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Abstract

AMULET1 demonstrated the feasibility of building an
asynchronous implementation of the ARM microprocessor.
Although functional, this first asynchronous ARM micro-
processor did not fully exploit the potential of the asyn-
chronous design style to deliver improved performance
and power consumption.

This paper describes AMULET2e, an embedded system
chip incorporating an enhanced asynchronous ARM core
(AMULET2), a 4 Kbyte pipelined cache, a flexible memory
interface and assorted programmable control functions.
AMULET2e silicon demonstrates competitive perform-
ance and power-efficiency, ease of design, and innovative
features that exploit its asynchronous operation to advan-
tage in power-sensitive applications.

1.  Introduction

While asynchronous design is enjoying increasing
attention from the academic community and initial stirrings
of interest from industry, its progress towards realising its
full commercial potential continues to be impeded by a
shortage of large-scale demonstrations of merit. For the last
five years the AMULET group at the University of Man-
chester has spent most of its energies addressing this short-
fall and gaining experience of asynchronous engineering
‘in the large’.

The first milestone in this work was AMULET1 [1], an
asynchronous implementation of the ARM [2] 32-bit RISC
microprocessor which used a two-phase bundled data
design style based closely on Sutherland’s Micropipelines
[3]. AMULET1 was broadly comparable with, but not
superior to, clocked ARM processors built on the same
technology, fulfilling its primary role of demonstrating the
feasibility of designing complex asynchronous circuits
with the resources and tools available to the group. It also

taught us a great deal about practical asynchronous design
both from the things that we got right and from the things
we got wrong.

The second milestone in this work has now been
reached. AMULET2e is an asynchronous embedded con-
troller incorporating AMULET2 (a significantly enhanced
version of AMULET1), 4 Kbytes of RAM which can be
configured to operate as a cache, a flexible memory inter-
face which makes the system designer’s job look quite con-
ventional, a counter-timer for real-time reference and
various configuration and control registers. First silicon
arrived on October 1 1996 having passed functional tests at
the foundry (VLSI Technology, Inc.) without difficulty and
within a few hours a sample was communicating with the
standard ARM development tools and running compiled C
programs. The parts are highly functional, perform exactly
as predicted by our simulation tools, and have the sort of
performance and flexibility that will attract applications
developers to look again at asynchronous technology.

In the next section we review AMULET1, looking par-
ticularly at the lessons we learnt from it which influenced
the design of AMULET2e. Then the AMULET2 processor
core is described in section 3. In section 4 we present the
organisation of AMULET2e and in section 5 we present a
simple system designed around the part. In section 6 we
give a summary and analysis of the test results and we draw
conclusions in section 7.

2.  AMULET1

The AMULET1 organisation has been described else-
where [1,4,5,6,7] so only a summary is presented here. The
processor to memory interface follows the Micropipeline
convention, with one (output) bundle to send address, con-
trol and write data to the memory and a second (input) bun-
dle to return read data from the memory. The memory
system may have an arbitrary pipeline depth and delay, but
must return read values in the requested order.



Internally the processor may be viewed as comprising
several pipeline units (Figure 1) which operate independ-
ently and concurrently, exchanging information through
bundled data interfaces. The role of each of these units is
described briefly below.

Addr ess interface.The address interface is responsible for
issuing read and write requests to memory. It issues instruc-
tion prefetch requests autonomously and accepts data
transfer and branch target addresses from the execution
unit as required. Branch target addresses are immediately
issued to memory and also change the prefetching stream
to continue from the target location; data transfer addresses
temporarily interrupt the prefetching stream which
resumes once the data address has been issued.

The ARM architecture makes the program counter read-
ily accessible to the programmer as register 15 in the regis-
ter bank. PC values are therefore copied from the address
interface to the register bank through a PC pipeline which
buffers the values until the associated instruction arrives
from memory.

