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We propose several techniques to modulate the local amplitude of quasi-phase-matched (QPM) interactions
in periodically poled lithium niobate waveguides and demonstrate apodization by using each of these tech-
niques. When the hard edges are removed in the spatial profile of the nonlinear coupling, the sidelobes of the
frequency tuning curves are suppressed by 13 dB or more, compared with a uniform grating, consistent with
theoretical predictions. The sidelobe-suppressed gratings are useful for frequency conversion devices in op-
tical communication systems to minimize interchannel cross talk, while the amplitude modulation tech-
niques in general have potential uses in applications that require altering the tuning curve shapes. © 2006
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Optical frequency mixers based on quasi-phase-
matched (QPM) gratings in periodically poled lithium
niobate (PPLN) waveguides with very high nonlinear
efficiency have been demonstrated.” Uniform QPM
gratings have made many important all-optical
signal-processing functions possible, including wave-
length conversion,” dispersion compensation by spec-
tral inversion,® 160 Gbit/s optical time-division
multiplexing,* and all-optical sampling.” Various
quasi-phase-matching engineering techniques have
been developed to expand their applications, e.g.,
chirped gratings for femtosecond pulse compression
and shaping,6 transversely patterned gratings for
nonlinear physical optics,’ multichannel devices
based on grating phase modulation,®® and quasi-
group-velocity matching to increase the bandwidth—
efficiency product.*®

With all of the above developments, a convenient
technique to modulate the amplitude of QPM inter-
actions is not yet available. Amplitude modulation is
difficult for a device based on ferroelectric domain re-
versal, because unlike electronic filters to which vir-
tually any analog window function can be applied, a
QPM grating is essentially a digitized structure with
a local nonlinear coefficient that is either plus or mi-
nus that of the material. Nevertheless, amplitude
modulation of QPM gratings is important, because
the frequency response (tuning curve) of a nonlinear
device is proportional to the Fourier transform of its
spatial profile of nonlinear coupling, and it is useful
to be able to alter the shape of a tuning curve in cer-
tain applications.

The tuning curve shape of a frequency conversion
device is important in optical communications. In a
nonlinear mixing process, only the channel whose
wavelength corresponds to the center peak of the
tuning curve should undergo frequency conversion.
However, those channels whose wavelengths corre-
spond to the side peaks will also be converted and
thus introduce cross talk in many applications, in-
cluding optical time-division multiplexing and
wavelength-division multiplexing. The intrinsic sinc-
sqaure tuning curve of a uniform grating is typically
unsatisfactory in that the ratio between its first side
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peak and main peak is only —13 dB, and its sidelobes
decay only quadratically with detuning. However,
cross talk below —30 dB is often required for commu-
nication systems. To achieve this goal, a sidelobe-free
tuning curve is most desirable.

Fourier transform analysis shows that the tuning
curve sidelobes can be suppressed if the QPM inter-
action is apodized, i.e., if the hard edges of the spatial
profile of nonlinear coupling are removed. In this Let-
ter we propose and compare different techniques for
amplitude modulation of QPM interactions in PPLN
waveguides and report experimental demonstration
of sidelobe-suppressed tuning curves made available
by use of those techniques.

It is in principle possible to modulate the effective
nonlinear coefficient d ¢ by locally changing the duty
cycle D of a grating period, since dgosin(wD)."! In
practice, however, an adequate modulation with d.¢'s
being 10% that of a 50%-duty-cycle grating would re-
quire a duty cycle of roughly 3%, which corresponds
to a domain length of 0.5 um for a C-band PPLN de-
vice, currently not available.

The nature of waveguide optics makes possible
other techniques to modulate the local amplitude of
the nonlinear coupling. Under the undepleted pump
and no-loss limit, the generated second-harmonic
(SH) output power can be written as
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where «(z) is the local amplitude of the nonlinear
coupling, defined as

k(z) = v(2)P,(2), 2)

and v(z) is the overlap integral,

") = j j d(e,y, ) B2 B (r.y)dedy.  (3)

In the above relations P, P,, and ¢, ¢ are the pow-
ers and phases of the first harmonic (FH) and SH

waves, respectively, E, and E,, are the spatial distri-
butions of the FH and SH modal fields normalized so
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Fig. 1.
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Fig. 2. The double-coupler structure modulates the ampli-
tude of the nonlinear coupling and hence the QPM interac-
tions in a waveguide, although the grating itself is uniform.

Schematic of a mode-overlap-control device.

that their integral over space is unity, and d is the
spatial distribution of the nonlinear coefficient. E,,

and E,, of a waveguide are both calculable from the
refractive index distribution of the waveguide and
measurable in experiments. The function d(x,y,z)
can be defined in lithography by positioning the grat-
ings. With the gratings patterned into and out of the
waveguide, the overlap of the waveguide mode with
the nonlinearity of the periodically poled material is
modulated (Fig. 1). This mode-overlap-control ap-
proach bears similarity to the previously demon-
strated odd-mode quasi-phase-matching by angled
and staggered gratings'® in that they both manipu-
late the overlap integral by changing d(x,y,z). With
this mode-overlap-control method, virtually any spa-
tial profile of v(z) can be obtained by a lithographi-
cally defined poling pattern.

