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1 Introduction

In recent years, the study of scattering amplitudes of four dimensional (super)Yang-Mills
and (super)gravity has revealed many surprises. These include new symmetries, struc-
tures [1–10] and dualities [11–13]. These results are at times obscure from the point of
view of the action, and only become manifest when one considers on-shell objects such as
S-matrix elements. Many of these advances are largely due to the spinor-helicity formal-
ism which uses (super)twistors to covariantly parameterize on-shell momenta, polarization
vectors, and (for supersymmetric theories) on-shell multiplets. The progress that has been
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made in four dimensions inspires one to look for hidden structures in the amplitudes of
massless theories in D 6= 4 dimensions.

In four dimensions, the supertwistors are in the spinor representation of the super-
conformal group SU(2, 2|N). There are two other well known cases where a supertwistor
representation exists: in three dimensions where the superconformal group is OSp(N |4),
and in six dimensions where it is OSp∗(8|2N) [14, 15]. Recently, these (super)twistors have
been used to study amplitudes of various theories in three and six dimensions [17–19]. In
this paper, we would like to consider amplitudes of maximal superconfomal theories.

Maximal theories in three and six dimensions should describe the low energy dynam-
ics of the world volume theory of M2- and M5-branes, which are the fundamental objects
of M-theory [16]. In particular, the world-volume theory for multiple M2-branes is three-
dimensional with OSp(8|4) symmetry and the world-volume theory for multiple M5-branes
is six dimensional with OSp∗(8|4) symmetry. The first three-dimensional theory with clas-
sical OSp(8|4) symmetry was constructed by Bagger, Lambert, and independently Gustavs-
son (BLG) [20–22]. This theory was based on a totally anti-symmetric 4-index structure
constant which obeys a generalization of the Jacobi identity. Furthermore, it describes
two M2-branes propagating in a non-trivial spacetime background. Unfortunately, it does
not seem possible to generalize this theory to describe an arbitrary number of M2-branes
without sacrificing classical OSp(8|4) symmetry. Indeed, the theory describing an arbitrary
number of M2-branes, which was discovered by Aharony, Bergman, Jafferis, and Maldacena
(ABJM), only has classical OSp(6|4) symmetry [23, 24].

Although there’s been a lot of progress in constructing the world-volume theory of
multiple M2-branes, the world-volume theory for multiple M5-branes remains a mystery.
A lot of progress can be made, however, if the two dimensions of the M5-branes wrap a
Reimann surface with punctures giving rise to a four-dimensional theory [25, 26]. Since the
six dimensional theory is inherently strongly coupled, a Lagrangian description may not
exist [27], but if such a description is possible, the degrees of freedom should include (2, 0)
tensor multiplets, each of which contains 5 scalars, 2 Weyl fermions, and a 2-form gauge
field with self-dual field strength [28–30]. Constructing an interacting Lagrangian using
tensor multiplets is challenging because the constraint of conformal invariance severely
restricts the types of interactions one can have. For example, a four point contact term
of scalars would already have mass dimension 8 requiring a coupling constant with mass
dimension -2. Furthermore, it is difficult to construct theories of self-interacting self-dual
tensor fields even without the constraint of conformal invariance. For the world-volume
theory of a single M5-brane (where all the interactions break conformal invariance), this
can be achieved either by sacrificing manifest Lorentz invariance [31] or by introducing an
auxiliary scalar which enters the action in a non-polynomial way [32]. It is natural to try
generalizing the world-volume theory for a single M5-brane to describe multiple M5-branes
by introducing non-abelian group structure, but it is unclear how to define a non-abelian
anti-symmetric tensor field.

One of the biggest advantages to working with S-matrix elements in supertwistor space
is that one can gain insight into a superconfomal theory even if one does not have an action
at hand. Indeed, we will try to answer the following question: assuming the existence of
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a not yet found action, can one obtain information about this action by constructing
superconformal invariants and imposing consistency conditions such that the invariants
can be interpreted as amplitudes? Note that this question is valid even if the coupling
constant of the action is large and a perturbative expansion is meaningless. The reason is
that if one had an action, one could still naively compute tree level amplitudes obtaining
rational functions of kinematic invariants that obey the symmetries of the action. Hence,
by searching for superconformal invariants that are rational functions, one should obtain
information about the structure of the unknown action, even if it is nonlocal.

The drawback of this approach, however, is that superconformal invariance may not
be enough to uniquely fix all the amplitudes. Indeed for N = 4 sYM, it is only after
imposing (dual)superconformal symmetry and the correct collinear factorization that one
completely fixes the tree-level amplitudes [35–37]. This ambiguity is not an issue for lower-
point amplitudes, however. For example, conformal invariance is sufficient to fix the three
point amplitude of Yang-Mills, which is totally anti-symmetric and thus implies that theory
has a totally anti-symmetric three-index structure constant.

For the amplitudes that we consider, superconformal invariance provides very strin-
gent constraints. For example, in three dimensions we find that all odd-point amplitudes
vanish. The fact that the three-point amplitude vanishes in turn imposes an additional
constraint on the four-point amplitude, namely that the residue in all channels must van-
ish. This uniquely fixes the four-point amplitude, and implies that the theory has a totally
anti-symmetric four-index structure constant. Furthermore, we find that the four-point
amplitude matches that of the BLG theory. These results suggest that the BLG model is
the only theory with a Lagrangian that has classical OSp(8|4) symmetry and is unitary.1

In six dimensions, we find that the three-point amplitude also vanishes and that we cannot
construct a rational superconformal four-point amplitude which has vanishing residues in
all channels. We extend this analysis to show that all tree-level amplitudes must vanish.
This leads us to conjecture that a superconformal interacting Lagrangian cannot be con-
structed using only (2, 0) tensor multiplets, although it may be possible to construct a
Lagrangian if one introduces additional degrees of freedom.

In the process of completing this paper, a paper was posted which uses three-
dimensional twistor techniques to construct scattering amplitudes in the ABJM theory [38].
In this work, the authors showed that the four and six-point tree amplitudes are invariant
under a Yangian symmetry. Since the Yangian generators are built out of OSp(6|4) super-
conformal generators, and the BLG theory has OSp(8|4) superconformal symmetry, one
might expect that the tree-level amplitudes of the BLG theory are invariant under a Yan-
gian symmetry based on the OSp(6|4) subgroup of OSp(8|4). In fact, we will demonstrate
that the four-point amplitude of ABJM can be derived from our N = 8 superamplitude,
implying that the four-point amplitude of BLG also has Yangian invariance.

This paper is constructed as follows. In the next section we give a brief description of

1It has been argued that the superconformal symmetry of ABJM becomes enhanced to OSp(8|4) at level

k = 1, 2 with the inclusion of monopole operators [33]. This introduces new degrees of freedom that are not

included in our on-shell multiplet. The uniqueness of BLG can also be derived by coupling the vector and

scalar multiplets in N = 8 superspace and requiring conformal invariance and polynomial interactions [34].
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supertwistors in three dimensions and use them to write the superconformal generators in
twistor space. In section 3, we introduce harmonic variables to pick out the independent
fermionic supertwistor components, which allows us to construct an on-shell superspace.
We find that all of the on-shell degrees of freedom for the three-dimensional theory can be
encoded in a scalar superfield defined on this space. In section 4, we begin our construction
of S-matrix elements in three dimensions by identifying the Lorentz-invariant building
blocks. We then demonstrate that a conformally invariant three-point amplitude cannot be
constructed. This leads to collinear constraints that uniquely fix the four-point amplitude.
We will show that our four-point superamplitude matches with the component result of
BLG. We close this section by extracting the four-point amplitude of ABJM from our
BLG result. In sections 5, 6 and 7 we repeat these steps for six dimensions, and show
that all tree-level amplitudes vanish. Section 8 presents our discussion and conclusions.
In appendix A, we review the BLG and ABJM theories. In appendix B we define color-
ordering for the bi-fundamental formulation of the BLG theory and use it to compute the
tree-level four-point scalar amplitude. In appendix C, we describe some properties of SU(2)
spinors which are useful for analyzing three-point amplitudes in six dimensions.

2 3D supertwistors and superconformal generators

The supertwistors for a maximal superconformal theory in three dimensions with SO(8)
R-symmetry are in the spinor representation of the supergroup OSp(8|4):

ζM =

(
ξµ

ηI

)
, µ = 1, ··, 4, I = 1, ··, 8.

The bosonic part of the twistor ξµ is a four-component spinor transforming in the 4 of
SO(3, 2) = Sp(4), while the fermionic part ηI is an eight-component spinor transforming
in the 8v representation of Spin(8). These twistors are real and self-conjugate, i.e. they
satisfy the following canonical commutation relations:

[ξµ, ξν ] = Ωµν {ηI , ηJ} = δIJ , (2.1)

where Ωµν = −Ωνµ and δIJ are the Sp(4) and SO(8) metric respectively. Note that
the superalgebra metric is given by GMN where GIJ = δIJ , Gµν = Ωµν , and all other
components are zero. The superconformal generators are then simply

GMN = ζ[MζN ), (2.2)

where one antisymmetrizes with respect to SO(8) indices and symmetrizes with respect to
Sp(4) and mixed indices, i.e. A[IJ) = 1

2

(
AIJ −AJI

)
, A[µν) = 1

2 (Aµν +Aνµ), and A[µI) =
1
2

(
AµI +AIµ

)
. Using the commutation relations in eq. (2.1), one can show that GMN

reproduces the superconformal algebra.
The Sp(4) spinors can be broken into two SL(2, R) spinors

ξµ =

(
λα

µβ

)
, [λα, µβ] = δαβ , α = 1, 2
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where the λα’s are the usual SL(2, R) spinors used for the bi-spinor representation of
massless momenta:

pµ(σµ)αβ → λαλβ.

Note that this gives three components since the right-hand-side is symmetric in the spinor
indices. The superconformal generators can now be written in terms of 3D Lorentz indices
by noting that SO(2, 1) = SL(2, R) and taking µβ → − ∂

∂λβ
:

Pαβ = λαλβ (3)

QαI =
1√
2

(
λα

∂

∂ηI
+ λαηI

)
(16)

Mα
β = λα

∂

∂λβ
− δα βλγ

∂

∂λγ
(3)

D =
1
2

(
λα

∂

∂λα
+ 1
)

(1)

RI J = ηIηJ −
1
2
δIJ (28)

SIα =
1√
2

(
ηI

∂

∂λα
+

∂

∂λα
∂

∂ηI

)
(16)

Kαβ =
∂

∂λα
∂

∂λβ
(3). (2.3)

The numbers in the parentheses are the number of group elements. One can check they
indeed generate the superconformal algebra,

{QαI , Q
β
J} = PαβδIJ , {SIα, SJβ } = Kαβδ

IJ

[D,Pαβ] = Pαβ, [D,Kαβ] = −Kαβ

{SIα, Q
β
J} = δβα(δIJD +RI J) + δIJMα

β

[Pαβ,Kγδ] = −δ(α(δ (δβ)
γ)D +M

β)
γ) ).