Register file.All the user accessible state is held in the reg-
ister bank, which employs a novel locking mechanism [8]
to allow multiple pending writes from the execution pipe-
line and from external memory. The locking mechanism
ensures the correct behaviour of instruction streams with
data dependencies between successive instructions and
enables register read and write processes to proceed asyn-

Figure 1: AMULET1 internal organization.
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Execution pipeline.Arithmetic processing is carried out
in the execution pipeline. This incorporates a ‘3-bits at a
time’ carry-save multiplier, a barrel shifter and rotator and
an ALU. The ALU has a data dependent propagation delay
which detects the longest carry chain in an addition [9].
This allows a relatively simple ALU to give better average
performance on a typical mix of operand values than the
more complex ALU in the clocked ARM6, since there is no
need to coerce the worst case addition into a fixed clock
period.

Instruction decoder. The instruction decoder accepts
instructions from the instruction pipeline and generates the
necessary control signals to pass to the register file and to
the execution pipeline (via the control pipeline, where
some further decoding takes place). The major decode
function of the instruction decoder is implemented by a
large PLA, but there are other complex control functions
(such as splitting a single ARM instruction into several
execution pipeline operations) that lead to considerable
complexity in this area.

2.1. AMULET1 lessons

AMULET1 was a major design project which had to be
completed with limited resource and within a limited time.
It clearly solves all the problems which must be solved to
implement a functional asynchronous microprocessor, but
the solutions are not all equally good. In some areas we
consider that we have found solutions which are elegant
and efficient:

• the (patented) register locking mechanism [8] has still
not been bettered. Although it is desirable to avoid stalls
by bypassing when possible (which AMULET1 made
no attempt at, though AMULET2 does), the totally de-
pendable consistency offered by this mechanism has
stood up well through the developments that followed;

• the instruction prefetching with its ‘colour’ manage-
ment of non-determinism [1] has also scaled well. The
non-determinism is a potential source of difficulty for
test vector generation, but otherwise it solves a tricky
problem in a straightforward and efficient manner;

• the overall organisation based on interacting micropipe-
lines has proved reasonably straightforward to design
and optimise.

Against these positive lessons, there were a number of
experiences with AMULET1 that we wished to avoid
repeating:

• although micropipelines worked well on chip, they



proved very troublesome at board level. AMULET1 is a
basic processor core with a two-phase micropipeline in-
terface at the pins, and debugging the logic which han-
dled these two-phase signals took a long time - it took
almost a month from receiving the first silicon before
we knew that the chips were basically functional;

• two-phase design is conceptually straightforward, but
our CMOS implementations of two-phase control ele-
ments were somewhat inefficient. All event registers
had two- to four-phase conversions inside them, and all
dynamic logic structures needed four-phase conversions
also. Even where four-phase control is not required,
steering two-phase signals (which are edges) requires
circuits with state and XOR gates, since CMOS is fun-
damentally a level-sensitive technology;

• building deep pipelines in a micropipeline circuit is too
easy. The AMULET1 execution pipeline is deeper than
is useful, and performance is lost as a result. It is actual-
ly quite hard to balance asynchronous pipelines!

3.  AMULET2

These lessons formed the starting point for AMULET2.
A four-phase bundled data design style was adopted [10], a
little more care taken over the pipeline depths, and a lot
more attention was paid to the system interface at the chip
pins. In addition, several architectural features were added
to improve the performance and power-efficiency of the
device. These are described below.

3.1. Pipeline reorganisation

As was mentioned above a retrospective analysis of the
AMULET1 design revealed that the depth of pipelining is
too great. This is partly due to FIFO buffers being concep-
tually easy to use within the Micropipeline design style,
and as a result too many were added. There are many stages
that contribute little (or nothing) towards performance but
still cost silicon area, transistors and power dissipation, and
some stages actually decrease performance!

This analysis identified the main execution pipeline as a
candidate for pipeline simplification.

The ARM architecture specifies that the shifter can be
used to shift one of the operands in many of the instruction
classes. However, in practice most shift operations are per-
formed on immediate values and this can be done before
the immediate value is passed to the execution pipeline, in
parallel with reading the register bank. This, coupled with
the fact that a high percentage of instructions do not take
advantage of the shift operation at all, means that there are
performance and power gains to be achieved by bypassing
the shifter when it is not in use (which is most of the time).

