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Abstract 

Objective. Offspring of parents with major depressive disorder (MDD) face three-fold 

higher risk for MDD than offspring without a family history.  Although MDD is a major 

cause of morbidity and mortality, neural correlates of risk for MDD remain poorly 

understood.  This study compares amygdala and nucleus accumbens activation in 

children and adolescents at high and low risk for MDD under varying attentional and 

emotional conditions.  Methods. Thirty-nine juveniles, 17 offspring of parents with MDD 

(high-risk group) and 22 offspring of parents without histories of MDD, anxiety or 

psychotic disorders (low-risk group) completed a functional magnetic resonance 

imaging study.  During imaging, subjects viewed faces that varied in intensity of 

emotional expressions across blocks of trials; while attention was unconstrained 

(passive viewing), and constrained (rate nose width on face; rate subjective fear while 

viewing face).  Results. When attention was unconstrained, high-risk, relative to low-

risk, subjects showed greater amygdala and nucleus accumbens (NAcc) activation to 

fearful faces, and lower NAcc activation to happy faces (p values < .05, small volume 

corrected for the amygdala and NAcc).  No group differences emerged in amygdala or 

NAcc activation during constrained attention.  Exploratory analysis showed that 

constraining attention was associated with greater medial prefrontal cortex activation in 

the high-risk than low-risk group.  Conclusions. Amygdala and NAcc responses to 

affective stimuli may reflect vulnerability for MDD.  Constraining attention may normalize 

emotion-related neural function, possibly via engagement of the medial prefrontal 

cortex; face-viewing with unconstrained attention may engage aberrant processes 

associated with risk for MDD.  
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Introduction 

Offspring of parents with major depressive disorder (MDD) face three-fold greater 

risk for MDD than offspring without such family histories1.  Neural correlates of this 

familial risk have been minimally studied.  A full understanding of neural correlates of 

MDD risk requires the study of at-risk individuals before they have passed the 

developmental period of risk.  Since MDD typically first emerges in early adulthood2, 

data from at-risk adults, without histories of MDD, may reflect neural correlates of 

resilience as opposed to risk.  No prior study has examined neural correlates of risk for 

MDD in unaffected juvenile offspring of MDD parents through functional magnetic 

resonance imaging (fMRI).   

Since MDD is a disorder of emotion, neural correlates may be best understood in 

the context of emotional processes.  For example, adults with MDD show perturbed 

responses to motivationally-salient stimuli.  Clinically, they ruminate more about 

negative events and report less satisfaction from rewards than healthy peers3,4.  In the 

laboratory, they show perturbed information processing of motivationally-salient stimuli5-

8.  

 The amygdala and nucleus accumbens (NAcc) respond to negative and 

positive signals.  The amygdala is a rapid detector of cues impacting well being9.  

Across various species, the amygdala responds to positive and, most reliably, negative 

stimuli, such as fearful faces9-13.  The NAcc, a structure within the ventral striatum, is 

most consistently responsive to rewards, like money and happy facial displays14-20.  The 

NAcc also regulates motor responses to aversive stimuli19.  Together the amygdala and 

NAcc mediate detection and reaction to motivating stimuli.   
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MDD patients show perturbed activation in these structures.  In adult MDD, 

fearful and sad faces elicit greater amygdala activation than in comparisons21,22.  Data 

are less consistent in youth.  In a small report, fearful faces produced relatively 

decreased amygdala activation in MDD girls23.  In contrast, a larger study found 

enhanced amygdala activation in adolescents with MDD relative to healthy adolescents 

during incidental memory encoding of faces24.  In adults with MDD, there is relatively 

heightened activation in the NAcc to sad faces22,25 and reduced activation to happy 

faces22.  Moreover, youth with MDD showed reduced activation in multiple regions 

including the striatum in response to a monetary reward26.  These studies have 

examined MDD patients rather than individuals at risk.  There are no reports of 

amygdala or NAcc correlates of familial risk for MDD.  However, relatedly, research in 

adults has linked amygdala function to genetic variation.  Individuals with short alleles 

on the serotonin transporter gene are at increased risk for MDD27 and show 

hyperactivation of the amygdala in response to fearful faces28.   

