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1. Introduction

Multiple attenuation is a key step in seismic data processing. 

There are two main kinds of demultiple methods: the �ltering 

method based on the move-out difference between primaries 

and multiples and the wave-equation based prediction method 

(Weglein 1999). The latter consists of two steps: the predic-

tion step and the separation step. The adaptive separation 

of primaries and multiples is crucial in practice because the 

initially predicted multiple is not perfectly matched with the 

true multiple. Many studies have been performed to devise 

effective and robust adaptive subtraction methods. In Wang 

(2003b), an expanded multiple multichannel matching �lter is 

proposed, which exploits more local time and phase informa-

tion to match the multiples. Regularized optimization is also 

adopted for non-stationary matching �ltering (Fomel 2009), 

which is better suited to real non-stationary seismic data.  

In Kabir and Abma (2003), the multiples are decomposed 

into coherent and incoherent components to simulate the 

 diffraction multiples. The above methods are all realized in the 
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least-squares (LS) sense. In Lu (2003), an independent comp-

onent analysis approach is proposed that does not need the 

orthogonality assumption of the multiples and the primaries. 

In addition to matching �ltering, there are other suggested 

methods to separate the primaries and multiples. The robust 

curvelet transform involves subtracting multiples based on the 

difference of the primaries and multiples in the multiscale and 

multidirection characteristics (Hermann et al 2007). Similar 

to the expanded multichannel subtraction, the complex-valued 

curvelet transform is also designed to correct the mismatch 

between the predicted multiples and the true multiples in the 

transform domain (Neelamani et al 2010).

Compared with wave-equation based methods, �ltering 

methods, such as those based on the Radon transform, are 

widely used in practical seismic data processing due to their 

convenience (Foster and Mosher 1992). The demultiple 

 performance using the Radon transform depends on the reso-

lution of multiples and primaries in the Radon domain. Since 

the Radon transform is not an orthogonal transform, it is 

often posed as an inversion problem. The damped LS method 

is an ef�cient approach for solving the ill-posed inversion 

problem, but the resolution is not satis�ed (Hampson 1986). 

The high-resolution Radon transform was proposed recently 

and has found successful applications in data reconstruc-

tion, velocity analysis, and multiple attenuation (Thorson and 

Claerbout 1985, Sacchi and Ulrych 1995). However, the high-

resolution Radon transform brings another problem: dam-

aging the amplitude variation with offset (AVO) information 

while the sparsity priority is too strong. The amplitude-loss 

problem is signi�cant for seismic data processing and inter-

pretation, in particular when considering pre-stack inversion 

applications, thus an amplitude-preserving Radon transform 

is strongly required.

The orthogonal polynomial transform is an ef�cient way 

to include the AVO information, and its �rst few projecting 

coef�cients represent the amplitude variation for the aligned 

events (Johansen et al 1995). When the events are not aligned, 

the coef�cients will smear to high-order coef�cients and 

lose their AVO interpretation. Thus, this orthogonal polyno-

mial transform based method is limited to the exactly normal 

moveout (NMO)-corrected data.

The high-order sparse Radon transform (HOSRT) embeds 

the orthogonal polynomial transform in the sparse Radon 

transform (Xue et  al 2014). In this method, the Radon 

Figure 1. Demultiple comparison for the �rst synthetic example. (a) Synthetic data. (b) Predicted multiple. (c) Demultiple result using 
adaptive subtraction in the time–space domain. (d) Demultiple result using adaptive subtraction in the Radon transform domain. (e) 
Demultiple result using adaptive subtraction in the HOSRT domain. (f ) Removed multiple in the time–space domain (corresponding to (c)). 
(g) Removed multiple using the Radon transform (corresponding to (d)). (h) Removed multiple using the HOSRT (corresponding to (e)).

