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Résumé. — A quatre dimensions la théorie du champ moléculaire n’est pas valable car il y a
violation des propriétés d’invariance d’échelle par des puissances de termes logarithmiques. Cest
pourquoi il n’est pas correct de prendre la limite ¢ = 0 d’une théorie 4 4 — ¢ dimensions. Cependant
les rapports des coefficients des singularités logarithmiques sont, dans la plupart des cas, obtenus
correctement par cette limite. Néanmoins, il est parfois nécessaire d’€tre prudent et un exemple est
donné d’un rapport qui n’est pas égal 4 sa valeur de champ moyen.

Abstract. — In four dimensions mean field theory is not valid since scaling is violated by powers
of logarithms. Therefore the theory is not the ¢ = 0 limit of the 4 — ¢ dimensional theory. However
ratios of critical amplitudes are in most cases correctly described by this limit. In some cases, it is
nevertheless necessary to be cautious, and an example is provided of a ratio which does not coincide

with its mean field value.

Several years ago Larkin and Khmel nitskii [1]
discovered that in four dimensions the critical behavior
was classical apart from logarithmic factors. They
also showed that this four-dimensional problem was
relevant for the discussion of the critical behavior
of a three-dimensional uniaxial ferroelectric. This
was further supported by A. Aharony’s study [2] of
uniaxial magnets with dipolar interactions. Thisd = 4
problem is therefore more than a mere mathematical
exercise. Most calculations have been done by the
original authors; the renormalization group (R.G.)
techniques developed later by K. Wilson [3] provide
a more transparent approach to this problem, and
they have been applied either through recursion
formulae [4] or through field theoretical methods [5].
In all cases, one discovers that the effective coupling
constant which governs the long-distance behavior
of the theory is small like the inverse of the logarithm
of the correlation length. Thus the problem may be
solved by using the renormalization group equations
and perturbation theory.

The specific problem that we have studied here
concerns the amplitude of the singularities. Let us
discuss for definiteness the example of the specific
heat ratio. When d is less than four we know that the
singular behavior of the specific heat [6] may be
described in terms of ¢t = (T — T,) as,

A, t7° t>0
C= .
A_(— ¢ t<0

(1a)
(18)

(*) On leave of absence from the Service de Physique Théorique,
Saclay, B.P. 2, 91190, Gif-sur-Yvette, France.

with
m = %i%a + &) )
and
A, n_, 2
Z:ZZ(I+8)+0(8) €))

in which as usual ¢ = 4 — d and » is the number of
components of the order parameter. In four dimen-

sions the corresponding formulae read

N 4-n

A, |Int|"*®
C =

A_|In(- )]

t>0 (4a)

4—n
n+ 8

-1t<0 (4b)
and thus eq. (4) is not the ¢ = 0 limit of eq. (1).
(Even the regular terms would not help ; in order to
obtain the limit correctly it would be necessary to
include in eq. (1) the correction-to-scaling terms).
The question we are concerned with is the ratio
A, /A_. Though the limit of eq. (4) is not eq. (1) it
will be shown below that

A =lm g 4 — s ©)

&0
This property holds in other cases, but it will be

argued that it is not always true and a specific counter-
example will be provided.

1. Calculation of the free energy in zero field. — It has
been shown in reference [5] that the free energy
I'(M, t, g) in which M is the magnetization, and g
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the coupling constant of the four-spin interaction,
satisfies an R.G. equation whose solution is

M) 12)

M, ¢, Ar ,
( 9 = ( R

(/1)> 6

in which we have used dilatation-dependent variables
defined by the equations

g(2)
dg’
Inid= —_—
A=) B @
1) o2 v(.i;') ~2
TP J Ty Y@
M(3) ““tg)
— = =exp — = ——d )
2), B)

The functions f(g), n(g), v(g) can be determined
from a perturbation theory [7]. They are related by
the following expressions

. %) (10)

1 _n+2
o T e 9 +0(g) (11)
1) =24 + 0g”) (12

Up to now, A has been an arbitrary dilatation para-
meter in eq. (6). If 1 goes to zero, and we shall see
later why it does, integration of eq. (7)-(12) gives at
leading order

o) = — il (13
(A =at|lni |"(ﬂ—§) (14)
M) = (15)

in which a and b are two constants which depend on
the value of the initial coupling constant g.