The present study uses fMRI to examine juvenile offspring of MDD and healthy 

adults, while they viewed faces varying in intensity of happy, neutral, and fearful 

expressions.  Rather than solely presenting prototypical expressions, we incrementally 

varied affective intensity with morphing software to optimize the detection of differences 

in neural responses29.  Based on prior work, we probed the amygdala and NAcc21-

25,28,30.  We used happy faces to engage reward processing, and fearful faces to engage 

threat processing.  We used fearful faces, as opposed to angry or sad faces, because 

fearful faces reliably activate the amygdala9-11,31.  Furthermore, as noted above, 
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neuroimaging investigations of genetic-based risk for MDD in adults yield reliable 

between-group differences in amygdala activation with fearful faces28.   

Brain activation is also influenced by attention and cognition. Tasks with low 

cognitive demands, such as passive viewing of emotional stimuli, preferentially engage 

subcortical neural circuits10,11,32.  On such tasks, adults with MDD show greater striatal 

and amygdala activation than comparisons22.  Tasks with greater cognitive demands do 

not engage these structures consistently10,11,32.  In a prior study, behavioral responses 

of offspring of MDD parents and comparisons to face-processing tasks did not differ33.  

The normal behavioral performance of juveniles at risk for MDD indirectly suggests that 

cognitive attentional demands may normalize neural perturbations in at-risk offspring.  

Therefore, we hypothesized that high-risk offspring, relative to low-risk offspring, would 

show (1) greater activation in the amygdala and NAcc in response to fearful faces, and 

(2) less activation in the NAcc to happy faces.  Moreover, we hypothesized (3) that 

these differences would be more pronounced in low relative to high demand cognitive 

conditions.   

 

Methods 

Participants  

The NIMH and New York University School of Medicine Institutional Review 

Boards approved the procedures; written informed consent was acquired from parents 

and offspring aged 18 years.  Offspring below 18 years of age signed assents.   
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Participants consisted of 17 offspring of parents with MDD (high-risk group) and 

22 comparisons (low-risk group).  High-risk status was based upon lifetime history of 

major depression in at least one parent.   

Parents with MDD had been patients at mood and anxiety disorder clinics.  They 

received the Structured Clinical Interview for DSM-III-R (SCID)34 by trained clinicians.  

Parents of low-risk offspring were similarly evaluated and found to be free of a lifetime 

history of anxiety, mood or psychotic disorders.   

Offspring were ages 10 through18 years, with IQ's greater than 70.  Offspring 

were evaluated for lifetime mental disorders through direct interviews and interviews 

with parents about the offspring, by blind trained clinicians using the Parent as 

Respondent Informant Schedule (PARIS) interview35.  A diagnosis required either the 

parent or offspring report to confirm full diagnostic criteria.  Exclusion criteria for all 

offspring included any lifetime history of MDD, any current psychiatric disorder, and 

current use of any psychoactive substance.  While all offspring with current 

psychopathology were excluded, those with past disorders (except for MDD) were not. 

Pubertal status was not ascertained. 

Diagnostic interviews of parents with depression and their offspring were 

conducted in New York.  Interviews of parents without depression and their offspring 

were conducted either in New York or Maryland.   

 

Task Procedures 

All fMRI data were collected in Maryland.  fMRI probed brain function while 

subjects viewed faces that varied in intensity of happy or fearful expression, and neutral 
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faces.  Specifically, the fearful or happy face was morphed with the neutral face of the 

same model in 25% increments29.  Subjects viewed 10 types of facial displays: 100% 

happy, 75% happy/25% neutral, 50% happy/50% neutral, 25% happy/75% neutral, 

100% neutral, 25% fearful/75% neutral, 50% fearful/50% neutral, 75% fearful/25% 

neutral, 100% fearful, and exaggerated fear (150%) (sample faces are provided in 

Figure 3).  Facial displays were presented in random order across subjects.  By 

parametrically modulating the faces across levels of expression, the degree of facial 

emotion and brain activation can be correlated.  

