate, respectively, ν = l + δ is the 

number of acquired sine-wave cycles or the normalized frequency expressed in bins, l is its integer part and 

δ  (-0.5 ≤ δ < 0.5) represents the inter-bin frequency location. The normalized frequency f is assumed to 
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satisfy the Nyquist theorem, i.e. f ≤ 0.5. It is worth noticing that, using DFT-based algorithms, the most 

accurate sine-wave parameter estimates are obtained when coherent sampling occurs, i.e. δ = 0. Indeed, in 

such a condition the detrimental contribution on the returned estimates due to the sine-wave image 

component is null. Unfortunately, in practice non-coherent sampling usually occurs, i.e. δ ≠ 0 [13]. 

To reduce that contribution and those of possible spurious tones such as harmonics and 

interharmonics, the analyzed signal x(m) is multiplied by a suitable window sequence w(m). The widely 

used cosine class windows is considered in the following [16], [18]. The generic H-term cosine window is 

defined as [16]-[20]: 
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where ah, h = 0, 1, …, H – 1, are the  window coefficients.  

In particular, the MSD windows exhibit the highest sidelobe decay rate, equal to 6(2H – 1) dB/octave, among 

all the windows with a given number H of terms. Their coefficients are [17] 221
220 2/ −−

−= HH
HCa  and 

,1,,2,1,2/ 321
22 −== −−−

− HhCa HhH
Hh   where ].!!)/[(! qqppC q

p −=  In particular, the two-term MSD 

window (for which a0 = a1 = 0.5) is known also as the Hann window [16].  

 The DTFT of the windowed signal xw(m) = x(m)⋅w(m), m = 0,1,…, M – 1, is given by [19]: 
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in which W(⋅) is the DTFT of the used window w(⋅) and Rw(⋅) is the DTFT of the windowed wideband noise 

rw(m) = r(m)⋅w(m). It is worth noticing that the second term in the square brackets of (4) represents the sine-

wave spectral image component. Moreover, for integer values of λ, Eq. (4) returns the DFT of the signal 

(1). 

For M >> 1 and |κ| << M the DTFT of the window (3) is given by [20]: 
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B. The FLLS Algorithm 

The FLLS algorithm considers 2J + 1 samples of the windowed signal DTFT evaluated at the known 

normalized frequencies λ = ν + k = l + δ  + k , k = -J, -J + 1, …, 0, …, J - 1, J [15]. Assuming that the 

number of acquired sine-wave cycles ν is not too small so that the contribution of the spectral image 

component can be neglected, from (4) we have [15]: 



5 
 

 

JJJJkklRkBWklX ww ,1,0,,1,),()()( −+−−=+++≅++ δδ  (6) 

where φjeAB
2

∆
=  is a complex number. Relationship (6) can be expressed in matrix form as [24]: 

,,, JwJJw RWBX +=  (7) 

where  
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∆
= δδδ  with )()( klRR wkw ++=

∆

+ δδ . In the above expressions “(⋅)T” 

denotes the transpose operator.  

Using (5) it is easy to show that for integer values of k we have: 
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(8) 

By applying the least-squares approach to (7) the following estimator for the complex amplitude B 

based on 2J + 1 DTFT samples is obtained [4], [13]: 

,)(ˆ
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1*11*
JwJJJJJJ XVWWVWB −−−=  (9) 

where “(⋅)*” denotes the complex conjugate transpose operator, “(⋅)-1” denotes the inverse operator, and VJ is 

the noise covariance matrix of the vector Rw,J, whose elements vij, i, j = 1, 2,…,2J + 1 are [15]: 











−>−

−≤−<−

=

= −−

22||,0

22||0,
2

)1(

,1

0

||||

Hjiif

Hjiif
c

c
jiif

v jiji
ij  

 

(10) 

where ch, h = 0, 1, …, H – 1, are the coefficients of the cosine-class squared window w2(m). In particular, 
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M
NNPGc  is the Noise Normalized Power Gain of the window w(⋅) [18]. It is worth 

noticing that the matrix VJ is equal to the identity matrix I(2J+1) when the rectangular window is adopted.  

From the definition of B, the following estimates for the sine-wave amplitude and phase are obtained: 

|,ˆ|2ˆ
JJ BA =   and   { }.ˆˆ

JJ Bangle=φ  (11) 
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 Since the sine-wave frequency ν is assumed to be known, the vector WJ can be evaluated a-priori and, 

according to the Gauss-Markov theorem, (9) represents the Best Linear Unbiased Estimator (BLUE) of the 

complex amplitude B. The variance of that estimator is given by [4]: 
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(12) 

where MB CR /]ˆvar[ 2σ= is the Cramér-Rao Lower Bound (CRLB) for unbiased estimators of B [4], while 

E[⋅] and var[⋅] denotes the  expectation and the variance operators, respectively.  

