
1 of 5

AMRIS: A Multicast Protocol for Ad hoc Wireless Networks

C.W. Wu, Y.C. Tay
National University of Singapore

wuchunwei@alum.comp.nus.edu.sg,tay@acm.org

Abstract
This paper introduces AMRIS, a new multicast routing
protocol for ad hoc wireless networks. AMRIS (Ad hoc
Multicast Routing protocol utilizing Increasing id-numberS)
is designed to operate independently of underlying unicast
protocols.
The idea behind AMRIS is to dynamically assign every node
(on demand) in a multicast session with an id-number. The
ordering between id-numbers is used to direct the multicast
flow, and the sparseness among them used for quick
connectivity repair. A multicast delivery tree rooted at a
special node called Sid joins up the nodes participating in the
multicast session. The relationship between the id-numbers
(and the nodes that own them) and Sid is that the id-numbers
increase in numerical value as they radiate from Sid in the
delivery tree. These id-numbers help the nodes dynamically
leave and join a session, as well as adapt rapidly to changes
in link connectivity (due to mobility etc). Messages to repair
a link breakage are confined to the region where it occurs.
AMRIS is simulated with PARSEC and the results reported.
This work was supported in part by National University of
Singapore ARF Grant RP960683.

I. Introduction

Existing cellular wireless networks utilize fixed
infrastructure, such as base stations, to provide wireless
access to users. This form of wireless access has a single final
hop, where users communicate wirelessly with the base
station and have their data routed through some backbone
connected to the base station. This is in contrast to multi-hop
wireless networks (a.k.a. ad hoc networks) where no such
infrastructure normally exists. Ad hoc networks have their
roots in the DARPA packet radio networks[1][2] from the
1970s. Advances in mobile computing, including wireless
technologies, have led to renewed interest in the use and
deployment of these networks.

The dynamic nature of ad hoc networks means that existing
routing protocols[3][4] that have been designed for fairly
static networks are unlikely to operate well when deployed
over ad hoc networks. Some multicast routing protocols
designed for ad hoc networks can be found in [5][6].
However, they are dependent on an underlying unicast
routing protocol.

In this paper, we propose a multicast routing protocol that is
designed for ad hoc networks, and that is independent of the

underlying unicast routing protocol. Section II presents a
general overview of the protocol. Section III discusses the
simulation model used to evaluate AMRIS, and the results are
discussed in Section IV.

II. AMRIS

AMRIS is an on-demand protocol which constructs a shared
delivery tree to support multiple senders and receivers within
a multicast session. The key idea that differentiates AMRIS
from other multicast routing protocols is that each participant
in the multicast session has a session-specific multicast
session member id (herein known as msm-id). The msm-id
provides each node with an indication of its "logical height"
in the multicast delivery tree. Each node except the root must
have one parent that has a logical height (msm-id) that is
smaller than it.

Each participant calculates its initial msm-id dynamically
during the Initialization phase, which is initiated by a special
node called Sid, who has the smallest msm-id. Sid is
normally elected from among the set of senders if there is
more than one. The relationship between the msm-id (and
the node that owns it) and Sid (which is also the root of the
tree) is that the msm-ids increase in numerical value as they
radiate away from Sid. The msm-ids allow nodes that have
broken off from the delivery tree (e.g. due to mobility,
terrain) to rejoin the delivery tree in a localized fashion
without causing permanent routing loops. Another key
feature of AMRIS is that it does not depend on the unicast
routing protocol to provide routing information to other
nodes. AMRIS maintains a Neighbour-Status table which
stores the list of existing neighbours and their msm-ids. Each
node sends a periodic beacon to signal their presence to
neighbouring nodes. The beacon contains the msm-ids that
each node presently has.

AMRIS consists of two main mechanisms: Tree Initialization
and Tree Maintenance. Tree Initialization is the mechanism
by which a multicast session is created and advertised to
nodes within the ad hoc network. Nodes that are interested in
joining the multicast session (herein known as I-Nodes) then
join in the Initialization phase. Nodes that are not interested
in joining the multicast session are herein known as U-Nodes.
It is important to note that U-Nodes may still become part of
the multicast session subsequently when it is necessary for
them to function as "intermediate" nodes within the delivery

0-7803-5538-5/99/$10.00 (c) 1999 IEEE

2 of 5

tree to forward multicast traffic. Tree Maintenance is the
mechanism whereby nodes that become "detached" from the
multicast delivery tree rejoin the tree to continue receiving
multicast traffic, by executing a Branch Reconstruction (BR)
routine. Nodes that did not join the multicast session during
the initialization phase also make use of BR to join the tree.
AMRIS uses a soft state beacon approach to determine if a
link has broken between two neighbouring nodes.

