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Abstract

This paper describes a phenomenon that limits the power handling of MEMS resonators. It is

observed that above a certain driving level, the resonance amplitude becomes independent of

the driving level. In contrast to previous studies of power handling of MEMS resonators, it is

found that this amplitude saturation cannot be explained by nonlinear terms in the spring

constant or electrostatic force. Instead we show that the amplitude in our experiments is

limited by nonlinear terms in the equation of motion which couple the in-plane

length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We

present experimental evidence for the autoparametric excitation of these OOP modes using a

vibrometer. The measurements are compared to a model that can be used to predict a

power-handling limit for MEMS resonators.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Power handling of MEMS resonators

MEMS resonators are being developed as timing devices for

on-chip integration [1]. The mechanical resonance can be

realized in many ways, of which bulk acoustical modes in

silicon form only one family. These resonance modes can

exhibit high-quality factors and high-resonance frequencies

[2, 3]. Particularly, we consider devices fabricated in silicon-

on-insulator (SOI) that vibrate in-plane (IP). The operation of

such devices is characterized as the ‘extensional mode’ and

the geometry is such that the device is thin compared to its

length.

The mechanical resonator is to be incorporated in an

oscillator loop. For a large signal-to-noise ratio one requires

the mechanical vibration to be of an as large as possible

amplitude. The actuation principle of the resonators being

discussed is typically electrostatic. Electrostatic actuation

induces spring softening, causing the resonance frequency to

change to a lower value than the purely mechanical resonance

frequency. Inclusion of more elaborate expressions for

electrostatic actuation even allows us to predict the amplitude–

frequency (A, f ) behaviour for large signal actuation. This

spring softening (or hardening for other types of resonators)

has been labelled as a nonlinear limit for directly driven

resonators [4]. In practice, however, this predicted maximum

amplitude of vibration is not reached. Other effects distort the

response. We propose that for extensional modes of vibration,

dynamic instability poses a limit to the mechanical amplitude

of vibration that can be reached. Dynamic instability can

severely limit the power-handling capability of a MEMS

resonator.

1.2. Autoparametric resonance

The dynamic instability of concern can be referred to as an

autoparametrically excited unwanted resonance. Parametric
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excitation, as opposed to direct excitation, is a method to bring

an elementary mechanical system into resonance when the

mechanical system can be described by the Mathieu equation,

incorporating time-dependent variations of either stiffness or

mass. This method of actuation has been demonstrated on

MEMS cantilever structures [5]. Autoparametric excitation

refers to an internal condition within an extended mechanical

system. At least two equations of motion (hence two degrees

of freedom) interact in such a way that the vibrational motion

of one acts as a parametric driver for the other. Parametric

and autoparametric resonance are well-studied subjects in

mechanics. The excitation of bending modes by periodic

compression of a slender structure was extensively studied

for decades both in theory and experiments [6–8]. Recently,

MEMS-related treatment of nonlinear dynamics was also

published [9, 10]. Internal or autoparametric resonance

conditions for multi-body mechanical systems or bodies with

multiple eigenmodes were also subjected to experiments [11]

and extensive modelling efforts [12, 13]. The occurrence of

autoparametric resonance limits the power handling of MEMS

resonators.

The organization of this paper is as follows. In section 2,

we will discuss the extensional MEMS resonator under

study. The actuation principle is detailed and experimental

observations of saturated responses are presented. Section 3

focuses on the derivation of two coupled equations of motion

comprising nonlinear coupling terms. In section 4, we derive

closed-form expressions to predict the occurrence of saturation

out of the equations of motion. Finally, we conclude our

findings in section 5.

2. Measuring the power handling

2.1. Actuation of a MEMS resonator

Electrostatic actuation is a common way of driving a MEMS

resonator. Here we discuss the effect this way of actuation has

on the resonance frequency to be measured. Only small signal

response is considered at this moment. After the fabrication

process, a resonator results with a certain frontal area A facing

an actuation electrode, separated by a narrow airgap g; see the

top-view image of figure 1. When a voltage V is applied over

this airgap, a resulting electrostatic force will be exerted on the

face of the resonator, causing the tip to move to displacement

x. This force is expressed as

Fel =
ε0εrAV 2

2(g − x)2
, (1)

and is a result of the capacitance between parallel plates

in which the relative permittivity εr and the permittivity of

vacuum ε0 are used. Set ε = ε0εr . The voltage is a sum of a

dc term and an ac part, V = VAC + VDC. The ac voltage swing

is typically much lower than the dc level and VAC = v cos ωt .

For small amplitudes, we can approximate equation (1) using

a Taylor series expansion around x = 0. This leads to

Fel = F(t) + kelx, with

F(t) =
εAvVDC cos ωt

g2
and kel =

εAV 2
DC

g3
. (2)

Id iout

V

xGap g

Area A

Figure 1. SEM micrograph and sketch of the MEMS resonator
under study. A resistive output signal is measured by sending a
current Id through the resonator, which is electrostatically actuated
by a voltage V, consisting of a biasing Vdc and a resonance-matched
driving signal Vac. The output is measured at the node labelled iout.
Area A is the frontal area, not visible in this top-view image, defined
as material thickness times resonator width.

The angular resonance frequency ω is given by

ω2 =
keff − kel

meff

, (3)

where effective mass and stiffness are derived from the

resonator geometry and material properties. The presented

expressions show that we can control the resonance frequency

by changing V 2
DC, whereas the driving force and hence the

physical vibration amplitude will be controlled by the product

vVDC, where v is the amplitude of the ac voltage. We

will employ this method of tuning frequency and controlling

amplitude throughout the paper.

2.2. Experiments and observations

Our resonator is actuated and measured using an Agilent HP

E5071C network analyser. The resonator and a connection

scheme are depicted in figure 1. The extensional vibration,

actuated by an ac voltage of amplitude v causes a change in

the electrical resistance of the resonator, due to the piezo-

resistive effect of doped silicon [14]. A dc current through the

resonator will hence be modulated by the vibrating body. As a

result, a transfer function from the applied ac voltage v to the

sensed ac current iout can be detected. By definition of port

numbers, this transfer is defined as the transconductance

Y21 = iout/v. (4)

If the system is linear, then Y21 would be the same for all

driving signal levels. However, figure 2 shows that for a

driving voltage or power above a certain threshold value, the

response is distorted. Increasing the applied driving power

will lower the observed ‘ceiling’. This observed saturation is

the topic of this paper. Before we present our model to predict

the occurrence of saturation, we extend our measurements to

several biasing conditions.