(a) (b)

(c) (d) ](e)

(f) (g) (h)
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transform describes the trajectory of events and the orthogonal 

polynomial transform describes the amplitude variation infor-

mation. The combination of Radon transform and orthogonal 

polynomial transform constructs an overcomplete transform 

(Donoho et al 2006). The overcomplete dictionary is a signal 

processing technology. The term over means that the dimen-

sion of transform bases is much larger than the signal dimen-

sion. The overcomplete dictionary is known for its sparse 

representation for coherent signal (Donoho et al 2006). The 

HOSRT falls into the category of the overcomplete dictionary. 

We will show that the primaries and multiples can be sepa-

rated well using the HOSRT method. In the HOSRT domain, 

we use the nonlinear Butterworth �lter to achieve the adaptive 

subtraction (Wang 2003a), which can help obtain even better 

separation between primaries and multiples.

The paper is organized as follows: we �rst introduce the 

basic theory of the HOSRT, and then we design the adaptive 

Butterworth �lter according to the energy distribution of pri-

maries and multiples in the HOSRT domain to separate the 

multiples and primaries. Finally we use both synthetic and 

�eld data examples to show the advantages of the HOSRT 

over the traditional approaches.

2. Method

2.1. The high-order sparse Radon transform

The HOSRT has been successfully used in data reconstruction 

(Xue et al 2014). Here we explain it from the viewpoint of an 

overcomplete transform. The parabolic Radon transform can 

be expressed as

( ) ( )∑ τ= = −d t x m t qx q, , ,

q

2

 (1)

where d(t, x) are the seismic data and ( )τm q,  are the model 

space coef�cients. The variables τt x, , , and q designate the 

time, offset, intercept time, and residual move-out, respec-

tively. Equation  (1) indicates that the seismic data can be 

 represented with a linear combination of the events which have 

the same amplitude along the parabolic path. The limited aper-

ture results in smearing. The sparse Radon transform reduces 

the smearing by iteratively re-weighting the inversion matrix 

(Sacchi and Ulrych 1995). If the q parameter is focused into 

a point, the offset aperture can be extended in�nitely, but the 

AVO information will be damaged. The reason for amplitude 

Figure 2. Model space comparison. (a) HOSRT domain of data. (b) HOSRT domain of multiples. (c) HOSRT domain of the adaptively 
subtracted result. The three well separated regions along the q dimension denote three model spaces (m0, m1, and m2) that have different 
physical meanings, which are clari�ed in the main text.

(a) (b)

(c)
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damage is that the basis function is the constant amplitude 

events, which is not true for real non-stationary seismic data. 

Thus, the sparse Radon transform is not adequate to sparsely 

represent the AVO phenomena.

Considering the lateral continuity of seismic events, 

seismic data d(t, x) can be �tted with a linear combination of 

orthogonal polynomial (Johansen et al 1995), i.e.

( ) ( ) ( )∑=
=

d t x c t p x, ,

j

N

j j

0

 (2)

where { ( ) }= ⋯p x j N, 0, 1, ,j  are a complete set of unit orthog-

onal polynomials from the offset coordinate x with N  +  1 

samples. Each pj(x) has the general form of a polynomial of 

degree j, cj(t) is the jth-order �tting coef�cient, all of the coef-

�cients �nally constitute the orthogonal polynomial spectrum. 

Usually, the AVO can be represented by the �rst few orthog-

onal polynomial coef�cients: the zeroth-order components 

c0(t) denote the stack along the horizontal direction, the �rst-

order components c1(t) denote the mean gradient of ampl-

itude variations, the second-order components c2(t) denote 

the curvature of amplitude variation that describes the AVO 

information, and the other higher-order components include 

amplitude variation details and noise.