A. Tree Initialization

Before Tree Initialization formally begins, it is necessary to
determine which node will assume the role of Sid. In a single-
sender, multiple-receiver session, Sid is normally the single-
sender. In a multiple-sender, multiple-receiver environment,
Sid may be elected from amongst the senders. The specifics
of Sid election are beyond the specification for AMRIS.

Tree initialization begins with Sid broadcasting a NEW-
SESSION message to its neighbours. The NEW-SESSION will
contain, among other things, Sid's msm-id, multicast session
id, and routing metrics. All nodes that receive the NEW-
SESSION message generate their own msm-id by computing
a value that is larger and not consecutive, so that there are
gaps between the msm-ids of a sender and a receiver; these
gaps are useful for quick local repair of the delivery tree. A
receiver then replaces the msm-id in the message with their
own, as well as various routing metrics, before broadcasting
the message again. Information derived from the NEW-
SESSION message is kept in the Neighbour-Status table for
up to T1 seconds. (T1 is usually set as a multiple of the
beacon interval; a suitable multiple is 3.) A random jitter is
introduced between the receipt of a NEW-SESSION message
and its subsequent rebroadcast to prevent broadcast storms. A
node may receive multiple NEW-SESSION messages from
different nodes. If it has not rebroadcast any messages yet, it
will keep the message that has the best routing metrics and
calculate its msm-id based on the values from that message.
Otherwise the messages received are dropped.

A node X then joins the session by first determining from the
NEW-SESSION and beacon messages received which
neighbouring nodes have smaller msm-ids than X. These
nodes form the set of potential parent nodes. A unicast JOIN-
REQ is then sent to one of the potential parent nodes. When
the potential parent Y receives a unicast JOIN-REQ, it checks
if Y itself is already on the delivery tree. If so, Y will send a
JOIN-ACK immediately back to X. Otherwise, Y too will try
to locate a potential parent for itself and send a JOIN-REQ to
it. This process is repeated until a node can satisfy the
requirements of being a parent node. That node will send a
JOIN-ACK which propagates back along the reverse path
towards X, grafting a branch from the tree to X. Joining is
first attempted through contacting a neighbouring node; if
that fails, a localized broadcast is then used. If the immediate
neighbouring nodes are already on the multicast tree, then

this 1-hop 'peek' approach is very fast and efficient. The use
of msm-ids helps a node identify a neighbor (who as a
potential parent) provides a higher likelihood of a successful
join. If a node is unable to find any potential parents, then the
requesting node will execute the Branch Reconstruction (BR)
process in its continued attempt to rejoin the tree.

B. Tree Maintenance

The tree maintenance mechanism operates continuously in
the background to ensure that a node remains connected to
the multicast session delivery tree. When a link between two
nodes breaks, the node with the larger msm-id (a.k.a. the
child node) is responsible for rejoining. A node attempts to
rejoin the tree by executing the Branch Reconstruction (BR),
which has two main subroutines, BR1 and BR2. BR1 is
executed when the node has neighbouring potential parent
nodes that it can attempt to join to; BR2 is executed when the
node does not have any neighbouring nodes that can be
potential parents.

Basically, BR1 works as follows: The node X executing BR1
selects a potential parent node Y from its set of potential
parents. It then sends a JOIN-REQ to Y; if Y is already a
registered member on the multicast tree and has a smaller
msm-id than X, it will send a JOIN-ACK back to X,
acknowledging its request, and X has now successfully
rejoined the tree. If Y is not yet a member on the tree, then it
repeats the process of sending out its own JOIN-REQ to join
the tree, provided it has at least one neighbouring potential
parent node. Otherwise, it sends a JOIN-NACK back to X. If
X receives a JOIN-NACK or timeouts on the reply, it will
proceed to join with the next best potential parent node. If
none are available, X executes the BR2 subroutine.

