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Abstract

Background: Familial British and Familial Danish dementias (FBD and FDD, respectively) are associated with

mutations in the BRI2 gene. Processing of the mutated BRI2 protein leads to the accumulation in the brain of the

34-mer amyloid Bri (ABri) and amyloid Dan (ADan) peptides, accompanied by neurofibrillary tangles. Recently,

transgenic mice successfully reproduced different aspects of FDD, while modeling of FBD in vivo has been more

difficult. In this work we have modeled FBD and FDD in Drosophila and tested the hypothesis that ABri and ADan

are differentially neurotoxic.

Results: By using site-directed insertion, we generated transgenic lines carrying ABri, ADan, Bri2-23 (the normal

product of wild-type BRI2 processing) and amyloid-β (Aβ) 1–42 as a well-characterized neurotoxic peptide, alone

or with a His-tag. Therefore, we avoided random insertion effects and were able to compare levels of accumulation

accurately. Peptides were expressed with the GAL4-Upstream Activating Sequence (UAS) system using specific

drivers. Despite low levels of expression, toxicity in the eye was characterized by mild disorganization of ommatidia

and amyloid peptides accumulation. The highest toxicity was seen for ADan, followed by Aβ42 and ABri.

Pan-neuronal expression in the CNS revealed an age-dependent toxicity of amyloid peptides as determined by the

ability of flies to climb in a geotaxis paradigm when compared to Bri2-23. This effect was stronger for ADan,

detected at 7 days post-eclosion, and followed by ABri and Aβ42, whose toxicity became evident after 15 and 21

days, respectively. Histological analysis showed mild vacuolization and thioflavine-S-negative deposits of amyloid

peptides. In contrast, the over-expression of amyloid peptides in the specific subset of lateral neurons that control

circadian locomotor activity showed no toxicity.

Conclusions: Our results support the differential neurotoxicity of ADan and ABri in the Drosophila eye and CNS at

low expression levels. Such differences may be partially attributed to rates of aggregation and accumulation. In the

CNS, both peptides appear to be more neurotoxic than wild-type Aβ42. These Drosophila models will allow a

systematic and unambiguous comparison of differences and similarities in the mechanisms of toxicity of diverse

amyloid peptides associated with dementia.
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Background
Familial British Dementia (FBD) and Familial Danish

Dementia (FDD) are autosomal dominant neurodegene-

rative disorders associated with mutations in the BRI2
gene on chromosome 13 (also named ITM2B) [1,2].

FBD usually starts in the fifth decade of life with pro-

gressive dementia, spasticity and ataxia leading to death

in ~9 years [3]. FDD starts earlier, before 30 years of age

with cataracts, visual loss followed by impaired hearing,

progressive cerebellar ataxia and late dementia. Patients

die within the sixth-seventh decade of life [4]. A promin-

ent neuropathological finding in FBD and FDD patients

is the accumulation of amyloid proteins in the walls of

small arteries with a widespread distribution. This in-

cludes the cerebral cortex, leptomeninges, cerebellum,

brain stem and white matter [5,6]. In addition, parenchy-

mal amyloid deposits and neurofibrillary tangles are con-

sistently found with a notorious and severe compromise

of the hippocampus. In this regard, FBD and FDD (to-

gether with some cases of hereditary prionoses) are

closely similar to Alzheimer’s disease (AD), the major

cause of dementia in aging populations. A further simi-

larity between FBD, FDD and AD is that amyloid de-

posits are made of short peptides generated in the brain

by internal proteolysis of larger transmembrane precur-

sor proteins. These peptides of ~4 kDa, are: amyloid β

(Aβ) in AD [7,8], ABri in FBD and ADan in FDD [1,2].

In FBD, a missense mutation at the BRI2 stop codon

leads to the generation of the ABri peptide sequence [1].

In FDD, a 10-nucleotide duplication insertion causes a

frame shift and the generation of the ADan sequence

[2]. Both 34-residue peptides (ABri and ADan) and the

normal peptide product of wild-type BRI2 (Bri2-23) are

released by furin and other subtilisin/kexin-like pro-

protein convertases (PCs) by cleavage of the BRI2 carboxyl-

terminus along the secretory pathway [9].

Processing of BRI2 seems to be complex, involving sev-

eral proteases in addition to PCs. The pro-protein and

mature BRI2 (m-BRI2) protein may also be cleaved by a

disintegrin and metalloproteinase domain-containing pro-

tein 10 (ADAM10), releasing the Brichos domain [10] and

an N-terminal fragment (NTF). The NTF is also the sub-

ject of additional proteolysis by signal peptide peptidase-

like 2 (SPPL2), releasing an intracellular domain (ICD)

and the BRI2 C-peptide (Figure 1) [11]. To date, the bio-

logical roles of BRI2 and the pro-peptide Bri2-23 have not

been elucidated. In vitro studies showed that oligomers of

ABri and ADan are toxic to neuronal cell lines [12,13].

