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Summary. The amplitude and phase anomalies observed in long period 
Rayleigh and Love waves ( T >  150 s) show definite patterns of variation from 
orbit to orbit. In some cases the phase anomalies agree with the prediction of 
linear perturbation theory applied to a spherical reference model (Fermat’s 
Principle), namely that each complete orbit of the earth in either direction 
corresponds to a constant phase anomaly increment. The corresponding 
approximation for amplitude anomaly is derived in this study; it is shown 
that orbits of one sense are amplified (or deamplified) by a constant factor 
for each complete orbit, and that orbits of the opposite sense are amplified 
or deamplified) by the reciprocal factor. This amplification is due to partial 

establishing that the large observed anomalies are caused by focusing and 
defocusing due to heterogeneity. Some of the data, however, show substan- 
tial deviations from these approximations, indicating that lateral refraction is 
sometimes a large effect for high orbits. Evidence is presented for orbits 
which have paths deviating from the great circle by more than 1000km. A 
technique is outlined for making use of such data to constrain lateral varia- 
tions in earth structure. 

i ocusing and defocusing of a ray bundle. The data often show such behaviour, 

Key words: surface waves, amplitudes, mantle waves 

Introduction 

Many studies have made use of very long period surface waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- or ‘mantle waves’ - to 
investigate lateral heterogeneities in the Earth’s mantle (e.g. Toksoz & Anderson 1966; 
Kanamori 1970; Dziewonski 1971; Mills 1978; Dziewonski & Steim 1982; Nakanishi & 
Anderson 1982, 1983). Although a number of different methodologies have been employed, 
the technique is essentially to make measurements of phase anomaly over a band of 
frequencies, and to interpret these in terms of phase integrals along the path. The path may 
be a minor or a major arc (R,, R,, GI,  G2),or one involving one or more complete great 
circle orbits (R3 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR4. G3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG4, etc.). Invariably the assumption is made that the theoretical 
phase anomaly is given by a line integral along the great circle defined by the source and 
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receiver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- i.e. that deviations in the path may be neglected for the purpose of calculating 
phase. We shall refer to this as the ‘path integral approximation’. The validity of the approxi- 
mation, for sufficiently small heterogeneities in phase velocity, derives from Fennat’s 
principle, which guarantees that for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa global phase velocity heterogeneity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWoodhouse and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY.  K.  Wong 

6 c  (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45) = e t . , (0 ,  @I, 

the phase anomaly will be given by the phase integral approximation t o  order cz, for 
sufficiently small E .  

The recently constructed models of  global heterogeneity (Nakanishi & Anderson 1982, 
1983; Woodhouse & Dziewonski 1984) enable us to perform exact ray tracing for mantle 
waves in order to check the validity of Fermat’s principle, and to find to what extent paths 
are expected to deviate from the great circle. 

A related problem is that  of amplitudes. It has been known for some years (it was first 
pointed out by 14. Kananiori) that mantle waves show large amplitude anomalies. In the 
period range 150 to 300s factors of 2 or 3 are common. Fig. 1 shows an observed (top) and 
a synthetic (bottom) trace containing Rayleigh wave orbits R ,  - R,. In this example it is 
readily seen that odd orbit groups are considerably smaller than predicted and even orbit 
groups are larger. It is difficult to explain such anomalies except as the effect of  focusing and 
defocusing by heterogeneity, It is well known that the effects o f  source finiteness may lead 
t o  amplitude anomalies for surface wave groups which leave the source in opposite directions 
and this could lead t o  systematically large even orbits and small odd orbits, for example. It 
will be shown below, however, that the amplitude anomalies increase in a regular way with 
orbit number - a phenomenon which cannot be explained in terms of source directivity. 
Attenuation differing from that of the reference earth model used in the synthetic calcula- 
tions may also lead to systematically small or large arrivals; we shall show, however, that 
amplitude anomalies are usually of opposite sense for even and odd orbits and thus 
anomalous attenuation is not a viable explanation. In any case an approximate quantitative 
evaluation of likely attenuation and source effects would lead us t o  reject them, since the 
observed anomalies are so large. 