Figure 2 shows a comparison of the AMULET1 and
AMULET2 execution pipeline structures with the
AMULET2 pipeline showing the shifter bypass route
through the multiplier. (The multiplier contains an internal
bypass mechanism, so if neither the shifter or multiplier are
to be activated the internal multiplier bypass path is used.)
The shifting of immediate values is performed elsewhere in
order to exploit this pipeline organisation fully.

Now that the shifter and multiplier are bypassed for
most operations, there is little justification for providing a
separate pipeline stage for them. This also facilitates the
ALU register forwarding scheme (described in the next
section) where the last result value only has to propagate
backwards across a single pipeline stage.

The final difference between the two execution pipeline
organisations is that the final result latch has been replaced
with latches inside the register bank and address interface.
This reduces the amount of time that the write bus (a shared
resource) is busy for a given writeback operation and
reduces arbitration clashes between the ALU and data
interface, thus improving performance.

3.2. Register forwarding

The register management scheme in AMULET1 pro-
vides an effective mechanism for ensuring register coher-
ency. However, the locking mechanism employed causes
the pipeline to stall when any register dependency is
detected; processing only continues when the value that is

Figure 2: AMULET1&2 execution pipelines
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required has returned to the register bank.
Conventional synchronous processors overcome this

problem by the use of register forwarding. To implement
register forwarding in an asynchronous organisation would
be costly because complex synchronisation points would
be required to compare register addresses and exchange
values. AMULET2 therefore uses the concept of last result
registers (sometimes known as reservation stations) to
achieve similar results.

The are two schemes employed in AMULET2: the ALU
last result register (LRR) is used when the result calculated
by the ALU is required as an operand by the next instruc-
tion; the last loaded value (LLV) register is used when the
operand being loaded from memory is required by one of
the following instructions. The control mechanism and
validity of the data is different for the two types.

Both mechanisms can be disabled independently if
required, allowing their effectiveness to be measured (and
allowing them to be turned off completely in the event that
their design is incorrect and they cause the silicon to fail!).

ALU last result register. The ALU last result mechanism
divides into two distinct parts; the last result register itself
and the control to indicate when to use the value in the
LRR.

The LRR is simply a transparent latch in anti-phase to
the ALU result latch. Whenever the ALU is activated the
previous value is automatically available on the LRR.

The control (see Figure 3) keeps a record of the destina-
tion address of the previous instruction and compares the
operand addresses of the current instruction. If the compar-
ison matches and the LRR value is valid (not all instruc-
tions produce results that can be used), then the instruction
does not read its operand from the register bank but
retrieves the required values from the LRR via a set of mul-
tiplexers (see Figure 4).

As the LRR is anti-phase with the ALU output latch its
value is only valid for the next instruction. As soon as the
next instruction passes through the ALU the LRR is auto-
matically updated with the new last result value.

Figure 3: LRR control algorithm
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Last Loaded Value. The last load value (LLV) mechanism
also divides into data storing and control partitions. This
time the LLV register is updated with a load data value
directly from the processor write bus every time a data
value returns from memory to the register bank. The value
in the LLV is therefore valid from when the data arrives
from memory until the next update of the LLV (another
load returning data from memory) or an ALU operation
renders the cached register value in the LLV invalid by
writing to the same destination register. The value in the
LLV can therefore be valid for a number of consecutive
instructions (c.f. the ALU last result where the validity of
the data is from one instruction to the next only).

The control of the LLV is considerably more complex
that the ALU last result due to two key ‘features’:

• The validity of the LLV must be managed more explic-
itly rather than being taken care of automatically (as was
the ALU last result);

• The LLV cannot be used until the value has returned
from memory and there may be multiple outstanding
load operations. In the ALU last result the value is avail-
able immediately in the ALU if the control indicates for-
warding is possible.