Anyway, independently of the available knowledge on the vector WJ, the variance of the estimator 

JB̂ satisfies the following: 

 

Proposition 1: 

The variance of the FLLS complex-valued amplitude estimator is given by: 

,
4

]ˆvar[
4

]ˆvar[
]ˆvar[

2
JJ

J
AA

B
φ

+≅  
 (13) 

where ]ˆvar[ JA  and ]ˆvar[ Jφ are the variances of the sine-wave amplitude and phase estimators, 

respectively. 

 

The proof of the Proposition 1 is given in the Appendix A.  

The variances of the estimators JÂ and Jφ̂  are given by [14], [15]:  

M
WVWNNPGA JJJJ

2
11* 2)(]ˆvar[ σ−−⋅≅  

(14) 

and 

11* )(]ˆvar[ −−⋅
⋅

≅ JJJJ WVW
SNRM
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(15) 

when δ is known, or 

],ˆvar[)(]ˆvar[ 211* δπφ +⋅
⋅

≅ −−
JJJJ WVW

SNRM
NNPG  

(16) 

when δ is estimated a-priori. In the above expressions ]ˆvar[δ  represents the variance of the frequency 

estimator δ̂ , and )2/( 22 σASNR
∆
=  is the Signal-to-Noise Ratio. Moreover, when a not too small number of 



7 
 

sine-wave cycles is observed, the CRLBs for unbiased amplitude and phase estimators when δ is known are 

MA CR /2]ˆvar[ 2σ≅ and )/(1]ˆvar[ SNRMCR ⋅≅φ , respectively [4], [6]. Thus, (14) and (15) show that the 

statistical efficiency of the FLLS algorithm (i.e. the ratios between the CRLB and the related estimator 

variance) is equal to ))(/(1 11* −−⋅ JJJ WVWNNPG . In particular, it is inversely proportional to the window 

NNPG, which is minimum for the rectangular window [18]. 

Once the window w(⋅) has been selected and J has been fixed,  the factor 11* )( −−
JJJ WVW and the vector 

1* −
JJVW  can be determined a-priori by using (8), (10), thus avoiding matrix inversion in the calculation of 

the estimators JÂ  and Jφ̂ , and their variances. For example, if the Hann window is adopted, for J = 1, 2, 

and 3 we obtain, respectively: 
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Notice that the estimator 1B̂  has been already derived in [15]. Moreover, expressions (17)-(19) hold also 

when considering complex-valued sine-waves embedded in white noise. In addition, since for the Hann 

window we have 
22
32)( 11*

+
+

=⋅ −−

J
JWVWNNPG JJJ , (14) – (16) returns: 
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when δ is known, or 
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when δ is estimated a-priori. 
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C. The enhanced FLLS Algorithm 

 When the number of observed sine-wave cycles ν is small, windowing doesn’t effectively reduce the 

contribution of the sine-wave image component on the considered DTFT samples and (9) returns low 

accuracy results. In that situation accurate estimates can be obtained by taking into account the contribution 

of the sine-wave image component on the DTFT samples, i.e. 

JJJJkklRklWBkBWklX ww ,1,0,,1,),()22()()( * −+−−=++++++≅++ δδδ  (23) 

where .
2

* φjeAB −
∆
=  This is the model adopted by the enhanced FLLS (e-FLLS) algorithm.  

Expressing (23) in matrix form we have: 
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)22()122()22(
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
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where the vectors Xw,J and Rw,J are defined as in (7). 

By applying the least-squares approach to (24) the following estimator for Be, J is obtained [4]: 

,)(ˆ
,

1*
,

1
,

1*
,, JwJJeJeJJeJe XVWWVWB −−−=  (25) 

where the matrix VJ is defined as in (7).  

From (24), the sine-wave amplitude and phase estimators are then obtained as: 

|ˆ|2ˆ
1,, JeJe BA =  and  { }.ˆˆ

1,, JeJe Bangle=φ  (26) 

In (26) the first element 
1,

ˆ
JeB   of the complex vector JeB ,

ˆ  is used since it is related to the sine-wave 

positive frequency component (i.e. to the first term in (23)) whose contribution dominates the DTFT values 

at the considered frequencies.   

When the inter-bin frequency location δ is known, the matrix We,J can be evaluated and, according to 

the Gauss-Markov theorem, JeB ,
ˆ represents the BLUE for the complex-valued vector amplitude Be = [B, B*]. 

Its variance is given by [4]: 
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In particular, for 1,
ˆ

JeB  we have: 
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Unlike the FLLS algorithm, explicit expressions for the e-FLLS estimators can be hardly obtained since the 

matrix We,J contains also the elements W(2l + 2δ + k), k = -J, -J + 1, …, 0, …, J - 1, J. However, when few 

sine-wave cycles are acquired it makes sense to consider the rectangular window since the effect of the 

image component is taken into account in the model (23) and a different windowing would result in lower 

immunity to wideband noise. In that case, the following Proposition holds: 

 

Proposition 2: 

The expression for the e-FLLS complex-valued amplitude estimator based on the rectangular window is 

given by:  
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J klW δ  

The proof of the Proposition 2 is given in the Appendix B.  

In addition, the following Propositions hold about the variances of the estimates returned by the        

e-FLLS algorithm based on the rectangular window when the number of observed cycles ν is high enough.  