Recently, transgenic mouse models for FDD have been

generated. The first reported line carries a mutant BRI2
under the mouse prion protein promoter and after 6

months of age shows extensive vascular deposition, par-

enchymal ADan accumulation, gliosis and an increase of

phosphorylated-tau immunoreactivity [14]. When this

transgenic animal was crossed with tau-P301S transgenic

mice (Tg-Tau P301S), there was an increase of tau accu-

mulation, phosphorylation and caspase cleavage of tau at

Asp421 [15]. A knock-in (KI) mouse, carrying the FDD

mutation in endogenous BRI2 has also been generated al-

though it did not show detectable brain abnormalities

[16]. In addition, two other transgenic lines that over-

express BRI2 containing the FDD mutation have been pro-

duced [17]. The FDD-like line with higher expression

displays ADan accumulation in the hippocampus and

meningeal vessels after 2 months of age with a marked

age-dependent increase in amyloid deposition, particularly

in the microvasculature. In addition, when crossed with

Tg-tau P301S mice, these animals show a significant incre-

ment in the accumulation of hyperphosphorylated tau as

compared to the Tg-tau P301S alone. Therefore, mouse

models of FDD that overexpress mutant BRI2 in the brain

recapitulate several key features of the human disease.

Regarding FBD, the development of a transgenic ani-

mal model reproducing basic lesions of the disease has

been more elusive. Lines of transgenic mice carrying the

FBD mutation have been generated and despite high

levels of mutant BRI2 expression, no brain pathology

was detected. Moreover, ABri peptide did not accumu-

late in the brain and only minimal amounts were de-

tected by immunoprecipitation even after exogenous

furin overexpression [18]. A second approach, using the

KI strategy, showed that mice carrying the FBD muta-

tion in one mouse BRI2 allele developed a significant

deficit in hippocampal-dependent memory tasks by the

age of 9 months without neuropathology or ABri depos-

ition [19]. However, a reduction in BRI2 was detected in

synaptic vesicles as compared to wild-type mice. These

results together with the finding of similar memory defi-

cits in BRI2 haplo-deficient mice (Bri2+/−) and lower

levels of BRI2 in FBD brains has led to the hypothesis

that loss of function of BRI2 may be a contributing fac-

tor to the development of dementia in FBD patients

[19]. Other studies have reported that BRI2 may modu-

late amyloid β precursor protein (AβPP) processing in

transfected cells and in transgenic mice leading to a re-

duced Aβ production and aggregation [20,21].

Drosophila melanogaster has been extensively used to

reproduce basic aspects of several neurodegenerative

diseases including AD, Parkinson disease, frontotem-

poral dementia, polyglutamine diseases, non-coding tri-

nucleotide repeat expansion disease, amyotrophic lateral

sclerosis and prion diseases [22-25]. The first fly model

for AD was designed to over-express human AβPP, hu-

man β-secretase and presenilin1 mutants associated with

familial AD. These animals showed Aβ accumulation

and shortened life span [26]. Other groups have gener-

ated transgenic flies targeting Aβ directly to the

secretory pathway. These flies developed age-dependent
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amyloid accumulation and reduced life span accompan-

ied by defects in locomotion, memory and learning

[27-30]. Further studies of these lines showed that Aβ

caused defects in axonal transport, synaptic integrity and

mitochondrial mislocalization [31-33].

In this study we report the generation and char-

acterization of transgenic flies that over-express ABri,

ADan and the normal product of BRI2, Bri2-23, by site-

directed insertion. For comparison, a line expressing Aβ1-

42 was also generated. Although the toxicity of wild-type

Aβ and Aβ mutants in flies has been extensively described

[26-41], the strategy used in this study included Aβ as a

reference for comparison with ABri and ADan, for which

no Drosophila models have been reported. Our results

support the neurotoxicity of both FBD and FDD-

associated peptides in contrast to Bri2-23. In addition, im-

portant differences were appreciated in terms of degree of

toxicity and vulnerability of neuronal types. Moreover,

this is the first report of the toxic effects of ABri expres-

sion in an animal model.

Results and discussion
Generation of transgenic lines

To examine and compare the effects of ABri, ADan and

Aβ42 over-expression in Drosophila, we generated trans-

genic lines carrying the sequence of each amyloid pep-

tide fused to the signal peptide of Drosophila Necrotic

(Nec) that targets the protein to the secretory pathway

This strategy has been used successfully with Aβ [29]

and circumvents possible difficulties due to an insuffi-

cient processing of BRI2 (particularly in the case of ABri,

as suggested by the mouse models). To avoid positional

effects associated with random insertion in the genome,

we used the φ-recombinase-based system [42] to direct

insertion of transgenes at a specific site on chromosome

3. Since there are no specific antibodies to Bri2-23, we

generated a set of constructs with a 6 x His-tag at their

amino-termini (Additional file 1). This allowed us to

compare the levels of accumulation of each peptide by

using the same antibody. All the peptides designed in

this study are schematically shown in Figure 2A. PCRs

with specific primers were used to assess the insertion of

the correct cDNAs (Figure 2B). The “site-directed” stra-

tegy allows a better comparison of the effect caused by

each peptide because the levels of mRNA expression

should be similar. Accordingly, Quantitative Real-Time

PCR (QRT-PCR) using the same set of primers showed no

significant differences in the expression levels of Bri2-23,

ABri and ADan mRNAs (Figure 2C).