The first ‘feature’ can be addressed by additional decode
logic to detect instructions which would invalidate the LLV
prematurely (e.g. an ALU operation with the same destina-

Figure 4: Register forwarding organisation
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tion register as the value stored in the LLV).
The second ‘feature’ is more complex. An instruction

wishing to use the LLV value must somehow synchronize
with the returning value. Unfortunately the returning mem-
ory data does not know that it should be forwarded to the
LLV as the load was dispatched before the following
instruction detected a data fowarding opportunity. There-
fore explicit synchronisation is not practical. A technique
based upon the lock FIFO [8] principle can be used to solve
the problem. Every load which is issued places a token in a
1-bit FIFO and every data value which returns is copied
into the LLV register (overwriting any previous value) and
a token is removed from the FIFO. An instruction which
wishes to use the LLV value must wait until the FIFO is
empty before taking the value and proceeding. The empty
FIFO state confirms that the value in the LLV register is
truly the ‘last’ value and not some preceding value.

Forwarding issues. Both forwarding mechanisms bypass
a register bank read operation (otherwise they would stall
there and deliver no benefit), so an instruction that uses for-
warding must be sure that the value will, indeed, become
available. A feature of the ARM instruction set [2] is that
every instruction has a conditional guard on its execution;
if the condition test fails it will produce no result. Therefore
only the results of instructions with the guard ‘ALWAYS’
(that is, instructions that are unconditionally executed) are
guaranteed to be available and only these results may be
used for forwarding. In all other cases the instruction must
fall back on the register locking mechanism to ensure it
gets the correct operand values.

Since there is always a fall-back mechanism, the for-
warding logic only serves to improve performance. There
is little performance benefit from engaging forwarding in
infrequently used instructions, so the decoder can take a
conservative approach and only attempt to use the forward-
ing mechanism for frequently used instruction classes.

3.3. The branch target cache

AMULET1 prefetches instructions sequentially from
the current PC value and all deviations from sequential
execution must be issued as corrections from the execution
pipeline to the address interface. Every time the PC has to
be corrected performance is lost and energy is wasted in
prefetching instructions that are then discarded.

AMULET2 attempts to reduce this inefficiency by
remembering where branches were previously taken and
guessing that control will subsequently follow the same
path. The organization of the Branch Target Cache (BTC)
is shown in Figure 5; it is similar to the ‘Jump Trace
Buffer’ used on the MU5 mainframe computer [11] devel-
oped at the University of Manchester between 1969 and

1974 (which also operated with asynchronous control).
The BTC caches the program counters and targets of 20

recently taken branch instructions, and whenever it spots
an instruction fetch from an address that it has stored it
modifies the predicted control flow from sequential to the
previous branch. When this prediction is correct, exactly
the right instruction sequence is fetched. When it is wrong,
the correction mechanism (an ‘unbranch’) has the same
cost as an unpredicted taken branch.

Note that, except when it is being updated, the operation
of the BTC is entirely local to one pipeline stage in the
address incrementer loop. It is this aspect of the organisa-
tion which is well-suited to asynchronous implementation
and led us to choose this approach over the many other
branch prediction schemes used in clocked processors.

Although not shown in Figure 5, the flow of data
required to update the cache is almost as convenient. The
cache is updated whenever an unpredicted branch is taken.
When this happens, the execution stage calculates the
branch target by adding an offset to the PC and then passes
the result along with the PC to the address interface. These
are exactly the values required to update the BTC.

A good way to think about the BTC is to view the incre-
menter in AMULET1 as a first-order next instruction
address predictor and the BTC as a second-order correction
unit. They occupy exactly the same pipeline slot in the
address interface and work in parallel, with the BTC having
priority whenever it recognises the input address. When the
prediction is correct the instruction flow is smooth; when it
is wrong recovery is necessary. In AMULET1 the predic-
tion is wrong whenever a branch is executed and recovery
is performed by executing the branch. In AMULET2 the
prediction is wrong when an unpredicted branch is exe-
cuted (recovered by executing the branch) or when a
branch is predicted in error (which is recovered by execut-
ing an ‘unbranch’).