 

Proposition 3: 

If the sine-wave frequency is known, the variance of the e-FLLS complex-valued amplitude estimator based 

on the rectangular window and a high number of observed sine-wave cycles is given by: 
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≅⋅
+

≅
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Proposition 4: 

The variances of the e-FLLS amplitude and phase estimators based on the rectangular window and a high 

number of observed sine-wave cycles are given by:  
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when δ is known, or 
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12]ˆvar[ 2 δπφ +
⋅

⋅
+

≅
SNRMJ
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(33) 

when δ is estimated a-priori.  

 

The proofs of the Propositions 3 and 4 are given in the Appendices C and D, respectively. 

The application of the e-FLLS estimators is advantageous when the contribution of the image component to 

the estimates returned by the FLLS algorithm is higher than the effect of wideband noise.  

 

D. Statistical efficiency of the frequency-domain least-squares algorithms    

By comparing expressions (31) – (33) and (20) – (22) it follows that, for a given value of J, when 

enough sine-wave cycles are observed, the variances of the amplitude and phase estimators returned by the 

e-FLLS algorithm based on the rectangular window and (2J + 3) DTFT samples or the FLLS algorithm based 

on the Hann window and (2J + 1) DTFT samples coincide.  

 Table I shows the theoretical statistical efficiencies (i.e. the ratios between the CRLB and the related 

estimator variance) of the amplitude and the phase estimators provided by the FLLS algorithm based on the 

Hann window and the e-FLLS algorithm based on the rectangular window assuming that the sine-wave 

frequency is known and that enough sine-wave cycles are observed. Different values for the number 2J + 1 

of processed DTFT samples are considered. 

As expected, the FLLS estimator immunity to wideband noise decreases as the window order 

increases. Anyway, values quite close to the CRLB can be achieved by increasing the number of DTFT 

samples, but at the cost of a higher computational effort. Observe also that, to increase the estimation 

accuracy, the effect of possible spurious tones on the 2J + 1 DTFT processed samples must be negligible. 

Thus, the highest value of J that can be considered could be limited by the number of observed sine-wave 

cycles.  
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Table I. Statistical efficiencies of the amplitude and the phase estimators provided by the FLLS algorithm 

based on the Hann window and e-FLLS algorithm based on the rectangular window. Sine-wave frequency 

known a-priori and a high number of observed sine-wave cycles.  

Number of DTFT processed samples (2 J + 1) 3 5 7 11 21 
FLLS based on Hann window 0.800 0.857 0.889 0.923 0.956 
e-FLLS based on rectangular window 0.667 0.800 0.857 0.909 0.952 

 

 

 

III. FREQUENCY-DOMAIN LEAST-SQUARES AND W3PSF ALGORITHMS: COMPARISON OF 

THE STATISTICAL EFFICIENCY AND THE COMPUTATIONAL COMPLEXITY 

 

The W3PSF algorithm is the classical three-parameter sine-fit algorithm [1]-[5] applied to windowed 

data in order to reduce the effect of spurious tones that may affect the acquired sine-wave samples [4]. That 

algorithm has been chosen as a benchmark since it requires a low computational effort although providing 

optimum noise immunity when the rectangular window is used. According to the best of the authors’ 

knowledge, its main drawback is due to the low immunity to spurious tones like harmonics and inter-

harmonics, especially when the rectangular window is used. 

Assuming that the number of observed sine-wave cycles ν  is high enough that the interference from 

the sine-wave image component can be neglected, the variances of the estimators A~  and φ~  returned by the 

W3PSF algorithm are given by [10]: 
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when δ is estimated a-priori. In (34)-(36), 
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BandWidth of the squared window w0(m) = w2(m). Since ENBW0 = 1 for the rectangular window, the 

W3PSF algorithm provides almost efficient amplitude and phase estimators when δ  is known or it is 
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estimated using an efficient estimator [4].  Conversely, statistical efficiency does not longer hold if the Hann 

window (whose ENBW0 is equal to 35/18) is used. 

 When the inter-bin frequency location δ is known, using (14) and (34) or (15) and (35), it results that 

the ratios between the variances of the amplitude or the phase estimators returned by the FLLS algorithm and 

the W3PSF algorithm are given by: 
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(37) 

When the Hann window is adopted, from (20), (21), (34), and (35), (37) we have: 
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(38) 

That expression shows that the FLLS algorithm based on the Hann window exhibits a smaller immunity to 

wideband noise than the W3PSF algorithm based on the rectangular window (for which ENBW0 = 1), but it 

outperforms the W3PSF algorithm based on the Hann window (in that case (38) returns 18/35 

+9/(35(J+1))). 

Moreover, using (31) and (34) or (32) and (35) it results that the ratios between the variances of the 

amplitude and the phase estimators returned by the e-FLLS algorithm based on the rectangular window and 

the W3PSF algorithm are given by: 
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(39) 

That expression shows that the e-FLLS algorithm based on the rectangular window exhibits a smaller 

immunity to wideband noise than the W3PSF algorithm based on the rectangular window (the ratio (39) becomes 

1+1/(2J)), but it outperforms the W3PSF algorithm based on the Hann window (in that case (39) becomes 

18/35+9/(35J)). 