Expression and processing of Bri2-23, Aβ42, ABri

and ADan

To examine whether the fusion peptides were correctly

targeted and cleaved to release two copies of Bri2-23,

Aβ42, ABri and ADan, peptides were expressed in the

eye using the Glass Multiple Reporter (GMR-GAL4)

driver and the GAL4-UAS bipartite system. Ten days

post-eclosion (p.e), homogenates from transgenic and

control fly heads were analyzed by Western blots. In the

GMR-GAL4/HisBri2-23 line, anti-His showed a very faint

band of ~3 kDa (at the limit of detection) compatible

with a properly processed Bri2-23 (Figure 3A). The Aβ42

monomer was clearly detected with monoclonal 6E10

antibody (Figure 3B). Regarding ABri, a specific band

with the size of a monomer was detected with anti-ABri

antibody (Figure 3C). The processing of ADan was
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Figure 1 Proteolytic processing of BRI2. Schematic diagram representing the proteolytic events of BRI2 processing. Proprotein convertases (PC)

release a C-terminal 23-residue peptide (Bri2-23). Cleavage by ADAM10 of the BRI2 ectodomain releases the Brichos domain to the extracellular

space and leaves an N-terminal fragment (NTF) attached to the membrane. NTF is further processed by signal peptide peptidase-like 2 (SPPL2)

generating an intracellular domain (ICD) and an extracellular BRI2 –C-terminal peptide (BRi2−C peptide). Instead of Bri2-23, cleavage of the mutant

BRI2 by PC releases ABri in FBD or ADan in FDD, respectively (not depicted). im-BRI2, immature BRI2; m-BRI2, mature BRI2. Glyc, glycosylation; TM,

trans-membrane; ICD, intracellular domain.
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assessed with a specific antibody directed to the peptide

carboxyl-terminus, which showed a 4 kDa band consis-

tent with ADan monomer (Figure 3D). It is of note that

differently from other reports using Aβ-transgenic Dros-

ophila, mouse models of ADan or brain tissue from FBD

and FDD patients, no SDS-resistant high order oligo-

meric species were detected in our transgenic lines

(Additional file 2). In addition, the bulk of amyloid pep-

tides were solubilized in buffer containing 1% Triton X-

100 and 1% SDS, while only traces of Aβ42 and ADan

remained as a formic-soluble fraction (Additional file 2).

These results suggest that the proteins are correctly

processed along the secretory pathway, generating

mostly soluble peptides with small amounts of insoluble

aggregates.

Toxicity of Aβ42, ABri and ADan in the eye

At 10 days p.e, eyes were morphologically examined for

toxicity by light microscopy and scanning electron mi-

croscopy (ESEM). When one or two copies of Aβ42,

ABri and ADan were expressed in the eye using GMR-

GAL4 and flies maintained at 25°C, no toxic effects were

detected (not shown). By raising temperature to 28°C, an

expected mild toxicity was seen in heterozygous GMR-

GAL4/+ lines, as reported [43]. However, such effect was

greatly reduced in the GMR-GAL4/Bri2-23 line, likely

due to titration of free GAL4 to the UAS repeats avail-

able for GAL4 binding (Additional file 3). Therefore, we

used GMR-GAL4/Bri2-23 as a control to compare the ef-

fects of Aβ42, ABri and ADan expression. The eyes from

GMR-GAL4/Bri2-23 flies showed few scattered omma-

tidia of different sizes, but this defect was much lower

than the disorganization seen in the amyloid-expressing

lines. Light microscopy (not shown) and ESEM micro-

graphs revealed a pattern of ommatidia disarray in the

amyloid- expressing eyes related to BRI2-23 (Figure 4A).

The penetrance of these phenotypes was 90-100% in all

cases. Since the phenotype was mild, the extent of tox-

icity was assessed by counting the number of ommatidia,

ommatidia fusions and number of bristles in a represen-

tative central area of the eye for each genotype. The

number of fused ommatidia was significantly higher

for ADan, Aβ42 and ABri as compared to BRI2-23

(Figure 4B) while the number of bristles per ommatidia

was significantly lower in flies expressing the amyloid

peptides as compared to control (Figure 4C). In addition,

there was a significant loss of ommatidia in Aβ42 and

ADan-expressing lines as compared to BRI2-23 (Add-

itional file 3). Overall, the degree of toxicity reflected as

ommatidia size heterogeneity and fusion tended to be

higher for ADan and Aβ42 relative to ABri. These

phenotypes obtained with Aβ42, ABri and ADan in

our system were subtle as compared to the typical

full-rough eye as reported for flies expressing high levels

of Aβ [37]. When we compared our Aβ42 line with the

reference line Aβ42 Hj2.12, the latter presented ~2.5-fold

B
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Figure 2 Generation of transgenic lines with similar expression levels. A, schematic representation of the fusion peptides used to generate

transgenic flies. Amino-acid single-letter code is used. Nec, the signal peptide of necrotic (MASKVSILLLLTVHLLAAQTFAQ); (H)6 indicates the 6 ×

His-tag. The arrow indicates the site of cleavage in the secretory pathway. The rectangle encloses the sequence shared by Bri2-23, ABri and ADan.

B, agarose gels showing the PCR products obtained from genomic DNA of transgenic lines carrying one copy of untagged (arrowheads) or two

copies: one untagged and the other with a 6 × His-tagged peptide DNAs (arrows). On the right, molecular markers in base-pairs (bp). C, similar

levels of mRNA expression of Bri2-23, ABri and ADan in the eye as determined by QRT-PCR normalized with tubulin mRNA. Bars represent the

mean ± SEM of 3 independent experiments. A.U., arbitrary units.
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higher Aβ42 accumulation as measured by ELISA (7.5 vs

17.5 ng/mg total protein, respectively) and a more severe

eye toxicity (Additional file 3), indicating that the “site-

directed lines” used here have relatively low levels of

expression, and yet, a toxic effect in the eye can be

detected.

