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Abstract 

1. Context. Vigilance to threat is a key feature of generalized anxiety disorder (GAD).  

The amygdala and ventrolateral prefrontal cortex comprise a neural circuit that is 

responsible for detection of threats.  Disturbed interactions between these structures 

may underlie pediatric anxiety.  To date, no study has selectively examined responses to 

briefly-presented threats (e.g. less than 50 msec) in GAD or in pediatric anxiety. 

2. Objective. To investigate amygdala and ventrolateral prefrontal cortex activation 

during processing of briefly-presented threats in pediatric GAD.     

3. Design. Case-control study. 

4. Setting. Government clinical research institute.  

5. Participants. Youth volunteers, 17 with GAD and 12 diagnosis-free.  

6. Main Outcome Measures. We used functional magnetic resonance imaging to 

measure blood oxygenation level-dependent signal.  During imaging, subjects 

performed an attention orienting task with rapidly presented (17 msec), masked 

emotional (angry or happy) and neutral faces.   

7. Results.  When viewing masked angry faces, GAD youth, relative to comparison 

subjects, showed greater right amygdala activation that positively correlates with 

anxiety disorder severity.  Moreover, in a functional connectivity (psychophysiological 

interaction) analysis, right amygdala and right ventrolateral prefrontal cortex showed 

strong negative coupling specifically to masked angry faces.  This negative coupling 

tended to be weaker in GAD youth than in comparisons. 

8. Conclusions. GAD youth have hyper-activation of the amygdala to briefly-

presented, masked threats.  The presence of threat-related negative connectivity 

between the right ventrolateral prefrontal cortex and amygdala suggests that the 
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prefrontal cortex modulates amygdala response to threat.  In pediatric GAD, hyper-

amygdala response occurs in the absence of a compensatory increase in modulation by 

ventrolateral prefrontal cortex.  
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Introduction 

Vigilance for threat represents a prominent feature of generalized anxiety 

disorder (GAD)1-4.  Neuroimaging research delineates a neural circuit encompassing the 

amygdala and ventrolateral prefrontal cortex in vigilance4-7.  In this circuit, the 

amygdala is thought to support vigilance through immediate threat-preocessing8,9, 

whereas the ventrolateral prefrontal cortex facilitates later processes related to emotion 

regulation 5,10.  Disturbed amygdala-ventrolateral prefrontal cortex interactions are 

thought to influence anxiety10.   

Developmental work in this area appears important, since most adult anxiety 

disorders arise in adolescence, with adolescent GAD showing particularly strong ties to 

adult anxiety11.  Studies in animal models suggest that early-life amygdala-ventral 

prefrontal cortex circuit dysfunction lays a foundation for persistent anxiety12,13.  

Translational work has begun to extend these findings to humans through brain 

imaging.  Such studies consistently find that adults with various anxiety disorders 

exhibit altered activation in the amygdala and prefrontal cortex14-19, with positive 

correlations between amygdala activation and anxiety severity15.   

Of note, these studies typically present threats under prolonged-viewing 

conditions where the nature of the threat can be readily discerned.  Prior research 

implicates the amygdala and associated circuitry specifically in processing rapidly 

presented threats5,7.  Thus, relative to tasks using prolonged-viewing conditions, studies 

using brief presentations of threat may clarify the nature of amygdala-ventrolateral 

prefrontal cortex interactions in both adult and pediatric anxiety.  For example, prior 

behavioral studies used spatial-orienting paradigms with event-types containing brief 

threats (e.g. 17 msec), embedded within longer events (e.g. 2000-3000 msec), to reveal 
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anxiety-related attention biases27.  Such event-types might be used in the context of 

brain imaging research to engage regions involved in evaluation of events affording 

limited opportunities for elaborative processing.   

Consistent with data implicating the amygdala in processing of briefly-presented  

threats, neuroimaging studies demonstrate amygdala engagement to masked 

threats,5,7,20 particularly among adults with elevated trait anxiety21.  Nevertheless, the 

only published studies using masked threatening stimuli in anxiety disorders 22,23 found 

heightened right amygdala activation to masked fear faces in adult post-traumatic stress 

disorder (PTSD).  It remains unclear if these findings apply to other anxiety disorders or 

to youth. 