Subjects viewed 80 different faces (8 models by 10 levels of emotion) for a total 

of three viewings, once in each of three attention conditions (described below).  Each 

attention condition was presented in eight blocks of ten pictures each, from the 80 

picture set.  The order of the three attention conditions was randomized across 

subjects, and stimuli were randomized across subjects and across blocks.  Faces were 

displayed for 3 seconds with inter-trial intervals varying between 750-1250 ms.   

Facial expression varied randomly from trial to trial (event-related) and the 

attention condition alternated every 10 trials (block).  During face viewing, subjects 

alternated across three attention conditions11. In one condition, subjects passively 

viewed the faces (attention was unconstrained). In another condition, subjects attended 

to their subjective fear while viewing the emotional and neutral faces. In the third 

attention condition, subjects attended to a non-emotional feature of the face (nose 

width).  Subjects were cued to the condition with an instruction screen that appeared for 

3 seconds.  For the passive viewing condition, the instructions stated, “Just look straight 

ahead.  Do not rate the next set of faces.”  For subjective fear, subjects were directed to 
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press a 5-key button box, responding to, “How afraid are you? 1. Not at all. 2. Just 

barely.  3. A little. 4. Very 5. Extremely.”  For nose width, subjects were directed to 

press a 5-key button box to indicate, “How wide is the nose?  1. Not at all. 2. Just 

barely.  3. A little. 4. Very wide 5. Extremely wide.”   

Before scanning, a practice session trained subjects until they demonstrated 

appropriate performance.   

 

Neuroimaging Procedures and Analyses 

 We used a GE Signa 3-tesla scanner to acquire 29 interleaved 3.3 mm axial 

slices, parallel to the AC-PC [echo-planar single shot gradient echo T2* weighting 

(TR=2300 ms; TE=23 ms; FOV=240 mm; 64x64 matrix; 3.3x3.75x3.75 mm voxel)].  

High-resolution T1-weighted volumetric scans used an MP-RAGE [180.10 mm axial 

slices; FOV=256 mm, NEX=1, TR=11.4 ms, TE=4.4 ms; matrix=256x256; TI=300 ms, 

bandwidth 130 Hz/pixel=33 kHz for 256 pixels in-plane resolution = 1mm³]. 

 Functional imaging data were analyzed using SPM2.  Data underwent slice 

timing correction to adjust for temporal differences in slice acquisition within each 

volume.  Data were motion corrected to the first functional volume and spatially 

normalized to a Montreal Neurological Institute T1-weighted template image.  The 

normalization of juvenile brains to a standard brain template is considered valid36.  Data 

were then smoothed with a 6 mm full-width at half-maximum Gaussian kernel.   

Functional data were analyzed first at the individual subject level and then at the 

group level using the general linear model.  At the subject level, a design matrix was 

specified for each subject using one basis function per condition.  The regressors were 



 10 

derived from a 3-s rectangular pulse that was convolved with a synthetic hemodynamic 

response function from SPM2.  Regression coefficients corresponding to the conditions 

were estimated from each subject’s blood oxygenation level dependent response using 

the design matrices.  With these coefficients, parametric contrasts were generated 

within each attention condition, by assigning weights to each face depending on the 

intensity of happiness or fear expressed29,37.  The linear trend analysis modeled 

responses from happy to fearful (including neutral).  Specifically, a linear trend analysis 

from happy-to-fearful faces, using all data, compared neural changes as a function of 

changing stimulus intensity.   