In order to examine the accumulation levels of amyl-

oid peptides in vivo in a comparable way, two copies of

the His-tagged constructs were expressed in the eye

and assessed by Western blots using anti-His. As shown

in Figure 5, the reactivity of HisADan and HisAβ42

were ~4 fold and ~3 fold higher than HisABri, respectively.

To evaluate the possible effect of the His tag upon amyl-

oid peptides, transgenic lines carrying two copies of

tagged or untagged peptides were analyzed by Western

blots using amyloid-specific antibodies (Additional file 4).

In the case of HisAβ42, there was a ~3 fold increase as

compared to Aβ42 while there were no differences be-

tween ADan and HisADan. The effect upon ABri could

not be accurately measured due to the very low signal and

high background of the blots. These results raise the pos-

sibility that, at least for ADan (for which the His tag had

no effect) its levels of accumulation may correlate with

toxicity, as suggested for Aβ42. Further in vivo and

in vitro studies may help to clarify the mechanisms by

which the His tag imposes differential effects on amyloid

peptides accumulation.

Aβ42, ABri and ADan show different patterns of

non-fibrillar deposition in the eye

Histological analysis of retina paraffin sections stained

with hematoxilin and eosin (H&E) were consistent with

the eye external phenotype, showing mild disorganization

and heterogeneity in the sizes of ommatidia in GMR-

GAL4/Aβ42, GMR-GAL4/ABri and GMR-GAL4/ADan as

compared to GMR-GAL4/ Bri2-23 (Figure 6A).

The accumulation of Aβ42, ABri and ADan in the eye

(expressing two copies of each peptide under GMR-GAL4)
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Figure 3 Amyloid peptides are properly processed in Drosophila eye. RIPA-soluble proteins extracted from flies expressing two copies of

each peptide in the eye using the GMR-GAL4 driver. A, immunoreactivity with anti-His showing a very faint 3 kDa band consistent with HisBri2-23

monomer (arrowhead). B, Western blot with 6E10 showing the 4.5 kDa monomeric Aβ42 in transgenic line (arrowhead). Synthetic (sp) Aβ42 was

added to wild type Drosophila protein extract to compare molecular masses. C, immunoreactivity using anti-ABri revealed a specific band with

the expected sizes of a monomer (arrowhead); on the right, synthetic (sp) ABri peptide added to the protein extract from a non-transgenic fly.

D, Western blot using anti-ADan show the presence of a band (arrowhead) consistent with ADan monomer in the transgenic line. Wild type

Drosophila protein extract was spiked with sp ADan peptide for comparison. M, monomers. CNT, control flies (GMR-GAL4/+). In all lanes,

RIPA-soluble proteins from 15 head homogenates (150 μg) were loaded. Representative gels from more than 3 independent experiments for each

genotype are shown.
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was studied by immunohistochemistry with specific anti-

bodies on paraffin sections of the fly heads (Figure 6B).

Specificity of staining was assessed by using 6E10, anti-

ABri and anti-ADan antibodies upon eye sections of

GMR-GAL4/Bri2-23 lines and unrelated IgG as primary

antibodies. Aβ42 staining showed deposits in the retina

following rhabdomers topology that were more abundant

toward the basal ommatidial region. ABri immunoreacti-

vity was scattered, showing discrete deposits in ommatidia

close to the lamina different from ADan distribution that

was mainly along the inner ommatidial rhabdomers with a

stronger immunoreactivity. Thioflavine-S (ThS) staining

of similar sections was negative for all peptides (not

shown). These findings suggest that in the Drosophila eye,

and despite similar levels of mRNA transcription, non-

fibrillar Aβ42, ABri and ADan induced different degrees

of toxicity, possibly related to different levels of accumula-

tion and distribution.

Toxicity of Aβ42, ABri and ADan in the CNS

To study Aβ42, ABri and ADan neurotoxicity in the

CNS, peptides were expressed with the pan-neuronal
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Figure 4 Differential toxicity of Aβ42, ABri and ADan in the eye. A, morphological analysis of eye integrity from flies expressing Bri2-23,

Aβ42, ABri and ADan. Top panel, ESEM microphotographs indicating the selected area (135 × 135 μm) used to count the number of ommatidia

and bristles.The area used for quantification of fused ommatidia was slightly larger (195 × 170 μm) and it is not shown for clarity. Bottom panel,

higher magnification of the selected regions as delineated in the top panel. Fused ommatidia are indicated with arrows. Bar scales, 100 μm and
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Marcora et al. Molecular Neurodegeneration 2014, 9:5 Page 6 of 14

http://www.molecularneurodegeneration.com/content/9/1/5



driver elav-GAL4. Lines expressing Bri2-23 were used as

negative controls and two behavioral paradigms were

tested; negative geotaxis (to evaluate locomotor coordin-

ation) and positive phototaxis (to evaluate response to

light). In the geotaxis assay, flies expressing one copy of

each transgene and kept at 25°C showed no climbing de-

fects (not shown). However, flies expressing two copies of

amyloid peptides and kept at 28°C after eclosion showed

behavioral defects that worsened with age (Figure 7A).

