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A framework is developed that combines electric field Monte Carlo simulations of random scattering

with an angular-spectrum representation of diffraction theory to determine the amplitude and phase

characteristics of tightly focused laser beams in turbid media. For planar sample geometries, the

scattering-induced coherence loss of wave vectors at larger angles is shown to be the primary mechanism

for broadening the focal volume. This approach for evaluating the formation of the focal volume in turbid

media is of direct relevance to the imaging properties of nonlinear coherent microscopy, which rely on

both the amplitude and phase of the focused fields.
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Image quality in laser scanning optical microscopy is
related directly to the spatial distribution and strength of
the focal field. Diffraction theory models the focal volume
as the spatial interference of the electric field and is suffi-
cient to describe the propagation of a focused laser beam in
homogeneous media [1]. However, biological samples are
composed of cellular and extracellular components of
varying size and refractive index [2,3] that act as scattering
centers and distort the electric field [4]. Experiments show
that focused beam propagation in turbid media results in
attenuation of the focal field amplitudes and broadening of
the focal spot along both lateral and axial dimensions [5].
Current formulations of diffraction theory, being limited to
homogeneous media, cannot describe these important
changes to the focal volume.

Monte Carlo methods can be used to solve the radiative
transport equation by simulating light propagation as the
transport of photons that undergo scattering at discrete
locations within the turbid medium. Monte Carlo studies
have shown the depth dependence and resolution of two-
and three-photon excited fluorescence images to scale with
the photon density in the focal region [5,6]. However,
because particle-based Monte Carlo methods do not model
the wave-characteristics of light, they are unable to model
explicitly the amplitude and phase of tightly focused laser
beams.

Complete knowledge of the focal field characteristics in
turbid media is crucial for analysis of the resolution and
signal strength in all forms of focused laser microscopy
including fluorescence microscopy and optical coherence
tomography. Moreover, the imaging properties of nonlin-
ear coherent imaging methods, including multiharmonic
generation and coherent anti-Stokes Raman scattering mi-
croscopy (CARS), in turbid samples cannot be understood
without an evaluation of the amplitude and phase of focal
fields [7]. Finite-difference time domain (FDTD) methods

can model explicitly the electric field propagation in turbid
media [8,9]. However, FDTD calculations are computa-
tionally expensive and require the exact location and re-
fractive index of the scattering centers within tissue;
properties that are generally unknown. Consequently, mod-
eling the general mechanisms that underlie the formation
of the focal volume in turbid media remains a major
challenge.
Here, we introduce a general framework that combines

fully vectorial diffraction theory for focused fields with
electric field Monte Carlo (EMC) simulations to determine
the amplitude and phase of tightly focused fields in turbid
media. The propagation of optical wave fronts is charac-
terized by tracking the direction of the wave vector k, its
axial location (depth) within the medium, and the path
length traveled between successive Mie scattering events
using an EMC approach [10,11]. The connection with
diffraction theory is made through the coherent angular
dispersion function (CADF), which describes the ampli-
tude loss and phase retardation associated with an optical
wave front that enters a slab of specified thickness with
direction k and exits the slab with direction k0. The CADF
is employed within an angular-spectrum representation of
diffraction theory to calculate the full diffraction-limited
focal field.
We decompose the incoming light into a set of plane

waves, each characterized by x and y components of the
wave-vector k. Using an angular-spectrum representation,
the electric field in the vicinity of the focal volume is
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where f is the focal length of the lens and Ed
far is the
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refracted field at the lens surface. The refracted fieldEd
far is

written in spherical coordinates as

E d
farð"0;#0Þ ¼
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where Gð";#j"0;#0Þ is the CADF per unit solid angle. For
nonscattering media, Ed

far ¼ Efar and Eq. (1) is identical to
the well-known diffraction integral [1,12].Gð";#j"0;#0Þ is
used to modify the refracted fieldEfar to include the effects
of scattering [see Fig. 1(a)]. For an aplanatic lens, the
vector components of Efarð";#Þ can be expressed in terms
of the incident field, Eincð";#Þ, as
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where $ is the angle of polarization of the incident field
with respect to the x axis, and n1 and n2 are the refractive
indices of the media before and after the refraction at the
lens, respectively.

The CADF is determined by an EMC simulation.
Similar to the situation encountered in the optical micro-
scope, plane waves k are launched uniformly over a hemi-
sphere ½0 & #< 2!; 0 & ðcos"Þ< 1) and propagate
through a planar slab of thickness T [see Fig. 1(b)]. Each
plane wave k is launched at given polar and azimuthal
angles (", #) and subject to scattering in the medium. The
associated electric field is characterized by the coordinate
system (m̂, n̂, ŝ), where ŝ is the unit propagation direction
of the photon and m̂ and n̂ are unit vectors in the direction
of the parallel and perpendicular components of the polar-
ized electric field: E ¼ Ekm̂þ E?n̂.