BR2 is executed when a node X is unable to detect any
neighbouring potential parent nodes. Instead of sending a
unicast JOIN-REQ to a single potential parent node (as in
BR1), X sends a broadcast JOIN-REQ. The broadcasted
JOIN-REQ has a range field R that specifies only nodes
within R hops of X are allowed to rebroadcast the JOIN-
REQ. The purpose of the range field R is to localize as much
as possible the effects of a BR routine without resorting to a
network-wide broadcast in searching for new potential parent
nodes.

When a node Y receives a broadcasted JOIN-REQ, it checks
if it can satisfy the request. If so, Y sends a JOIN-ACK on the
reverse path set up back to X. However, Y does not forward
multicast traffic to X yet, since X may receive more than one
JOIN-ACK in response to its broadcast JOIN-REQ. When X
receives the JOIN-ACKs (it may receive more than one from
different nodes), it will choose one of them to become the
parent node and send a JOIN-CONF to that parent node.
When the potential parent node receives the JOIN-CONF, it

0-7803-5538-5/99/$10.00 (c) 1999 IEEE

3 of 5

will now forward any multicast traffic it receives to its new
child.

If a node does not have a valid msm-id and wishes to join, it
first uses neighboring msm-ids to compute an msm-id for
itself, then execute the BR routine to join the session.

III. Simulation Environment

We experimented with AMRIS using an ad hoc network
simulator written in PARSEC[7], which is a discrete event
simulation language developed at UCLA. The network
consists of 100 mobile nodes moving about randomly
(Brownian motion model) in a 1000x1000m two-dimensional
space. Radio transmission range was set at 150m. The
program simulated a CSMA MAC layer with a free space
propagation model. Data rate was set at 2Mb/s.

Our preliminary goal for the simulation was to understand the
protocol's routing behaviour and detect any major flaws it
has. Therefore we used a relatively light traffic model to
minimize congestion effects. Each data packet had a data
portion (excluding headers) of 100 bytes and was generated
at a rate of 1 per 100ms. The parameters varied were the
beacon interval (from 500ms to 4000ms), the number of I-
Nodes per multicast session (from 25 to 100, one of which
was randomly chosen to be Sid), and the maximum
movement speed (from 1 to 20m/s). The metrics measured
were packet delivery ratio (pdr), routing overhead and end-to-
end delay. Each run simulated 200 seconds of simulation
time.

IV. Simulation Results

In the following, each sample point in each graph is an
average from 20 simulation runs. Fig. 1 compares the packet
delivery ratio with varying beacon intervals, membership
sizes (membership size refers to the number of members in a
multicast session.) and mobility rates. The packet delivery
ratio is fairly good, with most figures in the upper quartile
range. Generally, as mobility increases, the packet delivery
ratio decreases for all cases. This is in part due to the soft
state nature of the protocol, which uses timeouts to determine
that a neighbouring member node (which may be a parent or
a child node) is no longer around. Therefore, packet losses
inevitably occur between the time a node is "broken off" from
its neighbouring member nodes and the time that node
actually "realizes" the breakage.

As larger beacon intervals are used, the packet delivery ratio
drops significantly more at higher mobility rates. The timeout
value that determines a neighbouring node is set as a multiple
of the beacon interval (we set it at 3). Therefore, with a large
beacon interval, a node takes significantly longer to realize
that its neighbour parent node has moved away. This leads to
a significantly higher number of packets not received at large

Beacon Interval - 1000ms

Movement Speed (m/s)

P
ac

ke
t

D
el

iv
er

y
R

at
io

1 2 4 8 12 16 20
0.75

0.8

0.85

0.9

0.95

1

Legend
100 nodes
75 nodes
50 nodes
25 nodes

1 2 4 8 12 16 20
0.75

0.8

0.85

0.9

0.95

1

Legend
100 nodes
75 nodes
50 nodes
25 nodes

Movement Speed (m/s)

Beacon Interval - 500ms

P
ac

ke
t

D
el

iv
er

y
R

at
io

1 2 4 8 12 16 20
0.75

0.8

0.85

0.9

0.95

1

Legend
100 nodes
75 nodes
50 nodes
25 nodes

Movement Speed (m/s)