After 7 days p.e, ADan-expressing flies displayed a signifi-

cant impairment in climbing ability (in cm) compared to

Bri2-23 (2.5 ± 0.7 vs 4.6 ± 0.2, respectively, p < 0.001) while

in Aβ42 (4.6 ± 0.2) and ABri (3.8 ± 0.2) there was no de-

tectable toxicity. After 15 days, flies expressing ABri

showed a significant toxicity compared to Bri2-23 (2.3 ±

0.3 vs 3.8 ± 0.1 respectively, p < 0.01), while Aβ42 effect

was only evident after 21 days as compared to Bri2-23

(1.5 ± 0.3 vs 3 ± 0.2, respectively, p < 0.01). Therefore, the

three amyloid peptides were capable of causing a signifi-

cant worsening of climbing ability in the geotaxis assay.

However, Aβ42 and ABri neurotoxicity was rather mild

and strongly age-dependent, as reported for other Aβ

Drosophila models [32,33]. ADan, in turn, was highly toxic

at the first time-point analyzed. In the phototaxis assay,

flies expressing one copy of each peptide and kept at 25°C

showed that only ADan was capable of exerting a signifi-

cant impairment in 25 days-old flies (p < 0.05) reinforcing

the higher toxicity of this peptide (Figure 7B and Add-

itional file 5). These results were unlikely due to loco-

motor defects since flies expressing one copy of amyloid

peptides under the same conditions showed no deficits in

climbing assays, as mentioned above. Next, a specific

group of neurons was tested for their vulnerability to

amyloid peptides. The small and large lateral ventral neu-

rons is a key subgroup of neurons that produce the neuro-

peptide pigment dispersing factor (pdf ) and control

circadian locomotor activity. We used the pdf-GAL4

driver to direct expression of two copies of Bri2-23, ABri,

ADan and Aβ42 to these cells. Neurodegeneration of pdf-

neurons results in a dysregulation of the circadian rhythm

with aging [44]. The analysis of circadian locomotor ac-

tivity in flies expressing amyloid peptides showed nor-

mal rhythm and period both in young (5-days old)

and aged (21-days old) individuals as compared to

pdf-GAL4/ Bri2-23 or pdf-GAL4/+ (Additional file 6).

This result was interesting although not unexpected,

according to a previous report in which no circadian

behavioral phenotype was observed in pdf neurons

expressing the Arctic Aβ mutant [45]. Taken together,

our behavioral experiments point at a different vulnerabil-

ity of neuronal populations to amyloid peptides toxicity.

Histological analysis and immunostaining in the CNS

To assess the effect of amyloid accumulation on the in-

tegrity of the CNS, two copies of each peptide were

expressed under the pan-neuronal driver elav-GAL4 and

brain paraffin sections stained with H&E were examined

(Figure 8A) under light microscopy. Specifically, we

looked at the degree of vacuolization, a widely used par-

ameter of neuronal death [46,47]. Amyloid peptides ex-

pression increased vacuolization, quantified as the loss

of tissue area in cortical neurons and neuropil that was

significantly higher for Aβ42 as compared to Bri2-23

(p < 0.001) while ABri and ADan showed a non-significant

tendency (Figure 8B). Next, the accumulation of amyloid

peptides in the brain was assessed by immunohistoche-

mistry with specific antibodies using elav-GAL4/Bri2-23

flies as negative controls. In the three cases, immunostai-

ning was detected in the cortex (Figure 9). Aβ42 showed a

highly discrete and specific labeling that was consistent

with intracellular accumulation, as described [29]. ABri

and ADan distribution was much more widespread,
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probed with the amyloid peptide-specific antibodies. Arrows indicate immunoreactivity consistent with amyloid peptide deposits. Images
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compatible with intra and extracellular accumulation.

These features may explain the apparent contradiction be-

tween the extent of tissue loss and the degree of neurotox-

icity among the peptides. ABri and ADan soluble species,

with a more diffused distribution than Aβ42, may induce

an earlier synaptic dysfunction (reflected in behavioral de-

fects) in contrast to localized neuronal death. Moreover,

brain paraffin sections showing a negative staining with

ThS support the non-fibrillar form of deposition of the

three amyloid peptides (Additional file 7).

Conclusions

Our results describe a novel Drosophila model of mutant

peptides associated with human dementias, in which the

major neuropathological hallmarks are amyloid deposits

and neurofibrillary tangles. In the case of ADan, the fly

model may contribute to recently reported studies in

transgenic mice by increasing our understanding of the

molecular mechanism associated with ADan toxicity and

the pathogenesis of FDD. Regarding ABri, this is the first

animal model in which neurotoxicity is directly tested

in vivo.

Although low levels of expression of the transgenes

may be a drawback for an easy detection of amyloid pep-

tide accumulation, they allow a more reliable measure of

toxicity without artifacts associated with acute and high

over-expression. Importantly, despite the relatively low

levels of expression of our transgenes, we were able to

detect toxicity in the eye and in the CNS of flies. The

phenotypes, as expected, were mild as compared to
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Vacuolization (>3 μm) of brain tissue was significantly higher in lines expressing Aβ42 as compared to Bri2-23, ABri and ADan. B, percentage of the area

of tissue loss expressed as mean ± SEM. All lines expressed 2 copies of each peptide and 8–10 hemispheres per genotype were used for quantification.