Next, the individual subject parametric contrasts were submitted to random 

effects group level analyses.  We used a small volume correction procedure with a 

threshold of p < .0538 with regions of interests for the amygdala and NAcc.  Boundaries 

for these structures are described elsewhere11,14.  As a first step, we performed an F-

test on the two risk groups, the three attention conditions, and the parametrically varied 

faces.  This provides an omnibus test of the hypothesis concerning group-by-attention-

by-face-emotion interactions for the amygdala and NAcc.  The overall F test was 

followed by t-tests on the parameterized emotional faces for the three attention 

conditions separately, to identify the factors that contributed significantly to the between-

group differences29.  Finally, to further characterize the results, and to make it possible 

to relate them to non-parameterized emotional face studies, we conducted post-hoc t-

tests on the non-chimeric faces (i.e., 100% happy, neutral, 100% fear) using the peak 

voxels of activation from the t-tests of the parameterized faces.   

 



 11 

Behavioral Data Analyses 

 Behavioral responses of fear and nose ratings as well as reaction times were 

submitted to repeated-measures ANOVAs.  Responses that occurred after 3 s were not 

recorded.  Greenhouse-Geisser corrections for violations of sphericity were applied 

when necessary.   

 

Results 

Sample characteristics  

The high-risk group, 9 males and 8 females, had a mean age of 14.3 (2.1), and 

mean IQ of 102.9 (13.4).  The low risk group, 10 males and 12 females, had a mean 

age of 13.9 (2.5 ) and mean IQ of 105.8 (10.0 ).  There were no group differences.  

High-risk offspring were recruited from a larger study at the New York University Child 

Study Center of the biology of risk for anxiety and depressive disorders.  Nine low-risk 

comparisons were drawn from the larger study and, to reduce travel costs, 13 additional 

comparison subjects were recruited from Maryland.   

Of the high-risk offspring, 10/17 (59%) had a past history of an anxiety disorder, 

2 (1.2%) had a previous history of attention-deficit/hyperactivity disorder (ADHD) one 

with oppositional defiant disorder (ODD).  Of the low-risk comparisons, 3/22 (14%) had 

a history of an anxiety disorder.  Separate analyses were conducted with the 26 low and 

high-risk subjects without past anxiety and ADHD/ODD (see Supplement).   

 

Hypothesis 1: high-risk offspring, relative to low-risk comparisons, show significantly 

greater activation in the amygdala and NAcc in response to fearful faces 
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As noted above, a three step analytic process tested this hypothesis.  First, the 

overall F-test revealed significant activation differences bilaterally in the amygdala and 

NAcc between the high and low risk groups (Table 1A; Figure 1).  Second, separate t-

tests for each of the three attention conditions, using linear trend analyses, indicated 

that, in the passive viewing condition, high-risk, relative to low-risk, offspring showed 

greater bilateral activation in the amygdala and NAcc to the more fearful faces (Table 

1B; Figure 2).  To illustrate these associations, contrast values across the facial 

expressions are plotted (Figure 3).  Third, post-hoc t-tests were conducted to 

characterize group differences within passive viewing.  Relative to low-risk, high-risk 

offspring showed greater bilateral amygdala and nucleus accumbens activation during 

the passive viewing of 100% fearful faces than neutral faces (Table 1C).   

 

Hypothesis 2: high-risk offspring, relative to low-risk comparisons, show significantly 

less activation in the NAcc to happy faces 

Compared to low–risk juveniles, high-risk subjects had less bilateral NAcc 

activation during passive viewing of happy faces (100%) than neutral faces (Table 1C; 

Figure 3).  

 

Hypothesis 3: There is an interaction between risk status and attention condition on 

amygdala and NAcc activation such that increased amygdala and NAcc activation 

during passive viewing of fearful faces in the high risk group is significantly reduced by 

attentional demands of the cognitive tasks. 
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To test this hypothesis, we performed an interaction analysis of the passive 

viewing condition and each attention condition (i.e., passive viewing vs. subjective fear, 

and passive viewing vs. nose width) with the linear trend analysis.  Direct group 

contrasts showed that the increase in bilateral amygdala and NAcc activation during 

passive viewing relative to the constrained attention conditions was greater in the high-

risk than low-risk offspring (Table 2).   