The constant in the dilatation operator can be fixed by the algebra in the last line. This con-
stant basically counts the engineering dimension of a scalar, which is 1

2 in three dimensions.
Note that in contrast to N = 4 sYM, the fermionic generators are linear combinations of
a one-derivative operator with a zero or two derivative operator. This is due to the fact
that the ηI ’s are self-conjugate. In the next section, we will describe how to project out
the independent fermionic components using harmonic variables.

3 3D N = 8 on-shell superspace

In this section we would like to setup the on-shell superspace. This will allow us to de-
fine a superfield whose superspace expansion contains the complete on-shell multiplet,
which contains eight scalars φA and eight two-component Majorana spinors ψȦ. We will
use conventions where the scalars and fermions are in the 8s and 8c representations of
Spin(8), respectively.
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Since ηI is self-conjugate, it only contains 8/2=4 degrees of freedom, which correspond
to the number of on-shell supersymmetries. In order to use it to parameterize the on-shell
multiplet, we need to project out its independent components. Note that this problem
is similar to that of constructing an off-shell formulation for extended supersymmetric
theories. There the problem is to find a set of DI

α to constrain some superfield W (x, θ, θ̄)
(in the form of the Grassmann analyticity condition DI

αW = 0 [39]) without implying field
equations through

{DI
α, D

J
β} = −igIJγµαβ∂µ,

where gIJ is the metric for the R symmetry group. One solution is to use coset variables
to project out a set of anti-commuting DI

α’s [40]. In particular, one introduces bosonic
variables uiI which parameterize the coset G/H, where G is the R-symmetry group acting
on the index I, and H is some subgroup (usually the Cartan subgroup) acting on the index
i. Then one finds a subset of uîI such that uîIu

ĵ
Jg

IJ = 0. This leads to a set of projected
Dî
α = uîID

I
α which anti-commute:

{Dî
α, D

ĵ
β} = −iuîIgIJu

ĵ
Jγ

µ
αβ∂µ = 0.

Similarly, we can use harmonic variables to pick out a set of η’s which anti-commute. In
principle we can choose any four linearly independent combinations of η’s to define the
on-shell superspace, however we would like to have a book-keeping device to restore the
SO(8) invariance of the amplitudes, which requires us to break R-symmetry in a covariant
manner such as the coset approach. One can also choose to proceed without manifest R-
invariance. Then one would be required to impose R-invariance as an additional constraint
on the amplitude, as was done for ABJM [38].

The harmonic variables we use will be the coset variables for SO(8)
U(1)4

[41]. One introduces
three different harmonics, viI , u

a
A, ũ

ȧ
Ȧ

, corresponding to the three irreducible representations
of Spin(8) 8v, 8s, 8c. These are 8×8 orthogonal matrices satisfying∑

I

viIv
j
I = δij ,

∑
A

uaAu
b
A = δab,

∑
Ȧ

ũȧ
Ȧ
ũḃ
Ȧ

= δȧḃ (3.1)

and are related via
uaA(Γi)aȧũȧȦ = viI(Γ

I)AȦ. (3.2)

The harmonic variables can be thought of as vielbeins of the coset, with the indices I, A, Ȧ
transforming under the global SO(8). Furthermore, i, a, ȧ can be labeled by charges under
the four U(1)’s. Different combinations of U(1) charges, denoted as ±, (±), {±}, [±], give
different representations:

8v (i)→: ++ −−− (++) (−−) [+]{+} [−]{−} [+]{−} [−]{+}
8s (a)→: +(+)[+] +(+)[−] −(−)[+] −(−)[−] +(−){+} +(−){−} −(+){+} −(+){−}
8c (ȧ)→: +(+){+} +(+){−} −(−){+} −(−){−} +(−)[+] +(−)[−] −(+)[+] −(+)[−].

Note that the first four elements in the 8v representation have vectorial charge while the
last four have spinorial charge. This is because the last four elements form an SO(4) =
SU(2)×SU(2) subgroup, and therefore are more conveniently written in bispinor form. We
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refer the reader to the original work for a detailed explanation of the decomposition of the
charges [41].

We will construct the superspace coordinates using the harmonics in vector represen-
tation of Spin(8), viI . The anti-commutator algebra of ηi = viIη

I is:

{η++, η−−} = {η(++), η(−−)} = {η[+]{+}, η[−]{−}} = −{η[+]{−}, η[−]{+}} = 1 (3.3)

with all other anti-commutators vanishing. From the above equation, we see that one
choice of four anti-commuting η’s is:

ηî = vîIη
I , î = 1, 2, 3, 4,→ η1 ≡ η++, η2 ≡ η(++), η3 ≡ η[+]{+}, η4 ≡ η[+]{−}.

These will be the four fermionic coordinates of the on-shell superspace. Then the superfield
has the following expansion:

Φa(η1, η2, η3, η4) = φ
′

(0)a + ηî(Γ
î)aȧψȧ(1) + ηîηĵ(Γ

îĵ)abφ
′b
(2) + ηîηĵηk̂(Γ

îĵk̂)aȧψȧ(3)

+ηîηĵηk̂η l̂(Γîĵk̂l̂)abφ
′b
(4). (3.4)

The subscripts in parenthesis indicate at which order in the η expansion each component
appears. Thus there is 1 φ

′

(0)a, 4 ψȧ(1), 6 φ
′b
(2), 4 ψȧ(3), and 1 φ

′b
(4). Note that the repeated

index î is summed from 1 to 4.
To make the R-indices of the fields manifest, one simply uses the fact that the U(1)

charges of each term in the expansion of the superfield are the same. For example, if we
choose the on-shell superfield Φa to have the U(1) charges +(+)[+], then up to linear order
in the ηî expansion we have:

Φ+(+)[+](η1, η2, η3, η4) = φ
′

(0)+(+)[+] + η++ũ
+(−)[−]

Ȧ
ψȦ(1) + η(++)ũ

−(+)[−]

Ȧ
ψȦ(1) + η[+]{+}ũ

−(−){+}
Ȧ

ψȦ(1)

+η[+]{−}ũ
−(−){−}
Ȧ

ψȦ(1) + · · ·. (3.5)

where · · · represents the higher order terms. This equation is easily established by count-
ing the charges. In particular, φ

′

(0)+(+)[+] = u
−(−)[−]
A φA, and the four ψȧ’s appearing in

eq. (3.4) are

ψȧ(1) =


ψ+(−)[−] = ũ

+(−)[−]

Ȧ
ψȦ

ψ−(+)[−] = ũ
−(+)[−]

Ȧ
ψȦ

ψ−(−){+} = ũ
−(−){+}
Ȧ

ψȦ

ψ−(−){−} = ũ
−(−){−}
Ȧ

ψȦ

(3.6)

Note that since the gamma matrices in eq. (3.4) are Clebsch-Gordan coefficients, in the
U(1)4 basis they reduce to 1.

The on-shell superspace for n particles is described by the coordinates λm and ηĵm,
where m = 1, · · ·, n. Any superamplitude can be written as a function of these on-shell
coordinates. Note, however, that a superamplitude encodes the scattering of all possible
component fields, or particle species. To extract the scattering amplitude for a particular
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set of component fields, one simply integrates away the fermionic superspace coordinates
while making the following associations:

1 ∼ φ′

(0)a, η
î
m ∼ ψȧm(1), η

î
mη

ĵ
m ∼ φ

′b
m(2), η

î
mη

ĵ
mη

k̂
m ∼ ψȧm(4), η

î
mη

ĵ
mη

k̂
mη

l̂
m ∼ φ

′b
m(4). (3.7)

After doing so, the component fields will still be dressed by the harmonic variables. The
final step is to restore the R-indices by integrating away the harmonic variables.

We define the harmonic integration, which removes the harmonic variables, following
the prescription of the four-dimensional N = 2 case [39]∫

dv 1 =
∫
du 1 =

∫
dũ 1 ≡ 1∫

dv viI · ·v
j
J |Traceless =

∫
du uaA · ·ubB|Traceless =

∫
dũ ũȧ

Ȧ
· ·ũḃ

Ḃ
|Traceless ≡ 0. (3.8)

The notation |Traceless indicates that one isolates the part of the integrands that is traceless
with respect to the indices I, A, Ȧ. The definition of these harmonic integrals implies that
one is picking out pieces that are R-singlets. The R-singlets come from the repeated use of
eq. (3.1) and eq. (3.2) on any function that depends on harmonic variables. Note that the
harmonic integration will result in all possible R-index contractions between different legs.

4 S-matrix for 3D N = 8 superconformal theories

Equipped with the on-shell superspace, we now introduce the building blocks for
the construction of superconformal amplitudes. First we define the supermomentum
delta function:

δ2(Q1)δ2(Q2)δ2(Q3)δ2(Q4) = δ
(
Q1α

)
δ
(
Q1
α

)
δ
(
Q2β

)
δ
(
Q2
β

)
δ
(
Q3γ

)
δ
(
Q3
γ

)
δ
(
Q4ρ

)
δ
(
Q4
ρ

)
where

Qîα =
n∑
i=1

qîαi , qîαi = λαi η
î
i

and the summation is over all external lines, which are labeled by i. The Qîα should not
be confused with the supersymmetry generators defined in eq. (2.3). The Lorentz invariant
objects are then:

• δ3(P ) and δ2(Q1)δ2(Q2)δ2(Q3)δ2(Q4)

• λαi λjα = 〈ij〉

• pi · pj = −1
2〈ij〉

2

• qîαl λjα = qîl |j〉 = ηîl〈lj〉

With these building blocks, we can now begin our construction of amplitudes.
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4.1 3-point S-matrix

Lorentz invariance implies that the three-point amplitude should have the following form:

A3 = δ3(P )f(pi, qj , λk),

where f is some general Lorentz-invariant function of p, q, λ. We also require that this
amplitude is dilatation invariant

DA3 =
3∑
i=1

DiA3 = 0.

