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Abstract

Abstract meaning representations (AMRs)

are broad-coverage sentence-level seman-

tic representations. AMRs represent sen-

tences as rooted labeled directed acyclic

graphs. AMR parsing is challenging partly

due to the lack of annotated alignments be-

tween nodes in the graphs and words in

the corresponding sentences. We intro-

duce a neural parser which treats align-

ments as latent variables within a joint

probabilistic model of concepts, relations

and alignments. As exact inference re-

quires marginalizing over alignments and

is infeasible, we use the variational auto-

encoding framework and a continuous re-

laxation of the discrete alignments. We

show that joint modeling is preferable to

using a pipeline of align and parse. The

parser achieves the best reported results

on the standard benchmark (74.4% on

LDC2016E25).

1 Introduction

Abstract meaning representations (AMRs) (Ba-

narescu et al., 2013) are broad-coverage sentence-

level semantic representations. AMR encodes,

among others, information about semantic rela-

tions, named entities, co-reference, negation and

modality. The semantic representations can be re-

garded as rooted labeled directed acyclic graphs

(see Figure 1). As AMR abstracts away from de-

tails of surface realization, it is potentially benefi-

cial in many semantic related NLP tasks, including

text summarization (Liu et al., 2015; Dohare and

Karnick, 2017), machine translation (Jones et al.,

2012) and question answering (Mitra and Baral,

2016).

The  boys  must  not  go

-

ARG2
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boy go-02

obligate-01
1

3 2 4

Figure 1: An example of AMR, the dashed lines

denote latent alignments, obligate-01 is the root.

Numbers indicate depth-first traversal order.

AMR parsing has recently received a lot of at-

tention (e.g., (Flanigan et al., 2014; Artzi et al.,

2015; Konstas et al., 2017)). One distinctive

aspect of AMR annotation is the lack of ex-

plicit alignments between nodes in the graph (con-

cepts) and words in the sentences. Though this

arguably simplified the annotation process (Ba-

narescu et al., 2013), it is not straightforward to

produce an effective parser without relying on an

alignment. Most AMR parsers (Damonte et al.,

2017; Flanigan et al., 2016; Werling et al., 2015;

Wang and Xue, 2017; Foland and Martin, 2017)

use a pipeline where the aligner training stage pre-

cedes training a parser. The aligners are not di-

rectly informed by the AMR parsing objective and

may produce alignments suboptimal for this task.

In this work, we demonstrate that the align-

ments can be treated as latent variables in a joint

probabilistic model and induced in such a way as

to be beneficial for AMR parsing. Intuitively, in

our probabilistic model, every node in a graph

is assumed to be aligned to a word in a sen-

tence: each concept is predicted based on the cor-

responding RNN state. Similarly, graph edges

(i.e. relations) are predicted based on representa-

tions of concepts and aligned words (see Figure 2).

As alignments are latent, exact inference requires

marginalizing over latent alignments, which is in-
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feasible. Instead we use variational inference,

specifically the variational autoencoding frame-

work of Kingma and Welling (2014). Using dis-

crete latent variables in deep learning has proven

to be challenging (Mnih and Gregor, 2014; Born-

schein and Bengio, 2015). We use a continu-

ous relaxation of the alignment problem, rely-

ing on the recently introduced Gumbel-Sinkhorn

construction (Mena et al., 2018). This yields a

computationally-efficient approximate method for

estimating our joint probabilistic model of con-

cepts, relations and alignments.

We assume injective alignments from concepts

to words: every node in the graph is aligned to

a single word in the sentence and every word is

aligned to at most one node in the graph. This is

necessary for two reasons. First, it lets us treat

concept identification as sequence tagging at test

time. For every word we would simply predict the

corresponding concept or predict NULL to signify

that no concept should be generated at this posi-

tion. Secondly, Gumbel-Sinkhorn can only work

under this assumption. This constraint, though of-

ten appropriate, is problematic for certain AMR

constructions (e.g., named entities). In order to

deal with these cases, we re-categorized AMR

concepts. Similar recategorization strategies have

been used in previous work (Foland and Martin,

2017; Peng et al., 2017).