We recently examined neural responses in pediatric GAD to 500 msec 

angry/threat cues4.  Adolescents with GAD exhibited greater right ventrolateral 

prefrontal cortex activation than healthy peers, with no between-group differences in 

the amygdala.  Interestingly, ventrolateral prefrontal cortex activation appeared greater 

in GAD youth with mild relative to severe anxiety, consistent with studies implicating 

the ventrolateral prefrontal cortex in emotion regulation through effects on the 

amygdala15,24-26.  However, as with most prior reports, this study involved events 

containing relatively prolonged presentation of threats.  Events with briefly-presented, 

masked threats may reveal between-group differences in the amygdala and associated 

brain regions that are engaged by events affording limited opportunities for elaborative, 

strategic, or regulatory processing.  No prior imaging study in healthy or anxious youth 

has examined neural responses to such events. 

The present study uses an orienting task in pediatric GAD to monitor attention 

bias for rapidly presented, masked emotional facial displays.  Angry faces were chosen 
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for two reasons.  First, behavioral findings in adults studied with this exact task show 

that anxious relative to non-anxious individuals exhibit an attention bias towards angry 

faces27.  These behavioral data are consistent with other findings on related tasks that 

demonstrate the capacity of angry faces to disrupt attention in pediatric anxiety 

disorders4,28-30.  Second, our previous fMRI study with GAD youth also used angry 

faces4.  Thus, in order to most effectively build on this previous behavioral and imaging 

work, we used angry faces.  Of note, as in our previous study4, we included happy faces 

as a comparison condition to determine whether the effects were selective to the 

negative emotion (anger).   

The current study uses the orienting task with angry and happy faces to test two 

hypotheses.  First, as in prior studies using rapidly-presented threats22,23, we 

hypothesized that youth with GAD show increased right amygdala activation relative to 

healthy youth in response to briefly-presented masked angry faces.  Second, prior 

research with healthy adults shows that the right ventrolateral prefrontal cortex 

inversely relates to right amygdala activation in response to masked angry faces5.  

Therefore, we hypothesized that the right amygdala shows negative connectivity with 

the right ventrolateral prefrontal cortex, particularly among healthy youth, in response 

to threat.   

 

Methods 

Participants 

The study sample comprised 29 children and adolescents (Table 1 provides 

details).  The NIMH Institutional Review Board approved the procedures.  Parents 

signed the consent form and youths signed assents.  All participants were evaluated with 
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a physical examination and IQ measure.  The Kiddie Schedule for Affective Disorders 

and Schizophrenia (K-SADS) was administered to all participants by trained clinicians31.  

Two patients and one comparison subject were left handed; all other subjects were right 

handed. 

Inclusion and exclusion criteria were identical to those used in our prior study 4.  

Seventeen participants met criteria for GAD based on five requirements:  1) criteria for 

GAD were met based on the K-SADS; 2) GAD was the primary focus of treatment; 3) 

clinically significant symptoms were present (Pediatric Anxiety Rating Scale 32 score ≥ 

9; Children’s Global Assessment Scale score > 60); 4) families desired treatment; 5) 

anxiety as measured by the Pediatric Anxiety Ratings Scale persisted during a 3-week 

period when patients received supportive psychoeducational therapy.  As in prior 

biological and therapeutic studies of pediatric anxiety4,33,34, provision of supportive 

psychoeducational therapy was designed to eliminate patients with GAD symptoms 

appearing either transient or responsive to non-specific, supportive intervention.  

Stability of symptoms over the 3-week period was confirmed by the patient’s clinician 

immediately prior to MRI scanning.   

There were 12 healthy comparison participants who were free of current and past 

psychiatric disorders based on the K-SADS.  Controls were matched with patients on 

age, sex, and IQ.  

Exclusion criteria followed previous work4.  Specifically, we excluded for current 

Tourette’s syndrome, obsessive-compulsive disorder, conduct disorder, PTSD, exposure 

to severe trauma, suicidal ideation, lifetime history of mania, psychosis, pervasive 

developmental disorder, and IQ<70.  We also excluded for current use of any 

psychoactive substance (for GAD, use of any such substance since the onset of the 
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condition).  As in our earlier study, subjects with comorbid GAD and major depressive 

disorder (MDD) were included, as MDD did not influence prior findings in GAD 4. This 

decision was initially based on the fact that family-based and longitudinal investigations 

documented strong relationships between GAD in youth and MDD.  In the current 

study, this decision reflected the desire to compare the current with the prior findings.  

To evaluate the effects of MDD as well as social phobia on our results, we conducted 

secondary fMRI analyses between patients with and without comorbidity.   