Comparing the Radon transform and orthogonal polyno-

mial transform, the basis function of the Radon transform has 

constant amplitude events along different trajectories, while 

the basis function of the orthogonal polynomial transform 

has variable amplitude events without including the trajec-

tory information. To separate the different seismic events with 

amplitude variation, the above two types of transforms are 

integrated to construct the high-order Radon transform, which 

includes the basis function of amplitude variation and the tra-

jectory function:

( ) ( ) ( )∑∑ τ= = −d t x m t qx q p x, , .

q j

j j
2

 (3)

Equation (3) indicates that the high-order Radon transform 

simulates events with a linear superposition of a set of orthog-

onal polynomials along different trajectories, weighted by 

their Radon gathers, respectively. In this paper, the second-

order Radon transform is adopted, these spectra m m m, ,0 1 2 

describe the stack, gradient, and curvature of the amplitude 

variation, respectively. Equation  (3) can be expressed in a 

matrix-vector form:

( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟= + + = =d L m L m L m L L L

m

m

m

Lm,0 0 1 1 2 2 0 1 2

0

1

2

 (4)

where L L L, ,0 1 2 denote the summation, mean gradient and 

curvature operator, respectively. Thus, the AVO character-

izing capability is incorporated in the forward Radon operator, 

which matches the real case well.

The above high-order Radon transform is composed of 

two transforms with different advantages and can overcome 

the drawbacks of each transform. The Radon transform can 

depict the trajectory of seismic events but cannot include the 

ampl itude information along the seismic events, while the 

orthogonal polynomial transform is a complete data transform 

and can exactly represent the seismic data with detailed ampl-

itude information, but velocity information is not included in 

this transform. Because the Radon transform is an underde-

termined problem, the LS solution recovers data with some 

Figure 3. Comparison of relative errors. (a) Primary energy relative errors RE E_ . (b) Zero-offset primary energy relative errors Re R_ 0 (the 
dashed line corresponds to the HOSRT and the solid line corresponds to the Radon transform). The measurement shown in (a) is to measure 
the energy preservation ability of the transform. The measurement shown in (b) is to measure the preservation ability for the zero-offset 
trace of the transform, which can greatly affect the AVO interpretation accuracy. Both measurements are used to demonstrate the better 
amplitude preservation ability of the HOSRT.

(a) (b)
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signal damage. The compound high-order Radon transform 

constructs an over underdetermined problem, with more 

orthogonal polynomial coef�cients involved.

The LS solution dilutes across all the basis functions, 

which brings dif�culties in distinguishing between prima-

ries and multiples. The sparse solution of the high-order 

Radon transform falls into the frame of the overcomplete 

dictionary representation, which seeks the sparse solution 

by selecting the best approximation basis among the basis 

family. The sparse result of m follows a nonlinear optim-

ization problem

∥ ∥ ∥ ∥λ− +d Lm mmin ,
m

2
2

1 (5)

where ∥ ∥⋅ 2 and ∥ ∥⋅ 2 denote the L2 and L1 norms of the input vec-

tors, respectively. λ denotes a controlling factor which  balances 

the weight of the LS mis�t and model sparsity constraint.

The matching pursuit and the basis pursuit algorithms 

are widely used to obtain the sparse solution (Mallat and 

Zhang 1993, Chen et  al 2001). Here, we use the matching 

pursuit method. This method �rst chooses the best approxi-

mate velocity parameters and then transforms the data to the 

orthogonal polynomial domain. After several iterations, the 

sparse solution can match all the data. More algorithm details 

can be founds in Xue et  al (2014). This solution separates 

 primaries and multiples and forms the sparse representation 

of the signal. The sparsity not only leads to a low-dimensional 

Figure 4. Demultiple comparison for the second synthetic example. (a) Synthetic data. (b) True primaries. (c) True multiples. 
(d) Demultiple result using adaptive subtraction in the Radon transform domain. (e) Removed multiple using the Radon transform 
(corresponding to (d)). (f ) Demultiple result using adaptive subtraction in the HOSRT domain. (g) Removed multiple using the HOSRT 
(corresponding to (f )).

(a) (b) (c)

(d) (e)

(f) (g)
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signal but reduces the sensitivity to errors in the predicted 

signal (Hermann et al 2007).