The resulting parser achieves 74.4% Smatch

score on the standard test set when using

LDC2016E25 training set,1 an improvement of

3.4% over the previous best result (van Noord and

Bos, 2017). We also demonstrate that inducing

alignments within the joint model is indeed ben-

eficial. When, instead of inducing alignments, we

follow the standard approach and produce them

on preprocessing, the performance drops by 0.9%

Smatch. Our main contributions can be summa-

rized as follows:

• we introduce a joint probabilistic model for

alignment, concept and relation identifica-

tion;

• we demonstrate that a continuous relaxation

can be used to effectively estimate the model;

• the model achieves the best reported results.2

1The standard deviation across multiple training runs was
0.16%.

2The code can be accessed from https://github.

com/ChunchuanLv/AMR_AS_GRAPH_PREDICTION

2 Probabilistic Model

In this section we describe our probabilistic model

and the estimation technique. In section 3, we de-

scribe preprocessing and post-processing (includ-

ing concept re-categorization, sense disambigua-

tion, wikification and root selection).

2.1 Notation and setting

We will use the following notation throughout the

paper. We refer to words in the sentences as w =
(w1, . . . , wn), where n is sentence length, wk ∈ V
for k ∈ {1 . . . , n}. The concepts (i.e. labeled

nodes) are c = (c1, . . . , cm), where m is the num-

ber of concepts and ci ∈ C for i ∈ {1 . . . ,m}. For

example, in Figure 1, c = (obligate, go, boy, -).3

Note that senses are predicted at post-processing,

as discussed in Section 3.2 (i.e. go is labeled as

go-02).

A relation between ‘predicate concept’ i and

‘argument concept’ j is denoted by rij ∈ R; it

is set to NULL if j is not an argument of i. In our

example, r2,3 = ARG0 and r1,3 = NULL. We will

use R to denote all relations in the graph.

To represent alignments, we will use a =
{a1, . . . , am}, where ai ∈ {1, . . . , n} returns the

index of a word aligned to concept i. In our exam-

ple, a1 = 3.

All three model components rely on bi-

directional LSTM encoders (Schuster and Paliwal,

1997). We denote states of BiLSTM (i.e. con-

catenation of forward and backward LSTM states)

as hk ∈ R
d (k ∈ {1, . . . , n}). The sentence

encoder takes pre-trained fixed word embeddings,

randomly initialized lemma embeddings, part-of-

speech and named-entity tag embeddings.

2.2 Method overview

We believe that using discrete alignments, rather

than attention-based models (Bahdanau et al.,

2015) is crucial for AMR parsing. AMR banks

are a lot smaller than parallel corpora used in ma-

chine translation (MT) and hence it is important

to inject a useful inductive bias. We constrain our

alignments from concepts to words to be injective.

First, it encodes the observation that concepts are

mostly triggered by single words (especially, after

re-categorization, Section 3.1). Second, it implies

3The probabilistic model is invariant to the ordering of
concepts, though the order affects the inference algorithm
(see Section 2.5). We use depth-first traversal of the graph
to generate the ordering.

https://github.com/ChunchuanLv/AMR_AS_GRAPH_PREDICTION
https://github.com/ChunchuanLv/AMR_AS_GRAPH_PREDICTION
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Figure 2: Relation identification: predicting a re-

lation between boy and go-02 relying on the two

concepts and corresponding RNN states.

that each word corresponds to at most one con-

cept (if any). This encourages competition: align-

ments are mutually-repulsive. In our example, ob-

ligate is not lexically similar to the word must and

may be hard to align. However, given that other

concepts are easy to predict, alignment candidates

other than must and the will be immediately ruled

out. We believe that these are the key reasons for

why attention-based neural models do not achieve

competitive results on AMR (Konstas et al., 2017)

and why state-of-the-art models rely on aligners.

Our goal is to combine best of two worlds: to

use alignments (as in state-of-the-art AMR meth-

ods) and to induce them while optimizing for the

end goal (similarly to the attention component of

encoder-decoder models).

Our model consists of three parts: (1) the

concept identification model Pθ(c|a,w); (2) the

relation identification model Pφ(R|a,w, c) and

(3) the alignment model Qψ(a|c, R,w).4 For-

mally, (1) and (2) together with the uniform

prior over alignments P (a) form the generative

model of AMR graphs. In contrast, the align-

ment model Qψ(a|c, R,w), as will be explained

below, is approximating the intractable posterior

Pθ,φ(a|c, R,w) within that probabilistic model.