 

The task 

The task closely followed established procedures27. Trials started with a 500-

msec fixation point in the center of the screen (Figure 1).  Two pictures of one actor’s 

face then appeared simultaneously for 17 msec.  In some trials, one picture showed a 

neutral expression and the other an emotional expression; in other trials, both pictures 

showed the actor with a neutral expression. Immediately after this brief presentation, 

two scrambled faces (the mask) appeared for 68 msec in the same locations as the two 

faces.  The mask was replaced by an asterisk in one hemi-field for 1100 msec.  Subjects 

were instructed to press one button with their thumb when the asterisk appeared on the 

left and press another button with their index finger when the asterisk appeared on the 

right.  The duration of the intertrial interval was 2300 msec.  Previous studies using 

these parameters show that subjects report minimal awareness of details of the briefly 

presented face stimuli.  Each participant was trained to perform the task before entering 

the MRI.  These procedures are similar to our previous work4.  The key difference is that 

the faces were presented for 17 msec and they were masked for this study, whereas in 

the previous study unmasked faces were presented for 500 msec.  Eighty actors were 
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each presented twice to participants, for a total of 160 trials.  Forty blank trials were 

included to facilitate fMRI analysis.   

There were five trail types, including two primary conditions of interest for the 

behavioral measure of attention bias: congruent trials wherein a masked angry/neutral 

face pair was followed by an asterisk on the same side of the screen as the angry face; 

and incongruent trials, wherein a masked angry/neutral face pair was followed by an 

asterisk on the opposite side from the angry face.  Also, other control conditions were 

included: masked happy/neutral face trials (congruent and incongruent) and masked 

neutral/neutral face pairs.  There were 32 trials for each of the 5 conditions.  For each 

participant, order of trial presentation was randomly determined.  Emotional faces and 

asterisks were displayed an equal number of times on each hemi-field.   

 

Behavioral data analysis 

The same criteria for determining acceptability of trials were applied to 

behavioral and fMRI data.  Specifically, trials with incorrect responses and responses 

with reaction times <200 and>1000 msec were excluded.  The behavioral measure of 

attention bias for masked angry faces was calculated for each subject by subtracting the 

mean reaction time on congruent trials (asterisk in same position as the masked angry 

face) from the mean reaction time on incongruent trials (asterisk in different position to 

masked angry face). Positive values indicate an attention bias towards the spatial 

location of masked threat. Bias scores were similarly calculated for masked happy faces. 

 

fMRI analysis 
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Images were acquired from a GE 3T scanner with 29 contiguous 3.3-mm axial 

slices using echo-planar, single-shot gradient echo T2 weighting (TR=2300 msec; 

TE=23 msec; field of view=240mm; 64x64 matrix; 3.3x3.75x3.75 mm voxel).  Slices 

were parallel to the anterior commissure/posterior commissure line.  Ramp sampling 

was used to correct possible distortion.  For the T1-weighted volumetric scans, we used a 

magnetization prepared gradient echo (MP-RAGE) sequence: 180 1.0-mm axial slices; 

field of view = 256 mm; number of excitations=1; TR=11.4 msec; TE=4.4 msec; matrix = 

256x256; TI=300 msec; bandwidth 130 Hz/pixel=33 kHz for 256 pixels; in-plane 

resolution=1 mm3.   

We used Analysis of Functional Neuroimages (AFNI) software version 2.56b 35.  

Subjects were removed from the analysis if they moved more than 2.5 mm in any 

direction.  For movement that was 2.5 mm or less, effects were reduced by registering 

images to one volume in each run.  Participant data were smoothed with a 6-mm full 

width at half maximum isotropic Gaussian filter.  Trials with incorrect behavioral 

responses or responses that were < 200 msec or > 1000 msec were removed from the 

fMRI analysis.  Patients had 8.6% (SD = 8.1) and comparisons had 6.0% (SD =4.8) of 

trials removed. Groups did not differ in the number of incorrect trials.  

Using a two-level procedure, a random effects fMRI data analysis was conducted.  

At the subject level, we submitted each subject’s data separately to a multiple regression 

analysis using the 3dDeconvolve module from AFNI.  Vectors were created for each of 

the five masked conditions (angry/neutral congruent, angry/neutral incongruent, 

happy/neutral congruent, happy/neutral incongruent, and neutral/neutral) with the 

onset time of each trial for each condition.  Blank trials were modeled as an implicit 

baseline.  An additional vector modeled nuisance trials, i.e., trials that contained 
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incorrect responses, responses that were too fast or slow, and null responses.  Vectors 

were transformed into waveforms using a gamma variate36 and coefficients were created 

for each subject and condition.  Contrast values were derived from comparisons of 

coefficients for specific conditions.   

