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ABSTRACT
The onset of amyotrophic lateral sclerosis (ALS) is
conventionally considered as commencing with the
recognition of clinical symptoms. We propose that, in
common with other neurodegenerations, the pathogenic
mechanisms culminating in ALS phenotypes begin much
earlier in life. Animal models of genetically determined
ALS exhibit pathological abnormalities long predating
clinical deficits. The overt clinical ALS phenotype may
develop when safety margins are exceeded subsequent
to years of mitochondrial dysfunction, neuroinflammation
or an imbalanced environment of excitation and
inhibition in the neuropil. Somatic mutations, the
epigenome and external environmental influences may
interact to trigger a metabolic cascade that in the adult
eventually exceeds functional threshold. A long
preclinical and subsequent presymptomatic period pose a
challenge for recognition, since it offers an opportunity
for protective and perhaps even preventive therapeutic
intervention to rescue dysfunctional neurons. We
suggest, by analogy with other neurodegenerations and
from SOD1 ALS mouse studies, that vulnerability might
be induced in the perinatal period.

INTRODUCTION
Amyotrophic lateral sclerosis (ALS) appears intract-
able to therapeutic efforts. This disappointing
therapeutic response may simply reflect phenotypic
expression triggered much earlier, perhaps decades
before onset of clinical symptoms.1 The terms pre-
clinical and presymptomatic are frequently used
interchangeably, but here ‘presymptomatic’ refers
to the period when there are no clinical correlates,
while investigations such as neuro-imaging, electro-
physiology or cognitive assessment may be abnor-
mal. ‘Preclinical’ refers to the much longer period
when presently there are no identified markers of
disease in sporadic ALS (see figure 1).
Symptom onset in adult neurodegenerations,

including ALS, typically occurs in mid-life to late
life. In Alzheimer’s disease (AD) and Parkinson’s
disease (PD), pathological changes precede clinical
disease by years, if not decades. In both AD2–9 and
PD,10–15 there is a lengthy premonitory period
before overt features develop.2–9 In PD, there is a
period of non-motor precursor symptoms without
typical Parkinsonian features during which Lewy
bodies may be found during many years before the
onset of classic clinical PD.10–15 It has even been
suggested that PD may commence in the perinatal
period when environmental and genetic influences
may lower the threshold of dopaminergic neurons,
enabling normal function to continue for decades

before the pathophysiological threshold for clinical
expression of the disease is exceeded.16

It has previously been suggested that ALS may
have a prolonged preclinical period,17–19 but, gen-
erally, it is assumed that the clinical onset of ALS is
coincident with, or starts shortly after, the onset of
the pathological process underlying the disease.
Evidence for this relates to a short, presymptomatic
period in which there is a reduction in motor unit
number estimates and electromyography (EMG)
abnormalities.20 21 Also, EMG abnormalities are
common in clinically strong muscles in overt
disease.22

However, absence of detectable change found by
these tests of lower motor neuron function does
not necessarily equate with normal functioning of
anterior horn cells; abnormality of upper motor
neuron functioning has clearly been demonstrated
to precede clinical deficit in ALS.23 More likely,
there is bio-molecular dysfunction at a cellular level
that cannot presently be detected, which is insuffi-
cient to cause clinical features, but potentially
present and building for years or decades prior to
onset of clinical disease. In SOD1 ALS mouse
models, pathological changes are evident shortly
after birth, predating the first clinical abnormalities
by 2–3 months. In human genetically-linked ALS
(FALS), expression of the disease-causative proteins,
or other metabolic defect, must be evident even
during embryonic life. Similarly, in sporadic ALS,
biological abnormalities reflect a long-lasting
morbid process progressing over years, or poten-
tially even decades, before the first symptoms
become apparent (see figure 1). Here, we will
explore such a possibility in relation to potential
early biological changes that might predict the like-
lihood that ALS will develop in mid-life to late life
in susceptible individuals. In this respect, hereditary
ALS is a prototype.