In other words, we assume the following model

for generating the AMR graph:

Pθ,φ(c, R|w)=
∑

a

P (a)Pθ(c|a,w)Pφ(R|a,w, c)

=
∑

a

P (a)
m∏

i=1

P (ci|hai)
m∏

i,j=1

P (rij |hai ,ci,haj ,cj)

4θ, φ and ψ denote all parameters of the models.

AMR concepts are assumed to be generated condi-

tional independently relying on the BiLSTM states

and surface forms of the aligned words. Similarly,

relations are predicted based only on AMR con-

cept embeddings and LSTM states corresponding

to words aligned to the involved concepts. Their

combined representations are fed into a bi-affine

classifier (Dozat and Manning, 2017) (see Fig-

ure 2).

The expression involves intractable marginal-

ization over all valid alignments. As stan-

dard in variational autoencoders, VAEs (Kingma

and Welling, 2014), we lower-bound the log-

likelihood as

logPθ,φ(c, R|w)

≥ EQ[logPθ(c|a,w)Pφ(R|a,w, c)]

−DKL(Qψ(a|c, R,w)||P (a)), (1)

where Qψ(a|c, R,w) is the variational posterior

(aka the inference network), EQ[. . .] refers to the

expectation under Qψ(a|c, R,w) and DKL is the

Kullback-Liebler divergence. In VAEs, the lower

bound is maximized both with respect to model

parameters (θ and φ in our case) and the parame-

ters of the inference network (ψ). Unfortunately,

gradient-based optimization with discrete latent

variables is challenging. We use a continuous re-

laxation of our optimization problem, where real-

valued vectors âi ∈ R
n (for every concept i) ap-

proximate discrete alignment variables ai. This

relaxation results in low-variance estimates of the

gradient using the parameterization trick (Kingma

and Welling, 2014), and ensures fast and stable

training. We will describe the model components

and the relaxed inference procedure in detail in

sections 2.6 and 2.7.

Though the estimation procedure requires the

use of the relaxation, the learned parser is straight-

forward to use. Given our assumptions about the

alignments, we can independently choose for each

word wk (k = 1, . . . ,m) the most probably con-

cept according to Pθ(c|hk). If the highest scor-

ing option is NULL, no concept is introduced.

The relations could then be predicted relying on

Pφ(R|a,w, c). This would have led to generating

inconsistent AMR graphs, so instead we search for

the highest scoring valid graph (see Section 3.2).

Note that the alignment model Qψ is not used at

test time and only necessary to train accurate con-

cept and relation identification models.
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2.3 Concept identification model

The concept identification model chooses a con-

cept c (i.e. a labeled node) conditioned on the

aligned word k or decides that no concept should

be introduced (i.e. returns NULL). Though it can

be modeled with a softmax classifier, it would

not be effective in handling rare or unseen words.

First, we split the decision into estimating the

probability of concept category τ(c) ∈ T (e.g.

‘number’, ’frame’) and estimating the probabil-

ity of the specific concept within the chosen cat-

egory. Second, based on a lemmatizer and train-

ing data5 we prepare one candidate concept ek for

each word k in vocabulary (e.g., it would propose

want if the word is wants). Similar to Luong et al.

(2015), our model can then either copy the candi-

date ek or rely on the softmax over potential con-

cepts of category τ . Formally, the concept predic-

tion model is defined as

Pθ(c|hk, wk) = P (τ(c)|hk, wk)×

[[ek = c]]× exp(vTcopyhk) + exp(vTc hk)

Z(hk, θ)
,

where the first multiplicative term is a soft-

max classifier over categories (including NULL);

vcopy,vc ∈ R
d (for c ∈ C) are model parameters;

[[. . .]] denotes the indicator function and equals 1

if its argument is true and 0, otherwise; Z(h, θ) is

the partition function ensuring that the scores sum

to 1.

2.4 Relation identification model

We use the following arc-factored relation identi-

fication model:

Pφ(R|a,w, c) =

m∏

i,j=1

P (rij |hai ,ci,haj ,cj) (2)

Each term is modeled in exactly the same way:

1. for both endpoints, embedding of the concept

c is concatenated with the RNN state h;

2. they are linearly projected to a lower dimen-

sion separately through Mh(hai ◦ ci) ∈ R
df

and Md(haj ◦ cj) ∈ R
df , where ◦ denotes

concatenation;

3. a log-linear model with bilinear scores

Mh(hai ◦ ci)
TCrMd(haj ◦ cj), Cr ∈ R

df×df

is used to compute the probabilities.