For the second level of analysis, individual data sets were converted to Talairach 

space and group-level analyses were performed using AFNI’s 3dttest comparing GAD 

and comparison subjects.  The principal effect of interest was the amygdala response to 

masked angry faces.  The masked neutral/neutral face pairs were the comparison for 

examining group differences in activation to masked angry faces.  Thus, the main 

hypothesis concerned group differences in the contrast of masked angry/neutral vs. 

neutral/neutral face pairs.  The only difference between these trial types was the 

presence of a 17 msec angry face in the angry/neutral trials.  We also examined 

responses to happy/neutral pairs relative to neutral/neutral pairs.  To evaluate the fMRI 

data, we used AlphaSim from AFNI with 1000 Monte Carlo simulations4,37 to control for 

multiple comparisons within the amygdala.   

 

Connectivity analyses  

 We performed two connectivity analytic procedures.  First, because we were 

primarily interested in group differences in brain interactions in response to threat, we 

implemented a psychophysiological interaction analysis to examine task dependent 

connectivity between the right amygdala and ventrolateral prefrontal cortex.  To 

accomplish this, we used established procedures38,39 and adapted them for AFNI.  Since 

the interactions in the brain occur at the neural level (not at the level of the 

hemodynamic response), we deconvolved the BOLD signal with an assumed form of 
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hemodynamic response function before the interaction term was created39.  Each 

participant’s EPI time series was placed in Talairach space.  The first eigenvariate time 

series from the amygdala cluster (derived from the main contrast of masked 

angry/neutral pair vs. neutral/neutral pair) was the “seed”.  To selectively examine 

activation related to the conditions of interest, we entered  the masked angry/neutral 

pair vs. neutral/neutral pair conditions as covariates.  The results of this procedure 

show condition-related changes in the interaction of the right amygdala cluster and 

ventrolateral prefrontal cortex.  The threshold for the VLPFC activation was set to p < 

.005 based on similar paradigms with rapidly presented emotional faces 5. 

 Second, to be consistent with previous work33, we performed a standard 

connectivity analysis40,41.  The first eigenvariate time series from the amygdala cluster as 

above was the “seed” and the time series within it was extracted.  For each subject, we 

performed a voxel-wise correlation analysis between each individual voxel’s time series 

and the seed’s time series.  The same threshold was used. 

 

Results 

Behavioral Results 

 Adolescents with GAD showed an attentional bias of 10.9 msec (SD=24.8) and 

comparison subjects showed an attention bias of 11.6 msec (SD=18.6) to masked angry 

faces.  No group difference was found for attention bias to masked angry faces, 

t(27)=0.08, p=0.94.  All subjects considered together manifested an attention bias 

toward masked angry faces, t(28)=2.73, p=0.01.  For GAD patients, mean reaction times 

were 578.7 msec (SD=74.2) for masked angry/neutral congruent trials and 586.7 msec 

(SD=74.6) for masked angry/neutral incongruent trials.  For the comparison group, 
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mean reaction times were 539.1 msec (SD = 113.8) for masked angry/neutral congruent 

trials and 550.7 (SD = 116.7) for masked angry/neutral incongruent trials.  There was no 

group difference in reaction times to trials containing masked angry faces, t(27)=1.08, 

p=0.29.  Moreover, we found no group difference in attention bias to masked happy 

faces, t(27)=.67, p=0.51, and the groups together did not show an attention bias toward 

or away from masked happy faces, t(28)=.77, p=0.45.  Finally, there was no group 

difference in reaction time overall to trials containing masked happy faces, t(27)=.95, 

p=0.35.  