As for the computational complexity, Table II shows the number of elementary operations required 

by the FLLS algorithm based on the Hann window, the e-FLLS algorithm based on the rectangular 

window, the W3PSF algorithm based on the rectangular or a non-rectangular window. The sine-wave 

frequency is assumed to be known a-priori and 2J + 1 DTFT samples are used in the frequency-domain 

least-squares algorithms. In the e-FLLS algorithm, the DTFT of the rectangular window is computed using 

(5) and noticing that the terms )22()22(* δδ +⋅++ lWklW  in (29) are real-valued. For the W3PSF 

algorithm, the analytical expressions for the sine-wave amplitude and phase estimators reported in [3] have 

been considered.    
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Table II. Computational complexity of the complex amplitude estimators returned by the FLLS algorithm 

based on the Hann window, the e-FLLS algorithm based on the rectangular window, and the W3PSF 

algorithm based on the rectangular or a non-rectangular window. Sine-wave frequency known a-priori.    

2J + 1 DTFT samples processed by the frequency-domain least-squares algorithms. 

Algorithm 
Elementary operations 

real  
additions 

real  
multiplications 

trigonometric 
functions 

real  
divisions 

FLLS - Hann window 2M(2J + 1) – 2 2M(2J +1.5)+ 4J + 2 2M(2J + 1) - 
e-FLLS - rect. window 2M(2J + 1) – 4 2M(2J + 1)+ 8J 2M(2J + 1)+2J + 1 2J + 3 
W3PSF - rect. window 2M + 3 2M  + 12 2M  + 1 4 
W3PSF - non-rect. window 4M 8M  + 9 2M  2 

 

Since in practice M >> J, Table II shows that both considered frequency-domain least squares 

estimators require almost 2M(2J + 1) real additions, multiplications, and trigonometric functions. The e-

FLLS estimator 
1,

ˆ
JeB   requires also 2J + 3 real divisions. Also, the e-FLLS and FLLS algorithms require a 

higher processing effort than the W3PSF algorithm based on the rectangular window, which is the least 

computationally demanding algorithm, and the W3PSF algorithm based on a non-rectangular window. 

 

IV. COMPUTER SIMULATIONS  

 

In this Section, the accuracies of the FLLS, the e-FLLS, and the W3PSF algorithms are compared with 

each other. In the performed computer simulations estimation accuracy is quantified by the Root of the 

Mean Square Error (RMSE) and the following conditions and parameters are considered:  

• sine-wave with amplitude A = 1, affected by either additive white Gaussian noise only or both noise and 

harmonics; the SNR is 40 dB and the Total Harmonic Distortion (THD) ratio is equal to 8%; only the 

2nd and the 3rd harmonics are considered, with amplitudes in the ratio 2:1, respectively; indeed their 

effect on the estimated parameters is much stronger than higher order harmonics due to their closeness 

to the fundamental frequency; 

• both few and many acquired sine-wave cycles are considered, that is ν varies in the range [1.51, 6) or 

[15.51, 20) cycles, respectively, with a step of 0.05 cycles;  

• both the rectangular and the Hann windows are used in the e-FLLS algorithm, while only the Hann 

window is adopted in the FLLS algorithm due to the relevant contribution of the image component on 

the estimated parameters when the rectangular window is used;  

• both the rectangular and the Hann windows are considered in the W3PSF algorithm; 
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• both FLLS and e-FLLS algorithms based on 3 or 5 DTFT samples (i.e. J = 1 or J = 2) are considered; 

the complex-valued amplitude FLLS estimator is obtained by applying (17) and (18), respectively; the  

e-FLLS estimator based on the rectangular window is returned by (29), while that based on the Hann 

window is obtained using (25);  

• both known and unknown sine-wave frequency are considered; when the sine-wave frequency is 

unknown, it is estimated a-priori by two iterations of the Aboutanios and Mulgrew (AM) algorithm [21] 

based on the Hann window and the DTFT sample modules [22], [23]; that algorithm has been chosen 

since it provides an unbiased frequency estimator and the related variance is equal to the minimum value 

returned by the Interpolated DFT (IpDFT) frequency estimator which, for the Hann window, is given by 

[23]: 

.1
1024
81]ˆvar[

2

SNRM ⋅
⋅≅

πδ  
(40) 

Monte Carlo simulations based on 1000 runs of M = 512 samples of a sine-wave with phase varying 

at random are considered.  

When the sine-wave frequency is known, simulations showed that the variances of the FLLS or the e-

FLLS amplitude and phase estimators exhibit the same behavior, thus confirming the theoretical results 

derived in Subsections II.B and II.C. Conversely, when the sine-wave frequency is unknown, the variances 

of all the considered phase estimators are dominated by the frequency estimation errors, i.e. the term 

]ˆvar[2 δπ  in expressions (16), (22), and (33) prevails on the other term. Thus, only the RMSEs of the 

amplitude estimators are analyzed in the following. 