Since the momentum delta function has mass dimension −3, we can permute the dilatation
operator past it, picking up a factor of −3:

Dδ3(P )f(pi, qj , λk) = δ3(P ) (D − 3) f(pi, qj , λk)

= δ3(P )

(
3∑
i=1

1
2
λαi

∂

∂λαi

)
f(pi, qj , λk) +

(
3
2
− 3
)
A3. (4.1)

The factor 3
2 is due to the constant in the dilatation operator. In order for A3 to be

dilatation invariant, the function f must have weight 3
2 under the operator

∑3
i=1

1
2λ

α
i

∂
∂λαi

,
which essentially counts the mass dimension. Since all the building blocks introduced in
the previous section have integer mass dimensions, it is impossible to construct a Lorentz-
invariant function f such that DA3 = 0. Therefore Lorentz and dilatation invariance rule
out the possibility of constructing a superconformal on-shell three-point amplitude. In fact,
it’s not difficult to see that this is true for any odd-point amplitude, since there will be
a fractional constant coming from the dilatation operator that cannot be canceled by any
rational function of Lorentz invariants.

It should be noted that three-point amplitudes for massless particles in Minkowski
space generally vanish by kinematic constraints since momentum conservation implies van-
ishing Lorentz invariants. For example, s12 = (p1 + p2)2 = p2

3 = 0. In more than three
dimensions, this can be overcome by working with other space-time signatures. For ex-
ample, in four dimensions, the kinematic invariants can be written in terms of SL(2, C)
spinors as follows:

sij = (λi)α(λj)α(λ̄i)α̇(λ̄j)α̇ = 〈ij〉[ij].

If one works with split signature, then (λi)α 6= (λ̄i)α̇. As a result, if sij = 0 this only
implies that 〈ij〉 or [ij] vanishes while the other can remain nonzero, allowing one to write
down non-zero three-point amplitudes.

In three dimensions, all the kinematic invariants will vanish regardless of the signature
since sij = −〈ij〉2. Nevertheless, the analysis we presented in this section is still useful
because it carries over to six dimensions, where non-vanishing Lorentz invariants can be
defined for three-point amplitudes.
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4.2 4-point S-matrix

We now move on to the four-point amplitude. In order to have manifest supersymmetry,
we assume the amplitude is proportional to both the momentum and supermomentum
delta functions:

A4 = δ3(P )δ8(Q)f(pi, qj , λk)

where δ8(Q) = δ2(Q1)δ2(Q2)δ2(Q3)δ2(Q4). Applying the dilatation operator gives

Dδ3(P )δ8(Q)f(pi, qj , λk) = δ3(P ) (D − 3 + 4 + 2) f(pi, qj , λk) (4.2)

where the +4 comes from the supermomentum delta function and the +2 comes from the
constant in the dilatation operator. This implies that the function f should have weight
−3 under D. Since we cannot introduce any more q’s,2 this leads to the result that the
4-point amplitude has the following schematic form:

A4 ∼ δ3(P )δ8(Q)
1

〈ij〉〈kl〉〈mn〉
. (4.3)

In the remainder of this subsection, we show that this general form already has full su-
perconformal symmetry. We will fix the precise form through additional symmetry and
consistency conditions in the next subsection.

The above amplitude has manifest super Poincaré and dilatation invariance. To prove
superconformal invariance, one only needs to show that it is invariant under the fermionic
generators involving two derivatives. Invariance under the other generators of the super-
conformal group then follows from the closure of the algebra. We therefore consider

∑
i

∂

∂(λi)α
∂

∂(ηi)1
A4 =

∑
i

∂

∂(λi)α
∂Q1β

∂(ηi)1
∂

∂Q1β
A4

=
∑
i

[
(λi)β

∂

∂(λi)α
+ δβα

]
∂

∂Q1β
A4. (4.4)

For simplicity, we denote Dβ α =
∑

i(Di)β α =
∑

i(λi)
β ∂
∂(λi)α

. Now we look at how (Di)β α
acts on each part of the amplitude. First consider δ3(P ):

Dβ αδ6(P ) =
∑
i

(λi)β
∂P γδ

∂(λi)α
∂δ3(P )
∂P γδ

= 2P βδ
∂

∂Pαδ

= −3δβαδ
3(P ) (4.5)

where in the last line we used
∫
dx x∂xδ(x)f(x) = −

∫
dxδ(x)f(x) and

∂P βδ

∂Pαδ
= δβα

1
2
∂Pµ

∂Pµ
= δβα

3
2
.

2To see this, we note that from eq. (3.7), the four-point scalar amplitude (which is a component in the

superamplitude) carries η8.

– 10 –



J
H
E
P
1
0
(
2
0
1
0
)
0
0
7

Next, let’s look at the term involving the supermomentum delta function:

Dβ α
∂

∂Q1β
δ2(Q1)δ2(Q2)δ2(Q3)δ2(Q4)

=

(∑
i

(λi)β
∂

∂(λi)α

)
2Q1

βδ
2(Q2)δ2(Q3)δ2(Q4)

= 2
∂

∂Q1α
δ2(Q1)δ2(Q2)δ2(Q3)δ2(Q4)

where we’ve noted that 2QîβQîα = δβαQîγQîγ = δβαδ2(Qî). Finally, let’s look at the action of
(Di)β α on the kinematic factor. Noting that

Dβ α〈ij〉 = δγαλ
β
i λjγ − δ

γ
αλ

β
j λiγ = δβα〈ij〉, (4.6)

we find
Dβ α

1
〈ij〉〈kl〉〈mn〉

= −3δβα
1

〈ij〉〈kl〉〈mn〉
. (4.7)

Putting everything together, we have∑
i

∂

∂(λi)α
∂

∂(ηi)1
A4 = (4− 3 + 2− 3)

∂

∂Q1α
A4 = 0.

Therefore A4 is indeed a superconformal invariant.
One can try to extend the ansatz in eq. (4.3) to describe n-point amplitudes with

n = 2m, m > 2. If we assume that the fermionic contribution comes solely from the super-
momentum delta function (which would resemble the MHV amplitudes of N = 4 sYM),
dilatation invariance would restrict the amplitude to have the following schematic form:

An ∼ δ3(P )δ8(Q)
1

〈ij〉 · · · 〈lk〉︸ ︷︷ ︸
1 +m

.

For n > 4, however, this is not a superconformal invariant since∑
i

∂

∂(λi)α
∂

∂(ηi)1
An = (n− 3 + 2− (1 + n/2))

∂

∂Q1α
An 6= 0, for n 6= 4.

We therefore conclude that higher-point superconformal amplitudes require additional q’s.

4.3 Consistency conditions on the 4-point amplitude

To find the correct combination of sij ’s for the four-point amplitude in eq. (4.3), we will
implement various consistency conditions. Depending on the gauge algebra from which
the interacting theory is built, amplitudes will be required to satisfy certain symmetry
properties or identities. We can then check if our basis of superconformal amplitudes
provides a solution to these constraints. Furthermore, since the three-point amplitude
vanishes, this imposes a further constraint through factorization; namely that the four-
point tree amplitude should have vanishing residue in all channels.
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It is a forgone conclusion at the onset that the theory whose amplitudes we are con-
structing is not a Yang-Mills theory, since the action of Yang-Mills is not even classically
conformal in three dimensions. However it is instructive to show that superconformal in-
variance leads to the violation of an important property of Yang-Mills amplitudes called
the photon-decoupling identity.

In a YM theory, the tree-level scattering amplitude for n gluons can be written as

Atree
YMn = gn−2

∑
σ∈Sn/Zn

Tr(T a1 · · · T an)Atree
YMn(1, 2, · · ·, n) (4.8)

where the SU(N) generators appearing in the trace correspond to the external gluons and
the sum is over all non-cyclic permutations of the external legs. This decomposition of
the of amplitude is known as color-ordering and Atree

YMn is referred to as the color-ordered
partial amplitude (Atree

YMn is called the color-dressed amplitude). Note that the sum can be
implemented by keeping the first external leg fixed and summing over all permutations of
legs 2 though n. Since the trace is cyclic symmetric, the same is true for the color-ordered
amplitude. Also note that Atree

YMn(1, 2, · · ·, n) can be taken to be planar since the non-planar
contributions to the color-dressed amplitude will come from the non-cyclic permutations.

If we replace one of the generators by the identity matrix (which corresponds to in-
troducing a U(1) gauge field), then eq. (4.8) vanishes since the photon decouples. This is
the photon decoupling identity [42]. Choosing T a1 to be 1, the color trace becomes a trace
over the remaining n − 1 objects, and cyclic rotation of these n − 1 generators will have
identical color factors. In this case, eq. (4.8) can only vanish if the partial amplitudes with
the same color factors add to zero. For a four-point amplitude, this leads to the identity

A(1, 2, 3, 4) +A(1, 3, 4, 2) +A(1, 4, 2, 3) = 0. (4.9)

If the three-dimensional theory we are studying in this paper corresponds to a non-abelian
YM theory, then we should be able to choose the sij ’s in eq. (4.3) such that eq. (4.9)
is satisfied.

If we specialize eq. (4.3) to be a color-ordered amplitude, that means that it cannot
have poles in the u channel since this would correspond to a non-planar contribution:

A4(1, 2, 3, 4) ∼ δ3(P )δ8(Q)
(
α
〈12〉
st

+ β
〈13〉
st

+ γ
〈14〉
st

)
. (4.10)

Using momentum conservation one can show that

〈12〉 = 〈34〉, 〈23〉 = 〈14〉, 〈13〉 = 〈42〉. (4.11)

Note that while 〈12〉 = 〈34〉 is only true up to a sign, this sign will fix the relative sign of the
other spinor inner products through momentum conservation. For example, if 〈12〉 = 〈34〉,
then we have

〈12〉〈23〉 = −〈14〉〈43〉 = 〈14〉〈12〉 → 〈23〉 = 〈14〉. (4.12)
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Plugging eq. (4.10) into eq. (4.9) and using the relations in eq. (4.11) gives α = β = γ.
This leads to

A4(1, 2, 3, 4) ∼ δ3(P )δ8(Q)
(
〈12〉+ 〈13〉+ 〈14〉

st

)
.

Since we are constructing a color-ordered amplitude, it should be cyclic symmetric, but
this solution is obviously not. Therefore we find that there is no superconformal solution
that satisfies both cyclic symmetry and the photon decoupling identity. This is consistent
with the fact that YM in three dimensions is not classically conformal.

We now consider the constraint coming from factorization. Since we found that the
three-point amplitude vanishes, this requires the residue of A4 to vanish in all channels
as well. A simple analysis will show that our ansatz for the color-ordered amplitude in
eq. (4.10) does not admit a cyclic symmetric solution with the correct factorization property,
so we will consider the color-dressed amplitude for which we propose the following ansatz:

A4 ∼ δ3(P )δ8(Q)
f(λi)
stu

.

Here f(λi) is a polynomial of spinor inner products with mass dimensions three. The
requirement of vanishing residues uniquely fixes A4 up to a constant:3

A4 ∼ δ3(P )δ8(Q)
〈12〉〈13〉〈23〉

stu
(4.13)

For example the s-channel residue, rs ∼ 〈12〉〈13〉〈23〉
tu , vanishes since

s = 0→ 〈12〉 = 0.