  

fMRI activation results 

 For our first hypothesis, we examined group differences in activation to trials 

containing masked angry faces vs. trials with masked neutral face pairs.  Relative to 

comparison subjects, as hypothesized, adolescents with GAD showed greater right 

amygdala activation, xyz coordinates= 28 -1 -18, t(27)=2.74, p<.05, corrected using a 

Monte Carlo simulation for multiple comparisons within the amygdala (Figure 2).  Areas 

of activation outside the amygdala are reported in Table 2.  To evaluate the association 

between severity of anxiety symptoms and amygdala activation, patients’ Pediatric 

Anxiety Rating Scale (PARS) scores were entered in a covariate analysis using AFNI’s 

3dRegAna4.  This analysis showed that increased anxiety symptoms were associated 

with increased activation with the right amygdala, xyz coordinates= 18 -5 -10, 

t(15)=3.96, p=.001 (Figure 2).  The anxiety severity and activation within the cluster 

derived from this analysis significantly correlated, Pearson r=.60, p=.01.  (The cluster 

from this association was in an adjacent but distinct area from that associated with a 
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diagnosis of anxiety).  For masked happy faces relative to masked neutral faces, we 

found no group difference in the amygdala, t(27)=2.00, p=0.15. 

 

Functional connectivity analysis 

For our second hypothesis, we examined connectivity between the right amygdala 

cluster (derived from results from the first hypothesis) and the ventrolateral prefrontal 

cortex during the masked angry relative to masked neutral face conditions.  To be 

consistent with our previous work, we first report connectivity in all subjects33. 

Activation in the amygdala cluster negatively coupled with activation in the right 

ventrolateral prefrontal cortex for all subjects (Table 3; Figure 3).  A post-hoc t-test 

showed weaker negative connectivity in GAD relative to comparisons in the same area of 

activation, but this effect was modest, xyz coordinates=29 31 -10, t(29)=-2.12 p<.05.  At 

the peak location for the group difference results (30 25 -10), GAD youth considered 

alone showed modest negative connectivity, t(16)=-2.21 p<.05, whereas healthy youth 

considered alone showed strong negative connectivity, t(11)=-4.48 p<.001.   

 In the standard connectivity analysis, there was a positive coupling between the 

right amygdala cluster and right ventrolateral prefrontal cortex in all subjects, xyz 

coordinates= 44 23 -6, t(28)=4.84, p<.001.  GAD had a significantly stronger positive 

functional connectivity relative to comparison subjects in a slightly more anterior 

region, xyz coordinates= 45 30 -6, t(27)=3.13, p=.004.  GAD youth considered alone 

showed positive connectivity, xyz coordinates=44 28 -6 (t(16)=3.60 p=.002 

uncorrected), whereas healthy youth considered alone showed positive connectivity in a 

slightly more posterior area, xyz coordinates=47 23 -6 (t(16)=5.71 p<.001 uncorrected).  

Both groups of subjects showed strong positive connectivity in the right ventrolateral 
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prefrontal cortex, but that GAD had greater positive connectivity in a slightly more 

anterior area.   

 

Examination of comorbid conditions  

Eight of the 17 subjects with GAD also had MDD.  To evaluate whether MDD 

accounted for the amygdala findings, we conducted analyses with uncorrected t-tests 

within the right amygdala.  For the comparison of GAD with MDD vs. GAD without 

MDD, there was no difference, t(15)=.04, p=.72.  Relative to the comparison group, 

GAD/MDD showed greater amygdala activation, xyz coordinates =25 -1 -18, t(18)=2.31 

p=0.04.  Similarly, relative to comparison subjects, GAD without MDD showed greater 

amygdala activation, xyz coordinates =30 -1 -18, t(19)=2.56 p=.02.   

 Eight of the youth with GAD also had social phobia.  To evaluate whether social 

phobia contributed uniquely to the amygdala findings, we followed the same procedures 

described above.  There was no significant difference in amygdala activation between 

GAD without social phobia and GAD with social phobia, t(15)=1.60, p=.13.  There was 

significantly greater amygdala activation in GAD patients with social phobia relative to 

healthy controls, xyz coordinates =26 -1 -18, t(18)=3.07 p=.007, with a similar trend 

between GAD without social phobia vs. controls, xyz coordinates =33 -1 -17, t(19)=1.97 

p=.06. 

 

Behavioral performance and fMRI associations 

 To evaluate associations between the attention bias to masked angry faces and 

amygdala activation, bias scores to masked angry faces were entered into covariate 

analyses using 3dRegAna separately for the two groups.  Adolescents with GAD 
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displayed a significant positive association between attention bias for masked angry 

faces and the strength of activation in the right amygdala (xyz coordinates 23 -4 -14) 

p<.001 (Figure 4).  This bias measure significantly correlated with level of amygdala 

activation within this cluster, Pearson r=0.70, p=.002.  No significant association was 

found for the control group. A Fisher’s Z-score transformation42 showed that there was a 

significant difference between the two correlations, Z=2.13, p=.035.   