Following equation (3) we can tune the frequency of the

extensional vibration of the resonator by altering V 2
DC. As

the actuation force F(t) scales with VDC, we will have to

lower the driving power via the applied ac-voltage amplitude

v accordingly for constant actuation force levels. For each

shifted setting of the resonance frequency, we determine the

maximum driving level that can be achieved and relate that to

2
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Figure 2. Two measurements of the same device. Grey discs:
regular electrical response, plotted as an absolute value of
transconductance (Y21) versus excitation frequency. The output
signal relates to the mechanical motion. Black dots: distorted
electrical response, obtained by increasing the input power to the
resonator. Since the measurement returns a transfer function, the
increased input power only shows in the reduced noise.

the physical vibration amplitude. An elementary mass–spring

system at resonance has a maximum vibration amplitude a of

a = F(t)
Q

keff

, (5)

where keff is the effective spring constant—relating the

continuous body IP vibration to a single coordinate being the

displacement of the tip—and Q is the quality factor, inversely

scaling with the damping in the system. The electrostatic

force F(t) is known and renders the displacement amplitude

at resonance to be

a =
εA

g2

Q

keff

VDCv, or a =
ε Q 8 LVDC v

g2 E π2
, (6)

where we have used that our resonator is a simple strip. For a

strip of cross-sectional area A and length L we have, based on

the mode shape of fundamental extensional vibration,

keff =
EAπ2

8L
. (7)

The Q factor is found from low-power frequency sweep

measurements and E is Young’s modulus of silicon. Figure 3

shows how at each setting of VDC—or each setting of the

electrostatic resonance frequency—the product VDCv can be

increased until saturation occurs. It is observed that the

physical vibration level for saturation to occur is far from

constant. The minimum value for this particular resonator

is about 0.1 V2. Using equation (6) we can estimate the

physical vibration amplitude of the resonator before saturation.

Relevant geometric parameters are single-sided length L = 68

μm and airgap g = 200 nm. The measured Q factor is 49.000

in this case. This results for VDCv = 0.1 V2 in

a =
εQ8L0.1

g2Eπ2
= 0.46 nm. (8)

For other biasing settings, see figure 3, yielding resonance

near either 0 kHz or −40 kHz, the product VDCv and hence the

physical vibration amplitude can be at least four times larger.

We need an explanation for the fact that the maximum driving

level shows a V-shape, but moreover we need to find why the
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0
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Frequency below Fmech [kHz]

D
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VDC = 7VDC = 78 VDC = 40VDC = 60

Figure 3. At each setting of VDC the ac driving amplitude is
increased until saturation occurs. The actuation force scales as VDCv
where v is the amplitude of VAC. The value of this product is
recorded at each biasing setting.

resonator is limited to such a small amplitude of less than a

nanometre.

Figure 4 was again measured on a single device, but of

different geometry, resulting in a different in-plane resonance

frequency. In this experiment again V 2
DC was varied, but v VDC

is now set to a number of levels, rather than increasing it until

distortion occurs. We now superimpose all recorded functions

Y21v that are scaled to represent amplitude a (nm). This

resonator exhibits two minima of resonance amplitude. None

of the limiting mechanisms found in the literature describe

such behaviour.

2.3. Comparison of limiting mechanisms

In order to emphasize the need for a new model describing the

observed saturation response, we list here other mechanisms

that could limit the vibration amplitude of a MEMS resonator.

The required vibration amplitudes for these effects to play a

role will be analysed.

Firstly, the actuation airgap over which the electrostatic

force acts is narrow. It measures 200 nm in our case. If the

resonator acts as an impact oscillator [15], then the amplitude

would be limited to this amount. Whether vibratory motion

at such an amplitude is possible at all is arguable, as the

point of electrostatic pull-in has been passed. The second

possible cause for an effect on the maximum achievable

amplitude is therefore pull-in. Certainly, approaching pull-

in has a large effect on the vibration, not in the last part on the

resonance frequency, as it will drop dramatically. Vibration

after pull-in is not possible. The point of pull-in could be

approached however, and vibration amplitudes of about 56% of

the gap—112 nm in our case—would bring us into this regime.

The pull-in limit to amplitude has been treated as a design

guideline for limits to the power handling of a resonator [17].

The third possible limiting effect is referred to in the literature

as the ‘bifurcation limit’ [4, 16]. Due to electrostatic

actuation, the response of the driven resonator is susceptible

to the (A, f )-effect, meaning that the resonance frequency is

dependent on the vibration amplitude. As a result, a frequency

response curve will be skewed rather than symmetrical. We

will study the vibration amplitudes at which this effect plays

a role more thoroughly.

3
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Figure 4. For many values of VDC the response functions of a single device are recorded for multiple ac voltages v and translated to the
physical vibration amplitude. As in figure 3 there is a frequency-dependent limit to the amplitude, but for this device there is more than one
local minimum.

Appendix A explains the derivation of the electrostatic
resonance frequency of a MEMS resonator including the
(A, f )-effect. The angular IP resonance frequency � is given
as (appendix A)

�2 =
keff

meff

−
ε0AV 2

DC

g3meff

−
(

a

g

)2
3

2

ε0AV 2
DC

g3meff

, (9)

in which the first two terms were presented earlier—the
mechanical frequency minus the shift due to V 2

DC—and the
third term accounts for the amplitude-related contribution.
Here, a is the vibration amplitude. The amount of amplitude-
dependent behaviour is proportional to the amount of induced
frequency shift. Here we already note that the (A, f )-
effect is much larger for large biasing voltages and not easily
encountered for the low values of VDC. Moreover, this effect
will only worsen, whereas our measurements in figure 3 show
that after a minimum, the allowable amplitude rises again.
Still, we want to perform a quantitative analysis and see
if the ‘bifurcation limit’ predicts vibration amplitudes that
correspond to the saturation we have observed.

The amount of skewing of the response curve can be
related to the full width at half maximum (FWHM) which
in turn directly relates to the definition of the quality factor
Q. This width �ω is expressed proportionally to the nominal
resonance frequency so that

�ω

ω0

=
1

Q
. (10)

In turn, we also express the amount of skewing proportional to
the nominal frequency. We label the third term in equation (9)
now � so that we can express the proportional shift to be

�

ω0

=
�meff

keff

=
(

a

g

)2
3

2

ε0AV 2
DC

g3keff

. (11)

The above-mentioned bifurcation limit imposes that the
skewing is so much, as compared to the width rendered by
the Q-factor, that multi-valued solutions exist in the response
curve. This is measured as hysteresis in up- and down-sweeps
over frequency. We compare the amount of skew to the FWHM
by taking the expressions from equations (10) and (11) to state

�ω = �, so
1

Q
=

(

a

g

)2
3

2

ε0AV 2
DC

g3keff

, (12)

Table 1. Proposed power-handling limits found in literature for
MEMS resonators compared to measured data. Evaluation of the
bifurcation limit is rendered by third-order stiffness in the
electrostatic actuation of the resonator. For various biasing voltages
VDC, the amplitude of vibration for bifurcation to occur is given,
based on equation (13). Data are to be compared to the measured
values presented in figure 3.

Bifurcation
Large

Amplitude Measured

VDC (vVDC)bif abif aobstr apull-in (vVDC)meas ameas

(V) (V2) (nm) (nm) (nm)a (V2) (nm)

7 47.86 217 200 112 0.40 1.82
40 8.38 38 200 112 0.23 1.04
60 5.59 25 200 112 0.11 0.50
78 4.30 20 200 112 0.41 1.86

a Pull-in occurs at 56% of the gap width, irrespective of the voltage
over the gap.

which can be solved for amplitude a, yielding the bifurcation

amplitude abif :

abif
2 =

2g5keff

3Qε0AV 2
DC

. (13)

Now we will determine whether our encountered amplitudes

of saturation agree with abif . Equation (6) can be used to

translate amplitudes a into driving levels v VDC.