Figure 5: Branch target cache organisation
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BTC implementation. Since the BTC performs a look-up
on every instruction address issue it is important that it con-
sumes minimal power. Its basic structure is that of an asso-
ciative memory, and for performance reasons the
associative store is built from content-addressable memory
(CAM) which tends to be power-hungry. To reduce the
power consumption of the CAM it is segmented into two
sections (see Figure 6): the larger section takes all of the
address apart from a few low-order bits; the smaller section
deals with these low-order bits. Since most instruction
fetches run sequentially, the high-order bits change rarely
and the high section of the CAM need not be activated
(provided that its last output was stored). Therefore only
the small section of the CAM is active on every cycle. This
segmentation of the CAM saves around 70% of the power
consumption of the CAM, and it also reduces the average
look-up time, improving performance.

The RAM part of the BTC is only activated when there
is a hit in the CAM, so its contribution to the overall power
consumption is small.

Despite careful design the BTC will still consume some
power. However it should also reduce the total number of
instruction fetches, improving performance and saving
power in the cache and/or external memory, so with careful
design it should save system power overall.

3.4. ‘Halt’

Most ARM programs, when they run out of useful work
to do, enter an idle loop implemented as ‘B .’ where an
instruction continuously loops back to itself until an inter-
rupt occurs. Since this wastes power, AMULET2 detects
this instruction and a mechanism (patent applied for) stalls
a control loop in the execution pipeline. The stall rapidly
propagates throughout the system, halting all activity. An

Figure 6: BTC internal structure
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4.  AMULET2e

AMULET2e is an asynchronous embedded system con-
troller incorporating an AMULET2 core as described
above along with a cache/RAM, a flexible memory inter-
face and various control functions (including a timer/coun-
ter which will typically be driven from a 32kHz crystal
oscillator). Its organisation is illustrated in Figure 7.

4.1. The AMULET2e cache

The cache [12] is 4 Kbytes of RAM divided into four 1
Kbyte blocks, each block having an associated 64-entry tag
CAM. When configured to operate as a cache (it may, alter-
natively, operate as a memory mapped RAM) the tag and
data accesses are pipelined. The cache is 64-way associa-
tive with a quad-word line. Refill is addressed-word first
[13], and the processor may continue accessing other cache
locations while the refill completes. Refill data is held in
the line-fetch latch until the next cache miss, so an addi-
tional CAM entry identifies subsequent hits on the line-
fetch latch.

The CAM and RAM are self-timed for asynchronous
operation using dummy matched paths, and the organisa-
tion incorporates a number of power-saving features:

• sequential accesses within a line bypass the CAM
lookup (this also improves performance);

• the RAM sense amps do not turn on until the differential
data is almost ready, and turn off as soon as the value
has been sensed;

• only the addressed 1 Kbyte block is activated in any ac-
cess. The other blocks remain inactive and consume no
power.

Figure 7: AMULET2e internal organisation
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4.2. The memory interface

Perhaps the most forceful lesson from AMULET1 was
the need to make the memory interface easier to use.
AMULET2e presents a relatively conventional interface to
the system designer, with a bidirectional data bus and an
address bus and a range of chip select lines. DRAM strobes
are also generated on-chip.

Since it is unreasonable to require external memory and
peripheral components to provide completion signals (at
least until asynchronous design has wider commercial sup-
port), some mechanism must be provided to ensure that the
timing requirements of these components are met. In a
clocked circuit, the period of a crystal oscillator provides a
very reliable reference for this purpose, but we wish to
avoid the power overhead of running an oscillator at mem-
ory speeds. The solution adopted on AMULET2e is to pro-
vide a ‘reference delay’ and to program all external
accesses in multiples of this delay. Since on-chip delays are
subject to process variation, the reference delay is off chip.
It may be a simple RC delay, an integrated delay line or a
silicon delay line.

External memory may be 8-, 16- or 32-bits wide. The
ARM 32-bit address space is divided into eight regions,
and each region can be configured independently for bus
width and access timing. This allows the system to boot
from a single slow 8-bit ROM, for example.

Full details of the memory configuration registers are
available in the AMULET2e datasheet [14].

5.  AMULET2e system design

As an example of AMULET2e system design, Figure 8
shows how the AMULET2e equivalent of the ARM ‘PIE’
(Platform Independent Evaluation) card is designed.