EARLIEST ABNORMALITIES IN ALS
TRANSGENIC MICE
Rodent models of ALS do not translate faithfully
into the human disease, although they do reveal
preclinical pathobiological abnormalities.24 25

These are relevant in understanding similar early
abnormalities in human ALS, especially compensa-
tory mechanisms that delay clinical presentations.
Embryonic mutant motor neurons already show
morphometric and physiological abnormalities
including hyperexcitability.26 Vinsant and collea-
gues27 28 analysed the early changes in the
SOD1G93A mouse that included ultrastructural
examination of central and peripheral components
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of the neuromuscular system and correlated these alterations
with early muscle denervation, motor dysfunction and moto-
neuron death. Swollen and vacuolated mitochondria and mega-
mitochondria were first observed in the spinal cord 7 days post-
natally. These changes were most abundant in motor neuron
dendrites but were also found in motor neuron soma, in the
presynaptic terminals of neuromuscular junctions and in pre-
synaptic terminals of axo-somatic synapses. Accumulations of
small, empty vacuoles in spinal motor neuronal cytoplasm were
observed 14 days after birth. These became more numerous by
day 30 and later the cytoplasm became full of these vacuoles.
By postnatal day 30, there was a significant decrease in axo-
somatic type I ‘excitatory’ synapses on the motor neurons and
an increase in C-terminals. There was no change in the number
of type II ‘inhibitory’ synapses or in the number of total synap-
ses. Clinically, gait alterations and muscle weakness started
30 days after birth and, by 60 days, 20% of motor neurons had
undergone degeneration.

Presymptomatic neuronal type-specific degeneration in
hSOD1G93A mice involves both spinal motoneurons and

corticomotoneurons.29 Interneurons and non-neuronal ele-
ments, including glial cells, are also affected in the presympto-
matic stage in mutant rodents.30–32 The electrical properties of
transgenic rodent ALS motor neurons are abnormal shortly after
birth,33–35 with associated synaptic changes, and with alterations
in neural circuits and network activity, followed by clinically
evident neurological impairment.

EMBRYONIC AND PERINATAL EFFECTS
It is likely that there are a number of unidentified risk-genes for
sporadic ALS. Development from a single-cell zygote to a
mature organism incurs a large number of cell divisions. As a
result, mutant genes are frequent during normal development,
although most do not have a deleterious effect.36 Inherited
mutations, applicable to the 29 nuclear genes that have presently
been identified to be associated with hereditary ALS, have the
highest risk of disease, since all cells carry the mutant gene.37–42

However, spontaneous gene mutations associated with cell div-
ision during embryogenesis and early development are also
potentially disease-inducing. Spontaneous mutations blur the

Figure 1 Biologically, the seeds for the development of amyotrophic lateral sclerosis (ALS) may be sown shortly after conception. Motor neurons
and supporting glia are susceptible to many potential insults, such as neuroinflammation, excitotoxicity, mitochondrial dysfunction, excessive
oxidative stress and environmental risk factors. Epigenetic influences may further determine individual sensitivity and susceptibility. Environmental
risk factors continue to exert their influence throughout life. In combination, these factors cause protein dysfunction and aggregation. Motor
neurons and surrounding astrocytes are metabolically stressed, progressively losing function (MN ‘sickness’). After years or decades, cytosolic
compensatory mechanisms begin to fail and a clinically identifiable presymptomatic stage starts in which electrophysiological and imaging
abnormalities become detectable at a macroscopic level. Finally, the motor system fails and ALS becomes symptomatic and relentlessly progressive.
If so, biomarkers may yet become evident throughout the preclinical and presymptomatic stages, thereby enabling the future development of
protective or preventive therapeutics (EG, epigenetic effects). The term ‘presymptomatic’ refers to the period when there are no clinical correlates,
while investigations such as neuro-imaging, electrophysiology or cognitive assessment may be abnormal. ‘Preclinical’ refers to the much longer
period when presently there are no identified markers of disease in sporadic ALS.
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difference between hereditary and sporadic ALS.43 44 In spor-
adic ALS, spontaneously arising ‘at risk mutations’, occurring
early in development, would carry only a slightly lower risk
relative to hereditary ALS.36 Spontaneous mutations arising
later in neuronal development have less, or little risk, depending
on how early or late in development they occur. How mutant
genes translate into ALS clinical phenotypes remains to be eluci-
dated, but it is likely that mutations of only a few of the numer-
ous genes guiding developmental programming and network
formation and function will add to the overall burden of risk
for developing ALS later in life.45