1.1 BEHAVIOR ABOVE T,. — We chose A so that
A2 =1. (16)

Together with eq. (14) this means that in the critical
region A goes to zero as

n+2
A2 =at|ilnt| -G+ .

an
Thus g(4) goes to zero when ¢ is small. Consequently,
from eq. (6) we see that it is sufficient to know the
free-energy for g small in order to determine the
critical free-energy completely. Perturbation theory
gives for small g

M . 3n 2
94T 20=ng"
(18)

Fpert. th.(M’ 1 g) § M2
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The last term of the r.h.s. of eq. (18) is a regular term,
which is generated by the non-multiplicatively renor-
malizable character of the energy-energy correlation
function [5].

We therefore conclude that above T, in zero-field
the free-energy behaves as

3n A%

F(M=0,t,g)=—m§a—) 19)
or using eq. (17)
4—n
_or 3n a? "8
C = = -
TSI oaE (n+8) Int ,
t>0. (20

1.2 BEHAVIOR BELOW 7. — Since ¢ is negative we
now choose 4 so that

1(A)

T =1

@n

This has the effect of replacing ¢ by (— ¢) in eq. (17).
We must also determine the free-energy in zero-field
below T, in perturbation theory. Solving the equa-
tion (0I'/OM)per. . = 0 for ¢t < 0 we obtain

— (6 1/9)
and thus
3 4 7
Fpert. n.(M, 1 < 0,9)g=o = — 3T=ng" (22)
Therefore eq. (19) is replaced by
3 4 3
I(M,t1<0,9)g=0 = — 3T ngl) (23)
We therefore end up with
ae
c=4—3i"( +8)l—ln|t| 1<0. (4

2. Other amplitude ratios. — Similar calculations

may be done for other ratios — for instance the magne-
tic susceptibility (» = 1) behaves as

C~+%|lnt|”3, t>0
=93 _ (25
C—;[lnlt[]m, t<0
with
é+_1imc+ =2
’ T 0~ <
C_ C_

However, let us consider the ratio O, defined in the
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following way : if we define the amplitudes c., C,
and B by

H=0, t>0 (26a)

x =Cotilni|

y =C H 2P |InH|' t=0 (26b)

~ 3
M=B(- )" |lne|™® H=0, t<0 (26c)

then ~ s¢

LS e @n

with 6 = 3. The corresponding Q, is equal to one
for mean field theory.

In order to calculate O, we have to obtain the
expression of the equation of state [5]. The derivative
with respect to M of eq. (6) gives

MQA) | MG) «A)
HM, t,g) =2 ——H|—=,—>,g9A)|. (28
(4, 1,9) M[Aﬁg()()
By the same arguments as above, we know that it is
sufficient now to compute H in perturbation theory :

Hperl‘ th. = M + gM3/6 . (29)

However we now have to choose 4 and it is necessary
to distinguish between two regimes i) M?Z/|t| is
not infinitesimally small and then we can fix 4 by
the condition

M@ =1 (30)

ii) above T, when H goes to zero, M?/| t | is small
and we have to fix 1 by the condition
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except when M2/t < 1, in which case we must use
the condition (31) and the result is

H(M, t,g) = ab® tM —2-1nt +
b* M3
_— . (33
n+8|iln¢| (33)
From eq. (32) we find
~ 1 (n+ 8\
C.==\|\—+ 34
S e
and
- (-5
B =350+ 8)2 (7+s) (35)
and from eq. (33)
~ 1 -G
€ =—52 e (36)
We can now compute 0, ;_the result is
0,=3" 1)

instead of one. This means that if logarithmic correc-
tions are present, it is necessary to be careful if one
considers universal ratios concerning amplitudes
governing logarithmic singularities in different varia-

A2 =1. (1) bles.
The same algebra leads to the results :
(22 bt M Acknovyledg@ents. — This problem originatec} from
HWM,t,g) =ab>tM|InM| "% + a discussion with Professor P. Hohenberg. It is also
n+8|InM| , pleasure to thank Dr. A. Aharony for informative
(32) discussions.
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