Moreover, simulations showed that in this case the e-FLLS algorithm based on the rectangular 

window provides more accurate results than the FLLS algorithm based on the Hann window when ν is 

smaller than about  0.18⋅SNR  - 0.22  or 0.19⋅SNR + 0.92  if  J = 1 or J = 2, respectively, where SNR is given 

in dB. Thus, for SNR = 40 dB the e-FLLS algorithm provides more accurate estimates than the FLLS 

algorithm when ν is less than 7 or 8.5 cycles when J = 1 and J = 2, respectively.  

Many other simulations were performed considering different conditions and MSD windows with a 

higher number of terms. A good agreement between simulation and theoretical results was always 

achieved.  

 

A. Accuracy comparison between the FLLS and the e-FLLS algorithms  

 Fig. 1 shows the RMSEs of the amplitude estimators returned by the e-FLLS and the FLLS 

algorithms in the case of noisy sine-waves when few cycles are observed. The sine-wave frequency is 

assumed either known or unknown. Moreover, the theoretical variances related to the FLLS algorithm 
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based on the Hann window and the e-FLLS algorithm based on the rectangular window returned by (20) 

and (31), respectively, and the square root of the related CRLB are shown. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 1. Noisy sine-waves: RMSEs of the amplitude estimators provided by the e-FLLS algorithm based on the 
rectangular or the Hann windows, J = 1 or 2 (a) and (c), and the FLLS algorithm based on the Hann window, J = 

1 or 2 (b) and (d) versus ν  in the range [1.51, 6) cycles. The sine-wave frequency is assumed to be known (a) 
and (b), or unknown and estimated by the AM algorithm based on the Hann window (c) and (d). The theoretical 
variance (20) for the FLLS algorithm based on the Hann window or the theoretical variance (31) for the e-FLLS 
algorithm based on the rectangular window are shown using dotted lines. The square root of the CRLB is also 

reported.  SNR = 40 dB, 1000 simulation runs of M = 512 samples each.  
 
 

When the sine-wave frequency is known, Fig. 1(a) and (b) show that the e-FLLS algorithm largely 

outperforms the FLLS algorithm since the values returned by the latter are heavily affected by the 

contribution of the spectral image component. Moreover, the RMSEs of the e-FLLS algorithm are almost 

independent of the number of acquired sine-wave cycles ν, the accuracy increases as the number of 
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processed DTFT samples, i.e. J, increases. The e-FLLS algorithms provide an effective compensation of 

the contribution of the spectral image component, which is negligible as compared with the effect of noise. 

Therefore, for a given value of J, the e-FLLS estimator based on the rectangular window outperforms the 

one based on the Hann window. The best accuracy is provided by the e-FLLS algorithm based on the 

rectangular window and J = 2. Also, it can e observed that the e-FLLS algorithm based on the Hann 

window and J = 2 has almost the same accuracy as the e-FLLS algorithm based on the rectangular window 

and J = 1. In addition, Fig. 1(b) shows that the RMSEs related to the FLLS algorithm based on the Hann 

window are much higher than the theoretical variances due to noise. This occurs because of the detrimental 

contribution of the sine-wave image component.  

When the sine-wave frequency is unknown and estimated by the AM algorithm, Fig. 1(c) shows that 

the amplitude estimates returned by the e-FLLS algorithm are quite inaccurate when very few sine-wave 

cycles are acquired. This is due to the effect of the image component on the AM frequency estimator. 

Conversely, when ν is greater than about 3 cycles the AM algorithm returns accurate frequency estimates 

and the e-FLLS amplitude estimators exhibit the same accuracy as in Fig. 1(a). As for the FLLS amplitude 

estimators, the RMSE values are always heavily affected by the contribution of the image component so 

that the curves reported in Fig. 1(b) and (d) are close with each other.    

Concluding, the e-FLLS algorithm largely outperforms the FLLS algorithm in all the situations considered 

above since it models the contribution of the sine-wave image component.  

Fig. 1 also shows that the RMSEs provided by the FLLS and the e-FLLS algorithms are always 

higher than the square root of the related CRLB, due to windowing, the contribution from the image 

component or the small number of processed DTFT samples. In addition, simulations confirm the 

theoretical expressions derived in Subsection II.B for the estimator statistical efficiencies.  

Fig. 2 is related to the same simulation conditions as in Fig. 1, but a high number of sine-wave cycles 

ν  is observed. In this case the sine-wave frequency is estimated very accurately by the AM algorithm so 

that the related amplitude estimate RMSEs almost coincide with those obtained for known frequency. Thus, 

they are not reported in Fig. 2.   

As specified above, the e-FLLS estimators are mainly affected by wideband noise since they 

compensate the contribution of the spectral image component. As a consequence, for a given value of J, the 

e-FLLS algorithm based on the rectangular window outperforms that based on the Hann window - as shown 

in Fig. 2(a) - since the former exhibits a higher noise immunity.  