Neural network development begins at conception, and con-
tinues into adolescence and young adulthood.46 However, it is
the prenatal and perinatal periods that are associated with the
greatest metabolic activity. This is required for neurogenesis,
neuronal proliferation and neural differentiation and migration.
In humans, most programmed neuron loss (apoptosis) occurs
prenatally. The added metabolic demand increases oxidative
stress and must be countered by antioxidant production and
redox-sensing systems sufficient to control reactive oxygen
species (ROS) production, and remove damaged mitochon-
dria.47 During these periods, spontaneous mutations may cause
subtle abnormalities in central nervous system (CNS) wiring,
connectivity and network formation inducing vulnerability for
late-in-life neurodegeneration, including ALS.4 Postnatally, the
process of synaptic proliferation continues through middle
childhood and is followed by programmed elimination of synap-
ses. Substantial refinement of brain structure and function
occurs during adolescence, again a period of potential suscepti-
bility for disease in later life.48

Evolution may not select against early life deleterious muta-
tions that take effect only beyond the reproductive period.49

Although, long life past the reproductive period is important in
our species, the ‘grandmother effect’, some genetic traits may
exhibit ‘antagonistic pleiotropy’ or phenotypes that improve sur-
vival earlier in life, but become deleterious with increasing
age.50 Whether this is applicable to ALS has not been
determined.

PRECLINICAL GENETIC, EPIGENETIC AND
ENVIRONMENTAL RISKS
ALS, like other neurodegenerations, is a complex, multifactorial
disease with variations in individual susceptibility, age of onset
and rate of progression. Genetic and environmental factors that
influence susceptibility depend on multiple gene-by-gene and
gene-by-environment interactions and epigenetic effects which
also drive phenotypic individuality.51 These factors are probably
the key to unravelling presymptomatic disease.

Neurodegenerative diseases with Mendelian inheritance and
diseases including familial ALS are associated with genetic var-
iants present from the time of conception, even though they do
not present clinically until mid to late adulthood. This implies
either that these genes are not ‘switched on’ until later life, or
that there are decades of progressive cellular compromise even-
tually culminating in the catastrophic decline manifesting as
presentation of clinically overt ALS. Heritability studies suggest
that about 60% of the risk of ALS is genetically determined,
and the remaining 40% environmentally determined.52 It is
unlikely that any environmental contribution to ALS will act in
isolation; genetic and epigenetic components must all interact.

Environmental exposure as a risk factor for ALS, although
apparently a weak factor in causation of the disease, is likely to
be cumulative over time, exceeding a genetic–environmental
threshold in those who, some later time, develop ALS. The

neurodegenerative process, thereafter, seems to be irreversible
and self-perpetuating. A highly penetrant monogenic cause has
little requirement for environmental exposure, but in a complex
oligogeneic or polygenic disease, such as sporadic ALS, the
environmental component is larger.42

The peak incidence of ALS is between the age of 70 and
74 years; thereafter, incidence declines rapidly. In this respect,
ALS is different from both AD and PD in which the incidence/
prevalence increases with age. The reduced risk in older age is
not due to ascertainment bias, and may partly reflect a
Gompertzian cohort of people whose susceptibility to ALS is
determined by interaction between environmental and genetic
risk factors.53–55