Asterisks indicate significant differences (One-way ANOVA, followed by Dunnett’s multiple comparison test). Scale bar = 50 μm.

Aβ42 x2 

elav-GAL4

ABri x2 ADan x2

BRI2-23 x2 BRI2-23 x2 BRI2-23 x2

Paraffin horizontal section

anti-Aβ anti-ABri anti-ADan

A B
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the selected area from which immunohistochemistry is shown. B, amyloid deposits in the CNS were assessed with specific anti-amyloid peptide

antibodies in lines expressing 2 copies of each transgene. Microphotographs of frontal paraffin sections showed discrete aggregates of Aβ42

and more widespread ABri and ADan deposits which were detected mainly in the supraesophagical brain, both in neurons and neuropil (arrows).

No staining was detected in Bri2-23 line, used as a negative control for antibody specificity. Representative images from 3 independent biological

experiments are shown. Scale bar = 50 μm.
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published data on wild-type Aβ and Aβ mutants, and

yet, sufficient to detect important similarities and differ-

ences regarding the degree of toxicity and accumulation

among Aβ42, ABri and ADan. Both in the CNS and in

the eye, ADan was more toxic than Aβ42 and ABri, pos-

sibly due to a faster rate of aggregation. In the CNS,

ABri appeared to be more toxic than Aβ42, but the rela-

tionship between peptide levels was not straightforward,

suggesting additional factors involved such as conform-

ation or differential neuronal vulnerability. The solubil-

ity, the pattern of deposition, and the fact that all

deposits in the brain and the eye were not stained by

ThS, strongly suggest that toxicity of the three amyloid

peptides was likely related to the accretion of soluble

species. Our data on the Drosophila models correlate

well with recent work on a double transgenic mouse

model for FDD, in which enhanced tauopathy, tau trun-

cation, and synaptic loss occurs prior to any detectable

ADan deposition [15].

In summary, the Drosophila lines presented in this

paper support the neurotoxicity of ABri and confirm the

toxicity of ADan and Aβ42, suggesting that this effect

may be important in the pathogenesis of human demen-

tia associated with the slow and relentless accumulation

of amyloid peptides.

Methods

Generation of transgenic lines and stocks

The Bri2-23, ABri and ADan cDNAs were obtained by

PCR from BRI2 mutant templates [14,48]. Aβ42 cDNAs

was amplified from human AβPP-CT99 fragment cloned

in pGEX. The cDNA of necrotic protein signal peptide

MASKVSILLLLTVHLLAAQTFAQ was obtained from

the pOT Nec (GH10112). The primers’ sequences and

overall strategy to generate fusion constructs are de-

scribed in Additional file 1. Constructs were subcloned

in the pUAST- attB expression vector. Transgenic flies

were obtained by injection of embryos from line ΦX-

86Fb (y w M {eGFP.vas-int. Dm} ZH-2A; +; M {RFP.

attP} ZH-86Fb; +) with constructs cloned in pUAST-

attB, and therefore integration took place at a specific

site on chromosome 3 [42]. The GMR-GAL4 and

elavc155-GAL4 lines were obtained from Bloomington

Stock Center. The Hj2.12 line was kindly provided by

Dr. Mary Konsolaki. This line has several UAS-Aβ42

randomly inserted on chromosome 2 (personal commu-

nication). All crosses and maintenance of flies were done

at 25°C or 28°C as indicated.

Peptides and antibodies

Synthetic Aβ1-42 was obtained from American Peptide

Co. Synthetic ABri was a generous gift of Prof. Jorge

Ghiso, New York University. Monoclonal anti-Aβ 6E10

was from Signet. Monoclonal antibodies anti-His were

obtained from Abcam, Cambridge, MA and Qiagen,

Valencia, CA. Polyclonal antisera anti-ADan and anti-

ABri were generated as reported before [14].

DNA extraction and PCR

Thirty flies were homogenized in 400 μl of Buffer A

(100 mM Tris–HCl, pH 7.5, 100 mM EDTA,100 mM

NaCl, 0.5% SDS) and incubated at 65°C for 30 min. Eight

hundred μl of a 5 M KOAc: 6 M LiCl (1:2.5) solution

were added and left 10 min on ice. After centrifuga-

tion at 14,000 rpm for 15 min, 700 μl of isopropanol

were added per ml of supernatant. Samples were cen-

trifuged at 14,000 rpm for 15 min, the pellet washed

with cold ethanol and resuspended in water. PCR re-

actions were done using KAPA Taq (Kapa Biosystems,

Woburn, MA) and run on a Bio-Rad cycler (Bio-Rad,

Hercules, CA). The following primers, which are described

in Additional file 1, were used: forward, Br_F1b and reverse

Br_R2 for BRI2-23, Br_R3 for ABri, Br_R5 for ADan and

R-Aβ42 for Aβ42.