Unlike Fig. 1, there is a very good agreement between simulation and theoretical results for all the 

considered values of ν  since the contribution of the spectral image component on the returned amplitude 

estimates is negligible as compared to the effect of wideband noise. 
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(a) (b) 

Fig. 2. Noisy sine-waves: RMSEs of the amplitude estimators provided by the e-FLLS algorithm based on the 
rectangular or the Hann windows, J = 1 or 2 (a), the FLLS algorithm based on the Hann window with J = 1 or 2 

and the e-FLLS algorithm based on the rectangular window with J = 2  (b) versus ν  in the range [15.51, 20) 
cycles. The sine-wave frequency is assumed to be known. The theoretical variance (20) for the FLLS algorithm 
based on the Hann window or the theoretical variance (31) for the e-FLLS algorithm based on the rectangular 

window are shown using dotted lines. The square root of the CRLB is also reported.  SNR = 40 dB, 1000 
simulation runs of M = 512 samples each.  

 

 Results similar to those reported in Figs. 1 and 2 have been obtained for different values of SNR 

higher than 20 dB. The main difference with respect to the above figures is that the value of the number of 

acquired sine-wave cycles ν above which the contribution of wideband noise dominates so that the RMSEs 

returned by simulations almost coincide with the theoretical variances, increases as SNR increases.    

  Fig. 3 shows the simulated RMSEs returned by the considered algorithms and the theoretical 

variances (20) and (31) related to the FLLS algorithm based on the Hann window and the e-FLLS 

algorithm based on the rectangular window, respectively, in the case of noisy and harmonically distorted 

signals when the sine-wave frequency is known and few sine-wave cycles are observed. The square roots of 

the unbiased CRLBs related to the fundamental component are also reported. Behaviors very similar to 

those reported in Fig. 3 were observed when the sine-wave frequency is unknown. Indeed, the detrimental 

contribution of harmonics dominates the estimation error when few sine-wave cycles are observed, while 

when the number of cycles ν is high enough the effect of wideband noise or the contribution of the image 

component prevail for the e-FLLS estimator or the FLLS algorithm, respectively. Consequently, the related 

results are not reported in the paper. 
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(a) (b) 

Fig. 3. Noisy and harmonically distorted sine-waves: RMSEs of the amplitude estimators provided by the e-
FLLS algorithm based on the rectangular or the Hann windows, J = 1 or 2 (a), and the FLLS algorithm based on 
the Hann window, J = 1 or 2 (b) versus ν  in the range [1.51, 6) cycles. The sine-wave frequency is assumed to 
be known. The theoretical variance (20) for the FLLS algorithm based on the Hann window or the theoretical 
variance (31) for the e-FLLS algorithm based on the rectangular window are shown using dotted lines. The 
square root of the CRLB related is also reported.  SNR = 40 dB, THD = 8% and 1000 simulation runs of M = 512 

samples each.  
 

Fig. 3 shows that the e-FLLS algorithm outperforms the FLLS algorithm. For very small values of ν, 

the e-FLLS algorithm provides better results when J = 1 since the considered DTFT samples are less 

affected by harmonics than the additional samples processed when using J = 2. For the considered THD and 

SNR values, the best accuracy is obtained by the e-FLLS algorithm based on the rectangular window and J 

= 1 when ν < 2.75 cycles or J = 2 for the remaining values of ν. When ν is greater than about 3.5 cycles, 

the e-FLLS algorithm exhibit almost the same accuracy as in the case of noisy signals, since the effect of 

harmonics becomes negligible. 

 

B. Accuracy comparison between the frequency-domain least-squares and the W3PSF algorithms 

 The accuracies of the FLLS, the e-FLLS, and the W3PSF algorithms are compared with each other by 

considering the same signals used in the previous subsection. Only the results related to the FLLS algorithms 

that provides the better accuracy are reported in the following, that is the e-FLLS algorithm based on the 

rectangular window when few sine-wave cycles are observed, or the FLLS algorithm based on the Hann 

window when the number of observed cycles is high enough that the contribution of the image component 

can be neglected. 

 Fig. 4 shows the RMSEs and the theoretical variances of the amplitude estimators returned by the e-

FLLS algorithm based on the rectangular window and J = 1 or J = 2, and the W3PSF algorithm based on the 



19 
 

rectangular or the Hann windows when few sine-wave cycles are observed. The considered noisy sine-waves 

are the same as in Fig. 1.  

 

  
(a) (b) 

Fig. 4. Noisy sine-waves: RMSEs and theoretical variances of the amplitude estimators provided by the e-FLLS 
algorithm based on the rectangular window and the W3PSF algorithm based on the rectangular or the Hann 
windows versus ν  in the range [1.51, 6) cycles. The sine-wave frequency is assumed to be known (a) or 

unknown and estimated by the AM algorithm based on the Hann window (b). The theoretical variance (31) for 
the e-FLLS algorithm or the theoretical variance (34) for the W3PSF algorithm are shown using dotted lines. The 
square root of the CRLB is also reported.  SNR = 40 dB, 1000 simulation runs of M = 512 samples each are considered.  