The recently constructed global models of  mantle heterogeneity have enabled us to  
investigate the likely effects of  low-order phase velocity variations (Wong & Woodhouse 
1983, 1984; Lay & Kanamori 1985). We have concluded that both the character and the 
magnitude of the observed amplitude effects can be explained b y  heterogeneity of  the type 
contained in these global models. There is clear evidence, both in the data and in synthetic 

F . V t N T  / /  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 / 7 8 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 48 39 48 L A T =  31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA96 LONG- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA131 61 D E F T H = 4 4 2  8 
STATJON:-I:TAO I N S T K = A S K O  DELTA= 52 41 AZEIJ=169 7 AZST-35M 7 

R6 I 

--.-v-- 

D F I A Y -  I Y 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA08 

Figure 1. Observed ( top) and synthetic (bottom) traces for an event of 1978 March 7 in Japan, observed 
at Charters Towers, Australia. The record ha5 been low pass filtered, using a cosine taper over the period 
range 135- 155 s. 
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Anomalies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin maiitle waves I S 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
calculations, of phase anomalies which deviate substantially from the path integral approxi- 
mation (Fermat’s principle). The measure of agreement between theory and observation 
provides a strong indication that the deviations in path predicted by the models are also 
realistic. We find that the paths of high orbit Rayleigh and Love waves can deviate from the 
great circle by as much as 2000kni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- even for source-receiver distances close to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90°, for 
which the great circle path is expected to be most well defined. 

It should be noted, however, that the model predictions for amplitudes, and for the 
departures in phase from Fermat’s principle only rarely agree in detail with the observations. 
These observations constitute, therefore, a valuable new data set which can be used to refine 
the existing models of heterogeneity. 

Our purpose in this paper is to present examples from the data which establish that the 
general character of the observations is in agreement with that of the model predictions, and 
to present some theoretical results concerning the way in which observations of this kind are 
related to the earth’s heterogeneity. In particular we derive an approximation to amplitude 
which is analogous to Fermat’s principle for phase, in that it is correct to first order in the 
heterogeneity and can be calculated in terms of an integral along the unperturbed great circle 
path. This result shows that, to first order, amplitude anomalies are sensitive to the second 
derivative of phase velocity transverse to the path, and it is a special case of a more general 
result which gives the partial derivatives of amplitude and phase anomaly with respect to 
structural parameter variations, even in the presence of large deviations in path. These could 
form the basis of an inversion procedure for both amplitude and phase. The fact that succes- 
sive orbits of mantle waves can sample substantially different paths, and the fact that 
amplitude anomaly is sensitive to the derivatives of phase velocity, leads us to hope that an 
analysis based upon a more complete form ofray theory will lead to enhanced resolution of 
global variations in phase velocity. 

Theoretical considerations 

T H E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG E N E R A L  K A Y  E Q U A T I O N S  

For a wave train on a curved surface with slowly varying amplitude and rapidly varying 
phase, we may approximate the surface displacement field by the first term in the ray series 
(Woodhouse 1974): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, t )  = A  (x, I )  exp [itc, (x, 1)1. (1 1 

where x = (XI, x2) are co-ordinates in the surface and t is time. The covariant components of 
the local wave vector and the local instantaneous frequency may be defined by: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a=-- 

at 

0 = 1 , 2  1 
and the local dispersion relation o = w (k, x) leads to the Hamilton-Jacobi equation for 
tc, (x, t )  (Woodhouse 1974): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 
at axu’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3  1 
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The method of characteristics applied to this equation leads to Hamilton's canonical 
equations: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  H.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWoodhouse and Y. K. Wong 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- denotes the total derivative with respect to t along the characteristic curve, or ray. In 
the terminology of classical mechanics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx u  are generalized coordinates, k ,  are the conjugate 
momenta and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo (k,, x u )  is the Hamiltonian. Since the Hamiltonian has no explicit depen- 
dence upon time we also have (e.g. Goldstein 1959) 

C L  = 0. (5 1 

Equations (4) are the ray tracing equations and (5) shows, as we should expect, that the 
rays correspond to propagation at some fixed frequency. The solutions, x"(t ) ,  represent the 
trajectory of a wave packet which moves along the ray with the local group velocity: 

where g,, is the contravariant metric tensor in the surface; the summation convention is 
assumed. 

These ray equations are valid for any curved surface and for any dispersion relation. In 
general, the dispersion relation may be azimuthally anisotropic, but here we shall be 
concerned only with the isotropic case. Defining the wave number 

k = (gmkuk,)1'2 (7) 

we assume 

w (k,, X U )  = 0 (k,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo), 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW is a given function of its arguments. In this case equations (4) become 

Since W (k, xu) is a constant of the motion, it is convenient to invert the dispersion relation 
to the form 

It is easily shown that 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
7
/3

/7
5
3
/6

6
8
3
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Anomalies in mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwaves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA757 

where subscript variables indicate explicitly the quantities held fixed. We shall also define 
the arc length increment 

ao zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (g,XaX~1'2dt = - d t ,  

ak 

where (9a) has been used. From (1 I )  and (1 2), equations (9a, b) can be written 

dx" k" - - -- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u =  1 , 2  i ds k 

where k" are the contravariant components of the wave vector: 

k a = P k v .  