5See supplementary materials.

In the above discussion, we assumed that BiL-

STM encodes a sentence once and the BiLSTM

states are then used to predict concepts and rela-

tions. In semantic role labeling, the task closely

related to the relation identification stage of AMR

parsing, a slight modification of this approach

was shown more effective (Zhou and Xu, 2015;

Marcheggiani et al., 2017). In that previous work,

the sentence was encoded by a BiLSTM once per

each predicate (i.e. verb) and the encoding was

in turn used to identify arguments of that predi-

cate. The only difference across the re-encoding

passes was a binary flag used as input to the BiL-

STM encoder at each word position. The flag

was set to 1 for the word corresponding to the

predicate and to 0 for all other words. In that

way, BiLSTM was encoding the sentence specif-

ically for predicting arguments of a given predi-

cate. Inspired by this approach, when predicting

label rij for j ∈ {1, . . . m}, we input binary flags

p1, . . .pn to the BiLSTM encoder which are set

to 1 for the word indexed by ai (pai = 1) and to

0 for other words (pj = 0, for j 6= ai). This also

means that BiLSTM encoders for predicting rela-

tions and concepts end up being distinct. We use

this multi-pass approach in our experiments.6

2.5 Alignment model

Recall that the alignment model is only used at

training, and hence it can rely both on input (states

h1, . . . ,hn) and on the list of concepts c1, . . . , cm.

Formally, we add (m−n) NULL concepts to the

list.7 Aligning a word to any NULL, would corre-

spond to saying that the word is not aligned to any

‘real’ concept. Note that each one-to-one align-

ment (i.e. permutation) between n such concepts

and n words implies a valid injective alignment

of n words to m ‘real’ concepts. This reduction

to permutations will come handy when we turn to

the Gumbel-Sinkhorn relaxation in the next sec-

tion. Given this reduction, from now on, we will

assume that m = n.

As with sentences, we use a BiLSTM model

to encode concepts c, where gi ∈ Rdg , i ∈
{1, . . . , n}. We use a globally-normalized align-

6Using the vanilla one-pass model from equation (2) re-
sults in 1.4% drop in Smatch score.

7After re-categorization (Section 3.1), m ≥ n holds for
most cases. For exceptions, we append NULL to the sentence.
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ment model:

Qψ(a|c, R,w) =
exp(

∑n
i=1 ϕ(gi,hai))

Zψ(c,w)
,

where Zψ(c,w) is the intractable partition func-

tion and the terms ϕ(gi,hai) score each alignment

link according to a bilinear form

ϕ(gi,hai) = gTi Bhai , (3)

where B ∈ R
dg×d is a parameter matrix.

2.6 Estimating model with Gumbel-Sinkhorn

Recall that our learning objective (1) involves ex-

pectation under the alignment model. The parti-

tion function of the alignment model Zψ(c,w) is

intractable, and it is tricky even to draw samples

from the distribution. Luckily, the recently pro-

posed relaxation (Mena et al., 2018) lets us cir-

cumvent this issue. First, note that exact samples

from a categorical distribution can be obtained us-

ing the perturb-and-max technique (Papandreou

and Yuille, 2011). For our alignment model, it

would correspond to adding independent noise to

the score for every possible alignment and choos-

ing the highest scoring one:

a⋆ = argmax
a∈P

n∑

i=1

ϕ(gi,hai) + ǫa, (4)

where P is the set of all permutations of n

elements, ǫa is a noise drawn independently

for each a from the fixed Gumbel distribution

(G(0, 1)). Unfortunately, this is also intractable,

as there are n! permutations. Instead, in perturb-

and-max an approximate schema is used where

noise is assumed factorizable. In other words,

first noisy scores are computed as ϕ̂(gi,hai) =
ϕ(gi,hai) + ǫi,ai , where ǫi,ai ∼ G(0, 1) and

an approximate sample is obtained by a⋆ =
argmaxa

∑n
i=1 ϕ̂(gi,hai),

Such sampling procedure is still intractable in

our case and also non-differentiable. The main

contribution of Mena et al. (2018) is approximat-

ing this argmax with a simple differentiable com-

putation â = St(Φ,Σ) which yields an approxi-

mate (i.e. relaxed) permutation. We use Φ and Σ
to denote the n × n matrices of alignment scores

ϕ(gi,hk) and noise variables ǫik, respectively. In-

stead of returning index ai for every concept i,

it would return a (peaky) distribution over words

âi. The peakiness is controlled by the temperature

parameter t of Gumbel-Sinkhorn which balances

smoothness (‘differentiability’) vs. bias of the es-

timator. For further details and the derivation, we

refer the reader to the original paper (Mena et al.,

2018).