The same applies to all other channels.
Notice that eq. (4.13) is totally antisymmetric with respect to the exchange of any pair

of indices. Indeed,

1↔ 2 : A4 = δ3(P )δ8(Q)
〈12〉〈13〉〈23〉

stu
→ δ3(P )δ8(Q)

〈21〉〈23〉〈13〉
stu

= −A4

1↔ 4 : A4 = δ3(P )δ8(Q)
〈12〉〈13〉〈23〉

stu
→ δ3(P )δ8(Q)

〈42〉〈43〉〈23〉
stu

= −A4, (4.14)

where we used eq. (4.11) in the last line. This implies that the three-dimensional theory
can be formulated in terms of a totally anti-symmetric four-index structure constant fabcd.
Such a structure constant also appears in the BLG theory when it is formulated as an
SO(4) gauge theory (see appendix A for more details). Later, we will demonstrate that
our four-point amplitude matches the component result of the BLG model. Our analysis
therefore picks out the BLG theory, suggesting that it is the only three-dimensional theory

3We note that there may be an issue of whether or not the residues vanish fast enough, however this is

the only possibility which can have vanishing residues. Furthermore, in the next section we will show that

this result agrees with the four-point amplitude of the BLG theory, which also has a vanishing three-point

amplitude.
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with maximal superconformal symmetry that admits a Lagrangian description.4 From this
point of view, it is not surprising that we found that all odd-point amplitudes must vanish.
In particular, since all odd-point amplitudes in the BLG theory have a Chern-Simons gauge
field in at least one of their external legs, they must vanish since the gauge fields have no
propagating degrees of freedom.

4.4 Comparison to BLG

In this subsection, we will compute the tree-level four-point scalar amplitude of BLG using
Feynman diagrams and match it with the scalar component of the four-point superam-
plitude constructed in the previous subsection. It follows from supersymmetry that all
the other components in the expansion of the four-point superamplitude match the BLG
theory as well.

Before describing the four-point calculation, we would like to point out why the BLG
theory evades the photon-decoupling identity described in the previous subsection. This
can be seen group theoretically by noting that the BLG theory can be written as an SO(4)
gauge theory with matter in fundamental representation. In this formulation, the photon-
decoupling identity is not well-defined because one cannot define color-ordering. On the
other hand, it is also possible to write the BLG theory as an SU(2)× SU(2) gauge theory
where the matter transforms in the bi-fundamental representation of SU(2) × SU(2). In
this case, color-ordering can be defined (as demonstrated in appendix B). Nevertheless,
the photon-decoupling identity is evaded. The basic reason is that if one adds a U(1)
component to the gauge field in a pure Yang-Mills theory it will completely decouple, but
if one adds a component proportional to the unit matrix to one of the scalar fields in the
BLG theory it will not decouple. As a result, if we replace one of the generators associated
with an external leg in a four-point amplitude by the unit matrix, the amplitude must
vanish in a pure Yang-Mills theory but not in the BLG theory. Similar arguments apply
for the ABJM theory.

It is easiest to compute the four-point scalar amplitude when the BLG theory is written
as an SO(4) gauge theory. For the analogous calculation carried out using bi-fundamental
notation, see appendix B. The terms in the action that are needed to compute the ampli-
tude are

−1
2
∂µX

Ia∂µXIa +
1
8
εµνλεabcdAµab∂νAλcd − g∂µXIaXIbAµab

where I = 1, . . . , 8 and a = 1, . . . , 4. The covariant derivative of this theory is given by
DµX

I
a = ∂µX

I
a + gAµabX

Ib. Note that Aµab = −Aµba, so the covariant derivative can also
be written as DµX

I
a = ∂µX

I
a + gεabcdÃ

cd
µ X

Ib, which matches the conventions of various
other papers. See appendix A for more details. Since the gauge field only appears on
internal lines, its normalization isn’t important. One can also add the following gauge-

4Note that the structure constant in the BLG theory is constrained to be εabcd by the fundamental

identity in eq. (A.1). At the moment, our analysis does not constrain the structure constant to obey

the fundamental identity, but we expect that this constraint will appear after constructing the six-point

amplitude and imposing various consistency conditions.
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Figure 1. 3-pt vertex for SO(4) BLG theory.

Figure 2. Tree-level 4-pt scalar amplitude for SO(4) BLG theory.

fixing term [43]:

Lgf =
1
2ξ
εabcd∂µA

µ
ab∂νA

ν
cd + ghosts

where ξ is a gauge-fixing parameter. After transforming to momentum space, the kinetic
and gauge-fixing terms for the gauge field become

−1
2
Aµab(p)KµνabcdAνcd(−p)

where

Kµνabcd = εabcd
(
− i

4
εµνλpλ +

1
ξ
pµpν

)
.

The propagator for the gauge field is therefore

−i
(
K−1

)
µνabcd

= 2εabcd

(
εµνλp

λ − iξ

4
pµpν
p2

)
1
p2
.

Furthermore, the 3-point vertex depicted in figure 1 is given by

−g (pa − pb)µ δ
IJ .

Note that all momenta are taken to be outgoing.
The tree-level four-point scalar amplitude is given by the sum of three diagrams de-

picted in figure 2. Using the Feynman rules described above, one finds that the amplitude
is given by

A4 = 4g2δ3(P )εabcdεµνλpaµpbν (pc − pd)λ

[
δIJδKL

(pa + pb)
2 +

δILδKJ

(pa + pd)
2 +

δIKδJL

(pa + pc)
2

]
.

To compare this to the scalar component of the superamplitude, we must sum over all
contractions of the R-indices (for reasons that we explain shortly). Doing so gives

A4 ∼ δ3(P )εabcdεµνλpaµpbν (pc − pd)λ

[
1

(pa + pb)
2 +

1
(pa + pd)

2 +
1

(pa + pc)
2

]
.
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Next, we must express this amplitude in twistor space. Noting that εµνλpaµpbν (pc − pd)λ is
totally antisymmetric under exchanges of the external legs and recalling that 〈12〉〈13〉〈23〉
is also totally antisymmetric, it follows that

A4 ∼ δ3(P )〈12〉〈13〉〈23〉
(

1
s

+
1
t

+
1
u

)
. (4.15)

To extract the scalar component of the superamplitude in eq. (4.13), we must integrate
out the fermionic superspace components as well as the harmonic variables. Integrating
out the harmonic variables extracts the R-singlet piece of the four-point scalar amplitude,
as explained in section 3. As a result, we will be left with a sum over all different ways in
which the R-indices of the external legs can be contracted:

A4|ψ→0 = A(φI1φ2Iφ
J
3φ4J) +A(φI1φ2Jφ

J
3φ4I) +A(φI1φ

J
2φ3Iφ4J).

Recalling the identification in eq. (3.7), this corresponds to integrating out the fol-
lowing combinations of η’s from the supermomentum delta function appearing in
the superamplitude:(∫

dη1
i dη

2
i dη

3
i dη

4
i +

∫
dη1

i dη
2
i dη

3
jdη

4
j +

∫
dη1

jdη
2
i dη

3
i dη

4
j +

∫
dη1

i dη
2
jdη

3
i dη

4
j

)
δ4(Qα)

×
(∫

dη1
kdη

2
kdη

3
kdη

4
k +

∫
dη1

kdη
2
kdη

3
l dη

4
l +

∫
dη1

l dη
2
kdη

3
kdη

4
l +

∫
dη1

kdη
2
l dη

3
kdη

4
l

)
δ4(Qα)

(4.16)

where δ4(Qα) = δ(Q1β)δ(Q2γ)δ4(Q3δ)δ4(Q4σ) and we sum over all possible assignments
of i, j, k, l. There are a total of 4! = 24 assignments of the external legs. For the choice
{i, j, k, l} = {1, 2, 3, 4}, the integral in eq. (4.16) gives 4u2. After taking into account the
other possibilities (which simply permute the kinematic variables), we find that the scalar
component of the superamplitude in eq. (4.13) is proportional to

δ3(P )
〈12〉〈13〉〈23〉(s2 + t2 + u2)

stu
. (4.17)

Noting that s2 + t2 + u2 = −2(tu+ ts+ su), this matches the result we obtained from the
BLG theory in eq. (4.15).

In conclusion, we see that by imposing symmetry and consistency conditions on the
S-matrix, we arrive at the four-point amplitude of the BLG theory, which is the only known
maximal superconformal theory in three dimensions that admits a Lagrangian description.

4.5 ABJM four-point amplitude from BLG

Our approach can be easily extended to theories with fewer supersymmetries like the ABJM
theory, which has N = 6 supersymmetry. Whereas the on-shell multiplet in a maximal
theory can be represented with a single superfield, in theories with less-than-maximal
supersymmetry, multiple superfields are required to encode the on-shell multiplet, since
it is not self-CPT. Furthermore, if a lower supersymmetric theory can be embedded in a
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maximal one, then one can obtain the amplitudes of the theory with less susy by truncating
the maximal amplitudes according to the particle species. Since the particle species are
dictated by the on-shell superspace variables, truncation corresponds to integrating away
part of the superspace variables.5 In this section, we will demonstrate that the four-point
superamplitude of ABJM (which was constructed in [38]) can be derived from the BLG
theory by integrating out one of the fermionic on-shell superspace coordinates.

Since the ABJM theory has SU(4) R-symmetry, we can introduce SU(4)
U(1)3

harmonics to
construct its on-shell superspace by analogy with what we did in section 3. One finds that
there are three fermionic on-shell superspace coordinates and that the on-shell multiplet
can be encoded in two superfields:

N = 6 → Φ̂(η) = φ+ ψIη
I + ηIηJφIJ + ηIηJηKψIJK

Ψ̂IJK(η) = ψ̄IJK + ηI φ̄JK + ηIηJ ψ̄K + ηIηJηK φ̄

where I = 1, 2, 3 labels the three independent η’s. Comparing this with eq. (3.4), we see
that we can identify the two N = 6 superfields as a subset of our N = 8 superfield by
removing one of the four η’s, which we choose to be η++. This can be achieved either by
setting it to zero or by integrating it away:

Φ̂(η) = Φ(η)|η++=0, Ψ̂IJK =
∫
dη++Φ(η). (4.18)

We can therefore obtain N = 6 amplitudes from N = 8 amplitudes by integrating away
η++. Since there are two η++’s coming from supermomentum delta function in the four-
point amplitude in eq. (4.13), one needs to choose two legs, η++

i and η++
j , to integrate. This

corresponds to identifying legs i and j to be in the multiplet carried by Ψ̂IJK . Choosing
i = 2, j = 4 we see that∫

dη++
2 dη++

4 A4 = δ3(P )δ6(Q)
〈12〉〈23〉〈13〉〈24〉

stu
= δ3(P )δ6(Q)

〈12〉〈23〉
st

which is indeed the four-point color-ordered superamplitude of ABJM. Hence, if we expand
our N = 8 amplitude into different sets of η++

i η++
j , the coefficients are simply different

color-ordered ABJM amplitudes.6 Interestingly, this implies that the Yangian symmetry
found in ABJM [38] is also present in BLG. Note that the Yangian generators in BLG
are constructed from the generators of an OSp(6|4) subgroup of the full superconformal
symmetry group OSp(8|4). There is a group-theoretic obstruction to extending the Yangian
symmetry to OSp(8|4) [46].