 

Anxiety severity and behavioral performance associations 

 There was no association between anxiety severity and attention bias to angry 

faces.  Anxiety severity and attention bias to angry faces were each associated with 

increased activation in non-overlapping clusters of the amygdala.   

 

Comment 

 In response to rapidly presented threats, youth with GAD show specific 

disturbances in neural activation.  Consistent with our first hypothesis, when viewing 

briefly displayed, masked angry faces, GAD youth have greater amygdala activation 

relative to comparison subjects.  Moreover, there is a positive correlation between 

degree of amygdala activation and anxiety-symptom severity.  Support for our second 

hypothesis was mixed.  As predicted, right amygdala and right ventrolateral prefrontal 

cortex activation did exhibit negative connectivity during threat trials specifically.  

Nevertheless, post-hoc analysis only revealed the hypothesized reduced negative 

coupling in GAD relative to healthy youth at a liberal statistical threshold.  Finally, 

although both groups show an attention bias of similar magnitude to masked angry 
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faces, attention bias correlates with amygdala activation in patients but not in healthy 

subjects.   

 The present findings and our previous work4 indicate that GAD youth process 

threat faces atypically at both behavioral and neural levels.  Behaviorally, when angry 

faces are presented briefly as in the present study, youth with GAD and comparison 

subjects both show an initial attention bias toward the spatial location of threat.  

However, when angry faces are presented for longer periods, GAD youth, relative to 

comparison subjects, show an attention bias away from threat4.  Neurally, when threat is 

presented briefly, GAD youth show increased amygdala activation which positively 

correlates with anxiety severity.  In contrast, when angry faces are displayed for 500 

msec, GAD youth show no difference from healthy peers in the amygdala, but they do 

show greater right ventrolateral prefrontal cortex activation.  Moreover, when using the 

500 msec threat exposures, GAD patients with mild symptoms show greater 

ventrolateral prefrontal cortex activation than GAD patients with severe symptoms, 

suggesting that right ventrolateral prefrontal cortex compensates for a GAD-related 

disturbance in functioning elsewhere, potentially in the amygdala.   

 Presently, little is known about the development of the amygdala-ventrolateral 

prefrontal cortex circuit and how it relates to the emergence of anxiety disorders.  Work 

from animal models indicates that the developmental timing of alterations to the 

amygdala-prefrontal cortex circuit greatly impacts anxiety-related behavior43,44.  

Turning to humans, the question is how do neural disturbances relate to the onset of 

anxiety during development.  Presently, it is not known if disturbances in this circuit 

precede the onset of GAD and are, therefore, risk markers, or if such disturbances arise 

with the disorder.  Consistent with a risk-marker hypothesis, recent findings indicate 
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that amygdala hyperactivation does relate to risk for depression and anxiety in 

youth45,46.  Clearly, more work is needed to understand how the development of this 

circuit relates to the emergence of anxiety and other disorders that increase in 

prevalence during adolescence.   

Work with a non-clinical sample of adults found that the right ventrolateral 

prefrontal cortex modulates amygdala responses to briefly presented, masked threat 

cues 5.  Extending these findings, our psychophysiological interaction connectivity 

analysis indicates that the strength of amygdala activation varies as a function of right 

ventrolateral prefrontal cortex activity in youth and that the negative coupling may be 

weaker in GAD than comparisons.  Consistent with neurobiological models of 

emotion8,47,48, our results suggest that GAD in youth is associated with dysfunction in a 

threat detection system, involving a balance between sub-cortical and cortical regions, 

in particular, the amygdala and ventrolateral prefrontal cortex.   

Some research examining the relationship between the amygdala and right 

ventrolateral prefrontal cortex in response to threat has emphasized the role of the right 

ventral prefrontal cortex in modulating amygdala responses in relation to strategic 

emotion regulation processes likely to be engaged over relatively long time periods10.  

Other work has emphasized the amygdala-ventrolateral prefrontal cortex relationship in 

terms of emotion regulation processes that are engaged over shorter time periods, even 

when a threat stimulus is briefly presented5,47.  The present findings are compatible with 

the latter view.   