In table 1 we list the bifurcation limits found using

equation (13). The required vibration amplitude in the case of

our resonator is at least tens of nanometres for bifurcation to

occur. The saturation effect that we have measured occurs

already at an estimated vibration amplitude of less than

1 nm. There are orders of magnitude discrepancy between

this amplitude and the derived bifurcation limit.

Concluding, we find that the presented explanations

require too large vibration amplitudes in order to be able

to explain our observed saturation level. Vibrations at the

size of the gap width are hundreds of nanometres and the

electrostatic actuation-related effects point to vibrations of

tens of nanometres. Another effect lies at the basis of the

observed saturation, and the saturation poses a serious limit

to the power handling. In the following section, we propose

4
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Figure 5. Sketch of one instability regime for a basic Mathieu
equation. A not directly driven mass–spring system can start to
oscillate at its fundamental resonance frequency when the amplitude
and frequency of variation of either mass or spring constant lie
within the sketched regime.

another mechanism and derive a model that can predict the

occurrence of saturation. Moreover, the model also explains

the biasing or frequency-dependent behaviour in figure 3.

3. Coupled equations of motion

We face the problem that our MEMS resonator shows a

frequency-dependent limited amplitude and that in some cases

this amplitude is very small. These two facts resemble the

characteristics of the stability regimes of a Mathieu equation,

an elementary equation of motion. It reads

ẍ + ω0
2 [1 + α cos(�t)] x = 0, (14)

where ω0 is the natural frequency, α is a small constant

and � is the frequency of variation. In the absence of

damping, the allowable amplitude α can even go down to

zero, e.g. when � = 2ω0, as sketched in figure 5. Practically,

damping is always present, and the V-shape regime will be

rounded off.

We propose that such a regime is to be attributed to a

parasitic vibration. This can be a bending vibration or a

torsional one, in any case not the intended length-extensional

mode of vibration. A body such as a MEMS resonator has

many different modes of vibration. If each of them can be

caught in a Mathieu equation, then a multitude of instability

regimes exists, as each single Mathieu equation in fact has

multiple regimes of instability [18]. Moreover, there is the

phenomenon of combination resonance to deal with [11, 13].

Basically, this means that when the frequency of variation (as

for a single Mathieu equation) equals the sum or difference

of the frequencies of two modes of vibration, then these two

modes will start to oscillate in their fundamental frequencies.

This is in fact what is observed in the experiment presented

in figure 4. Two regimes of instability exist, each of them

related to a pair of parasitic modes of vibration. This

knowledge was obtained using a Polytec laser vibrometer. At

the moment when the extensional or IP response indicates

saturation, we see a pair of out-of-plane (OOP) modes

appearing.

Theoretically covering a complete instability landscape as

in figure 4 is not intended at this moment. Nevertheless, we

want to prove our hypothesis of parasitic vibrations causing

the saturation of the wanted vibration. To achieve a descriptive
model for the observed frequency-dependent saturation,
we have to take the following steps. First, we disregard
combination resonance. Second, we focus on only one
possible interaction of a parasitic mode with the intended
mode. The dynamics of the resonator body are expressed in
the equations of motion of two modal coordinates, associated
with two mode shapes. To have coupling between these
equations, we rely on an expression for mechanical strain that
incorporates a correction term for large deformation.

3.1. Derivation of coupled equations

Figure 4 shows many measurements superimposed on one
another. The measured IP extensional response truly saturates
at a fixed level, for any VDC. If more power is fed into the
system, but the response is not increasing, it must mean that
the additional energy is transferred into something else. In
the following, we will show evidence that another mode of
vibration consumes this additional energy. If this is a bending
mode, then the IP electrical signal will not reveal this, as it is
based on piezo-resistivity and requires a net strain in order to
generate a signal. Bending about a neutral axis will, in first
order, result in just as much positive as negative strain.

In what follows, we derive an interaction model
for the driven mode of vibration and one bending
mode. Generalization to include torsional modes and even
combination resonance of multiple modes is possible, but not
performed here. At the heart of the approach the chosen
modes of vibration contribute to and interact via the potential
energy of the vibratory system. We limit our model to just
one parasitic bending mode that will be excited by the driven
IP mode. After saturation, the bending mode is, in turn,
at resonance, so the bending mode shape and the bending
resonance frequency are not equal to that of the driven mode.
For interaction to occur, we need the coupled equations of
motion. To arrive at the coupled equations of motion, we
choose the approach of Lagrange for our continuous system.
This method relies on deriving expressions for the kinetic (T)
and potential (V) energies in the total system. The equations
of motion for every coordinate in vector p—in our case there
are only two coordinates in this vector—then follow from the
Euler–Lagrange equation [18]

d

dt

(

∂T

∂ṗ

)

−
∂T

∂p
+

∂V

∂p
= F, with p =

{

p(t)

q(t)

}

, (15)

where the forces in F are the electrostatic force for the IP
mode and zero for the OOP mode. The translation from
continuous body motion to modal coordinates stems from the
modal expansion theorem [18]. In the following sections, we
want to focus on the coupling mechanism and therefore assume
that the geometry of the bar under consideration is such that
the fundamental IP (extensional) mode can be excited and that
the first OOP bending mode is the only other possible mode
of vibration.

We assume mode shapes along the x-axis and coordinates
as the function of time t, see figure 6, according to

u(x, t) = p(t)θ(x)

w(x, t) = q(t)φ(x),
(16)

5
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z

x

φ(x)

θ(x)

x = L

Figure 6. Illustration of the coordinate system used and modal
decomposition in one extensional mode of vibration θ(x) and one
arbitrary bending mode of vibration φ(x). Note that the bending
mode does not necessarily have to be the mode that is drawn here.

(a) (b) (c)

Figure 7. The potential energy of the coupled vibrations is based on
strain in the x-direction only. It is constituted by (a) length
extension, (b) curvature causing compression and extension and (c)
length extension due to transverse displacement.

where the extensional displacement u(x, t) is based on mode

shape θ(x). Likewise for the bending mode the shape function

φ(x) is a solution of the differential equation for the free

vibration of a clamped cantilever. The vibration of a long

slender bar is modelled one dimensionally. Both extension and

bending can be described by a single displacement along the

length of the beam, u(x) and w(x), albeit that two orthogonal

directions of displacement x and z are considered. The kinetic

energy contribution of every infinitesimal part of the beam

is hence the sum of squared velocities in both displacement

directions, whereas the potential energy for both vibrations is

based on strain in only the x-direction. This strain, see figure 7,

consists of three terms.

The kinetic energy is denoted as

T =
1

2
ρA

∫ L

0

(u̇2 + ẇ2) dx =
1

2
ρA

∫ L

0

[ṗ2θ(x)2 + q̇2φ(x)2] dx.

(17)

It should be noted that the integration over inner products of

mode shapes mainly results in constants and for the motion we

are interested in the time-dependent behaviour of the modal

coordinates. Hence we write

T =
1

2
ρAṗ2

∫

θ2 dx +
1

2
ρAq̇2

∫

φ2 dx. (18)

The potential energy is based on strain, which we define

to be [19]

ǫ =
du

dx
− z

d2w

dx2
+

1

2

(

dw

dx

)2

, (19)

as illustrated in figure 7. The derivative of the extensional

displacement du/ dx is the definition of longitudinal strain.