RNA extraction and quantitative real time PCR analysis

For each experiment, 30–40 flies carrying two copies of

each transgene were collected and frozen. Heads were

mechanically isolated and total RNA extracted using

Trizol (Invitrogen Carlsbad, USA) according to the man-

ufacturer’s protocol. An additional centrifugation step at

11,000 × g for 10 min was used to remove the cuticles

prior to the addition of chloroform. The concentration

of total RNA purified from each sample was measured

with a Nanodrop 2000 spectrophotometer (Thermo

Scientific Walthman, MA). One to 2.5 μg of total RNA

were digested with DNAse I (Promega Madison, WI)

immediately followed by reverse transcription using the

Superscript II system (Invitrogen, Carlsbad, USA) with

oligo (dT) primers. PCR reactions were done using

KAPA SYBR* FAST qPCR Master Mix (2×) from KAPA

BIOSYSTEMS (Woburn, MA) following the manufac-

turers’ instructions. Reactions were run in an Mx3005P

Cycler (Stratagene, Santa Clara, CA). Data were ana-

lyzed using MxPRO-Mx3005P software. The primers used

for Nec-Bri2-23, Nec-ABri and Nec-ADan transgenes were

directed to: 1) the Nec sequence (forward: 5′-ATA CGA

ATT CAT GGC GAG CAA AG-3′); and 2) a common

sequence for the three peptides, C-terminal of Bri2-23

(reverse 5′-GTT TCCACG GCA AAT TTG TT-3′). For

tubulin cDNA amplification, the following primers were

used: forward 5′-GCC TGA ACA TAG CGG TGA AC-3′

and reverse 5′-ATC CCC AAC AAC GTG AAG AC-3′.

Tissue processing, SDS-PAGE and Western blots

Fly heads were homogenized in RIPA buffer (50 mM

Tris–HCl, pH 8.0, 150 mM NaCl, containing 0.5% so-

dium deoxycholate, 1% Triton X-100), 1% SDS, 5 mM
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EDTA, 5 mM EGTA, 5 μg/ml leupeptin, 10 μg/ml apro-

tinin, 1 μg/ml pepstatin, 50 mM sodium fluoride and

5 mM sodium orthovanadate. After sonication, homoge-

nates were centrifuged at 14,000 rpm for 1 h. RIPA in-

soluble pellets were homogenized in 90% formic acid

(FA) followed by centrifugation as described above. FA

was evaporated by Speed Vac (Savant, SC100) and RIPA

and FA-soluble proteins were re-suspended in sample

buffer containing 0.1 M dithiothreitol. Protein extracts

were separated on 12.5 or 15% Tris-Tricine gels and

transferred onto PVDF membranes (GE Bioscience,

Piscataway, NJ). Membranes were incubated with 6E10

monoclonal antibody (1/1000), anti-ABri (1/500) anti-

ADan (1/1000) or a mixture of both monoclonal anti-

His (1/500 each Qiagen and Abcam). Anti-actin (Sigma)

was used for protein loading normalization. Immu-

noreactivity was detected with anti-rabbit or anti-mouse

horseradish peroxidase-labeled IgG (Dako Denmark) and

enhanced chemiluminescence ECL Plus (GE Bioscience

Piscataway, NJ). Immunoblots were scanned with Storm

840 and band intensities quantified with ImageQuant 5.1

software (GE Bioscience Piscataway, NJ).

Eye toxicity

Flies expressing one or two copies of the peptides in the

eye (GMR-GAL4) were raised at 25°C or 28°C and aged

for 10 days before examination under light microscope.

At least 100 eyes per genotype were analyzed from 5 in-

dependent biological experiments. Due to the high pene-

trance of phenotypes (90-100%), 8–10 eyes per genotype

were randomly selected for Environmental Scanning

Electron Microscopy (ESEM) analysis. Adult flies were

immobilized on the ESEM mount using water-based col-

loidal carbon glue for proper orientation. The electro-

scan was performed with an ESEM microscope model

XL30 (Philips) at 20.0 kV and 0.9 Torr in the auxiliary

mode. This technology did not require metal coating of

the specimen. To analyze toxicity in a quantitative man-

ner, eyes were properly oriented and a comparable area

for each genotype was selected. The number of omma-

tidia, fused ommatidia and bristles were also counted in

the selected areas. Eight fly eyes were analyzed per geno-

type. All the counting and measurements were done as

blind experiments.

Histology and immunostaining

Fly heads were fixed in Carnoy solution (60% ethanol,

30% chloroform, 10% acetic acid) at 4°C overnight and

dehydrated in ethanol. Samples were treated for 30 min

with butanol:ethanol (1:1), butanol:toluene (1:1), toluene,

and finally soaked in toluene: paraffin (1:1) for 30 min at

65°C. After incubation for 2 h in pure paraffin, heads

were embedded and cut in 7-μm serial frontal sections.

After H&E staining, images were captured using an

OLYMPUS B × 50 Microscope and analyzed with the

Image Pro Plus software (Media Cybernetics). Neurode-

generation was quantified and reported as the percent-

age of area lost in the tissue. The ratio was calculated by

dividing the area of vacuolization (each vacuole with a

diameter of at least 3 μm) by the total area of the brain

section. At least 8 brains per genotype were analyzed.

ThS staining was used for the detection of amyloid fi-

brillar deposits. The tissue was deparaffinized and incu-

bated in 50% ethanol containing 1% ThS (Sigma St.