Environmental exposure to toxins, smoking, excessive phys-
ical activity, occupation, dietary factors and changes in immunity
all increase the risk of developing sporadic ALS.53 These factors
may drive epigenetic changes over many years, which then
induce disease onset and progression. There is a significant asso-
ciation with smoking; prolonged exposure and current smoking
increase ALS risk by twofold to threefold.56 57 Exposure to pol-
lutants is one mechanism that may trigger and can chronically
perpetuate neuroinflammation, but whether repeated low expos-
ure can interact with genetic and epigenetic components in the
initiation of ALS is yet to be established.42 Less attention has
been directed to more general environmental factors that may
trigger the cascade of motor neuron degeneration leading to
ALS.58 Nevertheless, neuronal damage from oxidative stress
may continue throughout life by accumulation of environmen-
tal, occupational, dietary and lifestyle exposures.59

Neuroepidemiological studies of risk factors for ALS suggest
that exposure must occur several years before disease onset,43

implying that an environmental trigger may be active for years
before clinical disease develops.

Epigenetic changes underlie developmental and age-related
biology. Promising epidemiological research implicates epigenet-
ics in disease risk and progression, and suggests epigenetic status
depends on environmental risks as well as genetic predispos-
ition. Epigenetics may represent a link between environmental
exposures and mechanisms that modify the expression levels of
selected genes, without alteration in their DNA sequence. These
mechanisms include DNA methylation, histone tail modifica-
tions and chromatin remodelling, as well as mechanisms
mediated by small RNA molecules. Epigenetic modifications are
important because they have similar effects to those of patho-
genic mutations, since they are able to silence, increase or
reduce the expression of a selected gene in a given tissue.60–62

There is a critical window during development during which
such factors can have lasting effects on neuronal gene
expression.63

Epigenetic processes have been identified in both AD and
PD.64–66 In sporadic ALS, it has been suggested that epigenetic
modifications may alter the expression of pathogenesis-related
genes leading to the onset and progression of sporadic ALS and
ALS-dependent methylation of several genes previously impli-
cated in neuronal development, differentiation and prolifer-
ation.67 DNA methyltransferase may be upregulated in motor
cortex and spinal cord motor neurons in sporadic ALS.68 Thus,
defective epigenetic homeostasis in the CNS, leading to aberrant
gene expression, may contribute to CNS dysfunction initiating
ALS.61

EXCITATORY AND INHIBITORY NEUROTRANSMISSION IN ALS
The neuron may be rendered hyper-excitable when there are
increased glutamate levels, or decreased inhibition, as happens
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when γ-aminobutyric acid (GABA) activity, the major inhibitory
neurotransmitter, is reduced, or a combination of both these.
In mutant ALS rodents, excitotoxicity has been documented
prenatally and it is recognised preclinically in human sporadic
ALS,26 69 although it has not been determined how long before
clinical symptom onset the excitotoxic state is present.70–72

A hyperexcitable motoneuron would fire more spikes in
response to a given synaptic input and consequently more
calcium ions would flow into the cytoplasm, eventually leading
to neuronal cell death. However, unlike embryonic immature
motoneurons, intrinsic hyperexcitability has never been demon-
strated in adult motoneurons.73 So the excitotoxicity leading to
degeneration in ALS is not caused by changes in the intrinsic
electrical properties of the motoneurons themselves. However,
excitotoxicity could also be induced by an alteration in the syn-
aptic inputs received by a motoneuron. A reduction of the
inhibitory inputs or an increase of the excitatory inputs would
lead to higher firing rates, thereby increasing calcium turnover
in the cytoplasm.73

Glutamate is critical in the early development of neurite out-
growth and neuronal migration, and the developing brain
undergoes a period of increased sensitivity to overstimulation of
NMDA receptor channel complexes. GABA appears fundamen-
tal to the pathogenesis of ALS.74 In ALS, there is widespread
loss of parvalbumin and calbindin-D calcium-binding proteins
associated with GABA-ergic interneurons.75 76 Decreased inhib-
ition has been shown to occur in ALS motor cortex using mag-
netic resonance spectroscopy77 and transcranial magnetic
stimulation has identified a reduction in short interval intracorti-
cal inhibition in asymptomatic carriers of mutations linked to
ALS.77 78 These studies imply that hyperexcitability precedes
the onset of symptomatic ALS.79 In support, positron emission
tomography using the ligand flumazenil has identified wide-
spread reduction in cerebral GABA-A receptor binding in
ALS.80