2.2. Nonlinear adaptive subtraction

Adaptive subtraction is a key step in multiple attenuation. The 

widely used LS subtraction is based on the assumption that 

multiples and primaries are orthogonal to each other, which 

cannot be satis�ed in real case, even in the Radon domain. The 

nonlinear Butterworth �lter is a fast algorithm and can obtain 

better performance in multiple prediction (Wang 2003a). The 

�lter function can be expressed as:

( )η

=

+
α

f
1

1

,
M

D

2 (6)

where M denotes the predicted multiples, D denotes the data 

including both primaries and multiples, α is an adjustable 

parameter to control the smoothness of the �lter, and η is 

the eliminating coef�cient. In the HOSRT domain, the ratio 

between the multiples and data is replaced by the energy of 

the predicted multiples and the original data, namely

= + +

= + +

M M M M

D M M M

,

,

m m m

d d d

2 2 2

2 2 2

0 1 2

0 1 2

 
(7)

Figure 5. Model space comparison of the second synthetic example. (a) HOSRT domain of data. (b) HOSRT domain of multiples. 
(c) HOSRT domain of the adaptively subtracted result. (d) The nonlinear �lter (  f in equation (6)).

(a)
(b)

(c) (d)
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where Mmi
 and Mdi represent the HOSRT parameters of the 

predicted multiples and data. The multiples and primaries are 

separated to some extent by the HOSRT transform. When the 

local energy of the multiples’ model is stronger than that of 

the primaries’ model, the �lter achieves an attenuating gain 

close to 0 to eliminate the multiples, while the primaries’ 

energies are stronger, the �lter passes all the data and the pri-

maries are preserved well. Thus, in the HOSRT domain, most 

primaries are kept well without an orthogonality requirement 

between the primaries and multiples as required in the LS sub-

traction method. In addition, this nonlinear adaptive subtrac-

tion method can be realized conveniently and ef�ciently.

The nonlinear adaptive multiple subtraction algorithm 

in the HOSRT domain can be realized using the following 

work�ow:

 1. Wave-equation based multiple prediction.

 2. Transform the data and the predicted multiples into the 

HOSRT domain, respectively, according to equation (5).

 3. Filter the multiples out from the data in the HOSRT 

domain according to equation (6).

 4. Inverse transform the primaries from the HOSRT domain 

to the time–space domain.

The primaries reconstructed from the adaptively sub-

tracted high-order Radon domain can recover the amplitude 

variation information of the seismic events. This improved 

amplitude information from the HOSRT method can help us 

obtain improved common offset pro�les with better signal 

preservation.

3. Examples

3.1. Synthetic data example

The �rst synthetic example compares the demultiple perfor-

mance of adaptive subtraction in the time–space domain, the 

sparse Radon domain, and the HOSRT domain, respectively. 

For the time–space domain adaptive subtraction approach, 

we use the classic LS-based method, as used in Verschuur 

et  al (1992). Figure  1(a) shows the synthetic data with one 

 multiple event and one primary event. Both the primary event 

and the multiple event have amplitude variation. Figure 1(b) 

shows the predicted multiple. Figure 1(c) shows the subtrac-

tion result in the time–space domain. The adaptively removed 

multiple is shown in �gure  1(f ). It is obviously that the  

primaries overlapping the multiples are also subtracted in  

the time–space domain. The adaptive subtraction result in the 

sparse Radon domain is shown in �gure 1(d) and the removed 

multiple is shown in �gure 1(g). It is clear that the primary 

variations are left in the removed multiple, indicating a loss of 

useful energy. Figures 1(e) and (h) show the subtraction result 

and the removed multiple using the HOSRT, respectively. It is 

Figure 6. Reconstruction comparison between the sparse Radon transform and the HOSRT. (a) Original common shot gather. 
(b) Reconstructed data using the sparse Radon transform. (c) Reconstructed data using the HOSRT. (d) Reconstruction residual using the 
sparse Radon transform (magni�ed by a factor of two). (e) Reconstruction residual using the HOSRT (magni�ed by a factor of two).