Upon collision with a scatterer, whose probability per
unit path length is characterized by the scattering coeffi-
cient %s of the medium, the wave’s coordinate system is
updated to (m̂0, n̂0, ŝ0). The polar scattering angle !
between the incoming and the outgoing wave is determined
by sampling the angular distribution function pð!Þ: [11]

pð!Þ ¼
Z 2!

0
pð!;"Þd" ¼ jS1ð!Þj2 þ jS2ð!Þj2

Qscax
2 ; (4)

where pð!;"Þ is the scattering phase function, S1 and S2
are the angle-dependent elements of the amplitude scatter-
ing matrix, Qsca is the scattering efficiency, and x is the
particle size parameter [13]. The azimuthal scattering
angle " is found using the rejection sampling method of
the conditional probability pð"j!Þ ¼ pð!;"Þ=pð!Þ. The
components of the normalized scattered field E0 are calcu-
lated as
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where Nð!;"Þ is the angle-dependent normalization fac-
tor [11]. Multiple scattering events introduce changes in
both the propagation direction and polarization of the
wave. Hence, after traversal through the slab, the propaga-
tion angles ("0, #0) of the outgoing wave front may differ
from those of the incident wave front. The phase of the
scattered fields is determined by the path length of the
wave front as it passes through the slab and the phase shifts
associated with the Mie scattering events. For a given
polarization direction (#0), the CADF is determined by

the total coherent field hEð"j"0Þi=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð"0Þ

p
, obtained from

the averaged sum of plane waves launched at " and exiting
at "0, where Wð"0Þ is the total intensity exiting in the "0

direction. We also define an incoherent angular dispersion

function (IADF) determined by hjEð"j"0Þji=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð"0Þ

p
.

This approach fully characterizes electric field propaga-
tion in any medium in which the scattering events can be
treated independently. Here, we wish to apply our frame-
work to simulate the specific case of random scattering as it
best captures the evolution of the focal field with depth in
turbid media. In this case, the resulting electric field is
determined for numerous realizations of particle arrange-
ments resulting in a position-independent incoherent back-
ground in addition to the coherent fields that form the focal
volume. While this methodology can be applied to a sam-
ple with fixed scatterers, the resulting predictions would
reveal spatial interference patterns (speckle) and obscure
the overall variation of the focal field characteristics.
We consider planar slabs of 10% intralipid solution, a

highly turbid medium with scattering coefficient %s ¼
273:3 cm!1 and absorption coefficient %a ¼ 0:02 cm!1

FIG. 1. (a) Schematic of the diffraction geometry. The wave
front of the initial field Efar is modified to Ed

far, which captures
the effects of a given medium. The diffraction pattern of the
scattered field is determined in the vicinity of the focal spot O.
(b) Schematic of the geometry used to calculate Gðkjk0Þ. Waves
launched from a Lambertian source (symbolized by the semi-
circle) at angle " are allowed to scatter in a medium of thickness
T, and the amplitude and phase at each exit angle "0 is deter-
mined.
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at & ¼ 800 nm. Spherical lipid particles of radius
0:1913 %m are chosen to match the experimentally deter-
mined first moment of the angular distribution function
g ¼ 0:636. These properties result in a scattering mean
free path ls ¼ 36:6 %m and a transport mean free path
l* ¼ 100 %m. We consider a water-immersion objective
lens with numerical aperture 1.1 and linearly x-polarized
light defined by Ek ¼ 1 and E? ¼ 0. Upon exiting the
slab, we determine the component of the light polarized
parallel to the incident wave front. For the EMC simula-
tions, we launched 109 plane waves resulting in a relative
error of <3% in the IADF.

In Fig. 2 two-dimensional representations of scattering-
induced angular dispersion are shown for turbid planar
slabs of thickness T ¼ 1 %m and 150 %m. The graphs
provide a measure of the probability by which optical
wave fronts that enter the slab at a specific angle (") will
exit the slab at another angle ("0). The IADF is shown in
Figs. 2(a) and 2(b). For the 1 %m slab, due to the limited
number of scattering events, the IADF has diagonal ele-
ments of essentially constant magnitude, a result expected
for nonscattering media. By contrast, propagation through
the 150 %m thick slab involves multiple scattering events
and results in a significant dispersion of the angular distri-
bution of the optical wave fronts off the diagonal.

Two-dimensional representations of the CADF for the
1 %m and 150 %m slabs are shown in Figs. 2(c) and 2(d),
respectively. For the 1 %m thick slab, the coherent fraction
of the light is largely represented by the waves that have
not undergone scattering, as evidenced by the diagonal in
the graph. For propagation through the 150 %m slab, an
almost similar trend is observed, indicating that the coher-
ent amplitude predominantly stems from unscattered light.