Within the high-risk offspring, there was greater activation bilaterally in the 

amygdala and NAcc during passive viewing than during rating of fear and of nose width 

(Table 2).  Within the low risk group, there were no activation differences between 

passive viewing and the active attention conditions.  These findings suggest that the 

attention conditions may engage other structures, such as areas within the prefrontal 

cortex (PFC) that are thought to inhibit abnormal activation in the amygdala and NAcc.  

If so, we would expect high-risk subjects to show greater PFC activation to fear faces in 

the two attention-constraining tasks compared to low-risk subjects.  Exploratory 

analyses yielded results consistent with this prediction.  Compared to low-risk youth, 

high risk subjects showed significantly greater medial PFC activation when we 

combined the two attention conditions (subjective fear and nose width rating) and 

examined group differences to fearful faces, t(37) = 2.91, p = .003 uncorrected, cluster 

size = 951, xyz coordinates = -2 34 0.  This was the only area of activation that 

surpassed a threshold of .05 uncorrected.  No group differences were found in this area 

when attention was unconstrained.   

 

Additional Findings  
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Further analyses addressed six additional considerations.  First, analyses of task 

performance indicated that subjects performed as expected (i.e., subjects reported little 

to no subjective fear to happy faces and higher subjective fear to fearful faces) in both 

risk groups and no group differences (Supplement Table 1).  Second, we examined 

whether group differences in fMRI results remained when subjects with previous anxiety 

were removed.  The same amygdala and NAcc group differences emerged 

(Supplement Table 2A).  Third, we evaluated whether the removal of the two high risk 

offspring with past diagnoses of ADHD and ODD affected the results..  Results were 

unchanged, with one minor exception (Supplement Table 2B).  Namely, group 

differences in right amygdala activation during passive viewing of fearful faces became 

a trend when the small volume correction was applied (p = .065).  Fourth, Figure 3 fails 

to document amygdala activation in low-risk juveniles to fearful faces in one specific 

contrast.  In supplemental analyses for other contrasts, expected amygdala activation to 

fear-faces in both low and high-risk juveniles was found, with no between-group 

differences (Supplement Table 3).  Fifth, we found no evidence that activation differed 

as a function of gender, but subgroups were small.  Sixth, age did not relate to 

activation linearly or curvilinearly.   

 

Discussion 

To our knowledge, this is the first study to examine amygdala and NAcc 

correlates of familial risk for MDD.  Three principal findings emerged.  First, offspring at 

high risk for MDD, relative to those at low-risk, showed greater amygdala and NAcc 

activation to fearful faces.  Second, high-risk, relative to low-risk, offspring evidenced 
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less NAcc activation to happy faces.  Third, group differences in the amygdala and 

NAcc to emotional faces were found only during passive viewing and not during 

constrained attention. Exploratory analysis indicated that constraining attention recruited 

the medial PFC to a greater degree in the high-risk than low-risk group. This may 

possibly account for the normal amygdala and NAcc activation when attention was 

constrained.  

 The finding that the risk groups differed only during passive viewing suggests 

that neural processes may be regulated, in part, by attention in those at high risk for 

MDD.  When attention is constrained, responding is comparable in high- and low-risk 

subjects.  Thus, constraining attention may mobilize top-down cortical systems that 

normalize function in subcortical circuits10,11.  This possibility is suggested by the finding 

that attention tasks engaged greater medial PFC activation to fearful faces in the high-

risk than low-risk offspring.  Meanwhile, the passive viewing condition may allow the 

expression of neural and related mental processes, such as rumination, that reveal 

aberrant neural activation associated with MDD vulnerability. 