For bending the strain alters from compression to extension

along the thickness coordinate z and is proportional to the

inverse of the radius of curvature or the second derivative of the

bending shape, d2w/ dx2. Assumption of small displacement

allows the neutral line to remain half the thickness. The

last term in equation (19) corresponds to the approximated

elongation of a beam piece when rotated over an angle dw/ dx,

while allowing the endpoints to move only vertically.

The definition in equation (19) will turn out to be the

root of interaction between the two modes of vibration. The

potential energy is expressed as

V =
1

2
Eb

∫ h/2

−h/2

∫ L

0

ǫ2 dx dz, (20)

where the beam width b is used instead of area A, as

integration over thickness has to take place. Inserting the

modal expansion (16) and the definition of strain (19), we find

that

V =
1

2
EA

[

p2

∫

θ ′2 dx + pq2

∫

θ ′φ′2 dx +
1

4
q4

∫

φ′4 dx

]

+
1

2
EI

[

q2

∫

φ′′2 dx

]

, (21)

in which area A = bh and the second moment of area

I = 1
12

bh3 are based on the cross-sectional dimensions.

To construct the equations of motion the expressions for T

and V can be inserted in the Lagrange equation, equation (15).

The kinetic energy T does not depend on the position of any of

the coordinates and ∂T /∂p is zero. Furthermore, we see that

d

dt

(

∂T

∂ṗ

)

= ρA

{

p̈
∫

θ2 dx

q̈
∫

φ2 dx

}

, (22)

where the integrals are simplified and express the integration

from 0 to L and θ and φ are the normalized displacement

functions satisfying θ(L) = φ(L) = 1. For the potential

energy we find

∂V

∂p
=

1

2

{

EA
(

2p
∫

θ ′2 dx + q2
∫

θ ′φ′2 dx
)

EA
(

2pq
∫

θ ′φ′2 dx + q3
∫

φ′4 dx
)

+ EI2q
∫

φ′′2 dx

}

.

(23)

The mode shapes φ(x) and θ(x) lead to the scalar values for the

inner products, rendering them as purely geometrical factors.

We combine equations (15), (22) and (23) and write the

equations of motion as

p̈ + ω1
2p = −d1q

2 − γ1ṗ − G cos(�t)

q̈ + ω2
2q = −d2pq − γ2q̇ − d3q

3,
(24)

where the constants relate to the shape functions as

ω1
2 =

E

ρ

∫

θ ′2 dx
∫

θ2 dx
, ω2

2 =
EI

ρA

∫

φ′′2 dx
∫

φ2 dx
, (25)

and

d1 =
E

2ρ

∫

θ ′φ′2 dx
∫

θ2 dx
, d2 =

E

ρ

∫

θ ′φ′2 dx
∫

φ2 dx
, d3 =

E

2ρ

∫

φ′4 dx
∫

φ2 dx
.

(26)
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We have three different frequencies playing a role here, where

ω1 is the small-amplitude or linearized eigenfrequency of the

IP mode, ω2 is the eigenfrequency of the unwanted OOP mode

and � is the forcing frequency. This system of equations can

easily be integrated numerically in order to observe the time-

dependent behaviour. Modal damping is added by γ1 and γ2,

but exact estimation of damping values lies outside the scope

of this paper.

3.2. A numerical example of the coupled equations of motion

Let us consider equation (24) more carefully. The equations

show that the system is prone to autoparametric resonance. If

p follows the harmonic motion, then it appears in (24b) as a

time-variant spring constant. Hence, the equation of motion

for bending in our system resembles a Mathieu equation.

The most pronounced instability regime for a Mathieu

equation is found for a 2:1 ratio of the frequency of variation

compared to the natural frequency. The natural frequency is,

in our case, that of the bending mode, and the variation is,

as explained, caused by the resonating extensional mode. To

illustrate modal coupling most effectively, we set

ω1 = 2ω2, and � = ω1. (27)

The forcing frequency � hence drives the extensional mode

exactly at resonance. If we apply damping (γi �= 0) and set a

certain driving force amplitude G, the system in equation (24)

can numerically be integrated for 100 cycles of the IP mode,

see figure 8. We see that from rest, the IP mode quickly

gains amplitude. After about 50 cycles, one clearly sees

that the OOP mode is arising. As it gains amplitude, the

IP mode loses amplitude. Steady-state vibration is reached

and both p and q remain at the fixed amplitude. The

numerically produced result shows the co-existence of two

states: quickly after the start we see (|p|, |q|) = (3, 0) and

after a number of oscillations this turns into (|p|, |q|) = (2, 1).

The trivial solution to the equations of motion in equation (24)

should equal zero for the non-driven bending mode and a

certain harmonic solution with an amplitude proportional to

G for the driven IP mode. The non-trivial solution is, in

this case, the steady state after 100 periods and relates to

the coupling of modes. For this state, the amplitude of

p is lower than its trivial counterpart and the amplitude of

harmonic motion of q is larger than zero. In the following

section, closed-form expressions to describe these states will

be derived. It is interesting to observe the end amplitudes (as in

figure 8) of both vibrations as a function of the driving

amplitude G. Before pointing to a more sophisticated method

to establish these steady-state amplitudes, figure 9 shows by

(△) and (▽) the result of observing the ending amplitude of

numerically integrating equation (24) with the parameters set

as in figure 8 but for various values of the driving level G. The

dashed lines in figure 9 are in agreement with the numerically

found states but are actually drawn from the equations of

motion in a closed form, to be derived in the following section.

The use of the parameter d3 distinguishes figures 9(a)

from (b). What we see in these figures could be labelled—

considering the behaviour of the wanted IP mode—as ‘pure

saturation’ (a) and ‘perturbed growth’ (b). Both situations can
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Figure 8. Integration of the system in equation (24), when
ω1 = 2ω2, � = ω1 = 1, G = 0.3 and γ1 = γ2 = 0.1, d1 = 0.25,
d2 = 0.05, d3 = 0.

be encountered in practice. As d3 is the factor for third-order
stiffness of the unwanted bending mode, it means that a non-

zero d3 causes a slight change of the frequency of the bending

mode as its amplitude grows. Due to this amplitude-induced

imperfectness of the 2:1 ratio, the driven IP mode can continue
to rise in amplitude.

3.3. Closed-form expressions

Numerical integration of the equations of motion can be very
time consuming. Typically, the steady state of a driven mass–

spring system settles after a number of oscillations equal to

the quality factor or the inverse of the damping constant.

Moreover, such numerical evaluations will hardly provide
quantitative insights into unexpected dynamical behaviour.

Numerical continuation as a method for bifurcation analysis

does a better job on insights, but still only select cases for

set parameter values can be evaluated. We propose to use the
method of averaging to derive closed-form expressions for the

steady states of vibration from the given equations of motion.

This method delivers us expressions for e.g. the maximum
achievable IP amplitude, based on the basic parameters of the

total system.

3.4. Application of the model to example cases

In appendix B we apply the method of averaging [20] to
the coupled nonlinear equations of motion in equation (24).