An 8-bit ROM holds the ‘Demon’ debug monitor code,
which is unchanged from the PIE ROM apart from a few

Figure 8: AMULET2e test card organization.
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instructions used to configure the various memory regions.
One location in the ROM is used by the AMULET2e hard-
ware to configure the region occupied by the ROM itself so
that the system can boot-strap.

Four SRAM chips provide the main memory. The sys-
tem can operate with one or two RAMs, but four gives the
best performance.

The remaining components are the UART and RS232
line driver chips used to communicate with the host
machine.

At board level, then, the chip is conventional and build-
ing a system straightforward. The flexible memory inter-
face results in a very low chip count.

6.  AMULET2e test results

First silicon was delivered from VLSI Technology, Inc.,
on 1 October 1996. The chips had been packaged and
tested, passing the test program with little trouble. The test,
while not giving the level of coverage that would be
required for commercial production, was sufficiently
extensive to give considerable confidence that the parts
were functional. For example, at one point the program
loads a RAM test routine into the on-chip memory which
the AMULET2 core than executes at full speed, without
external intervention from the tester, before returning a sig-
nature result which confirms that the memory has passed
the test.

The parts were functionally tested in a card as described
in the previous section. The first result was that the objec-
tive of simplifying the system design interface was highly
successful. AMULET2e was running code within a few
hours of its arrival, unlike AMULET1 which took a month
to bring into life. The device also appears to be very robust.

Only one hardware fault has been identified so far. The
device fails by deadlock if the BTC and aborts are enabled
at the same time under certain interrupt conditions. Since
most embedded applications make no use of aborts this
problem is easily avoided. We don’t yet know the exact
diagnosis of the problem, but it is under investigation.

6.1. Performance

The fastest mode of operation is to run a program from
internal RAM. TimeMill simulations predicted 68kDhry–
stones (2.1) in this case, and our first measurement was
69kDhrystones. This constitutes remarkably accurate
modelling on the part of the simulator, upon which we
depended totally for the final verification of the design.
When all the performance features were turned on this
increased to over 74kDhrystones (42MIPS based on the
Dhrystone 2.1 benchmark). These measurements are at
3.3V, the nominal operating voltage of the device. Run-



ning at this peak rate it consumes just under 150mW
(excluding I/O power, but there is very little I/O activity).
On similar process technologies the ARM710 delivers
23MIPS at 120mW and the ARM810 86MIPS at
500mW (see table 1), so the AMULET2e performance
falls between these two with slightly better power-effi-
ciency (though the ARM figures do include I/O power).

Running from external 80ns static memory with the
cache enabled the processor delivers 45kDhrystones
(26MIPS), and with the cache disabled 17kDhrystones
(10MIPS).

Multiplier speed. AMULET2 includes a 4-bits per cycle
multiplier [15] which uses data-dependent early termina-
tion. The multiplier cycle time (measured by varying the
operand values) is around 6.5ns, demonstrating the merits
of allowing different functions to operate at different
speeds. (The main execution pipeline cycles in about
25ns.) A multiplier constrained to operate at the same
cycle rate as the execution pipeline, such as a multiplier in
a clocked processor, would require four times as many
Booth’s encoders and carry-save adders to deliver the same
performance. This illustrates the fact that, under certain cir-
cumstances, asynchronous design can save hardware cost.

Low voltage operation.The processor appears to tolerate
supply voltage variations well. The whole board operates
between 2.5V and 4V, but failures of other components
stop the board operating below 2.5V. In tests which do not
involve the other components the chip appears fully func-
tional down to 2V, at which point the I/Os stop working.
The core appears to continue operating down to 1.1V,
though this can only be surmised by taking it down from
and back up to 2V, since below 2V the I/O failures prevent
external observations from being made.

The performance and power-efficiency scale with volt-
age according to the standard formulae[2].

EMC. Further work is required in the important area of
EMC (Electro-Magnetic Compatibility) measurement.
This is pending the availability of suitable facilities.