Note that for both slabs, the off-diagonal elements of the
CADF [Figs. 2(c) and 2(d)] are much smaller than their
IADF counterparts [Figs. 2(a) and 2(b)]. This indicates that
waves exiting at an angle "0 different than their entrance
angle " undergo different phase delays, and thus do not
constructively interfere. Moreover, the coherent amplitude
of the larger entrance angles " is strongly attenuated. This
is due to the longer path lengths that large "-angle waves
experience through the medium, which increases the like-
lihood of scattering, degrades coherence, and reduces the
effective numerical aperture of the focused coherent
radiation.
Figure 3 shows the calculated focal fields. After travers-

ing the 1 %m thick slab, the focal field resembles the well-
known amplitude of the Airy disk, as shown in Fig. 3(a).
The phase profile of the focal field, shown in the inset, is
nearly identical to the spatial phase associated with the
Airy disk. Figure 3(b) shows the axial distribution of the
focal field which resembles the focal volume known from
standard diffraction theory. Thus for thin turbid samples
the diffraction-limited focal volume is qualitatively
unaffected.
The situation is very different for propagation across the

150 %m thick slab. First, as shown in Fig. 3(c), the central
peak in the focal plane is broadened and the diffraction
rings prominent at lower depths have virtually disappeared.
Similar losses in spatial confinement along the axial direc-
tion are shown in Fig. 3(d) where the focus is much more
extended and dispersed as compared to the focal field
produced after traversal across a thin slab [Fig. 3(b)].
Surprisingly, while the first diffraction maximum has
broadened, the phase profile still retains its sharp features,
as seen in the inset of Fig. 3(c). The well-behaved phase
profile is achieved because the actual diffraction-limited
volume is the result of spatial interference of the in-phase
components of the focal field. The dispersion of the focal
volume at greater depths is due to the greater attenuation

FIG. 2 (color). Incoherent and coherent angular dispersion in
scattering media. IADF, for slab thicknesses of (a) T ¼ 1 %m,
and (b) T ¼ 150 %m. CADF, for slab thicknesses of
(c) T ¼ 1 %m, and (d) T ¼ 150 %m. Graphs are plotted on a
logarithmic scale.

FIG. 3 (color). Focal field amplitude for a 1 %m thick slab (a),
(b) and a 150 %m thick slab (c),(d). The amplitudes in the focal
plane (xy) are given in (a) and (c), whereas (b) and (d) depict the
xz cross sections. The insets show the phase pattern with values 0
(blue) and ! (orange), and have the same dimensions as the
amplitude plots.
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experienced by the larger " wave fronts in this planar slab
geometry.

Scattering in the medium reduces the portion of the field
that can interfere constructively in the focal volume.
Figure 4(a) plots the coherent amplitude of the focal field
as a function of slab thickness T. Both the depolarization of
the incident light and the loss of phase coherence between
the waves contribute to a rapid decline of the coherent
amplitude as a function of propagation depth in the scat-
tering medium. As expected, the depth-dependent coherent
amplitude exhibits a sharper exponential decay than the
incoherent amplitude. Along with the decrease of coherent
amplitude, the lateral and the axial dimensions of the focal
volume increase with slab thickness [Fig. 4(b)], and agrees
with the trend observed experimentally [5].

We have introduced a framework for the analysis of
focal fields produced in turbid media that combines electric
field Monte Carlo simulations of scattering with diffraction
theory. Our method is computationally inexpensive and
readily applicable to a large number of sample geometries.
Importantly, the framework provides a clear separation of
scattering (via the CADF) and diffraction, which enables
an intuitive interpretation of their contributions to the

formation of the focal field. Unlike FDTD methods, this
approach can predict the focal field distribution for any
incident beam profile without recomputing the effects
of scattering by the sample. Unlike particle-based
Monte Carlo simulations, in which diffraction can only
be modeled phenomenologically, the current framework
models the physics of the spatial dispersion of focal vol-
umes in turbid media. The depth-dependent CADF shows
that the observed broadening of the focal field is due
principally to the increased rate of coherence loss for field
components launched at larger angles "; effectively reduc-
ing the numerical aperture of the wave front. The gradual
coherence loss for larger angles also smooths the diffrac-
tion pattern, manifest by diminished higher-order diffrac-
tion maxima at greater depths. Despite the quantitative loss
of coherence, the diffraction volume itself is governed by
the in-phase components of the field, which still yields a
flat phase front at the first maximum of the diffraction
pattern. This result is directly relevant to nonlinear coher-
ent microscopy techniques, which rely on the spatial co-
herence of the wave front in the vicinity of the focal
volume.
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FIG. 4 (color online). Depth dependence of the focal volume.
(a) Relative coherent and incoherent amplitude of the
x-polarized light. Incoherent amplitude is determined from the
transmission of the light propagating along " ¼ 0. (b) Full width
at half maximum (FWHM) of the focal amplitude along lateral
(solid squares) and axial dimensions (solid circles). Medium
thickness is expressed in units of l* ¼ 100 %m.
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