The method does not deliver p(t) or q(t), but rather

the corresponding amplitude envelopes around the resulting
vibrations. These envelopes have a magnitude and phase, R1,2

and �1,2. A point in (R,�)-space corresponds to a steady

harmonic vibration with a certain amplitude and phase-lag

with respect to the driving force.
To illustrate the result of the averaging procedure, we

present the expected amplitudes as a function of the driving

force amplitude and of the driving frequency. The former can

be considered a power sweep, whereas the latter a frequency
sweep that is measured with a network analyser. One then

performs a frequency sweep around the resonance frequency

of the IP mode ω1, so that a detuning parameter χ1 can be
introduced as

χ1 = ω2
1 − �2. (28)

7
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Figure 9. Illustrations showing the saturation phenomenon. Numerical integration of equation (24) and taking steady-state amplitudes.
When the excitation amplitude G is increased beyond the level where the OOP mode starts to oscillate, all energy ‘fed’ to the in-plane mode
results in a higher amplitude of the OOP mode. The parameter d3 then determines whether the steady-state amplitude of p(t) can still grow.
The dashed lines are drawn using the closed-form expressions derived in the main text. Parameter values: � = ω1 = 1, ω2 = 0.2,
γ1 = γ2 = 0.1, d1 = 0.25, d2 = 0.05. First plot: d3 = 0, second plot: d3 = 0.05.

The frequency matching condition for the parasitic mode as

compared to the driven mode is not necessarily perfectly the

2:1 ratio, so that we introduce a second detuning parameter

χ2 =
(

ω2
2 −

�2

4

)

. (29)

The frequencies that govern the system are now covered by

the actuation frequency � and χi rather than ωi . This allows

our model to represent an actual measured frequency sweep

response.

Example 1. The numerical case of the previous section.

As a first example of the closed-form expressions, we

return to the results that we obtained by the numerical

integration of the coupled equations of motion, as presented

in figure 9. For this simulation we had excitation at resonance

for the extensional mode and an exact 2:1 frequency ratio with

the bending mode. The saturation level is then found—using

the averaged system of equations—from equation (B.24) by

setting χ1 = 0, χ2 = 0 and this results in

R1,sat
2 =

γ 2
2 �2

d2
2

+
9R4

2d
2
3

4d2
2

. (30)

When R2 = 0, so when the bending mode did not take off

yet, we see that R1 saturates at a level determined by γ2

and d2. Apparently, the damping of the bending mode and

the geometrical coupling strength of both modes control the

saturation. More damping of the unwanted mode allows the

wanted mode to achieve a larger amplitude. Additionally,

equation (30) is a function of R2. The evolution of R2 versus

the driving force amplitude G is found from the roots of

equation (B.20). Again we set χ1 = 0, χ2 = 0. There are two

branches, of which only one contains the stable solutions. The

expression describing R2(G) is much more complicated than

the inverse G(R2). We therefore write

g2 =
γ 2

1 γ 2
2 �4

d2
2

+
d1γ1γ2�

2

d2

R2
2 +

(

d2
1

4
+

9d2
3μ2

1�

4d2
2

)

R4
2,

(31)

so that we have constructed a fourth-order parabola. Function

R2(G) will look like a square-root function translated from

the origin. Figure 9 contains dashed lines representing

equation (30) and the inverse of equation (31).

Example 2. A general frequency-dependent result

Purely as an example of what the closed-form expressions

can describe, figure 10 shows both the responses of the

extensional and the bending mode for certain arbitrary

parameter settings. Such graphs, e.g. in [10], are usually only

produced by numerical simulations based on continuation for

the bifurcation analysis. In figure 10 we see stable R1-solutions

outside the trivial regular resonance response. Co-existence

of solutions at a specific frequency does not mean that both

turn up in a measurement. A likely sweep-up measurement of

amplitude R1 over this frequency span would follow trajectory

A, then go down via B and up again to fall abruptly down to

C at a frequency of about 1.4 and then continue the regular

transfer function.

In detuning terms we can express the trivial, i.e. when

R2 ≡ 0, solution as

R1,triv =

√

g2

γ 2
1 �2 + χ2

1

. (32)

Equations (B.20) and (B.24) will also provide us with the non-

trivial state (R1, R2) when R2 �= 0 when we substitute valid

numbers for (R2)
2. By having (R2)

2 as variable, two roots

of equation (B.20) can be found. These can subsequently be

substituted in equation (B.24) although one will discover that

only one solution for (R2)
2 will correspond to a stable branch

of solutions. For illustration, in figure 10 the two branches for

(R2)
2 are included in the plot. Based on system parameters

and tuning the settings χ1 and χ2 the complete solution space

can be rendered.

4. Experimental validation

We now return to the experimental data presented earlier in this

paper. We are facing a saturation phenomenon that appears

8
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Figure 10. Illustration showing a possible response for appropriate
model parameters. Apparently, a stable steady-state solution of the
entire system exists, where the IP vibrations can be sustained
outside the regular second-order transfer function. When sweeping
the excitation frequency up, the response from the extensional
vibration will likely stay on the branch of solutions labelled A, then
follow B in the central region and to frequencies outside the regular
transfer function, before dropping to this regular solution and
continuing over C.

when we measure a frequency sweep at fixed power of our

length-extensional resonator. The power at which saturation

occurs is bias dependent. None of the available amplitude

limiting mechanisms can predict the very early saturation that

we encounter. We now project the model of coupled motion

on the measured data.

4.1. Experiment 1: Fit to a single frequency response

measurement

Figure 11 shows a single frequency sweep measurement of

the IP or length-extensional resonance. By setting appropriate

values for all parameters in the coupled system, the model

prediction of the trivial and saturated IP response can be

superimposed nicely on the data. The root cause for saturation

lies in a non-zero amplitude R2 of the unwanted mode.

4.2. Experiment 2: Fit to frequency-dependent series of

measurements

Using the detuning coordinates χ1,2 and the system parameters,

the governing equation of system states is derived. When

R2 = 0 at the onset of instability, equation (B.24) provides the

maximum amplitude of the IP mode as

(R1
⋆)2 =

γ2
2�2 + 4χ2

2

d2
2

. (33)

This means that when χ1 = 0, i.e. when the resonator is driven

as intended at resonance, the stable limit of the IP mode is

determined by the damping of the other mode, the frequency

matching χ2 and a constant modal coupling factor d2. The

saturation level of the driven extensional mode (R1
⋆)2 is

minimal when χ2 = 0. At this point we have an exact 2:1 ratio

between the driven mode and the unwanted bending mode.

Without further proof we state that an expression such

as equation (33) for the frequency-dependent saturation level

of our MEMS resonator can be applied to other interacting

Trivial R1

Saturated R1

Non-zero R2

Figure 11. Using the derived expressions for steady-state
amplitudes, the measured IP amplitude data (black dots) can be fit,
including the saturation level (continuous line). The (unmeasured)
corresponding OOP amplitudes are also plotted.
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Figure 12. Data from the detuning experiment including our model
fit. At various voltages and hence detuning settings χ2, we observe
the maximum amplitude R⋆

1 at the IP resonance (χ1 = 0). Fit
parameters for equation (33) are indicated and correspond to the
thick curve. Dashed lines indicate the maximum amplitudes when
damping would be 0, 0.5 or 2 times the found value for γ2.

modes—such as torsion—and even combination resonance.

In figure 12 we have fitted equation (33) to the measured

saturation levels presented in figure 3. Recall that χ2 =
(ω2

2 − �2/4) so that ω2 is a fit parameter. The fitted

line accurately follows the experimentally found maxima for

changing amounts of detuning by V 2
DC. From figure 12 and

equation (33) it is found that power handling is improved when

R⋆
1 is large. This requires that |χ2| ≫ 0 or γ2 ≫ 0, so that

the unwanted mode should either be detuned far away or be

damped sufficiently.