Note that Φ is a function of the alignment model

Qψ, so we will write Φψ in what follows. The

variational bound (1) can now be approximated as

EΣ∼G(0,1)[logPθ(c|St(Φψ,Σ),w)

+ logPφ(R|St(Φψ,Σ),w, c)]

−DKL(
Φψ +Σ

t
||
Σ

t0
) (5)

Following Mena et al. (2018), the original KL

term from equation (1) is approximated by the KL

term between two n× n matrices of i.i.d. Gumbel

distributions with different temperature and mean.

The parameter t0 is the ‘prior temperature’.

Using the Gumbel-Sinkhorn construction un-

fortunately does not guarantee that
∑

i âij = 1. To

encourage this equality to hold, and equivalently

to discourage overlapping alignments, we add an-

other regularizer to the objective (5):

Ω(â, λ) = λ
∑

j

max(
∑

i

(âij)− 1, 0). (6)

Our final objective is fully differentiable with

respect to all parameters (i.e. θ, φ and ψ) and has

low variance as sampling is performed from the

fixed non-parameterized distribution, as in stan-

dard VAEs.

2.7 Relaxing concept and relation

identification

One remaining question is how to use the soft

input â = St(Φψ,Σ) in the concept and re-

lation identification models in equation (5). In

other words, we need to define how we compute

Pθ(c|St(Φψ,Σ),w) and Pφ(R|St(Φψ,Σ),w, c).

The standard technique would be to pass to the

models expectations under the relaxed variables∑n
k=1 âikhk, instead of the vectors hai (Maddison

et al., 2017; Jang et al., 2017). This is what we do

for the relation identification model. We use this

approach also to relax the one-hot encoding of the

predicate position (p, see Section 2.4).

However, the concept prediction model

logPθ(c|St(Φψ,Σ),w) relies on the pointing

mechanism, i.e. directly exploits the words w

rather than relies only on biLSTM states hk. So
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Figure 3: An example of re-categorized AMR.

AMR graph at the top, re-categorized concepts in

the middle, and the sentence is at the bottom.

instead we treat âi as a prior in a hierarchical

model:

logPθ(ci|âi,w)

≈ log

n∑

k=1

âikPθ(ci|ai = k,w) (7)

As we will show in our experiments, a softer ver-

sion of the loss is even more effective:

logPθ(ci|âi,w)

≈ log
n∑

k=1

(âikPθ(ci|ai = k,w))α, (8)

where we set the parameter α = 0.5. We believe

that using this loss encourages the model to more

actively explore the alignment space. Geometri-

cally, the loss surface shaped as a ball in the 0.5-

norm space would push the model away from the

corners, thus encouraging exploration.

3 Pre- and post-pocessing

3.1 Re-Categorization

AMR parsers often rely on a pre-processing stage,

where specific subgraphs of AMR are grouped to-

gether and assigned to a single node with a new

compound category (e.g., Werling et al. (2015);

Foland and Martin (2017); Peng et al. (2017)); this

transformation is reversed at the post-processing

stage. Our approach is very similar to the Factored

Concept Label system of Wang and Xue (2017),

with one important difference that we unpack our

concepts before the relation identification stage, so

the relations are predicted between original con-

cepts (all nodes in each group share the same

alignment distributions to the RNN states). Intu-

itively, the goal is to ensure that concepts rarely

lexically triggered (e.g., thing in Figure 3) get

grouped together with lexically triggered nodes.

Such ‘primary’ concepts get encoded in the cat-

egory of the concept (the set of categories is τ , see

also section 2.3). In Figure 3, the re-categorized

concept thing(opinion) is produced from thing and

opine-01. We use concept as the dummy cate-

gory type. There are 8 templates in our system

which extract re-categorizations for fixed phrases

(e.g. thing(opinion)), and a deterministic system

for grouping lexically flexible, but structurally sta-

ble sub-graphs (e.g., named entities, have-rel-role-

91 and have-org-role-91 concepts).