It is interesting to note that the ray equations in the form (13) are independent of group 
velocity. It may be verified that these are equivalent to the variational problem for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxa(s): 

6 k (a, xu)  ds = 0 

subject to the constraint 

s 
dx" dxv 

gm ds ds 
- - - 1  

Another useful form of the ray equations may be obtained by deriving Hamilton's equa- 
tions for the variational problem given by (14). We find that the Hamiltonian is given by: 

where X" are regarded as coordinates and k ,  as momenta, and Hamilton's equations: 

dx" aH 

ds ak, 

dk,  aH 

- - -__  

- - 
ds axa 

are then equivalent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(13). 
To calculate geometrical spreading we need to consider the equations satisfied by the 

difference between two neighbouring solutions of the ray equations. Let [x (s), k (s)] be a 
solution of (17), and let [x(s) t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 (s), k(s) t k l  (s)] be a second solution, where xl, kl  are 
small. To first order, xl, k, satisfy the homogeneous 'bending equations' (Julian & Gubbins 
1977), which are obtained by incrementing x and k in (17): 

dxp  aZH a2H 
x ,  t- klV 

- 
ds ak,axv akaakv 
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758 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
These constitute a linear system for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx l r  k l ,  with coefficients evaluated in terms of the unper- 
turbed ray [x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(\), k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s)]. The particular symmetry displayed by (18) enables us to show that 
if [xI(s), k,(s)]. [x2(s), k2(s)] are two solutions of (18) then 

J .  H. Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY.  K.  Wong 

x y k z o  - x i k , ,  = constant. (19) 

This follows directly if we make use of (18) to evaluate d(xl  k, - x, k,)/ds. 
To quantify geometrical spreading we consider a pencil of rays emanating from a point 

P I ,  subtending an angle du l ,  and spreading over a perpendicular distance dol at the receiver 
P, (see Fig. 2a). Then geometrical spreading for this path may be defined asdo,/da,. If the 
two bounding rays are [x(s). k(s)]  and [x(s) + x1 (s)da,, k(s) + kl(s)dal]. then [ x~ (s ) ,  
k l  (s)] satisfy (1 8). subject to the initial conditions 

where k /  is the component of k parallel to the ray at P I .  The first of (20) expresses the fact 
that the two rays emanate from the same point, afid the second is required in order that, a t  
Pl : 

I k I = I k + k i d @ ,  I 

to first order. Equations (18) and (20) determine [xI(s), kl(s)] to within a multiplying 
factor. and we obtain: 

where x: is the component of x1 perpendicular to the ray at P,. Similarly, for the reverse 
ray (Fig. 2b) 

p1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b )  

Figure 2. (a )  Schemat ic  representation of a pcncil o f  rays cmanatinp from il source at  P, and travelling to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P,. ( b )  The revcrse path f rom P ,  t o  P,. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
7
/3

/7
5
3
/6

6
8
3
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Anomalies in maiTtle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwaves 75') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[x,(s), k2(s)] is the solution of (18) subject t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X , ( P 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 

k: (P2) = 0. (33 1 

This equation expresses the principle of reciprocity for geometrical spreading. A similar 
result for body waves has been obtained by Richards (1971 ). 

In order to  approach the inverse problem we wish to find the perturbation in phase and 
the perturbation in the spreading factors when the phase velocity model is perturbed: 
k ( w ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ( w ,  x) t F k ( o ,  x). The corresponding perturbation in the ray [6x(s), 6k (s)] 
satisfies the inhomogeneous bending equations, which are obtained by perturbing ( 17): 

where 6H is given by (1 6) 

6H(k,, x")  = - 6 k ( w ,  xu). 

(25b) 

Note that, in fact, 6H is independent of k ,  and, thus, the inhomogeneous term in (25a) 
vanishes. The boundary conditions: 

6 x ( P , )  = 6x' (P2)  = 0 

16k"'(Pl)1= 6k(P l ) ,  

which express the fact that the perturbed ray passes through fixed endpoints and that the 
dispersion relation is satisfied at  the initial point, complete the boundary value problem for 
[6x(s), 6k(s)]. Similarly we obtain from (18) the equations for the perturbations in xI(s), 
kl  (s): 
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where the inhomogeneous terms are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWoodhouseand Y. K .  Wong 

a26H , a2SH 
6k,kl, + ~ kl, ; 

a3H + -____ 
ak,ak,ak, ak,a? + G, 

a26H " a26H 

axOak"xl + axoak, Sk,k'; +- kl,. 
a3H 

axa ak, ak, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

Perturbing (20) the initial conditions are 

6x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PI) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k .Ski=- Sk s k i .  (30) 

From (21) we find that the perturbation in the spreading factor is given by: 

T h s  completes the formal steps necessary to find the spreading factors and their pertur- 
bations due to structural perturbations. It will be noted that in order to find the derivatives 
of spreading factors with respect to a large basis set of model perturbations (such as spherical 
harmonics), it is necessary to solve repeatedly linear systems of equations of the form (25) 
and (28). These equations are the same, except that they possess different inhomogeneous 
terms and different boundary conditions. It is natural, and economic, therefore, to use the 
method of Green's functions; once the Green's function has been tabulated along the unper- 
turbed ray, the calculations reduce to multiple numerical quadratures. The same equations 
must also be solved in the 'bending' method of ray tracing of Julian & Gubbins (1977). The 
analagous problem for short period body wave amplitudes has been analysed by Thomson 
(1 983). 