4.3. Experiment 3: Fit to excitation level-dependent

measurements

Further proof of the versatility of our simplified model is

presented in figure 13. Here we see a resonator with a 56 MHz

IP resonance frequency being driven over the saturation limit.

A torsional OOP vibration at 5.17 MHz starts to pick up energy.

The expected modal interaction includes a third mode, so that

combination resonance occurs. This third mode lies outside

the bandwidth of our optical detection equipment. Only an

interaction model for three modes of vibration could correctly

describe this observation. However, when we compare our

measurements of two modes to the two-mode model results in

9
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Figure 13. The IP amplitudes versus the driving voltage v derived
from the measured electrical response and the OOP vibration
amplitude measured optically using a Polytec vibrometer. The
measurements are in fair accordance with the model results in
figure 9.

figure 9, the difference—apart from the model parameters—

lies only in the shape of the fit function of the OOP vibration

amplitude versus the driving voltage. It is still an inversion of

a fourth-order parabola. The predictive power of our model is

satisfying, considering that it is a simplified model that does

not govern all possible modes of interaction.

Summarizing, we have shown that our presented model

for two-mode interaction, being one directly driven length-

extensional mode and one bending mode, can describe

the phenomena encountered for our MEMS resonator.

Although various unwanted modes of vibration exist and even

combination resonance can occur, we see that our simplified

model covers the important characteristics of the limited power

handling of a MEMS resonator. The obtained closed-form

expressions provide a compact description of both the stable

limit before interaction starts, equation (33), and the steady-

state amplitudes of both modes while interacting.

Design guidelines for resonators that are less prone to

early saturation are available with this equation. Non-zero

damping factors favour stable response, in contrast to the goal
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Figure 14. When the non-trivial response of the combined IP and OOP modes undergoes a Hopf bifurcation, the solution will not be a point
but a trajectory through (R, �)-space. Sampling this response at many frequency points results in an envelope rather than a point solution.
Three series of data are taken for exactly equal conditions (indicated by different colours and line thicknesses). Only outside the beating
region, where the trivial solution dictates the state of the system, do the three series coincide.

of maximizing resonator Q for which the air-pressure has to

be as low as possible. Furthermore, frequency matching is

important. As demonstrated, it is not only the frequency of

the desired extensional mode of vibration that needs careful

design.

5. Beating phenomenon

Apart from saturation, MEMS resonators can exhibit another

phenomenon of nonlinear dynamics, referred to as beating.

A frequency response measurement, such as depicted in

figure 14, shows again a saturated response and additionally

it shows that the saturated region is enveloped in magnitude,

rather than having a fixed magnitude. This is a special case of

saturation and our model can also be used to predict whether

or not one will observe beating when the resonator is driven

into saturation.

When a frequency sweep (figure 14) confirms that super-

critical excitation is exerted, a time-series measurement of the

IP displacement then shows a fast oscillating signal within a

slowly evolving envelope. After a synchronous optical OOP

measurement it was confirmed that the OOP motion (of lower

angular frequency than the IP motion) is enveloped as well,

see figure 15. Moreover, it can be observed that the two

envelopes have equal periods and stay synchronous. Our two-

coordinate model as presented is also capable of capturing this

behaviour. Especially for hardly damped conditions, beating

shows up clearly, see figure 16. Numerical time integration

quickly becomes a nuisance for weakly damped systems, as

settling times typically require an amount of simulated cycles

that scales as the inverse of the damping factor. Again, closed-

form expressions to determine whether beating will occur are

desirable.

Figure 16 shows a settled ‘steady-state’ beating response

produced by the numerical integration of equation (33). It

should be noted that the shape of this envelope is very sensitive

to changes in either of the parameters determining the coupled

system. A very thorough study of the conditions for beating

to occur has recently been carried out by Van der Avoort

10
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Figure 16. Illustration showing that in a long time-series numerical result obtained by our interacting equations of motion, a repeating
pattern of vibrations arises in which energy is exchanged between the modes continuously.

et al [21]. Beating, or an unstable but bounded amplitude,

is explained as the occurrence of a Hopf bifurcation in the

(R,�)-solution space, considering the averaged equations of

motion. The bifurcation alters the solution from a fixed point

to a trajectory in solution space. In this space, a fixed point

relates to a fixed amplitude of harmonic motion combined with

a fixed phase-lag with respect to the external driving force. A

trajectory in this space relates to time-dependent behaviour

of these two coordinates of the solution. The trajectory is as

fixed as a solution point, and as a result the beating pattern

will exhibit a steady envelope. Estimates of the period of the

beating envelope expressed in system parameters are beyond

the scope of this paper.

The occurrence of beating in a system with multiple

modes of resonance is not new, as already reported by

Iwatsubo in 1974 [7, 8]. In their macroscopical experiments,

instability regimes (in amplitude and frequency) of the directly

driven mode are observed experimentally as well. Their

observation that beating only occurs on one side of the regime,

say only for negative detuning χ2 in our terminology, is

confirmed by the analysis by Van der Avoort et al [21]. The

conditions for a Hopf bifurcation to occur can be expressed in

terms of the parameters constituting our equations of motion,

equation (24). The analysis involves the stability analysis of

the steady states and finding conditions for purely imaginary

roots of the characteristic equation. The first condition is then
(

γ 2
1 + 2γ1γ2

)

�2 + 12d3χ2R
2
2 + 9d2

3R4
2 < 0, (34)

from which we already see that only one edge of the V-shaped

instability curves can lead to beating. With d3 being positive,

as it is the integral over
∫

(φ′)4 dx, only χ2 < 0 fits the

inequality. Only on one side of the exact 2:1 tuning can one

encounter beating, whereas saturation into a stable combined

solution is possible on both sides. A second condition for the

imaginary roots is

d1d2R
2
2 > γ 2

1 �2, (35)

so that a minimum amplitude for R2
2 is required and large

enough coupling constants d1d2, which in turn depend on the

mode shapes of the interacting modes of vibration.

6. Conclusions

This paper describes the nature of saturation or limited

power-handling capability observed for MEMS resonators.

Autoparametric excitation of parasitic modes of vibration,

11
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excited by the resonating intended mode of the vibration of

the MEMS resonator, poses a limit to the amplitude of the

vibration of the MEMS resonator. For one special case of

modal interaction, closed-form expressions are derived that

predict the saturation level of the IP vibration amplitude and

show what factors influence the power-handling limit. As

observed in experiments and predicted by the model, shifting

the frequency of the MEMS resonator by bias voltage tuning

will alter the saturation level. A second factor having an effect

on the saturation level of the intended mode of vibration is the

damping constant of the unwanted mode of vibration.

The saturation levels observed in measurements are

generally lower than those predicted by the bifurcation limit

found in the literature. Our model provides a description of

a different mechanism for a limit. The saturation level is

related to the physical vibration amplitude of the resonator,

geometrical properties of the resonator and damping constants

of both the wanted and the unwanted vibration, but at the

same time it shows that saturation is not related to material

nonlinearities or electrostatic spring softening.
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Appendix A. Description of amplitude–frequency
behaviour

In this section, we derive a closed-form expression for

the frequency of a resonator under electrostatic actuation,

including the (A, f )-behaviour. We will show that the

resonance frequency is composed of a mechanically

determined value, minus a shift that is controlled mainly by

the squared biasing voltage V 2
DC and finally a term in which

the amplitude of vibration determines an additional negative

contribution.