(a) (b) (c)

(d) (e)

J. Geophys. Eng. 13 (2016) 207

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jg
e
/a

rtic
le

/1
3
/3

/2
0
7
/5

1
1
3
3
7
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Y Xue et al

214

obvious that the primary is almost recovered. The comparison 

of the removed multiples shows that the HOSRT can preserve 

AVO information well and barely damages the primary event. 

Figure 2 demonstrates the successful performance of HOSRT 

in obtaining a sparse model domain. Figure 2(a) is the model 

space of the HOSRT for the synthetic data. There are zeroth-

order, �rst-order, and second-order parameters in �gure 2(a). 

The model space of HOSRT for the predicted  multiple is 

shown in �gure  2(b). Figure  2(c) is the model space of 

HOSRT for the result after the adaptive subtraction. Figure 2 

shows that the energy of multiple can be subtracted clearly in 

any order, and the energy of primary in different order Radon 

gathers will be helpful to preserve the AVO characters of the 

primary re�ections.

We also show the primary re�ection recovery error for 

the changing far offsets. Let τ∆ 0 be the travel time differ-

ence between the primary and interfering multiple at the 

minimum offset and τ∆ max be the difference at maximum 

offset. The primary energy relative error RE E_  and the zero-

offset primary energy relative error RE R_ 0 can measure the 

AVO-preserving performance of the Radon transform and the 

HOSRT. Their de�nitions are

( )

( )
=

−

RE E
P P

P
_ ,

true 2

true 2
 (8)

( )

( )
=

−

RE R
R R

R
_ ,0

0
true

0
2

0
true 2

 (9)

where Ptrue denotes the primary energy and P denotes the  

primary energy after adaptive subtraction. R0

true denotes the zero-

offset primary energy and R0 denotes the zero-offset primary 

energy after adaptive subtraction. Figure 3 shows the curves of 

the relative errors, which change with the far offset. The relative 

errors are demonstrated with τ∆ = 0.020  s. In a more straight-

forward way, we changed the maximum offset with a different 

Figure 7. Comparison of the amplitude of different traces of the original data, and the reconstructed data using two methods. (a) 
Comparison of the �rst trace between 0.5 s and 1 s. (b) Comparison of the 50th trace between 1 s and 1.5 s. (c) Comparison of the 100th 
trace between 1.25 s and 1.75 s. The black solid line denotes the original trace (true trace). The green dashed line corresponds to the sparse 
Radon transform. The red dot–dashed line corresponds to the HOSRT.

(a)

(b)

(c)

J. Geophys. Eng. 13 (2016) 207

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jg
e
/a

rtic
le

/1
3
/3

/2
0
7
/5

1
1
3
3
7
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Y Xue et al

215

maximum τ∆ max, and we performed several experiments for 

the adaptive subtraction using different Radon transforms. We 

then calculated P and R0, which denote the total and zero-offset 

primary energy, respectively. We measured the amplitude pres-

ervation abilities of different Radon transforms by utilizing 

equations  (8) and (9). Figure  3(a) shows the primary energy 

relative errors based on the adaptive subtraction. Figure  3(b) 

shows the zero-offset primary energy relative errors. The solid 

line corresponds to the relative errors of the sparse Radon trans-

form, and the dashed line corresponds to the relative errors of 

the HOSRT. The comparison illustrates that the HOSRT method 

has fewer relative errors and preserves more primary energy and 

information of the zero-offset trace.