Of note, although only detected at a liberal statistical threshold, patients 

exhibited less negative coupling between the amygdala and ventrolateral prefrontal 

cortex relative to comparisons.  Given that patients show greater amygdala response to 
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threat, the reduced negative coupling in patients relative to comparisons may represent 

a sign of impaired amygdala modulation.  Thus, from this perspective, GAD may relate 

more to the balance between amygdala and right ventrolateral prefrontal cortex 

activation, as opposed to overall increases in amygdala activation.  Further research is 

required to clarify these relationships.  

In addition, we performed a standard connectivity analysis.  In contrast to the 

psychophysiological interaction connectivity analysis, the latter approach showed that 

both groups had a stronger positive coupling between the same regions and that GAD 

had greater positive connectivity.  Such positive amygdala-ventrolateral prefrontal 

cortex connectivity has been observed previously in various populations and age groups 

studied with the standard approach used here33,49.  Differences in the approaches of 

these two connectivity procedures may provide insight into the discrepant findings.  The 

goal of the psychophysiological interaction analysis was to examine task-dependent 

interactions, specifically related to threat.  In contrast, standard connectivity reveals 

association in activation across the entire course of the task.  Thus, it is not surprising 

that these procedures yield different results.  Further work using both connectivity 

approaches is necessary to confirm and understand the manner in which threat content 

modulates amygdala-ventrolateral prefrontal cortex connectivity in healthy and 

abnormal development.     

In another line of research, we recently found that when stimuli are presented for 

a relatively long duration in specific attention conditions, youth with GAD selectively 

show greater amygdala activation33.  Thus, taken together with the current findings, 

these investigations indicate that differential amygdala response profiles are task 

dependent.  The cognitive correlates of amygdala hyperactivation in these two studies 
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are likely to differ.  The present study may map neural correlates of threat orienting and 

detection related to vigilance in clinical anxiety.  These correlates appear to involve the 

amygdala as well as balance between the amygdala and failures in compensatory 

modulation by the ventrolateral prefrontal cortex.  Other tasks may map neural 

correlates of psychological processes distinct from threat orienting and detection, such 

as the subjective experience of fear.  Work in this area with anxious youth demonstrates 

amygdala hyperactivation, in tandem with enhanced ventral prefrontal activation and 

amygdala-prefrontal coupling, may be correlates of subjective fear33.  Further work is 

necessary to understand exactly what situations lead to normal and abnormal neural 

activation in youth with GAD.   

 Finally, even though both anxious and comparison groups show an attention bias 

toward masked angry faces, amygdala activation only correlates with attention bias in 

GAD and not in comparisons.  This suggests that different neural processes underlie the 

common behavioral result of attention bias to masked angry faces.  For patients, it may 

be that the amygdala mediates processing rapidly presented threats and this is part of a 

profile of cognitive responses to threat that helps to underlie GAD.  Since the 

comparison subjects also show attention toward masked angry faces, the bias toward 

masked angry faces is not a unique feature of GAD in youth.   

 

Limitations 

 The present study of GAD youth included patients with comorbid MDD and other 

anxiety disorders, particularly social phobia.  However, follow-up analyses showed no 

group differences in right amygdala activation among patients with different diagnoses.  

Moreover, each patient subgroup showed greater activation in the same area of the 
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amygdala relative to comparison subjects.  These analyses indicate that the group 

differences in amygdala activation were not due to MDD or social phobia.  Another 

limitation is the small sample.  However, since small samples lead to reduced power and 

the hypothesized findings were confirmed, this limitation is less problematic.  A final 

limitation is that there was a wide age range in both groups and the small sample size 

made it unfeasible to examine interactions between age and diagnosis.  Future work on 

youth with GAD may wish to select specific age groups to examine how developmental 

changes relate to anxiety-related influences on brain function.  
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Table 1. Demographics of the comparison group and patients with Generalized 
Anxiety Disorder.   

 
Variable Comparison 

Group 
Patient Group Statistical 

Comparison 
Sample Size 12 17  

Gender 6 females; 6 males 6 females; 11 males X2(1) = 0.63 p > 0.2 

Age 14.33 (1.67) 13.12 (2.09) t(27) = 1.67 p > 0.1 

IQ 110.92 (14.24) 105.06 (14.34) t(27) = 1.09 p > 0.2 
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Table 2. Activation areas outside of the amygdala (p < .001 uncorrected) in patients and health 
groups in the primary contrast (angry vs. neutral faces). Negative activation in the separate 
groups indicates greater activation to the neutral relative to the angry faces.   
 