R A Y  T H E O R Y  F O R  A S P H E R E  

Here we derive simplified equations for ray tracing and amplitude calculations on a spherical 
earth. We shall use coordinatesx' = y cot 6 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 = @, where 6 is colatitude and @ is longi- 
tude. The metric tensor is given by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is earth radius. The ray tracing equations (13) may then be reduced to the following 
second order differential equation for y = y (qb): 
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Anomalies in mantle waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA761 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdy/d@ and c = w/k is phase velocity. Equation (33) is equivalent to the rap 
tracing equations of Jobert & Jobert (1983). For our current work, the form (33) has the 
advantage that it is approximately linear in the case of slight heterogeneity. Without loss of 
generality, we may use a coordinate system in which both the source and the receiver are on 
the equator, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = 0, at longitudes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 0 and @ = A, respectively. Equation (33) is then to be 
solved, subject to the boundary conditions 

y(0) = y (A) = 0 (34) 

Equations (33), (34) can readily be solved by the ‘shooting’ method. Using starting values 
y(0) = 0, v (0) = v o  (33) may be solved numerically for a given model 6c(8,@). It is then 
necessary to find a value vo  such that the boundary condition y(A)  = 0 is satisfied. If the 
derivative 

is available, Newton’s method may be employed; furthermore this derivative is simply 
related to geometrical spreading. We have, using the notation defined previously, 

a 
da1 avo 
do’ - a (1 + v’,) [ 1 + vz (A)]-”’ - y (A, vo). 

Using the notation: 

we find, on differentiating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 3 ) ,  (34): 

y’(0) = 0 

v’(0) = 1 

Equations (38), (39) constitute an initial value problem for y’(@) which may be solved 
numerically, together with (33) to obtain both the ray and ay/avo. The exact ray tracing 
experiments to be discussed below were performed using this technique and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Runge-Kutta 
algorithm. 

For a homogeneousearth,ln c = const., the solution of (33), (34), (38), (39) is immediate: 

r(@)=O v(@) = 0 

y’(@) = - sin @ v’ (@) = cos @. (40) 
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762 

Equation (36) then leads t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWoodhouse and Y.  K .  Wong zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- = a sin A 
do, 

which is the familiar result for geometrical spreading on a sphere. In an aspherical earth 
model, we define amplitude anomaly t o  be the ratio 

Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the anomalous amplification due to heterogeneity. 
Phase anomaly is defined with respect t o  a spherically symmetric reference earth model: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(@I2 
+ r2(@)J2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + r2(@) 

where c0 is phase velocity in the reference model, and 0 = cot-’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy (@). 

(42) 

T H E  P A T H  I N  T E G K A L  A P P R O X I M A T I O N  

Before discussing exact ray tracing results for amplitude and phase anomaly, it is of interest 
t o  examine their behaviour in the case of slight heterogenelty. The result for phase is well 
known, and is given by Fermat’s principle: 

where the integral is along the great circle 8 = n/2. Formally this can be obtained by lineariz- 
ing (42) with respect to 6c = c (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) - co. Here we shall find the analogous result for amplifi- 
cation, i.e. we shall seek to  linearize (41) with respect to 6c. First let us rewrite (33) as an 
integral equation. The Green’s function for the operator ~ ‘ ~ y / d @ ~  + y, subject to boundary 
condt ions (34) is 

- cosec A sin # sin (A - @‘) 

- cosec A sin (A - #) sin 4’ 
(# < 4’) 
(@> 4t); 

i.e. (33) is equivalent t o  

wheref [y,  $1 represents the right side of (33). Similarly (38), (39) are equivalent t o  

Y‘(@) = - sin @ - sin (4 - #‘k b(#‘)> Y‘(4’), #‘I d#’, 

(45 I 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnnmalies in mantle waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA763 

whereg [y, y‘, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@] is the right side of (38). I f  6c is small: c = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E ) ,  we have (see equations 40) 

y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) = 0 ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ) 

y ‘ (@)=-s in@t  I)(€) u ’ ( r $ ) = c o s @ + O ( ~ )  (47) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) = 0 (€1  

and also 

a, In c = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E). 