 

When the sine-wave frequency is known the W3PSF algorithm based on the rectangular window 

outperforms the others since it returns a statistically efficient amplitude estimator [4]. It is worth noticing 

that the results returned by simulations seem to contradict a well-established theory since the obtained 

RMSE values are sometimes below the related CRLB. However, this is a statistical effect due to the finite 

number of processed data, as clearly shown by simulations performed using a higher number of runs 

acquired samples. runs 

In Fig. 4, the poorest accuracy is provided by the W3PSF algorithm based on the Hann window. When 

the sine-wave frequency is unknown and estimated by the AM algorithm, all the considered amplitude 

estimators provide poor accuracy when ν < 2.25 cycles since the AM algorithm returns poor frequency 

estimates. Conversely, RMSE values very close to those related to known sine-wave frequency are obtained 

when at least 3 sine-wave cycles are observed. Indeed in this situation the AM algorithm returns very 

accurate frequency estimates.   

Fig. 5 shows the simulated RMSEs and the theoretical variances returned by the FLLS amplitude 

estimator based on the Hann window and J = 1 or J = 2, and the W3PSF algorithm based on the rectangular 

or the Hann windows when at least 15.5 sine-wave cycles are observed. The same noisy sine-waves as in 

Fig. 2 are considered and the sine-wave frequency is assumed to be known.  
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Fig. 5. Noisy sine-waves: RMSEs and theoretical variances of the amplitude estimators provided by the FLLS 

algorithm based on the Hann window and the W3PSF algorithm based on the rectangular or the Hann windows 
versus ν  the range [15.51, 20) cycles. The sine-wave frequency is assumed to be known. The theoretical 

variance (20) for the FLLS algorithm or the theoretical variance (34) for the W3PSF algorithm are shown using 
dotted lines.  The square root of the CRLB is also reported.  SNR = 40 dB, 1000 simulation runs of M = 512 

samples each.  
 

 

Again the W3PSF algorithm based on the rectangular window outperforms the others since it provides 

statistically efficient amplitude estimators [4]. However, the accuracies of the FLLS amplitude estimators are 

quite close to the optimal one. The same RMSE values as in Fig. 5 are obtained when the sine-wave 

frequency is unknown since in the considered conditions the AM algorithm returns very accurate frequency 

estimates. 

Fig. 6 shows the RMSEs of the amplitude estimators returned by the e-FLLS algorithm based on the 

rectangular window and J = 1 or J = 2 and the W3PSF algorithm based on the rectangular or the Hann 

windows when the same noisy and harmonically distorted sine-waves employed in Fig. 3 are considered.  

When the sine-wave frequency is known, Fig. 6(a) shows that the e-FLLS algorithm outperforms the W3PSF 

algorithm. The e-FLLS algorithm exhibits the best accuracy when ν < 3 cycles and J = 1, while the two 

considered e-FLLS algorithms provide very close accuracies for higher values of ν. The W3PSF algorithm 

based on the Hann window or the W3PSF algorithm based on the rectangular window provide the worst 

accuracy when ν is lower or higher than 2 cycles, respectively. When the sine-wave frequency is unknown, 

Fig. 6(b) shows that the e-FLLS algorithm exhibits high RMSE values for ν < 2 cycles since the AM 

algorithm returns inaccurate frequency estimates due to the contribution of the image component and 

harmonics. Conversely, when at least 2 sine-wave cycles are observed, the estimated frequency is accurate 

and the RMSE values returned by all the considered algorithms are very close to those reported in Fig. 6(a) 

for known sine-wave frequency.  
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(a) (b) 

Fig. 6. Noisy and harmonically distorted sine-waves: RMSEs of the amplitude estimators provided by the e-
FLLS algorithm based on the rectangular window and the W3PSF algorithm based on the rectangular or the 

Hann windows versus ν  in the range [1.51, 6) cycles. The sine-wave frequency is assumed to be known (a) or 
unknown and estimated by the AM algorithm based on the Hann window (b).  The square root of the CRLB is 

reported.  SNR = 40 dB, THD = 8% and 1000 simulation runs of M = 512 samples each.  
 

 The processing times required by the all the considered algorithms have been compared each other also 

through simulations performed in MATLAB 7.1 environment. A portable computer with a 2.6 GHz 

processor, 4 GB RAM memory, equipped with a Microsoft Windows 8.1 has been used, the DTFT samples 

have been computed using the formula (4) and the sine-wave frequency is assumed a-priori known. In such 

conditions the average processing times required to process 10,000 runs by the FLLS algorithm based on the 

Hann window and the e-FLLS algorithm based on the rectangular window are about 0.19 ms and 0.23 ms for 

J = 1 and 0.28 ms and 0.29 ms for J = 2, respectively, while those required by the W3PSF algorithm based 

on the rectangular and Hann windows are 0.06 ms and 0.19 ms, respectively.  

Thus, coherently with the computationally complexity analysis performed in Section III, the smallest 

processing time is achieved by the W3PSF algorithm based on the rectangular window, while the FLLS and 

e-FLLS algorithms exhibit a higher processing times than the W3PSF algorithm based on the Hann window 

when J = 2. Moreover, when J = 1, the FLLS algorithm, the e-FLLS algorithm, and the W3PSF algorithm 

based on the Hann window require close processing times.  