Then, we use a relatively more complicated synthetic 

example to compare the performance between the Radon 

transform and the HOSRT. Figure  4(a) shows the simu-

lated synthetic data which contain multiples. Figures 4(b) 

and (c) show the true primaries and true multiples, respec-

tively, used for the simulation. Figures 4(d) and (e) show 

the demultiple result and corresponding removed mul-

tiples using the Radon transform. Figures  4(f ) and (g) 

show the demultiple result and corresponding removed 

multiples using the HOSRT. Although not as perfect as 

the �rst synthetic example, this example also shows an 

obvious superior performance using the proposed approach 

over the traditional Radon transform based approach. 

The removed multiples using the proposed approach, as 

shown in �gure 4(g), are very close to the true multiples as  

shown in �gure 4(c), while the removed multiples using the 

Radon transform method show some artifacts. The demul-

tiple result using the proposed approach is also much closer 

to the true primaries’ model. In order to show what the non-

linear �lter (the muting function) looks like, we plot the 

model domains of the original data, thetrue multiples, the 

Figure 8. Common shot gather comparison for the marine data example. (a) A shot gather. (b)The predicted multiple. (c) Adaptive 
subtraction result in the time–space domain. (d) Adaptive subtraction result in the HOSRT domain.

(a) (b)

(c) (d)
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demultiple result, and the nonlinear �lter used to obtain the 

demultiple result, in �gure 5. It is clear that the nonlinear 

�lter accurately captures the distribution of multiples in the 

sparse domain, and successfully eliminates the spikes that 

correspond to multiples by applying a masking operator 

with very small values.

4. The marine data example

The group of �eld data experiments contains three different 

experiments. The �rst experiment shows the reconstruction 

comparison (�gure 6). Figure  6(a) shows a selected shot 

gather. Figures  6(b) and (c) demonstrate the reconstruction 

Figure 9. Zoomed common shot gather comparison for the marine data example. (a) Zoomed shot gather. (b) Zoomed predicted multiple. 
(c) Zoomed result using adaptive subtraction in the time–space domain. (d) Zoomed result using adaptive subtraction in the HOSRT 
domain.

(a) (b)

(c) (d)

Figure 10. (a) Data in the HOSRT domain. (b) The �lter function (the mute function).

(a) (b)
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performance using the sparse Radon transform and the 

HOSRT, respectively. The reconstruction residuals are shown 

in �gures  6(d) and (e). It is obvious that the reconstruction 

residual of the HOSRT is negligible while the reconstruc-

tion residual of the traditional sparse Radon transform is 

signi�cantly large. Note that the amplitudes of the recon-

struction residual sections  have been magni�ed by a factor 

of two for better comparison. The zoomed zero-offset (�rst) 

traces between 0.5 s and 1 s are shown in �gure  7(a). The 

black solid line denotes the original trace (the true trace). 

The green dashed line corresponds to the Radon transform. 

The red dot–dashed line corresponds to the HOSRT. It is 

clear that the black solid and the red dot–dashed lines match 

very well, but the green dashed line differs too much from 

the black solid line, indicating a large reconstruction error. 

The zoomed 50th traces between 1 s and 1.5 s are shown in 

�gure 7(b). The zoomed 100th traces between 1.25 s and 1.75 

s are shown in �gure 7(c). Both  �gures 7(b) and (c) show a 

similar  performance using the proposed HOSRT method. 

Thus, we conclude that for different offsets, the HOSRT can 

obtain a much better reconstruction result than the Radon 

transform method. As can be seen from �gures 6 and 7, the 

HOSRT reconstruction is much closer to the original data and 

damages less amplitude than the Radon transform, thus the 

HOSRT obtains a better reconstruction result.