P
ac

ke
t

D
el

iv
er

y
R

at
io

Beacon Interval - 2000ms

1 2 4 8 12 16 20
0.75

0.8

0.85

0.9

0.95

1

Legend
100 nodes
75 nodes
50 nodes
25 nodes

Movement Speed (m/s)

P
ac

ke
t

D
el

iv
er

y
R

at
io

Beacon Interval - 4000ms

Fig. 1. Packet Delivery Ratio

0-7803-5538-5/99/$10.00 (c) 1999 IEEE

4 of 5

beacon intervals. The drop is larger for small membership
sizes because there is a smaller number of potential parent
nodes around a node when it tries to rejoin the tree. For big
membership sizes, when a node discovers the breakage, it can
usually find a parent node nearby, and can rejoin the tree
more quickly. Multicast sessions with more I-Nodes also
generally perform better than those with less I-Nodes since
nodes are better able to quickly find neighbors that are
already registered on the tree. Nodes close to Sid have a
higher pdr than those further away since they are usually
within a single hop from Sid. Sessions that have more I-
Nodes also have more nodes that are close to Sid, thus
increasing the pdr.

It is interesting to note that with a small beacon interval of
500ms, the packet delivery ratio drops significantly at higher
mobility rates compared to other beacon intervals. Further
investigation shows that when the beacon interval is small,
there is an increase in the number of link breakages being
detected. A large number of link breakages are what we call
micro-term breakages. As the nodes move about in a random
fashion, they frequently move just out of range of each other
for just a short while (micro-term) before moving back into
range again. The effects of these micro-term breakages are
more evident when the beacon interval is small. This causes
the nodes to execute Branch Reconstruction (BR) to rejoin
the tree. The increase in packets sent leads to increased
packet collisions around those nodes, causing packets to be
dropped and decreasing the packet delivery ratio.

The four graphs in Fig. 1 show that there is an optimum
beacon period that should not be too small or too large. More
studies need to be done to find out the relationship between
this optimum and the node densities, movement speeds and
traffic models.

Fig. 2 illustrates the results for routing overhead. Routing
overhead is calculated as the ratio of control packets (e.g.
JOIN-REQs, JOIN-ACKs; the beacons are not included as
they are a constant overhead) sent versus all (data and
control) packets sent. We count packets instead of bytes
because the control packets are small in size (around 20
bytes) compared to the data packets (100 bytes). If the ratio
of control bytes versus total bytes sent were measured, then
the routing overhead would be very small. Furthermore,
counting bytes would have ignored the cost of acquiring the
medium to transmit a packet, which is relatively independent
of packet size once the medium has been acquired. Counting
packets therefore provides a clearer view of routing overhead.

When the beacon interval is small, there is noticeably higher
routing overhead. This is due to more nodes superfluously
initiating BR as a result of micro-term link breakages. The

1 2 4 8 12 16 20
1

2

3

4

5

6

7

8

9

Legend
25 nodes
50 nodes
75 nodes
100 nodes

Movement Speed (m/s)

C
o

n
tr

o
l O

ve
rh

ea
d

 (
%

)

Beacon Interval - 500ms

1 2 4 8 12 16 20
1

2

3

4

5

6

7

8

9

Legend
25 nodes
50 nodes
75 nodes
100 nodes

Movement Speed (m/s)

C
o

n
tr

o
l O

ve
rh

ea
d

 (
%

)

Beacon Interval - 1000ms

1 2 4 8 12 16 20
1

2

3

4

5

6

7

8

9

Legend
25 nodes
50 nodes
75 nodes
100 nodes

Movement Speed (m/s)

Beacon Interval - 2000ms

C
o

n
tr

o
l O

ve
rh

ea
d

 (
%

)

1 2 4 8 12 16 20
1

2

3

4

5

6

7

8

9

Legend
25 nodes
50 nodes
75 nodes
100 nodes

Movement Speed (m/s)

Beacon Interval - 4000ms

C
o

n
tr

o
l O

ve
rh

ea
d

 (
%

)

Fig. 2. Control Overhead

0-7803-5538-5/99/$10.00 (c) 1999 IEEE

5 of 5

increase in packet collisions result in dropped data packets
which further increases the ratio of control packets to total
packets. At high mobility rates, a large membership has
lower routing overhead compared to a small membership.
Again this is because of the localized repair feature of BR
which queries neighbouring nodes rather than doing a
localized n-hop broadcast. The routing overhead results again
show that there is an optimum beacon period.