 

 

V. CONCLUSIONS  

 

In this paper the accuracy of the real-valued sine-wave amplitude and the phase estimates returned by 

frequency-domain least-squares algorithms has been investigated. Moreover, to compensate the detrimental 
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contribution of the image component on the obtained estimates the e-FLLS algorithm has been proposed. 

Analytical expressions for the amplitude and the phase estimators returned by the FLLS algorithm based on 

the Hann window and the e-FLLS algorithm based on the rectangular window which avoid matrix operations 

have been derived, thus improving algorithm real-time capabilities. Analytical expressions have been 

provided also for the estimator variances due to wideband noise. For a fixed value of J, it has been shown 

that the e-FLLS estimator based on the rectangular window and (2J + 3) DTFT samples, and the FLLS 

estimator based on the Hann window and (2J + 1) DTFT samples exhibit the same accuracy when the 

number of acquired sine-wave cycles is high enough. Also, computer simulations showed that the e-FLLS 

algorithm outperforms the FLLS algorithm when a small number of sine-wave cycles is observed, while the 

latter algorithm prevails for long observation intervals. In addition, the e-FLLS algorithm based on the 

rectangular window requires a bit smaller processing effort than the FLLS algorithm based on the Hann 

window. As compared with the W3PSF algorithm, the analyzed frequency-domain least-squares algorithms 

require processing efforts close to that of the W3PSF algorithm based on a non-rectangular window. Also, 

they exhibit a higher immunity to wideband noise when the Hann window is used in the W3PSF algorithm 

or a slightly smaller immunity when the rectangular window is adopted in the W3PSF algorithm. Finally, the 

e-FLLS algorithm is more robust to harmonics than the W3PSF algorithm.  

 

 

APPENDIX A 

Proof of the Proposition 1 

 

The estimated complex-valued amplitude can be written as: 
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where  AAA JJ −=∆
∆ ˆ  and φφφ −=∆

∆

JJ
ˆ  are the amplitude and the phase estimation errors, respectively. 

Expanding (A.1) in Taylor’s series around the true values AJ and φJ and considering only the first order 

terms, we have: 
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From (A.2) it follows that: 
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Finally, expression (13) easily follows from (A.3). 

 

 

APPENDIX B 

Proof of the Proposition 2 

 

Using (8), when a rectangular window is considered we have: 
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where )22()( klWW ki ++=
∆

δ  determines the contribution related to the sine-wave image component.   

From (B.1) we obtain: 
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By substituting (B.3) in (25), expression (29) is finally obtained. 

 

 

APPENDIX C 

Proof of the Proposition 3 

 

Since NNPG = 1 for the rectangular window, (28) becomes: 
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By substituting (B.2) in (C.1) we achieve: 
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According to (5) the DTFT of the rectangular window is given by: 
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where in the last equality we assume that the number of observed sine-wave cycles l is enough higher than 

J, while J is a small integer.  

By substituting (C.4) in (C.2), expression (30) is finally obtained. 

 

 

APPENDIX D 

Proof of the Proposition 4 

 

From (29) it follows: 
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(D.1) 

 Since the correlation coefficients between )(δwX and )( kwX +δ  , k = ±1, ±2, …, are almost nulls when the 

rectangular window is used [24], [25], it follows that the variances of the above lower and upper bounds and 

of 2/ˆˆ
1, JJe AB =  itself, coincides. By applying the law of uncertainty propagation [26] to one of the bounds 

above we have: 
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where )2/(|]var[| 2 MX w σ≅  is the variance of the considered DTFT samples [24], [25]. Thus, we finally 

obtain: 
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Using (C.3) we have: 
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(D.4) 

where in the last equality we assume that the number of observed sine-wave cycles l is enough higher than 

J, while J is a small integer.  

By substituting (D.4) in (D.3), expression (31) for ]ˆvar[ ,JeA is finally obtained. 

When δ is known, by substituting (31) in (13), expression (32) for ]ˆvar[ ,Jeφ is achieved. When δ is estimated 

a-priori and ν  is high enough that )( kwX +δ  becomes negligible, from (29) it follows that: 

,ˆˆ 0
, ,

δπφφ ∆−≅
JeJe  (D.7) 

where 0
,

ˆ
Je

φ is the phase estimated under the assumption that δ is known and δδδ −=∆
∆ ˆ  is the frequency 

estimation error. 

By applying the law of uncertainty propagation [26] to (D.7), noticing that the correlation coefficient 

between 0
,

ˆ
Je

φ and ∆δ is null because 0
,

ˆ
Je

φ  is the estimates obtained when δ is known, it follows that: 

],ˆvar[]ˆvar[]ˆvar[ 20
, ,

δπφφ +≅
JeJe  (D.8) 

where ]ˆvar[ 0
,Je

φ is given by (32). By substituting (32) in (D.8) expression (33) is finally obtained. 
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