The second experiment tries to compare the demultiple and 

AVO-preserving capabilities between the adaptive subtraction 

in the time–space domain and that in the HOSRT domain for 

another selected common shot gather (�gure 8). Figures 8(a) 

and (b) are the original data and the predicted multiples, 

respectively. Figure 8(c) shows the result of subtracting in the 

time–space domain and �gure 8(d) shows the result of sub-

tracting in the HOSRT domain. For a better comparison, we 

zoom-in on part of the data and show the detailed comparison 

in �gure 9. Figures 9(a)–(d) correspond to the zoomed sec-

tions  of �gures  8(a)–(d), respectively. The zoomed area is 

emphasized by the frame boxes as shown in �gure 8. From the 

comparison between subtracting results using the time–space 

domain method and the HOSRT domain method, in particular 

from the amplitude preservation comparison as indicated by 

Figure 11. Common offset gather comparison for the marine data example. (a) An offset gather. (b) The predicted multiple. (c) Adaptive 
subtraction result in the time–space domain. (d) Adaptive subtraction result in the HOSRT domain.

(a) (b)

(c) (d)
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the arrows in �gure 9, we can conclude that the adaptive sub-

traction in the time–space domain damages the AVO infor-

mation of primary re�ections where multiples intersect with 

primaries. However, the HOSRT domain approach obtains 

a successful performance. The continuity of the primaries 

is improved, and the AVO information is preserved very 

well using the proposed approach, which is signi�cant for 

pre-stack seismic inversion. The HOSRT domain of the raw 

common shot gather and the corresponding nonlinear �lter 

(muting function) to obtain the demultiple result are shown in 

�gure 10 for reference.

A common offset gather is also provided to demonstrate 

the demultiple performance (�gure 11). Figure 11(b) shows 

the predicted multiples of the marine data as shown in 

�gure 11(a). Figures 11(c) and (d) show the subtracting results 

using the time–space domain approach and the HOSRT 

domain approach. The zoomed sections of �gures 11(a)–(d) 

are shown in �gures  12(a)–(d), respectively. The zoomed 

areas are also emphasized by the frame boxes as shown 

in �gure  11. As shown by the zoomed details, the HOSRT 

approach can suppress most of the multiples and preserve the 

primaries well while the time–space domain approach causes 

much more residual multiple energy in the subtracting result, 

as indicated by the arrows in �gure 12. The common offset 

gather after multiple attenuation using the proposed HOSRT 

method shows a clear subsurface structure.

At the end of this section, it is worth mentioning that the 

intention of this paper is to solve the amplitude preservation 

problem during multiple attenuation when utilizing the 

high-resolution Radon transform by combining the high-

order polynomial transform and the sparse Radon transform. 

During the adaptive subtraction step, we utilized the nonlinear 

Butterworth �ltering method proposed in Wang (2003a) to 

improve the separation performance further. We do not intend 

to provide a better result than the method proposed in Wang 

(2003a). A comprehensive and fair comparison between our 

method and the method used in Wang (2003a) is a topic of 

future investigation.

5. Conclusions

Traditional multiple elimination approaches based on the 

Radon transform suffer from the low-resolution problem and 

cannot preserve AVO information. It has been shown that 

seismic data can be sparsely represented with an overcomplete 

high-resolution high-order sparse Radon transform (HOSRT). 

The HOSRT integrates the advantages of both the Radon 

transform and the orthogonal polynomial transform. It con-

structs an overcomplete transform domain which not only has 

the high-resolution Radon transform atoms but also has the 

orthogonal polynomial atoms. We applied the nonlinear adap-

tive subtraction method to multiple attenuation by designing 

a nonlinear Butterworth �lter. Compared with the subtraction 

performance in the time–space domain, the proposed approach 

can preserve more amplitude details of the primary re�ections 

Figure 12. Zoomed common offset gather comparison for the marine data example. (a) Zoomed offset gather. (b) Zoomed predicted 
multiple. (c) Zoomed result using adaptive subtraction in the time–space domain. (d) Zoomed result using adaptive subtraction in the 
HOSRT domain.

(a) (b)

(c) (d)
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because of a better separated structure in the HOSRT domain, 

in particular when the primaries intersect with the multiples; 

compared with the subtraction  performance using the Radon 

transform, the proposed approach can preserve AVO infor-

mation better because of the sparser representation of AVO 

details in the HOSRT domain.
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