Substituting into (33) we find, t o  first order, 

which is an explicit result for the shape of  the perturbed ray. This result can be used to  
evaluate the initial take-off angle ( to first order): 

This is a useful starting value in the shooting method used for the exact calculations. 
Similarly the off-azimuth arrival direction is determined by 

It is interesting to note that the deviation from the great circle azimuth is proportional to 
the path integral of  the transverse derivative of  phase velocity, multiplied by a kernel sin @. 

Linearizing equation (46) (see 38,47) we find 

where c = c(n/2,  @I). Setting @ = A and substituting into (41) we find that the amplitude 
anomaly is given by 

In A = % cosec A JoA sin (A - 4) c;’ [sin 4 a’, - cos 4 a,] 6cd4,  (52) 

where 6c = 6c (7~/2,  4’); this is the path 9 tegral approximation to amplitude anomaly. Note 
that amplitude anomaly is principally sensitive to  the second transverse derivative of phase 
velocity with symmetric kernel sin (A - 4) sin 4. For wave propagation in a low velocity 
trough, d i s c >  0, we obtain amplification, as we might expect. 

Let us now consider the behaviour of a phase and amplitude anomaly for multiple orbits 
of mantle waves. The quantity A in the foregoing analysis is simply the value o f  @ at the 
receiver, 4 = @?. For odd orbits K,, G,z. travelling in the positive @ direction, this will be 
@,. = A t n (n - 1 ) and for even orbits travelling in the negative direction q5r = A - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. The 
linearized formulae (43) and (5 2) predict systematic behaviour from orbit t o  orbit, because 
the integrands are periodic in 4. For phase anomaly it is, of  course, well known that if 
Fermat’s principle applies the phase anomaly can be writ ten 

- waco’ [ I l  t % ( n  - 1)12] 

- WC;‘ [- r ,  t ‘ /ni , j  

(n  odd)  

( 1 7  even 1, 
6 * = (  (53) 
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764 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  and I ,  represent the integral in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(43) taken over the minor arc and the 
complete great circle, respectively. Thus a plot of phase anomaly against orbit number will 
produce two parallel lines. From equation (52) we obtain the corresponding result for 
amplitude anomaly: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. H. IVoodhouseand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY.  K .  Wong 

'/2 cosec A [I1 + !h ( n  - 1 )I21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
95 cosec A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[J1 - 95 n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ2]  

( 1 2  odd) 

(n even) ' 
I n A =  (54) 

where J ,  and J ,  denote the integral in ( 5  7 )  over the minor arc and over the complete great 
circle. I t  will be noted that a plot of  amplitude anomaly against orbit number should show 
opposite slopes for even and odd orbits, in this approximation. Similarly, from (SO), it can 
be shown that the deviationin azimuth for successive orbits at  a given station will be given by 

~ KI - %(H - I ) &  ( n  even) 

- K l  + K n K 2  ( n  odd)  
v =  { 
where K 1 ,  K ,  are obtained from the integral in (50). Thus, in this approximation, azimuth 
deviation will accumulate linearily from orbit t o  orbit, but with the opposite sense for even 
and odd orbits. Even though this result is only a first approximation, it has rather far- 
reaching implications, since it demonstrates that there is a tendency for even and odd orbits 
t o  separate and thus to travel along systematically different paths. Each successive even or 
odd orbit, at some fwed range, moves away from the great circle by a fixed amount, and 
with opposite sense for even and odd orbits. In exact ray tracing calculations this behaviour 
is reproduced, but tends t o  saturate when a path of  maximum travel time is encountered; the 
high orbits then become locked into a low velocity path. 

It is interesting to note that, by virtue of the invariance of  the kernels with respect t o  the 
substitutions @ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt T ,  0 --f T - 8,  corresponding to  point reflection through the centre of  
the Earth, the integrals I,, J,, K ,  depend only upon the even order spherical harmonic 
coefficients of phase velocity; thus the terms in equations ( S 3 ) - ( 5 S )  which accumulate from 
orbit t o  orbit (and thus can be tnost accurately measured) are insensitive to  odd order 
structure. That this is true for phase anomaly is well known (Backus 1964); the above results 
show that in the linear approximation the secular terms in both amplitude anomaly and in 
azimuth deviation have the same property. 

D A T A  A N I )  S Y N T H E T I C '  C A L C U L A T I O N S  

Here we shall show a number of  examples of the systematic variation of amplitude and phase 
anomalies for multiple tnantle wave orbits in the period range 150-300s. In synthetic 
calculations we shall assume that amplitude anomaly is governed solely by geometrical 
spreading. Since, in fact, it is horizontal energy flux which is conserved within a ray tube, 
there are additional amplitude fluctuations due to  the differing surface amplitudes of  a 
surface wave of  unit energy flux. This effect will amount t o  only a few percent, since the 
variations of  phase velocity, group velocity and structural parameters are of this order, and 
thus its contribution will be small compared with that of geometrical spreading. Moreover, it 
will contribute the same (multiplicative) anomaly to each orbit at  a given station and thus 
will not affect the relative amplitudes of  successive orbits. 