Although BLG and ABJM have the same on-shell degrees of freedom, they differ in the
structure of the gauge group and the R-symmetry. While the gauge group of the former
is SU(2) × SU(2), the latter can have any U(N) × U(N) as its gauge group. At tree-
level, different choices of N with N ≥ 2 are equivalent, therefore the difference between
ABJM and BLG is really in the U(1)×U(1) part. Furthermore, if we denote the sum and

5For a detailed discussion of obtaining lower supersymmetric amplitudes from maximal ones, see [44, 45].
6Note that the structure of the gauge group of ABJM is encoded in the four-index structure constant

implied by the four-point superamplitude, which is not totally antisymmetric.
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difference of these two U(1) fields by Â±, the kinetic term for the gauge fields takes the
form Â−∧dÂ+ and only Â− couples to the matter fields. As a result, the U(1)×U(1) gauge
fields do not contribute to the ABJM scattering amplitudes. The difference in R-symmetry
results in the reorganization of external states since, for example, the eight scalars in BLG
can be linearly combined into the four complex scalars of ABJM [47]. It is therefore not
surprising that the BLG four-point amplitude can be expressed as a linear combination of
ABJM amplitudes at tree-level.

5 6D amplitudes in supertwistor space

In previous sections we’ve seen how one can glean information about the structure of an
action through the study of consistent S-matrix elements. In this section and the next two
sections we will apply the same approach to the case of maximal superconformal theories
in six dimensions.

First we give a brief introduction to the spinor helicity formalism in six dimensions.
For more details see [18, 19, 48]. In six dimensional Minkowski space, the covering group
of the Lorentz group is SU∗(4). Therefore a vector is in the anti-symmetric representation
of SU∗(4) and the inner product of two vectors is defined as a contraction with the SU∗(4)
invariant tensor εABCD

V µ → 6V AB = V µΣAB
µ

6VAB = V µΣ̃µAB
, V µUµ =

−2εABCD 6VAB 6UCD
−4 6V AB 6UAB

where the Σµ’s and Σ̃µ’s are 4×4 antisymmetric matrices that satisfy the Clifford algebra

ΣµΣ̃ν + ΣνΣ̃µ = 2ηµν

and
ΣµABΣCD

µ = −2εABCD, ΣµABΣ̃µCD = −2
(
δACδ

B
D − δBC δAD

)
.

For simplicity, we drop the ∗ from now on keeping in mind that the spinors are pseudoreal.
The six dimensional on-shell massless condition can be solved using chiral spinors.

From the above relations we see that

p2 = −2εABCD 6 pAB 6 pCD = 0→ 6 pAB = λAaλB a, (5.1)

where a and in latter examples ȧ are SU(2) indices.7 The bi-spinor form of the mo-
mentum solves the on-shell constraint since there are no four-component totally anti-
symmetric tensors in SU(2). One can also represent the momentum in the anti-
fundamental representation:

6 pAB =
1
2
εABCD 6 pCD = λ̃A

ḃλ̃Bḃ, λA aλ̃Aȧ = 0. (5.2)

7One can work in other signatures. For example, in the Wick rotated spacetime with Lorentz group

SO(3, 3) (whose covering the covering group is SL(4, R)), the spinors are real and a, ȧ are SL(2, R) indices.
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This solution can also be understood by counting components. A null vector in six dimen-
sions has five components including a scale factor, meanwhile λAa has 4×2 = 8 components
and the SU(2) invariance removes three of them. Since the definition of the little group is
the set of transformations that leave the null momentum invariant, the SU(2) indices on
the spinors correspond to the six dimensional little group SO(4) = SU(2)× SU(2).

5.1 6D superconformal group

The supertwistors for a maximal superconformal theory in six dimensions with Sp(4) R-
symmetry are in the spinor representation of the supergroup OSp∗(8|4):

ζMa =

(
ξµa

ηIa

)
, µ = 1, ··, 8, I = 1, ··, 4, a = 1, 2.

The bosonic part of the twistor ξµa is an eight dimensional chiral spinor transforming under
SO(2, 6) = SO∗(8), while the fermionic part ηIa is a four dimensional spinor transforming
under USp(4). The six-dimensional chiral spinors introduced in the previous section can
be viewed as half of the ξµa’s, which can be decomposed into a pair of six-dimensional
chiral and anti-chiral spinors [15]. The additional SU(2) index a comes from the fact that
the representation is pseudoreal, so the spinor and it’s complex conjugate form a SU(2)
doublet. The superconformal generators are represented as

GMN = ζ a
[M ζN )a

where one symmetrizes with respect to Sp(4) indices and antisymmetrizes with respect to
SO(8) and mixed indices.

The spinors are self-conjugate:

[ζMa, ζbN } = δMN ε
ab → [ξµa, ξνb] = ηµνεab, {ηIa, ηJb} = εabΩIJ

where ηµν , εab, ΩIJ are SO∗(8), SU(2), and USp(4) metrics respectively. Note that we
can separate the independent degrees of freedom by their weights in the SU(2) little group,
i.e. their charges under Jz. Then we have

[ζM+, ζ−N } = δMN ε
+−

where ε+− = −ε−+, and ζM+ can be chosen to carry the independent degrees of freedom.
Decomposing the twistors into six dimensional spinors one has

(
ζµa

ηIa

)
→

 λAa

µaB
ηIa

 , A,B = 1, · · 4

where A,B are Lorentz indices and a is the chiral part the little group SO(4) = SU(2) ×
SU(2). The canonical commutation relation becomes

[λAa, µbB] = δABε
ab → µAa = − ∂

∂λAa
.
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We can once again use the SU(2) weights to pick out the independent pieces

ζM+ =

 λA+

µ+
A

ηI+

 , ζ−N =

 µ−B
λ−B

ηI−

 .

At this point we can write the superconformal generators as generators acting on
functions of λ, η:

PAB = λAaλBa (6)

QAI =
1√
2

(
λAa

∂

∂ηIa
+ λAaηIa

)
(16)

MA
B = λAa

∂

∂λBa
− δA B

4
λCa

∂

∂λCa
(16− 1 = 15)

D =
1
2
λAa

∂

∂λAa
+ 2 (1)

RI J = ηIaηJa + δIJ (10)

SIA =
1√
2

(
ηIa

∂

∂λAa
+

∂

∂λAa

∂

∂ηaI

)
(16)

KAB =
∂

∂λAa
∂

∂λBa
(6)

(5.3)

where the numbers in the parentheses are the number of components. One can check they
indeed generate the superconformal algebra

{QAI , QBJ } = PABΩIJ , {SIA, SJB} = KABΩIJ

[D,PAB] = PAB, [D,KAB] = −KAB

[PAB,KCD] =
1
2
δ
[A
[D(δB]

C]D + 2MB]
C] ).

The constant in the dilatation operator can be fixed though the algebra in the last line and
simply corresponds to the mass dimension of the scalar.

5.2 Polarization tensor

In the previous subsection we demonstrated that momenta can be expressed in terms of
twistors and in the next subsection we will show that the supermultiplet can be encoded
in a superfield once we construct the on-shell superspace. In order to demonstrate that the
S-matrix of the N = (2, 0) theory can be completely described using supertwistor space,
what remains to be shown is that the polarization of the two-form gauge field can be
expressed in terms of twistors. Recall that the gauge field Aµν = −Aνµ (µ, ν = 1, 2, · · ·5, 6)
has a field strength which satisfies the self-duality relation

F ρνπ = ∂[ρAνπ] =
1
6
ερνπµστ∂[µAστ ].

– 20 –



J
H
E
P
1
0
(
2
0
1
0
)
0
0
7

The gauge field has a (linearized) gauge transformation δAµν = ∂[µΛν] which one can
fix using the gauge condition ∂µAµν = 0. We therefore propose the following expression
for the polarization of the gauge field:

Aµν → AAB,CDab =

(
λ

[A
(aκ

B]c
)(

κ
[C
c λ

D]
b)

)
skp

(5.4)

where κCc is the spinor of some reference null vector. Note that this is similar to the
polarization vector of the on-shell gauge field in six-dimensional sYM [19]. The gauge
condition is satisfied since the twistors are solutions to the Dirac equation

6 pABλA = 0→ pµAµν = 6 pABAAB,CDab = 0.

Inserting eq. (5.4) into the field strength gives

Fρνπ→F [AB],[CD],[EF ] = εBDEFλ(A
a λ

C)
b −ε

ADEFλ(B
a λ

C)
b −ε

BCEFλ(A
a λ

D)
b +εACEFλ(B

a λ
D)
b

−εAECDλ(B
a λ

F )
b +εBECDλ(A

a λ
F )
b +εAFCDλ(B

a λ
E)
b −ε

BFCDλ(A
a λ

E)
b

+εCEABλ(D
a λ

F )
b −ε

DEABλ(C
a λ

F )
b −ε

CFABλ(D
a λ

E)
b +εDFABλ(C

a λ
E)
b .

(5.5)

6 6D N = (2, 0) on-shell superspace

Since the fermionic twistors ηIa introduced in section 5.1 are self-conjugate, we must remove
half of them in order to construct the on-shell superspace. This can be achieved by choosing
ηI+ as our fermionic coordinates (which breaks the SU(2) little group symmetry), or by
using harmonic variables to project out half of the fermionic twistors (which breaks the
R-symmetry). We will discuss both choices, although the latter gives simpler results for
reasons that will become apparent shortly.

If we choose ηI+ as the fermionic coordinates, then the USp(4) R-symmetry will be
preserved and the physical states will be labeled by their representation in the R-symmetry
group and their weight in the little group SU(2). In particular, the gauge field is spin-1 and
a singlet in USp(4), the scalars are spin-0 and a 5 of USp(4) (which can be represented
by a traceless antisymmetric two-index tensor), and the fermions are spin-1

2 and a 4 of
USp(4). This leads to a superfield with the following expansion:

Φ(ηI+) = A+
µν + ψ+

I η
+I +

η+Iη+J

2
[φIJ + ΩIJA

0
µν ] +

εLIJKη
−Iη+Jη+K

3!
ψ+L + (η+)4A−µν

where φIJΩIJ = 0 and ±, 0 indicate the SU(2) weights, i.e. ± = ±1 for η and Aµν , and
± = ±1/2 for ψ. A similar superfield expansion was found in [49]. Since the expansion of
this superfield begins with the two-form gauge field, the superfield is an R-singlet and has
spin 1, indicating that it is an on-shell tensor field.