An alternative to the above scheme, which modu-
lates v(z), is to modulate P (z) in Eq. (2). This can be
realized by integrating two directional couplers with
a QPM grating, as shown in Fig. 2. The FH wave is
coupled into and out of the QPM grating by the two
couplers. With a constant-gap constant-waveguide-
width coupler, P (z) in the QPM grating varies with a
raised cosine curve. This structure, although incorpo-
rating a uniform grating, will have a frequency re-
sponse identical to that of a QPM grating with
de(z) c 1-cos(mz/l,), where [, is the length of one
coupler.

A third scheme uses a deleted-reversal pattern to
directly modulate the amplitude of the QPM grating
and match the spatial profile of nonlinearity to a tar-
get function (Fig. 3). The reversals are deleted
(meaning no ferroelectric domain reversal in some
grating periods) in such a way that the integrated
nonlinear coefficient of the grating over any two end
points equals that of the target function. The analog
target function is thus converted to a digitized QPM
grating. Similar to the mode-overlap-control method,
the target function can be freely chosen here.

To demonstrate the above amplitude-modulation
schemes, we fabricated devices on a 25 mm long
LiNbOj; chip. The reverse-proton-exchange wave-
guides™ have 3.2 um wide mode filters at the input
section, followed by tapers to increase the waveguide
width to the 7.5 um noncritical width for quasi phase
matching. Each directional coupler is 1.7-mm long
and consists of two 7.5 um wide parallel waveguides
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separated by 2.5 um. It was designed to couple out
more than 99% of the FH but have little coupling at
the SH (typically below 1%). The QPM period is
16.10 um, and the grating lengths [, are 5.64 mm for
mode-overlap-control and deleted-reversal devices,
and 3.4 mm for the double-coupler device.

Figure 4 shows measured SHG tuning curves of
QPM gratings using each of the three apodization
methods, together with the tuning curve of a uniform
grating for comparison. We used three different
target functions, sinc(2mz/l,), COSZ(WZ/lg), and
exp[—(3.3z/lg)2], with z=0 being the center of the
grating, for the mode-overlap-control, double-coupler,
and deleted-reversal devices, respectively. In all
three apodized cases, the apodization has a clear ef-
fect on sidelobe amplitudes. The sidelobes are sup-
pressed to 13—17 dB below the —13 dB characteristic
of the first sidelobe of a sinc-square pattern. The con-
trast approaches the goal of —30 dB when the detun-
ing is equal to or greater than the third zero on the
sinc-square curve of a uniform grating of the same
length. Consistent with Fourier transform analysis,
apodization has the effects of reducing peak efficiency
(not shown) and broadening the main lobe. If these
effects are of concern, apodizing a grating twice as
long as the uniform one will fully compensate for
both effects. Figure 5 shows the tuning curves of
three gratings, all with 350 QPM periods and a
raised cosine functional form in the apodized portion
but different lengths of uniform gratings in the
middle. They illustrate that the longer the uniform
grating is, the narrower the bandwidth of the main
lobe, but the higher the sidelobes. The two effects

Fig. 3. Deleted-reversal grating and the target function of

de(2).
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Fig. 4. Experimental (solid) and theoretical (dashed) SHG
tuning curves of (a) a uniform grating and three apodized
gratings, using (b) mode-overlap control, (¢c) the double-
coupler scheme, and (d) the deleted-reversal method, re-
spectively. In each case the side-lobes have been clearly
suppressed with respect to those of the uniform grating.
The grating in (¢) is 3.4 mm long, i.e., twice the coupling
length, so its tuning curve is wider than that of the 5.64-
mm-long gratings in the other three graphs.
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Fig. 5. «(z) profiles (left) and the corresponding tuning
curves (right) of three apodized gratings, compared with
theoretical calculations (dashed curves).
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nearly cancel, so that the 30 dB bandwidth (defined
as the greatest detuning that reaches above —30 dB
in the theoretical curve) is relatively constant for the
three cases. The measured tuning curves agree well
with theoretical calculations in all but one aspect: the
measured tails reach a floor whose level is roughly
1/N, where N is the total number of grating periods.
This floor exists for uniform gratings as well and is
due to random variation in domain center positions
or waveguide inhomogeneities, of which further
study is being done.

Comparing the three amplitude-modulation tech-
niques, we note that the deleted-reversal devices are
the easiest to fabricate and are not sensitive to align-
ment errors between gratings and waveguides as are
the mode-overlap-control devices or to inaccurate
coupler lengths as are the double-coupler devices.
Moreover, deleted-reversal devices can be used in
bulk devices with modifications that take into
account the power density change due to beam
diffraction. However, they may not be suitable for ap-
plications involving sub-hundred-femtosecond
pulses, as the walk-off length between FH and SH
waves becomes so short that the digitization effects
could be significant. The double-coupler scheme has
the advantage of separating the FH and SH light au-

tomatically. But unlike the other two methods, the
simple design described here has a fixed raised cosine
k(z). However, with more complicated designs, vary-
ing the distance between the two waveguides of the
coupler for instance, it could also accommodate other
target «(z) profiles.

In summary, we have proposed three techniques to
modulate the amplitude of the QPM interactions in
PPLN waveguides and demonstrated apodization of
QPM interactions and tuning curve sidelobe suppres-
sion by using those techniques. In a wider context,
these amplitude-modulation techniques are not lim-
ited to apodization but can be used for many other
applications that require the alteration of tuning
curve shapes.
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