End-to-end delay is considered as the average time taken by a
packet to reach an I-Node from the time it leaves the sender.
In reality, nodes closer to the sources will usually have a
smaller end-to-end delay than nodes further away. The metric
is calculated as follows: When a data packet is first created
by the source, it is tagged with a send time. Subsequently,
each I-node that receives the packet calculates the end-to-end
delay by subtracting the time the packet was received with
the initial send time. An average is then taken from all I-
nodes. The end-to-end delay is thus measured only for
packets that are received. This is why, in Fig. 3, we see that,
as the maximum movement speed is increased, the end-to-
end delay actually drops.

Fig. 4 shows explicitly this relationship between end-to-end
delay and packet delivery ratio. Interestingly, the curves for

all four membership sizes are clustered together, thus
showing that the relationship between the two metrics is
robust with respect to membership.

It takes on average 5ms for each data packet to travel 1 hop.
(The reason for the large 5ms per hop is because a random
jitter with maximum of 50ms is introduced between data
packet reception and retransmission) Therefore, with a
maximum average end-to-end delay of 62ms for 25 receivers,
we can estimate the average hop traversed by the data packet
along the delivery tree.

V. Conclusion

We have proposed a new multicast routing protocol designed
for use in ad hoc networks. AMRIS orders the nodes within
the multicast delivery tree logically with a dynamically
derived number. This ordering is used to direct multicast
traffic, and the sparseness among these numbers facilitates
quick local repair to the delivery tree. Our preliminary
simulation results show that AMRIS has high delivery ratio
and low overheads, and is thus feasible as a multicast routing
protocol for ad hoc networks.

The simulations indicate that some improvements are
possible. One of them is the criteria for selecting which
potential parent node to send the JOIN-REQ if there is more
than one to choose from. Presently, we pick the node with the
smallest msm-id. However, from the simulation, we observe
that this may not give a good route: a potential parent with
the smallest msm-id may be further away, so the link may be
weaker than if another nearby potential parent is selected.

References

[1] Leiner, B.M, Neison, D.L. and Tobagi, F.A, "Issues in
Packet Radio Network Design". Proceedings of the IEEE
Special issue on "Packet Radio Networks",, 75,1:6-20, 1987
[2] Jubin, J and Tornow, J.D, "The DARPA Packet Radio
Network Protocols", In Proceedings of IEEE, volume 75, 1,
pages 21-32, Jan. 1987
[3] Deering, S.E., Partridge, C., and Waitzman, D., "Distance
vector multicast routing protocol", RFC 1075, Nov 1988
[4] Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering,
S., Handley, M., Jacobson, V., "Protocol Independent
Multicast-Sparse Mode (PIM-SM): Protocol Specification",
RFC2117, June, 1997
[5] C.-C. Chiang, M. Gerla, and L. Zhang, "Forwarding
Group Multicast Protocol (FGMP) for Multihop, Mobile
Wireless Networks", ACM-Baltzer Journal of Cluster
Computing: Special Issue on Mobile Computing, vol. 1, no.
2, 1998.
[6] C.-C. Chiang, M. Gerla and L. Zhang, "Shared Tree
Wireless Network Multicast", In Proceedings of IEEE IC3N
'97.
[7] Meyer, R.A., PARSEC User Manual, August 1998.

1 2 4 8 12 16 20
25

30

35

40

45

50

55

60

65
Legend

100 nodes
75 nodes
50 nodes
25 nodes

E
n

d
-t

o
-E

n
d

 D
el

ay
 (

m
s)

Movement Speed (m/s)

End-to-End Delay (Beacon Interval 1000ms)

0.8623 0.913 0.9237 0.9534 0.994 0.9975
30

35

40

45

50

55

60

65
Legend

100 nodes
75 nodes
50 nodes
25 nodes

E
n

d
-t

o
-E

n
d

 D
el

ay
 (

m
s)

Packet Delivery Ratio (%)

End-to-End Delay vs Packet Delivery Ratio
(Beacon Interval 1000ms)

Fig. 3. End to End Delay

Fig. 4. End-to-End Delay vs PDR

0-7803-5538-5/99/$10.00 (c) 1999 IEEE