This choice of the on-shell superspace breaks the SU(2) little group. As a result, the
following Lorentz invariants may contribute to amplitudes:

〈ijkl〉 ≡ 1
4!
εABCDλ

A+
i λB+

j λC+
k λD+

l , [ijkl] ≡ 1
4!
εABCDλ̃iA+λ̃jB+λ̃kC+λ̃lD+.
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It would be advantageous to avoid these objects, since their behavior is obscure in collinear
limits. On the other hand, these objects will be absent if we use harmonic variables to
construct the on-shell superspace, since this preserves the SU(2) little group. Furthermore,
the Lorentz-invariant objects that appear will be easier to analyze in collinear limits, as
we demonstrate in section 7.2. We will therefore use harmonic variables to project out
half of the fermionic supertwistor components, which will then be used as the fermionic
components of the on-shell superspace. After doing so, we will find that the on-shell
superfield is a scalar. This is analogous to N = 4 sYM, where the on-shell superfield is a
scalar in projective superspace and a vector in supertwistor space. As a result, the four-
point amplitude of N = 4 sYM is simpler in projective superspace, because in supertwistor
space one needs additional twistors to carry the spin degrees of freedom [50].

The harmonic superspace for off-shell N = (2, 0) supersymmetry was studied in [51].
For the case at hand, the harmonic variables will parameterize the coset USp(4)

U(1)×U(1) . These
variables take the form uiI , where the i labels different combinations of U(1) charges and I
is the R-index:

u1
I = (+, 0), u2

I = (0,+), u3
I = (0,−), u4

I = (−, 0).

They satisfy the following relation:

uiIΩ
IJujJ = Ωij

where Ωij is a 4× 4 matrix of the form

Ωij =

(
0 I

−I 0

)
. (6.1)

We can use these harmonic variables to pick out the independent fermionic twistors. If
we define

η1
a = u1

Iη
I
a, η2

a = u2
Iη
I
a,

we find that these variables are indeed independent

{ηIa, ηJb } = ΩIJεab

→ {η1
a, η

1
b} = {η2

a, η
2
b} = {η1

a, η
2
b} = 0 (6.2)

since Ω12 = 0. We will therefore use these twistors as the fermionic coordinates for our
on-shell superspace. The bosonic coordinates consist of the λ’s introduced in section 5.1.
In the space of (λ, η1, η2), the bosonic generators in eq. (5.3) remain the same while the
fermionic ones become

QîA = λAaηîa, QA
î

= λAa
∂

∂ηîa

S îA = ηîa
∂

∂λAa
, SîA =

∂

∂λAa

∂

∂ηîa

where î = 1, 2. Since the selected η’s both carry positive U(1) charges and any amplitude
can be written as a function of these on-shell coordinates, we will find that amplitudes can
be conveniently categorized by their U(1) charges.
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Using harmonic variables, the on-shell superfield has the following expansion:

Φ(η1, η2) = φ+ ψa1η
1
a + ψb2η

2
b +

[
(η1)2φ′ + (η2)2φ′′ + (η1 · η2)φ′′′ + η1a · ηb2A(ab)

]
+(η1)2η2aψ̃2a + (η2)2ηa1ψ̃1a + (η2)2(η1)2φ′′′′. (6.3)

In order to restore the R-index structure, one can observe that since the antisymmetric
gauge field carries no R-indices, it carries no harmonic variables. This means that the
superfield carries U(1) charges (+,+). From this information we deduce that

φ = u1
Iu

2
Jφ

IJ

ψa1 = u2
Iψ

Ia, ψa2 = u1
Jψ

Ja

φ′ = u4
Iu

2
Jφ

IJ , φ′′ = u3
Iu

1
Jφ

IJ , φ′′′ = (u2
Iu

3
J + u1

Iu
4
J)φIJ

ψ̃1a = u3
I ψ̃

I
a, ψ̃2a = u4

I ψ̃
I
a

φ′′′′ = u3
Iu

4
Jφ

IJ . (6.4)

With these identifications we can translate between superspace components and the usual
components with R-indices.

7 S-matrix for the 6D N = (2, 0) theory

Now that we’ve shown the that on-shell degrees of freedom and the generators of the
superconformal group can be conveniently written in supertwistor space, we can begin our
construction of the S-matrix by identifying the fundamental building blocks.

Lorentz and little group invariance requires all SU(4) and SU(2) indices to be con-
tracted. For amplitudes with more than three external legs, this requires a supermomentum
delta function. The case with three external legs is subtle since new variables may arise,
as we explain in the next subsection. The supermomentum delta function takes the form

δ4(Q1)δ4(Q2)=εABCDδ
(
Q1A

)
δ
(
Q1B

)
δ
(
Q1C

)
δ
(
Q1D

)
εEFGHδ

(
Q2E

)
δ
(
Q2F

)
δ
(
Q2G

)
δ
(
Q2H

)
where

QîA =
n∑
i=1

qîAi , qîAi = λAai ηîa,

î = 1, 2, and the sum is over all external lines. The other Lorentz invariant objects are:

• δ6(P ) = δ6 (
∑
p)

• sij = 2pi · pj

• qA(pi)AB(pj)BC · ·(pk)EF qF = q 6pi 6pj · · · 6pkq

Note that there can only be an odd number of momenta between q’s because we can only
use εABCD and εABCD to raise and lower SU(4) indices. Furthermore, we do not have
spinor inner products in six dimensions, i.e. there is no analog of the three dimensional
inner product 〈ij〉.
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With these objects in hand, we may proceed to construct S-matrix elements. Since
each on-shell superfield carries charge (+1,+1), an n-point S-matrix element should carry
charge (+n,+n). Since the η’s are the only objects in our twistor space that carry these
charges, the n-point S-matrix should be proportional to (q1)n(q2)n (although there are other
possibilities when n = 3). The momentum delta function has mass dimension −6 and the
constant in the dilatation generator contributes a factor of 2n for an n-point amplitude.
The remaining objects in the amplitude must therefore cancel the 2n−6 dilatation “charge”
accumulated so far. We begin with the three-point amplitude.

7.1 3-point S-matrix

In six dimensions, the vanishing of Lorentz invariants actually introduces new variables, as
demonstrated in [18]. These variables (which are only present for the three point ampli-
tudes) may serve as additional building blocks. To see this, we write

sij = (λi)Aa(λi)Ba (λ̃j)ḃA(λ̃j)Bḃ = 〈ia|j ḃ]〈ia|jḃ] = det〈i|j] = 0

where we’ve used 〈 | to represent λ and [ | for λ̃, and the determinant is with respect to the
SU(2) indices. This implies that the 2×2 matrix 〈ia|jb] is of rank 1, and can be expressed
in terms of SU(2) spinors:

(λi)Aa (λ̃j)Aȧ = 〈ia|jȧ] = (ui)a(ũj)ȧ. (7.1)

The complete definition and some useful properties of these variables are given in ap-
pendix C. These variables were used to construct the three-point amplitude for pure Yang-
Mills theory in six dimensions [18] as well as the N = (1, 1) theory [19].

We can try to use the SU(2) spinors to construct a three-point amplitude. Since the
amplitude carries U(1) charges (+3,+3), it must be proportional to

A3 ∼ δ6(P )δA(Q1)δB(Q1)δC(Q2)δD(Q2)(uai η
1
a)(u

b
jη

2
b )

Noting that the u’s have mass dimension 1
2 , the counting for the dilatation operator is

−6 + 2 + 1 + 6 = 3 which means that we need a mass dimension three object in the
denominator. Since there is no Lorentz-invariant object of odd mass dimension, we see
that a superconformal three-point amplitude can’t be constructed using SU(2) spinors.

Another possibility is to construct the three-point amplitude using 3 q1’s and 3 q2’s.
Since each q has one free index, there are total of six free indices that need to be contracted.
Furthermore, since the only objects we have to contract these indices are εABCD, εABCD,
and the momenta (which carry two SU(4) indices), it follows that the amplitude must
contain a factor of the form qîk 6plq

ĵ
m. There are three possibilities:

• If k 6= m, this factor will vanish by the Dirac equation. For example,

qî1 6p2q
ĵ
3 = (qî1)A(6p2)AB(qĵ3)B

= −(qî1)A(6p1)AB(qĵ3)B − (qî1)A( 6p3)AB(qĵ3)B = 0

since (λi)Aa(6pi)AB = 0.
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• If k = m and î = ĵ, then

qîk 6 plqîk = ηîak η
îb
k λ

A
kaλ

B
kbplAB =

1
16
ηîck η

î
kcskl. (7.2)

where we used ηîak η
îb
k = 1

2ε
abηîck η

î
kc. This factor must vanish because because skl = 0

for a three-point amplitude.

• If k = m and î 6= ĵ, then using the SU(2) spinors u, ũ we find:

qîk 6 plq
ĵ
k|slk=0 = ηîkau

a
kũ

ḃ
l ũlḃu

c
kη
ĵ
kc = 0 (7.3)

where in the last equality we used the fact that ũ[ȧ
l ũ

ḃ]
l = 0.

We conclude that a rational superconformal three-point amplitude cannot be constructed.
Note that this result is independent of the signature or complexity of spacetime and is
basically due to the lack of spinor inner products in the chiral theory.

7.2 S-matrix for n > 3

The fact that the three-point S-matrix vanishes implies that any four-point amplitude must
have vanishing collinear limits, i.e. it’s residues must vanish in each channel. In this section
we will prove that this constraint along with the constraints of rationality and dilatation
invariance imply that it is not possible to construct a four-point amplitude. We then
generalize this argument to show that all tree-level amplitudes must vanish.

The requirement that a four-point amplitude has (+4,+4) U(1) charges and Poincaré
invariance implies that it consists of δ6(P ), 8 q’s, and some Lorentz-invariant function of
the momenta f(p). From the constraint of dilatation invariance, one finds that the function
f(p) should have mass dimension -6. If f(p) is assumed to be a rational function, we can
take it to be a fraction whose denominator is a polynomial of the kinematic invariants s,
t, and u. Since there are 8 q’s in the numerator of the amplitude (each of which has one
free index), and the only objects we have to contract these indices are εABCD, εABCD,
and the momenta in the numerator of f(p) (each of which has two free indices), there are
three possibilities:

• All eight q’s are contracted by two ε’s and there are no free indices to be con-
tracted by the momenta. In this case, dilatation invariance implies that f(p) has
the schematic form

δ6(P )δ4(Q1)δ4(Q2)
1

sijsklsmn
.