Details of the re-categorization procedure and

other pre-processing are provided in appendix.

3.2 Post-processing

For post-processing, we handle sense-

disambiguation, wikification and ensure le-

gitimacy of the produced AMR graph. For sense

disambiguation we pick the most frequent sense

for that particular concept (‘-01’, if unseen). For

wikification we again look-up in the training set

and default to ”-”. There is certainly room for

improvement in both stages. Our probability

model predicts edges conditional independently

and thus cannot guarantee the connectivity of

AMR graph, also there are additional constraints

which are useful to impose. We enforce three

constraints: (1) specific concepts can have only

one neighbor (e.g., ‘number’ and ‘string’; see

appendix for details); (2) each predicate concept

can have at most one argument for each relation

r ∈ R; (3) the graph should be connected.

Constraint (1) is addressed by keeping only the

highest scoring neighbor. In order to satisfy the

last two constraints we use a simple greedy proce-

dure. First, for each edge, we pick-up the highest

scoring relation and edge (possibly NULL). If

the constraint (2) is violated, we simply keep the

highest scoring edge among the duplicates and

drop the rest. If the graph is not connected (i.e.

constraint (3) is violated), we greedily choose

edges linking the connected components until the

graph gets connected (MSCG in Flanigan et al.

(2014)).

Finally, we need to select a root node. Simi-

larly to relation identification, for each candidate

concept ci, we concatenate its embedding with

the corresponding LSTM state (hai) and use these

scores in a softmax classifier over all the concepts.
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Model Data Smatch

JAMR (Flanigan et al., 2016) R1 67.0

AMREager (Damonte et al., 2017) R1 64.0

CAMR (Wang et al., 2016) R1 66.5

SEQ2SEQ + 20M (Konstas et al., 2017) R1 62.1

Mul-BiLSTM (Foland and Martin, 2017) R1 70.7

Ours R1 73.7

Neural-Pointer (Buys and Blunsom, 2017) R2 61.9

ChSeq (van Noord and Bos, 2017) R2 64.0

ChSeq + 100K (van Noord and Bos, 2017) R2 71.0

Ours R2 74.4 ± 0.16

Table 1: Smatch scores on the test set. R2 is

LDC2016E25 dataset, and R1 is LDC2015E86

dataset. Statistics on R2 are over 8 runs.

4 Experiments and Discussion

4.1 Data and setting

We primarily focus on the most recent

LDC2016E25 (R2) dataset, which consists

of 36521, 1368 and 1371 sentences in training,

development and testing sets, respectively. The

earlier LDC2015E86 (R1) dataset has been

used by much of the previous work. It contains

16833 training sentences, and same sentences for

development and testing as R2.8

We used the development set to perform model

selection and hyperparameter tuning. The hyper-

parameters, as well as information about embed-

dings and pre-processing, are presented in the sup-

plementary materials.

We used Adam (Kingma and Ba, 2014) to opti-

mize the loss (5) and to train the root classifier.

Our best model is trained fully jointly, and we

do early stopping on the development set scores.

Training takes approximately 6 hours on a single

GeForce GTX 1080 Ti with Intel Xeon CPU E5-

2620 v4.

4.2 Experiments and discussion

We start by comparing our parser to previous work

(see Table 1). Our model substantially outper-

forms all the previous models on both datasets.

Specifically, it achieves 74.4% Smatch score on

LDC2016E25 (R2), which is an improvement of

3.4% over character seq2seq model relying on

silver data (van Noord and Bos, 2017). For

LDC2015E86 (R1), we obtain 73.7% Smatch

score, which is an improvement of 3.0% over

8Annotation in R2 has also been slightly revised.

Models A’ C’ J’ Ch’ Ours

17 16 16 17

Dataset R1 R1 R1 R2 R2

Smatch 64 63 67 71 74.4±0.16

Unlabeled 69 69 69 74 77.1±0.10
No WSD 65 64 68 72 75.5±0.12
Reentrancy 41 41 42 52 52.3±0.43
Concepts 83 80 83 82 85.9±0.11
NER 83 75 79 79 86.0±0.46
Wiki 64 0 75 65 75.7±0.30
Negations 48 18 45 62 58.4±1.32
SRL 56 60 60 66 69.8±0.24

Table 2: F1 scores on individual phenom-

ena. A’17 is AMREager, C’16 is CAMR, J’16 is

JAMR, Ch’17 is ChSeq+100K. Ours are marked

with standard deviation.