Louis, MO) for 20 min. After washing in 50% ethanol

and PBS, tissue sections were analyzed using a confocal

Zeiss LSM510 microscope. Immunostaining was per-

formed by incubating sections with anti-Aβ monoclonal

6E10 (1/500) and protein A-sepharose affinity-purified

anti-ADan and anti-ABri antibodies (1/100). Immunore-

activity was detected with biotinylated anti-mouse or

anti-rabbit IgG followed by incubation with avidin–

biotin complex (Vector Laboratories, Burlingame, CA).

The reaction products were visualized with 0.05% diamino-

benzidine tetrahydrochloride, 0.01% hydrogen peroxide

and, in some cases with nickel enhancement. Negative

controls included incubation with primary unrelated

antibodies and immunostainig of GAL4/Bri2-23 fly sections

with amyloid peptides-specific antibodies.

Climbing assay (rapid iterative negative geotaxis, RING)

Flies expressing one or two copies of Bri2-23, Aβ42, ABri

and ADan peptides in the CNS (with elav-GAL4) were

raised at 25°C and incubated at 28°C in groups of 40

males in 4-inch glass vials with food replacement every

3–4 days. Vertical mobility was tested using the RING

assay as described [49]. Briefly, the day before the assay

10 males per genotype were randomly selected under

CO2. The following day, each group was transferred into

empty vials without anesthesia and the vials were loaded

into the RING apparatus. The apparatus was tapped

three times in rapid succession to initiate a negative geo-

taxis response. After 4 sec, digital images were taken.

The climbed distance in cm was measured for each fly

and the average height per genotype calculated using the

Scion Image software. Data from 5 technical replicates

from each of 3 independent biological experiments per

genotype were analyzed.

Phototaxis assay

Flies expressing one copy of Bri2-23, Aβ42, ABri and

ADan in the CNS (with elav-GAL4) were raised and

kept at 25°C. Phototaxis was performed as described

[44]. Briefly, the day before the assay, 30 males per geno-

type were randomly selected under CO2. The following

day, 15 min before testing, flies were transferred to dark-

ness. Further manipulations were performed under red

light. For the assay, flies were transferred to empty tubes
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and for 2 min they were able to move towards a collec-

ting tube which had a white cold light at the end of it.

The number of flies that moved to the collecting tube,

towards the light (defined as a positive response) was

counted and the results were expressed as the percen-

tage of flies that responded to light of the total number

of animals per assay. Data from 2 technical replicates

from each of 3 independent biological experiments per

genotype were analyzed.

Circadian locomotor activity

Fly activity was monitored as described [44]. Briefly,

newly eclosed male flies were trained under 12 h light-

darkness (LD) cycles until the beginning of the experi-

ment. Then, young (5 days-old) and aged (21 days-old)

flies were placed in glass tubes and monitored for activ-

ity with infrared detectors. Fly activity was monitored

under LD conditions for 3 days and then released into

constant darkness (DD) for at least one week employing

commercially available activity monitors (TriKinetics,

Waltham, MA). Period and rhythmicity were estimated

using the ClockLab software (Actimetrics, Evanston, IL)

from data collected under DD. Each experiment was re-

peated at least two times from two independent bio-

logical replicates.

ELISA

Five fly heads from our line GMR/Aβ42 carrying two copies

of the transgene and 5 heads from the GMR/Hj2.12 line were

homogenized and proteins extracted in 50 mM Tris–HCl,

pH 8 containing 5 M guanidine and a cocktail of proteases

inhibitors (Sigma St. Louis, MO). After centrifugation at

10,000 × g, proteins in the supernatant were quantified using

a bicinchoninic acid kit (Thermo Scientific, Rockford, IL).

Aβ42 concentration was determined using a commercial

capture ELISA kit (Invitrogen Frederick, MD) following

the manufacturer’s instructions.

Statistical analysis

Data were analyzed by Student’s t-test, One-way ANOVA,

and Two-way repeated measures ANOVA, followed by

post-hoc tests. Graph Pad Prism v.5 software was used.

Statistical results were presented as means ± SEM. Aster-

isks indicate levels of significance (*p <0.05, **p <0.01

and ***p < 0.001).

Additional files

Additional file 1: Primers used for constructs generation. Table with

the sequences of all primers used in this study and PCR strategy.

Additional file 2: Western blots of amyloid peptides in SDS-insoluble

factions from Drosophila eyes. Accumulation of Aβ42 and ADan in the

formic acid-soluble fraction. Non-specific immunoreactive bands in Western

blots from RIPA-soluble homogenates.

Additional file 3: Toxicity in the Drosophila eye. Toxicity of GMR-GAL/+

as compared to GMR-GAL4/Bri2-23 lines at 28°C for 10 days; dose dependent

Aβ42 toxicity in the eye and number of ommatidia in transgenic vs

non-transgenic lines.

Additional file 4: Accumulation of untagged and His-tagged amyloid

peptides. Western blot anti specific peptides from fly heads expressing

tag and untagged peptides.

Additional file 5: Geotaxis and Phototaxis statistical analysis. Two-way

repeated measures ANOVA, followed by comparison tests for all

genotypes and time points.

Additional file 6: pdf-neurons are resistant to amyloid peptides

toxicity. Figure showing the circadian locomotor activity of transgenic

flies.

Additional file 7: Thioflavine S-negative accumulation of Aβ, ABri

and ADan in the CNS of Drosophila. Figure showing negative

Thioflavine-S staining of brain sections from Drosophila transgenic lines.
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