GAD vs. Comparisons (df = 27) 
Coordinates t value Location Brodmann’s Area 
-46 -62 -25 3.89 Left Cerebellum  
 
Comparisons vs. GAD (df = 27) 
Coordinates t value Location Brodmann’s Area 
-58 -32 -16 4.06 Left Inferior Temporal Gyrus 20 
-53 -40 -12 3.71 Left Middle Temporal Gyrus  20 
 
GAD (df = 16) 
Coordinates t value Location Brodmann’s Area 
16 36 -1 -4.84 Right anterior cingulate 32 
 
Comparisons (df = 11) 
Coordinates t value Location Brodmann’s Area 
15 -65 25 -4.79 R Precuneus 21 
8 -2 30 -5.05 R Cingulate Gyrus 24 
13 -46 29 -4.80 R Cingulate Gyrus 31 
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Table 3. Activation from the psychophysiological connectivity analysis (p < .001 uncorrected) 
in patients and health groups in the primary contrast (angry vs. neutral faces). Positive t values 
indicate positive connectivity with the seed region (the amygdala cluster).  Negative t values 
represent negative connectivity with the seed region.   
 
All Subjects (df = 28) 
Coordinates t value Location Brodmann’s Area 
29 25 -10 -4.08 Right ventrolateral prefrontal cortex  47 
17 -85 10 -3.70 Right cuneus 17 
25 -57 57 4.04 Right superior parietal lobule 7 
 
GAD vs. Comparisons (df = 27) 
Coordinates t value Location Brodmann’s Area 
42 -30 15 3.86 Right superior temporal gyrus 41 
-57 -9 12  3.91 Left precentral gyrus 43 
 
Comparisons vs. GAD (df = 27) 
Coordinates t value Location Brodmann’s Area 
39 38 28 4.18 Right middle frontal gyrus 9 
 
GAD (df = 16) 
Coordinates t value Location Brodmann’s Area 
-14 -49 -1 -4.02 Left lingual gyrus 19 
 
Comparisons (df = 11) 
Coordinates t value Location Brodmann’s Area 
29 25 -10 -4.52 Right ventrolateral prefrontal cortex 47 
-37 21 -11 -5.07 Left ventrolateral prefrontal cortex 47 
-28 25 -14 -4.52 Left ventrolateral prefrontal cortex 47 
-43 -16 8 -4.90 Left insula 13 
-43 34 31 5.31 Left middle frontal gyrus 9 
39 -27 41 4.44 Right postcentral gyrus 2 
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Figure 1. The two main trial types used to assess attention bias for masked angry faces.  

The columns on the far left and far right show, from top to bottom, the screens that 

appear in two types of trials.  The same model always displays the two expressions in a 

given trial.  The middle two columns display the duration of each event and the event 

name for both trial types.  In the sample trial on the left, the angry face and probe are 

displayed on different sides of the screen (incongruent).  In the sample column on the 

right, the angry face and probe are on the same side (congruent).  Happy/neutral and 

neutral/neutral trials (not shown) were also presented to subjects.   
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Figure 2. a. In the comparison of trials in which the angry face appeared relative to trials 
with neutral faces, adolescents with GAD show greater activation than controls in the 
right amygdala (right is left and left is right).  Coordinates (xyz) for peak activation are 
28 -1 -18.  b. Bar graphs depicting activation to masked angry and neutral faces 
separately by group (error bars indicate standard errors of the mean).  Bar graphs 
represent mean activation within the amygdala cluster.  Within subject post-hoc t-tests 
showed that GAD participants had a significantly greater activation to masked angry 
faces relative to masked neutral faces, t(16) = 2.47, p = .025 and there was no significant 
difference in healthy comparisons between masked angry and masked neutral faces, 
t(11) = 1.29, p = .22.  c. Relationship between patients’ BOLD response in right amygdala 
and severity of anxiety symptoms (PARS), Pearson r =.60, p=.01.  The location of the 
amygdala cluster of activation (xyz coordinates 18 -5 -10) is distinct from the cluster in 
a.  GAD patients with and without MDD are differentiated. 
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Figure 3. From the psychophysiological interaction analysis with the right amygdala 
cluster as the seed, subjects showed negative coupling in the right ventrolateral 
prefrontal cortex, 29 25 -10, t(28) = -4.08, p < .001.  
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Figure 4. Association between right amygdala activation and attention bias to masked 
angry faces in youth with GAD.  xyz coordinates for peak activation in this cluster was 23 
-4 -14.  Pearson r = 0.70, p = .002 
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