ARM710 AMULET2e ARM810

Process 0.6µm 2LM 0.5µm 3LM 0.5µm 3LM
Area mm2 32 41 76
Transistors 570,295 454,000 836,022
Cache 8 K 4-way 4 K 64-way 8 K 64-way
MIPS 23 40 86
Conditions 3v3 25 MHz 3v3 20 deg.C 3v3 72 MHz
Power mW 120 150 500
MIPS/W 192 250 172

Table 1: AMULET2e characteristics
6.2. Benefits of architectural features

The various architectural features described in Section 3
were justified on the grounds of their contribution to per-
formance, power-efficiency, or both. It is interesting, there-
fore, to see what effect they have on the prototype silicon.
This is particularly straightforward as they can all be ena-
bled and disabled under software control. A summary of
the measurements taken on the test card is given in table 2.
All the measurements were taken running the
Dhrystone2.1 synthetic benchmark program, with the pro-
gram either resident in the internal memory, cached from
the external memory or executed directly from the external
memory. The external memory is 80ns 32-bit static RAM
and the power figures are for the AMULET2e core logic
including the cache/RAM but excluding the I/O pads.

The last line in table 2 shows the performance benefits
of turning all the architectural features on together.

Last result and last loaded value registers.The mechan-
isms used on AMULET2 to perform forwarding (grouped
together under ‘Fwd’ in table 2) were the outcome of con-
siderable development effort and their contribution to the
performance of the device cannot be described as anything
other than disappointing. The LRR contributes about twice
the benefit of the LLV, but even taken together the net result
is meagre. This clearly demands some explanation.

The AMULET2 forwarding mechanisms exist to reduce
the time an instruction waits for a stalled register read to be
resolved. If an instruction never stalls because the register
bank is fully updated by the time it attempts the read, there
is no scope for forwarding. This is the case when some
other pipeline stage limits the instruction issue rate to
below that required by the execution stage to complete reg-
ister write-back. For example, external memory in the test
card is slow relative to the processor cycle time so when it
is used as the source of instructions there is no performance
gain from enabling the forwarding paths. As the instruction
source gets faster, gains appear. The cache demonstrates a
(very) small gain from forwarding, and the internal RAM
(which is faster than the cache) a little more.

Our conclusion is therefore that the forwarding

Memory: Internal Cache External

Idle power 76mW 162mW 66mW
Idle power, ’Halt’ on 0.1mW 0.1mW 0.1mW
BTC MIPS +6% +3% +7%
BTC power-efficiency -5% -3% -4.5%
Fwd MIPS +2% +0.5% 0%
Fwd power-efficiency 0% 0% 0%
All features MIPS +8% +4% +7%

Table 2: Architecture feature results



mechanisms on AMULET2 are capable of delivering more
than the rest of the AMULET2e system can expose. We
know that the AMULET2 execution pipe can cycle in 20ns
but the rest of the chip can only sustain an average of 25ns.
With a faster decode stage, address interface and memory
we would expect considerably more benefit from the for-
warding paths in the existing execution pipeline.

The next question which must be answered is to explain
why this result was not evident during simulation. The
answer lies in the critical dependency of the effectiveness
of the forwarding mechanisms on the detailed timing of all
parts of the chip. Early high-level simulations which were
used to define the architecture were based upon approxi-
mate timing estimates. Accurate timings only became
available during post-layout simulation using ‘TimeMill’,
by which time the architecture was frozen.

A conclusion is that it is hard to optimise an asynchro-
nous architecture early in the design process. This could be
turned into a case against asynchronous design. However,
there is an alternative view. The reason forwarding has so
little benefit on AMULET2e is that the execution pipeline
is running ahead at its own speed, making more progress
(relative to other parts of the design) than was anticipated.
A clocked pipeline would be held back by the clock, thus
ensuring that forwarding had the expected benefits, but at
the cost of preventing part of the system from going as fast
as it can. Is this really better?