To drive a resonator to a stable amplitude, one has to

overcome the damping force. Since this force scales with

velocity, the most effective actuation force is also proportional

to velocity. This means that the driving force is 90◦ out of

phase compared to the harmonic vibration position function

x(t). We simply use an unknown gain factor K that relates the

velocity of the resonator v(t) to an ac-driving voltage VAC. Our

actual transduction mechanism is based on piezo-resistivity of

the resonator and generates a signal that is proportional to

position, but for the derivation of frequency we can assume a

force proportional to velocity. The electrostatic driving force

is now

Fel =
εA(VAC + VDC)2

2(g − x(t))2
, where VAC(t) = Kv(t), (A.1)

so that the driving voltage is directly coupled to the motion.

It is proportional to velocity, since one wants to overcome

damping which is, in turn, acting on the velocity as well.

The electrostatic force Fel is position dependent, as the

k/mΩ

Figure A1. Sketch explaining the effect of electrostatic driving of a
resonator on the to be measured frequency response. Geometry and
material constitute a mechanical resonance frequency,

√
k/m. Due

to a biasing voltage, the small-signal response is shifted towards a
lower central frequency. Finally, for larger amplitudes—following
the derivation in this appendix—a ‘skew’ of the response can be
observed, which is a result of an amplitude-dependent resonance
frequency.

displacement x(t) reduces the airgap g. The standard form

notation of the equation of motion of the driven resonator is

then

v̇(t) =
Fel − kx(t) − γ ẋ(t)

m

ẋ(t) = v(t).

(A.2)

Next we use that the amplitude of x(t) will be small compared

to the airgap g, so that we can perform a Taylor series expansion

to the third order of Fel around x = 0. The system of

equations (A.2) is then transformed to polar coordinates by

taking

x(t) = r(t) cos(�t + θ(t))

v(t) = −�r(t) sin(�t + θ(t)),
(A.3)

of which the time derivatives are to be used as the left-hand

sides of the equations of motion (A.2). The strategy for

deriving the resonance frequency is now as follows. The

coordinate transformation would render a linear oscillator

in steady state motion into a single fixed point in (r, θ)-

space. Nonlinearities cause other than purely sinusoidal

motion, which in turn will be represented in (r, θ)-space as

motion around a fixed point. To maintain this point fixed,

the angular frequency � has to match the actual angular

frequency of the modelled oscillator. A truly fixed point

will have that ṙ(t) = 0 and θ̇ (t) = 0, but with small jitter

around a fixed point, this will never be the case. We need

to average the transformed equations of motion, so that only

fundamental dynamics prevail. Substituting equations (A.3)

into equations (A.2) results after re-organization in a new

system of equations of motion (ṙ(t) = · · · and θ̇ (t) = · · ·)
with very lengthy expressions involving combinations of time-

dependent sin and cos factors. Since we are interested in the

frequency of the harmonic motion, we can restrict ourselves to

the fundamental harmonic. In order to do so, we average the

transformed equations of motion over one period, according

to

12
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ṙA =
�

2π

∫ 2π
�

0

ṙ(t) dt and θ̇A =
�

2π

∫ 2π
�

0

θ̇ (t) dt, (A.4)

where the superscript A denotes the average quantities.

Because the envelopes around the oscillatory motion, rendered

by r(t) and θ(t), will evolve slow as compared to the time-

dependent sin and cos factors, we set the right-hand sides of

the transformed equations of motion to have constant r and θ .

Now the averaged equations of motion result. For the average

radius or amplitude of vibration, this yields

ṙA =
4g2εAKrAVDC + 3εAK(rA)3VDC − 4g4γ rA

8g4m
. (A.5)

We need a steady-state (STST) vibration and hence require

ṙA = 0. Equating equation (A.5) to zero leads to a solution

for the gain factor K and reads

KSTST =
4g4γ

εAVDC(4g2 + 3(rA)2)
. (A.6)

When we substitute this optimal KSTST for K, we can demand

the solution to be fixed in the (r, θ)-plane by equating θ̇A = 0.

The resulting equation can be solved for �2. This expression

contains powers of rA that are larger than the order of the

expansion used for Fel in equation (A.2), and these higher

order terms will be neglected. Inclusion up to the second

order yields

�2 =
k

m
−

εAV 2
DC

g3m
− (rA)2

×
[

3εAV 2
DC

2g5m
+

γ 2

4g2m2
−

gkγ 2

4εAV 2
DCm2

]

. (A.7)

In equation (A.7) we can see the influence of the damping

constant γ on the resonance frequency. Since we are only

interested in describing amplitude-dependent behaviour we

neglect the γ -terms. This leads to the expression

�2 =
k

m
−

εAV 2
DC

g3m
−

(rA)2

g2

[

3

2

εAV 2
DC

g3m

]

, (A.8)

which contains all aspects of electrostatic driving of a MEMS

resonator and is visualized in figure A1. There is a mechanical

frequency through k/m, which is shifted down by biasing

with V 2
DC and then is a function of the vibration amplitude

(expressed now as compared to the gap). The latter term is

proportional to the amplitude-independent shift rendered by

the second term. Based on the assumption of a resonator in

proper feedback—enough gain and no phase rotation apart

from the 90 degrees between position and velocity—we

have derived here a complete formulation of the electrostatic

resonance frequency. This frequency will also be valid in

an open-loop situation. The response curve in a frequency

sweep will show shift and bending as well, with the presented

r/g-dependent function as a central curve.

Appendix B. Coupled equations of motion
subjected to averaging

The wanted and unwanted modes of the vibration of the

resonator are described by the coupled equations of motion

where the modal coordinates form the states of the dynamical

system. Since cross-products between the states and higher

powers of the states occur, a direct solution of the equations of

motion is not possible. Several mathematical techniques exist

to derive the closed-form expressions from these equations.

Here we describe how averaging leads to expressions for the

steady states of the system. There is one trivial steady state,

where the directly driven mode has an amplitude proportional

to the driving force amplitude and the other mode remains at

zero. The non-trivial steady state describes the situation where

the IP mode of vibration is saturated. The coupled equations

are formulated with small-parameter notation as

x ′′
1 + ω2

1x1 = +ε
(

g cos(�t) − δ1x
2
2 − μ1x

′
1

)

,

x ′′
2 + ω2

2x2 = −ε
(

δ2x1x2 + μ2x
′
2 + δ3x

3
2

)

,
(B.1)

where we have written

G = εg, di = εδi; γi = εμi . (B.2)

Under the frequency matching condition of 2:1 with small

detuning parameters we write

ω2
1 − �2 = χ1ε, ω2

2 −
�2

4
= χ2ε, (B.3)

so that we can write

x ′′
1 + �2x1 = ε

(

g cos(�t) − χ1x1 − δ1x
2
2 − μ1x

′
1

)

,

x ′′
2 +

�2

4
x2 = −ε

(

δ2x1x2 + χ2x2 + μ2x
′
2 + δ3x

3
2

)

.