• Four of the q’s are contracted by an ε and the other four are contracted by the
momenta in the numerator of f(p). Since there are four free indices to be contracted,
there must be at least two momenta in the numerator of f(p). In the minimal case,
dilatation invariance implies that the denominator has four kinematic invariants.
Since there are only three kinematic invariants available, that means that at least
one of them is squared giving a double pole. The schematic form for this case is:

δ6(P )εABCDδA(Q1)δB(Q1)δC(Q2)δD(Q2)
(q 6pq)(q 6pq)
sijskls2mn

. (7.4)
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• All eight q’s are contracted by the momenta in the numerator. Since there are eight
free indices to be contracted, there must be at least four momenta in the numerator
of f(p). In the minimal case, dilatation invariance implies that the denominator has
five kinematic invariants. Since there are only three kinematic invariants to work
with, at least two of them must be squared, so the amplitude should have the form

δ6(P )

[
δA(Q)6pABδB(Q)

] [
δC(Q)6pCDδD(Q)

]
(q 6pq)(q 6pq)

sijs2kls
2
mn

. (7.5)

In all three cases, we need at least four δ(QAî) =
∑

l q
Aî
l in order to have manifest invariance

under supersymmetry.8 We will now demonstrate that the residue constraint cannot be
satisfied in any of these cases.

First note that a rational function of sij ’s cannot have vanishing residues.9 Thus, if skl
appears in the denominator, the numerator must have a term of the form qîl (6 pk) qĵl in order

to give a vanishing residue. This is due to the fact that qîl (6 pk) qĵl vanishes when skl → 0

as shown in eq. (7.2) and eq. (7.3). On the other hand, qîl (6 pk) qĵm with l 6= m will not
vanish when either slk or skm goes to zero. To see this, consider the four-point amplitude
depicted in figure 3. In the limit s12 → 0, the three momenta at each vertex obey on-shell
three-point kinematics. As a result, we can re-write the object qî1 ( 6 p2) qĵ3 using the SU(2)
spinors u, ũ introduced in section 7.1 (and described in appendix C):

qî1 (6 p2) qĵ3|s12=0 = ηî1a〈1a|2ȧ][2ȧ|3b〉η
ĵ
3b|s12=0 = ηî1au

a
1ũ

ȧ
2[2ȧ|3b〉ηĵ3b.

Note that [2ȧ|3b〉 can’t be written in terms of SU(2) spinors because p2 and p3 don’t lie on
the same vertex. On the other hand, if we use eq. (C.2) and note that λ̃K = iλ̃P (since
pK = −pP ), this allows us to write everything in terms of SU(2) spinors:

qî1 (6 p2) qĵ3|s12=0 = ηî1au
a
1ũ

ȧ
P [Pȧ|3b〉ηĵ3b

= −iηî1aua1ũȧP [Kȧ|3b〉ηĵ3b (7.6)

= −iηî1aua1ũȧP ũKȧub3η
ĵ
3b. (7.7)

Furthermore, in appendix C we show that |ũȧP ũKȧ| =
√
−s14. Hence

s12 = 0→ qî1 ( 6 p2) qĵ3 ∼
√
−s14

and similarly
s23 = 0→ qî1 ( 6 p2) qĵ3 ∼

√
−s12.

Therefore qî1 ( 6 p2) qĵ3 does not vanish on either the s or t channel poles.
8One might think that we need the full δ4(Q1)δ4(Q2) for manifest supersymmetry. However, since each

fermionic variable ηa has two components from the SU(2) index, δ2(Q) is sufficient to localize the η’s.

Indeed, the three-point amplitude for N = (1, 1) super Yang-Mills in six dimensions only has δ2(Q1)δ2(Q̃),

where Q, Q̃ reflect the (1, 1) supersymmetry [19].
9For example, s = 0→ t = −u. Then any vanishing residue has to be proportional to t+u which is just

s and cancels the pole.
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Figure 3. Four-point amplitude in the 6d maximal theory. In the limit s12 → 0, we are probing
the s-channel residue.

From the above discussion, we see that for every factor of the form slk which appears
in the denominator of the amplitude, the numerator must have at least one factor of the
form qîk ( 6 pl) qĵk in order to have vanishing residues in each channel. Since this property isn’t
satisfied by any of the three cases listed above,10 we conclude that there is no consistent
rational four-point amplitude for the superconformal N = (2, 0) theory.

This analysis can be easily extended to higher-point amplitudes. First of all, an n-
point amplitude requires 2n q’s, at least four of which should appear in a delta function. It
follows that one can have a maximum n− 2 factors of the form qîk ( 6 pl) qĵk in the numerator
of the amplitude. Dilatation invariance then implies that we need at least 2n− 4 factors of
the form skl in the denominator of the amplitude. The vanishing of all collinear limits then
requires that n − 2 ≥ 2n − 4 → n ≤ 2. Therefore rationality, dilatation invariance, and
vanishing collinear limits imply that all tree-level amplitudes must vanish. Since rational S-
matrix elements probe the structure of the Lagrangian, this leads us to conjecture that the
six-dimensional theory with OSp∗(8|4) symmetry does not have a Lagrangian description
(at least if one only uses (2,0) tensor multiplets).

8 Discussion

In this paper we’ve established the necessary building blocks for analyzing amplitudes of
maximally superconformal theories in three and six dimensions. In both cases, we find
that superconformal invariance implies that the three-point amplitude must vanish. This
behavior is genuine and does not depend on the signature or the complexity of spacetime.
The vanishing of the three-point amplitude puts an additional constraint on the four-
point amplitude, notably that it should have a vanishing residue in all channels. In three
dimensions, we find a unique solution for the four-point superamplitude and verify that
it agrees with the component result of the BLG model. That the BLG model is selected
by our analysis provides strong evidence that it is the only three-dimensional theory with
classical OSp(8|4) symmetry that has a Lagrangian description.

As described in appendix A, the BLG theory can be written in terms of a totally anti-
symmetric four-index structure constant which obeys a generalization of the Jacobi-identity
called the fundamental identity (see eq. (A.1)). Although the four-point superamplitude
that we constructed implies a totally anti-symmetric four-index structure constant, our
analysis does not constrain it to obey the fundamental identity. In four-dimensional Yang-
Mills theory, the Jacobi identity can be derived as a consistency condition of the BCFW

10Although some of terms in
h
δA(Q) 6pABδB(Q)

i
will vanish in certain collinear limits, it is not possible

for all of them to vanish simultaneously.
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recursion relations [52]. As we will see shortly, however, the BCFW approach does not
work straight-forwardly in three dimensions. We anticipate that after deriving the six-
point amplitude, the fundamental identity will arise as a consistency condition for the
amplitude to have the correct factorization in all three-particle channels.

In six dimensions, we are unable to find a rational amplitude that is both super-
conformal and has the correct residues. We therefore conjecture that an interacting six-
dimensional Lagrangian with classical OSp(8|4) symmetry cannot be constructed using
only (2, 0) tensor multiplets, even if the Lagrangian is non-local. A Lagrangian description
may exist, however, if one includes additional degrees of freedom. One possibility is that
these should be closed strings which couple to the two-form gauge fields of the tensor mul-
tiplets, in which case the six dimensional theory is a self-dual string theory [53–57]. It may
also be possible to construct a six-dimensional theory with classical OSp(8|2) symmetry
which becomes enhanced to OSp(8|4) symmetry at strong coupling using N = (1, 0) tensor
multiplets, similar to the ABJM construction in three-dimensions. It is unclear, however,
what the gravity dual of such a theory would be. Note that the gravity dual of stack of
M2 or M5-branes is M-theory on AdS4 × S7 or AdS7 × S4, respectively. In the ABJM
construction, 1/4 of the supersymmetry is broken on the gravity side by introducing a Zk
orbifold on the seven-sphere and the supersymmetry only becomes maximal for k = 1, 2,
which corresponds to strong-coupling on the field theory side. On the other hand, it is not
clear how to implement such an orbifold in AdS7 × S4.

Since the three-dimensional amplitudes are superconformal, one might expect that
there is a representation in supertwistor space that is similar to the link representation
proposed for N = 4 sYM [12, 13]. Unfortunately, one of the most useful tools in the
analysis of four dimensional amplitudes, the BCFW recursion relations [9, 10], cannot be
straightforwardly implemented in three dimensions. To see this, note that the BCFW
approach requires shifting the momenta of at least two legs into the complex plane while
keeping them on-shell. In other words, we must perform the shifts pi → pi+zq, pj → pj−zq
while imposing the constraints

pi · q = pj · q = q2 = 0.

In three dimensions these constraints imply that q = 0. Even without BCFW to iteratively
generate higher-point tree amplitudes, one can still use the four-point tree-level amplitude
to study loop behavior using the generalized unitarity method [62–64]. An interesting
question is how unitarity methods for loop amplitudes differentiate between the ABJM
and BLG theories, since their tree level amplitudes are closely related. Presumably the
difference will come from the difference in R-symmetry, which manifests itself through the
organization of the on-shell states summed across the cuts.

Although we mainly considered maximal superconformal theories in this paper, our
approach can be easily extended to non-maximal ones like the ABJM theory. In partic-
ular, we demonstrated that the tree-level four-point amplitude of the ABJM theory can
be obtained from our N = 8 result by integrating out one of the four fermionic coordi-
nates in the on-shell superspace. One can also use our techniques to analyze the possi-
bility of constructing a six dimensional interacting superconformal action from N = (1, 0)
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tensor multiplets [58]. This theory might be useful for describing phase transitions in six-
dimensional compactifications of string theory and M-theory [59–61]. It may also be useful
for describing M5-branes, for reasons explained above. Our methods can also be used to
analyze amplitudes of non-conformal massless theories such as the world-volume theory for
a single M5-brane [65–68].
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A Review of BLG and ABJM

The BLG theory is a three-dimensional superconformal Chern-Simons theory with classical
OSp(8|4) symmetry. The matter content consists of eight scalars and 8 Majorana fermions.
It can be written as an SO(4) gauge theory with matter in the fundamental representation
of SO(4):

L = −1
2
DµX

IaDµXIa +
i

2
ψ̄aγµDµψ

a

+
1
8
εµνλεabcd

(
Aµab∂νAλcd +

2
3
gAµabAνceAλed

)
− i

4
g2εabcdψ̄aΓIJψbXI

cX
J
d −

1
12
g4εabcdεaefhXIbXJcXKdXIeXJfXKh

where I = 1, . . . , 8, a = 1, . . . , 4 are SO(4) indices, DµX
I
a = ∂µX

I
a + gAµabX

I
b , g =√

π/k, and k is an integer called the level. Note that ΓIJ = 1
2

(
ΓI
(
ΓJ
)T − ΓJ

(
ΓI
)T) (we

use the conventions of [69]). Furthermore, γµ are the 3d Dirac matrices and ΓI are the
Clebsch-Gordan coefficients relating the three different 8d representations of the Spin(8).
In particular, the scalars transform in the 8v representation and the fermions transform in
the 8s representation (although their Spin(8) indices are not written explicitly). Note that
the theory is weakly coupled when k � 1 and that the gauge field transforms in the adjoint
representation of SO(4), i.e. Aµab = −Aµba. Also note the appearance of the four-index
invariant tensor εabcd. This tensor can be interpreted as the structure constant fabcd for a
so-called 3-algebra which obeys a generalization of the Jacobi identity:

f [abc
ef
d]ef

g = 0 (A.1)

where indices are raised and lowered using the three-algebra metric hab = δab. This formula
is referred to as the fundamental identity. It has been proven that if hab is positive-definite,
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then the only totally antisymmetric structure constant which satisfies the fundamental
identity is εabcd [70]. In this sense, the BLG theory is unique.