Branch target cache. The BTC caches 20 branch targets,
a number which was chosen on the basis of extensive sim-
ulation of a range of applications. Unfortunately, it became
clear during those simulations that Dhrystone, the bench-
mark program used for most our other measurements, has
very unusual branch characteristics - it is basically a single
large loop with over 20 branches in it. This would suggest
a BTC of at least 24 entries is needed to optimise Dhrys-
tone performance. We resisted the temptation to optimise
the architecture for this synthetic benchmark. Whereas the
BTC gives a performance improvement of around 10% on
typical programs, it delivers only 7% on Dhrystone. The
power-efficiency of the core drops by 5% when the BTC is
turned on, though the overall system power-efficiency rises
by 4% when the code is being executed from external
memory due to the reduction in wasted instruction fetches.

The BTC therefore performs largely as expected and
makes a useful contribution to system performance and
power-efficiency.

Halt. When AMULET2e enters an idle loop without the
‘Halt’ function enabled it consume between 66mW and
162mW depending on how fast the memory system allows
the processor to access instructions. With the ‘Halt’ func-
tion enabled the power drops to under 0.1mW if the

32KHz oscillator is running (and 3µW if it isn’t). The
‘Halt’ feature therefore delivers a three to four orders of
magnitude power saving during idle periods, automatically
and in a way which works with much existing code (includ-
ing the ‘Demon’ ROM code used in these tests). In many
systems, when the processor halts the external system
power will also drop to very low levels. The power con-
sumption of the test card is dominated by a single LED
when the processor is halted.

A clocked system can approach this idling efficiency,
but only with considerable effort. The clock must be gated
off to all parts of the system that consume significant
dynamic power, but in a way that leaves interrupts enabled,
and an interrupt must gate the clock back on. Often power
management software is used to detect idle periods and to
step the power consumption down through a progressive
series of stages, reducing clock frequencies and gating out
particular parts of the system. Power management software
consumes power itself when running. For very low con-
sumption the oscillators and phase-locked loops must also
be turned off. Stopped oscillators and PLLs take consider-
able time to stabilise when they are turned back on, com-
promising response time when an interrupt occurs. Overall,
power optimisation in a clocked system is a complex mat-
ter involving many trade-offs.

In an application with a significant proportion of idle
time, AMULET2e should display remarkable power-effi-
ciency with very little effort on the part of the designer.

At first sight it might appear that having only two states
(maximum performance or halted) is not as flexible as
being able to step a clock down through lower frequencies.
However lowering a clock frequency does not, of itself,
improve power-efficiency. It takes the same energy to per-
form a given calculation in half the time and to halt for the
remaining time as it does to perform the calculation at half
the clock rate for the whole time. The only way a lower
clock rate can improve power-efficiency is if there is a cor-
responding reduction in the supply voltage, which is rarely
used in practice and can equally (and more easily, as there
is no clock to adjust) be applied to an asynchronous system.

An additional benefit of the halted state of AMULET2e
is that, by stopping all activity, it also removes all sources
of electromagnetic interference. Although we fully expect
tests to show that AMULET2e has good EMC properties
when running under maximum load, these can be further
improved by halting the processor when ‘radio silence’ is
required. There is no high-speed clock oscillator continu-
ing to generate interference, and maximum performance is
available instantly after an interrupt. This technique has
potential benefits in many modern time-division multi-
plexed digital radio communication systems, where in
weak signal areas the processor can be shut down during
the time slot used to receive each packet.



7.  Conclusions

AMULET2e is a highly usable asynchronous embedded
system chip. Its performance and power-efficiency are
competitive with the industry-leading clocked ARM
designs, and in an idle loop its power reduces below that
achievable in a clocked design without stopping the clock
(whereafter the clocked chip takes considerable time to
resume full performance). Its EMC properties are unknown
at present, but may demonstrate another meritorious aspect
of asynchronous design.

AMULET2e incorporates several new architectural fea-
tures and the means to evaluate them (the LRR, LLV, BTC
and abort handling can all be turned on or off independ-
ently). As such it contributes to the growing pool of archi-
tectural knowledge which must expand considerably
further before asynchronous designers can compete with
synchronous designers on equal terms.

However, seeing is believing, and the reactions of the
systems designers who have seen AMULET2e since proto-
types first ran have been very favourable. Several prototype
applications for the chip are presently under development.
We sense that the barriers to the commercial exploitation of
asynchronous design are beginning to fall.
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