(B.4)

Using the notation

y1 = x1, y2 = −
x ′

1

�
, y3 = x2, y4 = −

2x ′
2

�
, (B.5)

we write the system as

y ′ = Ay + εf (y, t), (B.6)

where

A =

⎛

⎜

⎜

⎝

0 −� 0 0

� 0 0 0

0 0 0 −�/2

0 0 �/2 0

⎞

⎟

⎟

⎠

, (B.7)

and f (y, t) is in the vector form, following equation (B.4).

With u := e−Aty, we have the system

ut = ε e−Atf ( eAtu), (B.8)

which is periodic in t, with period T = 4π/�. In order to make

the analysis tractable, we shall from now on study the averaged

system. For details concerning the procedure of averaging, the

reader is referred to [20]. Setting u := (u1, v1, u2, v2)
T , we

obtain

(

y1

y2

)

=
(

u1 cos(�t) − v1 sin(�t)

u1(sin(�t) + v1 cos(�t)

)

;

(

y3

y4

)

=
(

u2 cos(�t/2) − v2 sin(�t/)

u2(sin(�t/2) + v2 cos(�t/2)

)

.

(B.9)

Note that a constant u represents a periodic orbit for the original

system. Substitution leads to the expressions for f (eAtu) with

13
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lengthy but straightforward terms. Averaging over period T

leads to the equations of averaged u that read

ū1t =
−ε

2�
(χ1v̄1 + μ1�ū1 + δ1ū2v̄2),

v̄1t =
−ε

2�

(

g − χ1ū1 + μ1�v̄1 − δ1ū
2
2 −

v̄2
2

2

)

,

ū2t = −
ε

�

(

χ2v̄2 +
μ2�

2
ū2 +

3δ3

4

(

v̄3
2 + ū2

2v̄2

)

−
δ2(ū1v̄2 − ū2v̄1)

2

)

,

v̄2t =
ε

�

(

χ2ū2 −
μ2�

2
v̄2 +

3δ3

4

(

ū3
2 + ū2v̄

2
2

)

+
δ2(ū1ū2 + v̄1v̄2)

2

)

. (B.10)

For determining the steady states of this system, it turns out to

be advantageous to introduce the new unknown variables

z1 := ū1 + iv̄1; z2 := ū2 + iv̄2; z3 := ū2 − iv̄2; z4 := ū1 − iv̄1.

(B.11)

We rescale time in order to get rid of the factor ε/2�. The

equations (B.10) in this setting read

z1t = −ig + (−μ1� + iχ1)z1 +
δ1iz2

2

2
,

z2t = (−μ2� + 2iχ2)z2 + δ2iz1z3 +
3δ3iz2

2z3

2
,

(B.12)

z3t = −(μ2� + 2iχ2)z3 − δ2iz4z2 −
3δ3iz2

3z2

2
,

z4t = ig − (μ1� + iχ1)z4 −
δ1iz2

3

2
.

By Z1, . . . , Z4 we denote any steady state of this system.

Then,

− ig + (−μ1� + iχ1)Z1 +
δ1iZ2

2

2
= 0, (B.13)

(−μ2� + 2iχ2)Z2 + δ2iZ1Z3 +
3δ3iZ2

2Z3

2
= 0, (B.14)

− (μ2� + 2iχ2)Z3 − δ2iZ4Z2 −
3δ3iZ2

3Z2

2
= 0, (B.15)

ig − (μ1� + iχ1)Z4 −
δ1iZ2

3

2
= 0. (B.16)

We shall write R2
1 := Z1Z4;R2

2 = Z2Z3. Obviously, there

is a trivial steady state where R2
2 ≡ 0, corresponding to IP

oscillations of the resonator. It reads

Z̃1 = g
χ1 − iμ1�

χ2
1 + μ2

1�
2
; Z̃4 = Z̃1. (B.17)

We interpret the saturation phenomenon, as described in

section 1, as the appearance of a new stable branch of solutions

(namely: OOP oscillations), whereby the trivial steady state

loses its stability. We shall now compute the nontrivial steady

states where R2 �= 0. To do that, we use (B.13) to express Z1

in Z2, and then plug the result into (B.14):

(−μ2� + 2iχ2)Z2 −
δ2g

−μ1� + iχ1

Z3

+
δ1δ2R

2
2Z2

2(−μ1� + iχ1)
+

3

2
δ3iR2

2Z2 = 0. (B.18)

Similarly,

(−μ2� − 2iχ2)Z3 −
δ2g

−μ1� − iχ1

Z2

+
δ1δ2R

2
2Z3

2(−μ1� − iχ1)
−

3

2
δ3iR2

2Z3 = 0. (B.19)

Considering R2 fixed for the moment, these equations

constitute a linear system in Z2, Z3; the existence of a

nontrivial solution requires the determinant to vanish. That

is,
(

1 −
6χ1δ3

δ1δ2

+
9δ2

3

(

χ2
1 + μ2

1�
2
)

δ2
1δ

2
2

)

R4
2

+

(

4

δ1δ2

(μ1μ2�
2 − 2χ1χ2) +

24χ2δ3(χ
2
1 + μ2

1�
2)

δ2
1δ

2
2

)

R2
2

+
4μ2

2�
2 + 16χ2

2

δ2
1δ

2
2

(

χ2
1 + μ2

1�
2
)

− 4
g2

δ2
1

= 0. (B.20)

And reversely, if R2 satisfies (B.20) then the sys-

tem (B.18), (B.19) admits a solution with the property that

|Z2Z3| = R2
2 . Writing

Z2 = R2 ei�2 , Z3 = R2 e−i�2 , (B.21)

a simple computation yields that �2 satisfies

μ1μ2�
2 − 2χ1χ2 +

(δ1δ2 − 3δ3χ1)R
2
2

2
− i

(

μ2�χ1 + 2μ1�χ2

+
3

2
δ3μ1�R2

2

)

= δ2g e−2i�2 . (B.22)

It is now straightforward to compute Z2 and Z3. Note that Z1

and Z4 may be computed from (B.14) and (B.15):

−δ2iZ1 = (−μ2� + 2iχ2)
Z2

Z3

+
3δ3iZ2

2

2
,

δ2iZ4 = −(μ2� + 2iχ2)
Z3

Z2

−
3δ3iZ2

3

2
.

(B.23)

To obtain R1, we multiply these two equations and use that

Z1Z4 = R2
1;Z2Z3 = R2

2 :

δ2
2R

2
1 = μ2

2�
2 + 4χ2

2 + 9
4
δ2

3R
4
2 + 6δ3χ2R

2
2 . (B.24)

Substituting R2 = 0 in (B.20) yields a value g∗, which is

easily seen to be critical in the following sense: when g < g∗,

the trivial steady state is stable, while for g > g∗ it is unstable.

When g = g∗, R2 = 0 and R1 and R2 satisfy (B.24), the

nontrivial steady state branches off. The worst power handling

occurs when χ2 = 0 so at an exact 2:1 condition. Then at the

resonance of the IP mode (χ1 = 0) the maximum driving force

amplitude is found from equation (B.20) to be

(g⋆)2 =
(μ2

2�
2)(μ2

1�
2)

δ2
2

. (B.25)

Increasing the damping of mode 1 or 2 or both will hence

increase the power handling, but lowering the quality factor of

the intended extensional mode of vibration is not wanted.
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