Findings in the present study are consistent with adult neuroimaging findings in 

MDD patients, but differ from a small study23, in which 5 girls with MDD, ages 8-16,  

showed attenuated amygdala activation to fearful faces.  Sampling and methodological 

differences may account for discrepant findings.  Among these, the previous study used 

a block design in which a specific facial expression was presented repeatedly at a high 

rate.  Therefore, reduced amygdala activation may have been due to amygdala 

habituation to repeated presentation of fearful faces39.  In this study, the presentation of 

facial expressions changed from trial to trial, minimizing habituation.   
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Limitations 

 Although there was a strong rationale for studying fearful faces, the absence of 

other negative expressions, such as sad faces, precludes knowing whether activation 

differences between offspring at high- and low-risk for MDD are specific to fear stimuli 

or occur across negative emotions.  If effects were selective to fear, it would provide 

evidence of specific perturbations.  Another limitation concerns the inclusion of offspring 

with a history of anxiety.  However, since anxiety disorders are common in offspring of 

MDD parents, excluding past anxiety would have reduced representativeness of the 

sample, thereby decreasing the generalizability of the findings.  At the same time, the 

frequent occurrence of anxiety disorders in the high-risk group may limit clear 

interpretation of findings. In this study, lifetime anxiety disorders did not account for 

differences between juveniles at high and low risk for MDD (Supplement Table 2), 

indicating that group differences in activation were a function of MDD risk status, and 

were not related to the presence of anxiety disorders.  In addition, the present study 

was not designed to address developmental changes in brain function and how they 

interact with risk for psychopathology.  It will be important for future studies to 

characterize the role of the amygdala and NAcc from a developmental perspective as 

well as in relation to vulnerability for mood disorders.  Finally, it was not possible to 

determine whether group differences in brain function were mediated by differential 

attention to specific facial expressions.  Nevertheless, the findings document that each 

group showed increases to some stimuli and decreases to others during passive 
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viewing.  These results are inconsistent with the possibility that one group failed to 

attend during passive viewing.   

 

Future Directions 

 First, replication is necessary.  It will be particularly important to study larger 

samples of children at risk for MDD with and without anxiety to examine the contribution 

of anxiety disorders to neural perturbations in at-risk individuals.  Second, the inclusion 

of multiple negative emotional stimuli, such as sad and angry faces, would inform on the 

specific significance of emotional stimuli.  Third, while offspring of parents with MDD are 

at greater risk for MDD, they are also at increased risk for other mental disorders, 

especially anxiety disorders1.  Thus, the present findings may not relate to MDD risk 

specifically.  Longitudinal studies would inform this question, and also whether 

variations in neural activation predict the incidence of MDD among those at high risk.  

Such work could eventually identify which of the at-risk individuals are at highest risk for 

MDD and other psychopathology.  For example, individuals with the highest activation in 

a given structure or a particular neural interaction profile might be those at highest risk.  

If so, the study of prevention efforts would be especially appropriate in this subgroup of 

at risk individuals.  Fourth, the study of eye movements might identify patterns of gaze 

that enhance brain activation in high- vs. low-risk subjects during passive viewing.   
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Figure Captions 

Figure 1: F test indicating group differences in activation as a function of facial 

expression and attention condition.  Figure 1A illustrates bilateral activation in the 

amygdala, and Figure 1B depicts bilateral activation in the NAcc.  Images are masked 

with the ROIs to better characterize activation within the amygdala and NAcc.  Figures 1 

and 2 display group-level data superimposed on the high-resolution, MNI-normalized 

anatomical image provided in SPM2.   

 

Figure 2: Group differences for juveniles at high risk for MDD vs. low-risk comparisons 

in amygdala (Figure 2A) and NAcc (Figure 2B) for activation within the passive viewing 

condition (t test).   