Metric Pre- R1 Pre- R2

Align Align mean

Smatch 72.8 73.7 73.5 74.4

Unlabeled 75.3 76.3 76.1 77.1

No WSD 73.8 74.7 74.6 75.5

Reentrancy 50.2 50.6 52.6 52.3

Concepts 85.4 85.5 85.5 85.9

NER 85.3 84.8 85.3 86.0

Wiki 66.8 75.6 67.8 75.7

Negations 56.0 57.2 56.6 58.4

SRL 68.8 68.9 70.2 69.8

Table 3: F1 scores of on subtasks. Scores on

ablations are averaged over 2 runs. The left side

results are from LDC2015E86 and right results are

from LDC2016E25.

the previous best model, multi-BiLSTM parser

of Foland and Martin (2017).

In order to disentangle individual phenomena,

we use the AMR-evaluation tools (Damonte et al.,

2017) and compare to systems which reported

these scores (Table 2). We obtain the highest

scores on most subtasks. The exception is nega-

tion detection. However, this is not too surpris-

ing as many negations are encoded with morphol-

ogy, and character models, unlike our word-level

model, are able to capture predictive morphologi-

cal features (e.g., detect prefixes such as “un-” or

“im-”).

Now, we turn to ablation tests (see Table 3).

First, we would like to see if our latent align-

ment framework is beneficial. In order to test this,

we create a baseline version of our system (‘pre-

align’) which relies on the JAMR aligner (Flani-
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Figure 4: When modeling concepts alone, the pos-

terior probability of the correct (green) and wrong

(red) alignment links will be the same.

Ablation Concepts SRL Smatch

2 stages 85.6 68.9 73.6

2 stages, tune align 85.6 69.2 73.9

Full model 85.9 69.8 74.4

Table 4: Ablation studies: effect of joint model-

ing (all on R2). Scores on ablations are averaged

over 2 runs. The first two models load the same

concept and alignment model before the second

stage.

gan et al., 2014), rather than induces alignments as

latent variables. Recall that in our model we used

training data and a lemmatizer to produce candi-

dates for the concept prediction model (see Sec-

tion 2.3, the copy function). In order to have a

fair comparison, if a concept is not aligned after

JAMR, we try to use our copy function to align it.

If an alignment is not found, we make the align-

ment uniform across the unaligned words. In pre-

liminary experiments, we considered alternatives

versions (e.g., dropping concepts unaligned by

JAMR or dropping concepts unaligned after both

JAMR and the matching heuristic), but the chosen

strategy was the most effective. These scores of

pre-align are superior to the results from Foland

and Martin (2017) which also relies on JAMR

alignments and uses BiLSTM encoders. There

are many potential reasons for this difference in

performance. For example, their relation identi-

fication model is different (e.g., single pass, no

bi-affine modeling), they used much smaller net-

works than us, they use plain JAMR rather than a

combination of JAMR and our copy function, they

use a different recategorization system. These re-

sults confirm that we started with a strong basic

model, and that our variational alignment frame-

work provided further gains in performance.

Now we would like to confirm that joint train-

ing of alignments with both concepts and relations

is beneficial. In other words, we would like to see

if alignments need to be induced in such a way

Ablation Concepts SRL Smatch

No Sinkhorn 85.7 69.3 73.8

No Sinkhorn reg 85.6 69.5 74.2

No soft loss 85.2 69.1 73.7

Full model 85.9 69.8 74.4

Table 5: Ablation studies: alignment modeling

and relaxation (all on R2). Scores on ablations are

averaged over 2 runs.

as to benefit the relation identification task. For

this ablation we break the full joint training into

two stages. We start by jointly training the align-

ment model and the concept identification model.

When these are trained, we optimizing the relation

model but keep the concept identification model

and alignment models fixed (‘2 stages’ in see Ta-

ble 4). When compared to our joint model (‘full

model’), we observe a substantial drop in Smatch

score (-0.8%). In another version (‘2 stages, tune

align’) we also use two stages but we fine-tune

the alignment model on the second stage. This

approach appears slightly more accurate but still

-0.5% below the full model. In both cases, the

drop is more substantial for relations (‘SRL’). In

order to see why relations are potentially useful

in learning alignments, consider Figure 4. The

example contains duplicate concepts long. The

concept prediction model factorizes over concepts

and does not care which way these duplicates are

aligned: correctly (green edges) or not (red edges).