Several hundreds of records have been analysed and the trends to  be described here are 
universal. The particular examples we discuss are a selection of  those which show substantial 
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18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFi 4 -  

L A 1  16 0 1 -  

LON -96 6 
2 -  

DCP 18 

S l A T I O N  NUAO 

D I S T  145 I , 
VFRTICAL C O H F l l N f  N T  

5- 

A M P L I l U D C  3 -  

NFASURtD 

R A T I O  

A r - A  
v 

~. * ~ .  . v.. f f . . 

,x . I . . I .  

v 
P 

3 

4 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

I 

PATH INTEGRAL Ti-  

A P P R l l X I M A T l O N  
1 

I ~ 1 8 4  D 

-~ 

T I 184  s 

. 

A 

I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIT.'.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

EVENT OF 29/11/78 19 :52 :47 .6  LAT:  16.0 LON: -96.6 DEP: 18. 
STATION: NWAO DIST: 145.1 COMP0NENT:VERT MODE: 0 S 48 

360 300 240 180 120 60 0 

.-  
EVEN ORBITS 

0 60 120 180 240 300 360 

(b) ODD ORBITS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. (a) Amplitude measurements (top row) as a function of orbit number, together with model 
calculations based upon the path integral approximation (middle row) and exact ray tracing (bottom 
row); the model calculations make use o f  the model M84C of Woodhouse & Dziewonski f 1984). (b )  The 
paths followed by tlic orbits o f  1:ig. 3(a):  all cven orbits ( top panel) and odd orbits (bottom panel) arc 
superimposed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

26 
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MtAS l lK l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD 

AHI'L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI T U U F  

R A T I O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 

I'ArH I N l l C i R A L  

A 

A 

I - . . . . .  . . . . . .  
V "  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 - 229 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 L A L C ~ I I  ATJON 

1 = I R I  S 1 = I S 6  S 

A 

A A  

+ v  . . . . . . . .  
D 

" V  

1 _j I R I  s 

A A  ~. . . . . .  * . ~ *  . 
v " " 

v 

I R  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. t-, .t+ 4 - l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-c, 

*- O R B I T S  - -*  

A A ~  
. P  . . . . . . . .  

Y "  

1 r 156 S 

1 156 S 

I 

A 

A A  - . _ _  . . . . .  
D 

D " " 

EVENT O F  8/11/80 1 Q  27 3 4  0 LAT 4 1  1 LON -124 2 DEP 19 
STAI ION BCAO D l S r  123 3 COMPONENT TRAN MODE 0 T 45 

360 300 240 180 120 60 0 
45 

30 

15 

0 

15 

30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ar; 
I I  

EVEN ORBITS 

0 60 120 180 240 300 360 
ODD ORBITS 

(b) 
Figure 4. (a!  Aniplitude i i ieawrcnients and inode! calculations. Sec caption t o  I.ig. 3(a) .  (b) The paths 
tollowed by the orbits of I,ig. 4(a). 
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EVENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF 2 4 /  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 / 1 8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
19 47'58 1 

L A T -  4 4  2 

L.ON. 148 9 

DFP 33 

STATION:  S N I U  

D I S T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA88 3 

VERTICAL COIII'ONENT 

MEASURED 

PHASE 

DIFF-ERENCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I = 220 S T = 184 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 

1 - 184 S 

I 

T - 278 S 

4 1  

T - 155 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2 

- 4  :I--- PATH INTEGRAL 

APPROXIHATION 

1 - 220 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs T - 184 S 

Y "  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2. . 

-4  

EXACT 

CALCULATION 

I 
I 0  

t t+ t  +-- 
*- O R B I T S  - 

I ~ 184 S FVFNT 111- 24/ 3 / i R  

I 9  4 /  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 / 

L A 7  4 4  2 

LON I 4 R  9 

DEPi 33 

STATION SNZO 

D I S T '  88 3 

LONGITUI>INAL COMPONtNT 

v 

MEASURt D 

PHASE 

DIFF€RENCE 

T - 220 S 7 - 184 S T - 155 5 

PATH INTEGRAI -21 
APPROXIMATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-.I 

1 - 228 s 1 - I 8 4  s 1 - 155 s 

41 

v v v  
-* - 

-2 

- 4  

I0 

EXACl  

CALCULATION 

- ORSITS 4 

Figure 5. (a)  Phase nicasurcnients ( top row) a s  a function of orbit number, together with model calcula- 
tions based upon Fernmat's principle (middle row) and exact ray tracing (bottom r o w ) .  Vertic;il conl- 
ponent. (b) Same as Fig. 5(a) but f o r  longitudinal component. (c) Paths followed by orbits o f  I:ig. 5(a, b). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
7
/3