 

Figure 3: Activation in the high-risk and low-risk offspring within the passive viewing 

condition.  This figure illustrates that high-risk juveniles relative to low-risk comparisons 

evidenced increased amygdala and NAcc activation to fearful faces and decreased 

NAcc activation to happy faces.  Values are represented as percent signal change and 

are relative to the neutral face trials.  Values were derived from the mean of a 4 mm 

sphere around the peak activation within the linear trend analysis that examined 

increasing activation as the faces changed from happy to fearful.  To reduce noise, face 

trials were averaged together as follows: 100% and 75% happy, 50% and 25% happy, 

25% and 50% fear, and 75%, 100% and exaggerated fear.  Coordinates are presented 

in Table 1B. 
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Table 1A. F test of group contrasts in activation peaks as a function of facial expression 

and attention condition (MNI coordinates, x,y,z in mm).   

Region Cluster Size (voxels) x y z F(2, 74) p 

Left Amygdala 161 -18  0 -14 6.19 0.03 
Right Amygdala 96  34 -6 -12 5.56 0.04 
Left NAcc 118 -4  10  2 9.60 0.003 
Right NAcc 154  8  12  2 9.18 0.004 
 

Table 1B. Voxels of significant activation between high-risk and low-risk offspring within 

passive viewing to more fearful faces based on the linear trend analysis (MNI 

coordinates, x, y, z in mm).  Differences indicate greater activation in the high- relative 

to the low-risk offspring. 

Region  Cluster Size (voxels) x y Z t(37) p 

Left Amygdala 180 -18  2 -14 3.12 0.014 
Right Amygdala 158  20 -4 -12 2.62 0.038 
Left NAcc 172 -4  10  2 3.85 0.002 
Right NAcc 155  8  16  4 4.07 0.001 
 

Table 1C. Group differences in activation during passive viewing of the non-chimeric 

faces (100% fear, neutral, 100% happy) based on post-hoc t-tests of the peak activation 

voxels depicted in Table 1B.   

 

 
High Risk vs. Low Risk 

Left Amygdala 
t               p 

Right Amygdala 
t               p 

Left NAcc 
t            p 

Right NAcc 
t            p 

100% fear vs. neutral 2.72 .005 2.88 .003 2.65 .006 2.54 .008 
         
Low Risk vs. High Risk         
100% happy vs neutral 0.38 .30 .23 .34 1.83 .037 1.75 .043 
 

 



 24 

Table 2a.  Interaction analysis of passive viewing and subjective fear for the high-risk 

offspring.  (In the same analysis with the low-risk juveniles alone, no differences were 

found.) 

 

Region  Cluster Size (voxels) x y z t(37) p 
Left Amygdala 185 -24 4 -18 2.65 .018 
Right Amygdala 168 22 2 -18 2.41 .053 
Left NAcc 60 -4 10 2 2.95 .018 
Right NAcc 150 8 12 2 2.69 .029 
 
Table 2b.  Interaction analysis of passive viewing and nose width for the high-risk 

subjects.  (For low-risk juveniles alone, no differences were found in this comparison).   

Region  Cluster Size (voxels) x y z t(37) p 
Left Amygdala 215 -18 2 -14 3.38 .009 
Right Amygdala 181 22 0 -12 3.06 .04 
Left NAcc 171 -2 14 8 3.77 .003 
Right NAcc 147 8 16 4 3.02 .017 
 
Table 2c.  Interaction analysis directly comparing the high-risk and low-risk offspring for 

passive viewing and subjective fear.   

Region  Cluster Size (voxels) x y z t(37) p 
Left Amygdala 120 -12 -6 -10 2.57 .042 
Right Amygdala 8 20 -6 -12 1.79 .142 
Left NAcc 46 -4 10 2 2.84 .024 
Right NAcc 134 8 12 2 2.75 .026 
 
Table 2d.  Interaction analysis directly comparing the high-risk and low-risk offspring for 

passive viewing and nose width rating.   

Region  Cluster Size (voxels) x y z t(37) p 
Left Amygdala 66 -20 2 -12 2.9 .026 
Right Amygdala 29 34 -6 -12 3.17 .015 
Left NAcc 137 -2 14 8 4.03 .002 
Right NAcc 141 8 16 4 3.73 .003 
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Figure 1.  
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Figure 2.  
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Figure 3.   
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