Formally, the true posterior under the concept-

only model in ‘2 stages’ assigns exactly the same

probability to both configurations, and the align-

ment model Qψ will be forced to mimic it (even

though it relies on an LSTM model of the graph).

The spurious ambiguity will have a detrimental ef-

fect on the relation identification stage.

It is interesting to see the contribution of other

modeling decisions we made when modeling and

relaxing alignments. First, instead of using

Gumbel-Sinkhorn, which encourages mutually-

repulsive alignments, we now use a factorized

alignment model. Note that this model (‘No

Sinkhorn’ in Table 5) still relies on (relaxed) dis-

crete alignments (using Gumbel softmax) but does

not constrain the alignments to be injective. A

substantial drop in performance indicates that the

prior knowledge about the nature of alignments

appears beneficial. Second, we remove the addi-

tional regularizer for Gumbel-Sinkhorn approxi-

mation (equation (6)). The performance drop in
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Smatch score (‘No Sinkhorn reg’) is only moder-

ate. Finally, we show that using the simple hier-

archical relaxation (equation (7)) rather than our

softer version of the loss (equation (8)) results in

a substantial drop in performance (‘No soft loss’,

-0.7% Smatch). We hypothesize that the softer

relaxation favors exploration of alignments and

helps to discover better configurations.

5 Additional Related Work

Alignment performance has been previously iden-

tified as a potential bottleneck affecting AMR

parsing (Damonte et al., 2017; Foland and Mar-

tin, 2017). Some recent work has focused on

building aligners specifically for training their

parsers (Werling et al., 2015; Wang and Xue,

2017). However, those aligners are trained in-

dependently of concept and relation identification

and only used at pre-processing.

Treating alignment as discrete variables has

been successful in some sequence transduction

tasks with neural models (Yu et al., 2017, 2016).

Our work is similar in that we also train dis-

crete alignments jointly but the tasks, the inference

framework and the decoders are very different.

The discrete alignment modeling framework

has been developed in the context of traditional

(i.e. non-neural) statistical machine transla-

tion (Brown et al., 1993). Such translation mod-

els have also been successfully applied to semantic

parsing tasks (e.g., (Andreas et al., 2013)), where

they rivaled specialized semantic parsers from that

period. However, they are considerably less accu-

rate than current state-of-the-art parsers applied to

the same datasets (e.g., (Dong and Lapata, 2016)).

For AMR parsing, another way to avoid us-

ing pre-trained aligners is to use seq2seq models

(Konstas et al., 2017; van Noord and Bos, 2017).

In particular, van Noord and Bos (2017) used char-

acter level seq2seq model and achieved the previ-

ous state-of-the-art result. However, their model is

very data demanding as they needed to train it on

additional 100K sentences parsed by other parsers.

This may be due to two reasons. First, seq2seq

models are often not as strong on smaller datasets.

Second, recurrent decoders may struggle with pre-

dicting the linearized AMRs, as many statistical

dependencies are highly non-local.

6 Conclusions

We introduced a neural AMR parser trained by

jointly modeling alignments, concepts and rela-

tions. We make such joint modeling computa-

tionally feasible by using the variational auto-

encoding framework and continuous relaxations.

The parser achieves state-of-the-art results and ab-

lation tests show that joint modeling is indeed ben-

eficial.

We believe that the proposed approach may be

extended to other parsing tasks where alignments

are latent (e.g., parsing to logical form (Liang,

2016)). Another promising direction is integrating

character seq2seq to substitute the copy function.

This should also improve the handling of nega-

tion and rare words. Though our parsing model

does not use any linearization of the graph, we re-

lied on LSTMs and somewhat arbitrary lineariza-

tion (depth-first traversal) to encode the AMR

graph in our alignment model. A better alter-

native would be to use graph convolutional net-

works (Marcheggiani and Titov, 2017; Kipf and

Welling, 2017): neighborhoods in the graph are

likely to be more informative for predicting align-

ments than the neighborhoods in the graph traver-

sal.
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