/7
5
3
/6

6
8
3
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



768 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. Woodhouse and Y.  K. Wong zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t , t 1 1 i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 19 1 '  50 ' L A T  4 4  2 LOP4 1 4 8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 DEP 33 
S T A r I O P I  C N L d  DTST 88 3 CDMPOI4ENT L E R T  M O D t  0 S 4 8  

360 300 '40 180 120 60 

PATH APPROXIMATION INTEGRAL -2 k-- b-, 
-4  

*_ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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EVENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3/78 

2148:39 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

L I T .  32 0 

LON* 137 .6  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W P i  442 

STATION. CTAO 

D I S T .  52 4 

LONGITUDINAL COMPONENT 

ME AS U R E D 

PHASt 

D I f F t R t N C t  

PATH INTEGRAL 

APPROXIMATION 

EXACT 

CALCULATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Anomalies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiii mantle waves 

T CI 228 S T - 184 S T - 156 5 

T ~ 220 S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - 184 s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 _. 155 5 

T - 220 S T - 184 S T s 155 S 

769 

0 60 120 180 240 300 360 
Cim O P H I ~ S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(C) 

Figure 6-tonrinurd 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
7
/3

/7
5
3
/6

6
8
3
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



12' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 4 

LAT -22 9 

LON -175 9 

DFP'  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 5  

STATION MA10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D I S T  130 6 

TRANSVERSE COMPONtN1 

4- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8.- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-2 -  
MEASURED 

- 4  PHASE 

DIFFERENCE 

* 

PATH INTEGRAL -2 

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Y f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. f f  ~ f -  1 + ~ !  
a 

n v  v 
n 

AI'PROXIMATION -4 
T ~ 220 S 

.i 

T = 181 S T = 156 5 

1 - I81 s 

- .  . . : .  . <  

CI 

A V  

A V  

A 

T - l 8 l  S 

EVENT OF 22," 6/77 12: 8:33.4 LAT: -22.9 LON: -175.9 D E P :  65. 
STATION: MA10 DIST: 130.6 COMP0NENT:TRAN MODE: 0 T 45 

360 300 240 180 120 60 0 

EVEN ORBITS 

0 60 120 I80 240 300 360 
ODD ORBITS 

(b) 
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Anomalies in mantle waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 1 

agreement with the theoretical predictions of the upper mantle model M84C of Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Dziewonski (1 984). These are of particular interest since one has some degree of confi- 
dence that the ray paths calculated for the model are also realistic. For phase we find that in 
general the path integral approximation is adequate for the first four or five orbits and that 
it is much better for Rayleigh waves than for Love waves at the same period. High orbit Love 
waves, at 150-200s period, often show large and obvious phase anomalies that are far from 
the path integral approximation. It is, perhaps, surprising that the qualitative agreement of 
the amplitude data with the model is as good as it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis, since we have shown that amplitudes 
are sensitive to second derivatives of phase velocity. We would conclude, therefore, that a 
significant fraction of the power in the second derivative of phase velocity is contained in 
degrees less than 8 - the degree to which the model is expanded. It is true, however, that in 
general the model significantly underpredicts amplitude anomalies. The model correctly 
predicts whether odd orbits are amplified or deamplified relative to even orbits approxi- 
mately 75 per cent of the time. 

In Fig. 3(a) we show measured Rayleigh wave amplitude anomalies at three periods (top 
row) for the vertical component record at NWAO. The measurements were made by deriving 
the least-squares filter which most accurately transforms a synthetic trace for each orbit into 
the observed trace. The values plotted for amplitude and phase are then evaluated using the 
filter coefficients. In calculating the synthetic traces, we employ the spherically symmetric 
attenuation of PREM (Dziewonski & Anderson 1981). The middle row of Fig. 3a, and later 
figures, shows the theoretical predictions based upon the path integral approximations 
derived above (Equations 53, 54) and the model M84C; the bottom row shows the theo- 
retical results obtained by exact ray tracing. In Fig. 3a the data clearly show the opposite 
linear trend for even orbits (down triangles) and odd orbits (up triangles), as predicted by 
(54). The agreement with the model calculations is fairly good, but the exact calculations 
show significant nonlinearity - i.e. deviation from (54). Fig. 3b shows the paths correspond- 
ing to the orbits of Fig. 3a (at 184s period) in a projection such that the source is on the 
'equator' at the left side of the plot. The receiver is also on the 'equator', and thus the great 
circle path is a straight line through the centre of the map. The paths in this case do not 
show very large deviations from the great circle. 