Three-algebras are a generic feature of superconformal Chern-Simons theories. In par-
ticular, the fundamental identity follows from the closure of supersymmetry. Although
there is only one three-algebra with positive-definite metric that gives N = 8 supersym-
metry, if one considers three-dimensional theories with lower amounts supersymmetry, one
finds a lot more possibilities. For example, there is an infinite family of three algebras
corresponding to the ABJM theory, which has N = 6 supersymmetry and gauge group
U(N)×U(N). In this case, the four-index structure constant is complex, not totally anti-
symmetric, and satisfies a slightly more general version of the fundamental identity [71].

Since SO(4) ∼ SU(2) × SU(2), the BLG theory can also be expressed as an SU(2) ×
SU(2) gauge theory, where the matter transforms in the bi-fundamental representation of
the gauge group [72]:

L = Tr

[
−DµX

I†DµXI + iψ̄γµDµψ

+
1
4
εµνλ

(
Aµ∂νAλ +

2i
3
gAµAνAλ − Âµ∂νÂλ −

2i
3
gÂµÂνÂλ

)
−2i

3
g2ψ̄ΓIJ

(
XIXJ†ψ +XJψ†XI + ψXI†XJ

)
− 8

3
g4X [IXJ†XK]XK†XJXI†

]

where DµX
I = ∂µX

I + ig
(
AµX

I −XIÂµ

)
. Note that the gauge fields Aµ and Âµ are

associated with each SU(2) and appear with opposite signs in the action. For this reason,
the BLG model is referred as a twisted Chern-Simons theory. The fields can be expanded
in terms of generators as follows:

XI = XIaT̃ a, Aµ = AjµT
j , Âµ = ÂjµT

j

where a = 1, 2, 3, 4, and j = 1, 2, 3. Note that there’s a similar expression for the spinors.
Explicit formulas for the generators are

T 1 =

(
0 1
1 0

)
, T 2 =

(
0 −i
i 0

)
, T 3 =

(
1 0
0 −1

)

T̃ j =
i

2
T j , T̃ 4 =

1
2

(
1 0
0 1

)
.

Using this formulation of the BLG theory, one can define color-ordering in scattering am-
plitudes, as demonstrated in the next appendix.

The ABJM theory can also be written as a three-dimensional twisted Chern-Simons
theory with bi-fundamental matter. Since it shares several features in common with the
BLG theory, we will only describe the action schematically. For more details see [24,
47]. The field content consists of four complex scalars ZA and four Dirac fermions ψA
transforming in the bi-fundamental representation of U(N)×U(N) (with A running from
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Figure 4. Color-ordered propagators. The gauge field Aµ is represented by a wavy line and the
gauge field Âµ is represented by a curly line.

1 to 4), as well as two U(N) gauge fields Aµ and Âµ. The matter fields transform in the
fundamental representation of the R-symmetry group SU(4) and their adjoints transform in
the anti-fundamental representation of SU(4). For k5 � N , the theory is dual to M-theory
on AdS4×S7/Zk, and for k � N � k5, it is dual to type IIA string theory on AdS4×CP 3.
For k = 1, 2, the theory is conjectured to have N = 8 supersymmetry, unlike the BLG
theory which has maximal supersymmetry for all values of the level. It is interesting to
note however, that one can gauge-fix the ABJM theory to have SU(N) × SU(N) × Zk
gauge symmetry, where ZI → e2πi/kZI under the discreet gauge group. Furthermore, if
one neglects the discreet gauge group and sets N = 2, it can be shown that one retrieves
the BLG theory.

B BLG 4-pt using Bi-fundamental notation

The interaction terms needed to compute the tree-level 4-pt scalar amplitude are

Lint = igTr
(
XI†Aµ∂µX

I − ∂µXI†AµX
I + ∂µX

I†XIÂµ −XI†∂µX
IÂµ

)
(B.1)

where g =
√
π/k and k is the level.

In field theories where the fields are matrices, it is convenient to draw Feynman dia-
grams using double-line notation which indicates how the matrix indices are contracted.
At the same time, these diagrams can be factorized into a color factor and a color-ordered
Feynman diagram which can be represented using single-line notation. The color-ordered
propagators for the gauge fields are depicted in figure 4 and are given by

±
(
εµνλp

λ − iξ pµpν
4p2

)
2
p2

where +/− corresponds to Aµ/Âµ and ξ is a gauge-fixing parameter. The color-ordered
Feynman diagrams associated with the 3-point interactions in equation (B.1) are depicted
in figure 5. They are given by

±ig (pa − pc)µ δ
IJ

where the + corresponds to the Aµ vertex and − corresponds to the Âµ vertex. Note that
all momenta are taken to be outgoing. The double-line version of the 3-point vertices is
illustrated in figure 6.

To compute the tree-level scattering amplitude, we only need to consider the planar
diagrams depicted in figure 7. The full amplitude is then given performing non-cyclic per-
mutations of the external legs. In total, there are 24 diagrams. Furthermore, each diagram
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Figure 5. Color-ordered 3-point vertices. The first diagram corresponds to the first two terms in
Eq (B.1) and the second diagram corresponds to the third and fourth terms in Eq (B.1).

Figure 6. 3-point vertices in double line notation. Note that there are two types of lines since the
gauge group is SU(2)× SU(2). The color factor for the first diagram is T̃ cT̃ a† and the color factor
for the second diagram is T̃ a†T̃ c.

factorizes into a trace and a color-ordered Feynman diagram which can be evaluated using
the color-ordered Feynman rules described above. For example, the first diagram in figure 7
is given by

4g2Tr
(
T̃ bT̃ a†T̃ dT̃ c†

)
δIJδKLεµνλ

pµapνb (pc − pd)λ

(pa + pb)
2

and the third diagram in figure 4 is given by

−4g2Tr
(
T̃ a†T̃ bT̃ c†T̃ d

)
δIJδKLεµνλ

pµapνb (pc − pd)λ

(pa + pb)
2 .

Performing the non-cyclic permutations and noting that

Tr
(
T̃ aT̃ b†T̃ cT̃ d†

)
= −Tr

(
T̃ a†T̃ bT̃ c†T̃ d

)
=

1
8
εabcd,

one finds that the 4-pt amplitude is given by

A4 = 4g2δ3(P )εabcdεµνλpaµ

[
δIJδKL

pbν (pc−pd)λ
(pa+pb)

2 +δILδKJ
pdν (pb−pc)λ

(pa+pd)
2

+δIKδJL
pcν (pd−pb)λ

(pa+pc)
2

]

which matches the result we obtained using SO(4) notation if one notes that
εµνλpaµpbν (pc − pd)λ = εµνλpaµpdν (pb − pc)λ = εµνλpaµpcν (pd − pb)λ.
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Figure 7. Planar diagrams contributing to tree-level 4-pt scalar amplitude. Non-
cyclic permutations of the external legs correspond to (Jb,Kc, Ld) → (Kc,Ld, Jb, ) ,
(Ld, Jb,Kc, ) , (Kc, Jb, Ld) , (Jb, Ld,Kc) , (Ld,Kc, Jb).

C SU(2) spinors for 6D 3-pt amplitudes

It is well known that for the 3-pt amplitude, momentum conservation and on-shell condi-
tions lead to vanishing Lorentz invariants:

p1 + p2 + p3 = 0→ p1 · p2 = p1 · p3 = p2 · p3 = 0.

As discussed in [18], this leads to a vanishing determinant of the inner product between a
chiral and an anti-chiral spinor in six dimensions

(pi)AB(pj)AB = 0→ det〈ia|jȧ] = 0.

Since the 2×2 matrix 〈ia|jȧ] has rank 1, it can be written in terms of SU(2) spinors, i.e.
〈i|j]aȧ = uiaũjȧ. Consistently defining the SU(2) spinors for all Lorentz invariants gives

〈1a|2ḃ] = u1aũ2ḃ, 〈2a|1ḃ] = −u2aũ1ḃ

〈2a|3ḃ] = u2aũ3ḃ, 〈1a|3ḃ] = −u1aũ3ḃ

〈3a|1ḃ] = u3aũ1ḃ, 〈3a|2ḃ] = −u3aũ2ḃ. (C.1)

One important property of these SU(2) spinors can be derived from momen-
tum conservation,

[λ1 · (p1 + p2 + p3)]A = 0 → 〈1a|2ḃ][2ḃ|A + 〈1a|3ċ][3ċ|A = 0

→ ũċ2[2ċ|A = ũċ3[3ċ|A = ũċ1[1ċ|A. (C.2)

Another useful identity is |ũK · ũP | =
√
−s14, which holds in the collinear limit of the

four point kinematics depicted in figure 3. This can be proven as follows:11 consider the
11We thank Donal O’Connell for discussion of the proof of this identity.
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following object:

〈4a|p3p1|4ȧ] = u4aũ
ḋ
3[3ḋ|p1|4ȧ]

= u4aũ
ḋ
4[4ḋ|p1|4ȧ] = u4aũ4ȧs14. (C.3)

On the other hand, one can also deduce

〈4a|p3p1|4ȧ] = u4aũ
ḋ
K [Kḋ|p1|4ȧ] = iu4aũ

ḋ
K [Pḋ|p1|4ȧ]

= iu4a(ũK · ũP )ub1〈1b|4ȧ] = iu4a(ũK · ũP )ubP 〈Pb|4ȧ]
= −u4aũ4ȧ(ũK · ũP )2. (C.4)

Comparing eqs. (C.3) and (C.4) gives

|ũK · ũP | =
√
−s14. (C.5)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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