Fig. 4a shows results for Love waves, using a transverse component record at BCAO. This 
is a case in which both the data and the ray-tracing calculations show substantial deviations 
from the path integral approximation. This is diagnostic of substantial path deviations, and 
in Fig. 4b we see that paths deviate from the great circle by more than 15". Fig. 5 shows an 
example of phase measurements for which Fermat's principle (middle row) is totally 
inapplicable. Measurements have been made independently from the vertical component 
(Fig. Sa) and the longitudinal component (Fig. 5b) at the same station. Both the data and 
the exact ray tracing calculations show that the great circle path appears to be fast for even 
orbits and slow for odd orbits. It should be borne in mind that the late orbits are subject to 
contamination by noise, since the amplitudes are small. The paths are shown in Fig. 5c. It 
can be seen that the odd orbits travel through slow regions SE of New Zealand, W of South 
Africa and in the Bering Sea that are largely avoided by the even orbits. The even orbits, on 
the other hand, pass more centrally through the high velocity region of the Baltic-Siberian 
shield. Fig. 6(a, b) shows Rayleigh wave phase measurements for another highly anomalous 
path. In this case the path deviations are large for even orbits, whereas odd orbits are not 
greatly deviated. Fig. 7a shows an example for Love waves, in which orbits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG2-G6 show 
good agreement with the path integral approximation. G, is highly anomalous in the model 
calculation, deviating from the great circle by nearly 25". The data also show erratic 
behaviour, but are not in agreement with the model. 
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Discussion 

The character of amplitude and phase variations in mantle waves has been shown to be 
diagnostic of substantial lateral refraction. Sometimes this is so large that the great circle 
path can appear to be slow for orbits of one sense and fast for those of  the opposite sense. 
There is a tendency for even and odd orbit paths to  polarize and thus to  sample somewhat 
different areas of  the globe. Amplitude anomalies are predicted to  have systematic and 
opposite trends for even and odd orbits and this is very commonly observed in the data. The 
slope of  these trends is sensitive to  the great circle integral of the second transverse derivative 
of phase velocity, with a range dependent kernel which also depends upon epicentral 
distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A technique has been formulated for calculating the functional derivatives of amplitude 
and phase with respect t o  global variations in phase velocity. Amplitude measurements, 
interpreted through ray theory, constitute a new source of information on global hetero- 
geneity which potentially has higher resolution than phase measurements. The existence of 
large deviations in paths should also enhance the resolution of  the phase data since it 
provides the opportunity o f  obtaining independent information from successive orbits in the 
same seismogram, and o f  reducing one source of  error in the current methods of analysis. 

In this paper, we have not addressed the possibility of  multipathing; we assume that the 
first ray that is found, using the shooting method, is the only ray contributing to  the seismo- 
gram. In general this will be the ray which, at  the source, is closest in azimuth to the azimuth 
of  the great circle path. The fact that the data show good agreement with the qualitative 
predictions of the theory suggests that multipathing is not  an important phenomenon for 
mantle waves in the period range of  this study but it certainly cannot be ruled out. 

The question has been raised by a reviewer, and also in conversations with colleagues, 
that, since ray paths are minimum travel time paths for phase velocity, the path integral 
approximation will always give a value of  phase anomaly which is greater than the true value 
and consequently phase velocity models based upon Fermat’s principle will be biased. In 
Fig. 5(a, b), however, it may be noted that the difference between the path integral approxi- 
mation for phase anomaly (middle panels) and the result obtained by exact ray tracing 
(bottom panels) is not uniformly of  the same sign. The reason for this is that while the ray is 
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstarionary path for phase travel time, it is a minimum time path only for the minor arc 
arrival ( R ,  or GI).  For subsequent orbits the ray is neither a minimum nor a maximum time 
path. This is most easily demonstrated in the case of  a spherically symmetric earth. for 
which the discussion may be limited to path length. It is, of course, well known that the 
minor arc great circle connecting two points on a sphere is of  minimum length. However, 
consider now, any path containing a major arc great circle segment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAABC where A and C are 
the endpoints of the arc and B is the midpoint. It is clear that  any perturbation of  the minor 
arc AB, keeping A and B (and BC) fixed, will yield a longer path. On the other hand, if B’ is 
a point close to  B, not lying on ABC and if AB’ and B‘C are great circle minor arcs, then the 
path AB’C is shorter than ABC. Consequently ABC has neit.her maximum nor minimum 
length. 

A phase velocity model based upon minor arc orbitsH1, G I  will, therefore, be biased, but 
by a very small amount since deviations from Fermat’s principle are small for these orbits. 
For models based upon higher orbits, the question of the existence and sign of the bias due 
to the effects of  lateral refraction can be answered only with reference to the particular suite 
of observations used, and the answer will also depend upon the Earth’s true phase velocity 
distribution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J. H.  Woodhouse and Y. K. W m g  
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