A major role of GABA-mediated postnatal transmission is to
produce synchronised neural network oscillations.81 82 It is pres-
ently unresolved if loss of spinal inhibition is a cause or a conse-
quence of segmental neuronal destruction in ALS. Renshaw cell
alterations may lead to a hyperexcitable state and eventually
motor neuron degeneration. It has been postulated that this
hyperexcitability is caused by the loss of the recurrent Renshaw
cell-mediated inhibition.83 Alternatively, it is possible that
Renshaw cell loss is not an initial causation of motor neuron
hyperexcitability and neurodegeneration, but is secondary to
motor neuron degeneration.83 84

NEUROINFLAMMATION
A growing body of data supports the hypothesis that damage
induced by different infectious agents may be factors leading to
neurodegeneration. This probably acts in synergy with other
risk factors, such as ageing, concomitant metabolic diseases and
the host’s specific genetic signature.85 The immature and
preterm brain can be exposed to viral and bacterial infections as
well as sterile insults occurring during pregnancy. Such inflam-
matory episodes presumably usually resolve without harm to the
CNS, but nevertheless, may increase vulnerability to neurode-
generative disorders.86 87

During development, microglia contribute to the formation
of the neural network by stimulating vascularisation and assist-
ing in pruning excess neurons and synapses, as well as facilitat-
ing cell differentiation. Throughout life, there is a balance
between microglia-derived protective anti-inflammatory cyto-
kines, which are maximum in early development and childhood,

versus pro-inflammatory cytokines, which accumulate with
ageing and are associated with a chronic inflammatory state.88

A shift toward pro-inflammatory cytokines contributes to
increased susceptibility and neurodegenerations.89 Physical
aggression in boys during childhood is a predictor of reduced
anti-inflammatory cytokines in early adulthood,90 raising the
intriguing speculation that the male predominance of ALS might
partly be related to reduction of anti-inflammatory cytokines
early in life. This may tie in with the findings that patients with
ALS have a lower second-to-fourth digit ratio, consistent with
higher prenatal circulating levels of testosterone, and possibly a
prenatal influence of testosterone on motor neuron vulnerability
in later life.91

MITOCHONDRIA AND MTDNA
Mitochondria are responsible for generating cellular energy,
regulating intracellular calcium levels, altering the reduction–
oxidation potential of cells and regulating cell death.92 93

Mitochondrial dysfunction, an early event in neurodegenerative
diseases,93 may serve as a trigger or propagator for neurodegen-
eration.94 In particular, toxicity from ROS can initiate damage
to mitochondrial DNA (mtDNA) leading to respiratory chain
dysfunction, which in turn increases the generation of ROS,
further facilitating cellular damage, and creating a self-
amplifying process.95

The number of mitochondria in a cell varies proportionately
with energy demand. The high energy demands of neurons
render them intolerant of mitochondrial dysfunction. The quan-
tity, quality and localisation of mitochondria are all critically
important for neuronal function. Mitochondrial morphology is
determined by a balance between continuous fusion, which
allows mitochondria within a cell to support each other, and
fission, the fragmentation of mitochondria that plays an import-
ant role in apoptosis. Changes in mitochondrial dynamics are
found in many neurodegenerative diseases, including ALS, and
it has been postulated that the imbalance of mitochondrial
fusion/fission is associated with disease-related mitochondrial
dysfunction.92 96 Mitochondrial fragmentation has been
described in the presymptomatic transgenic mouse97 and is an
early feature of human ALS.93

The mtDNA molecule is small, encoding for 13 proteins, and
is highly susceptible to mutations.98 Because mitochondrial
renewal is a very active process, mtDNA accumulates muta-
tions much faster than nuclear DNA, so that pathogenic muta-
tions can affect a varying proportion of the many mtDNA
molecules—from 1% to 100%.99 A mutation could be advan-
tageous in some environments but detrimental in others and
so forming part of the genetic basis underlying complex disor-
ders such as ALS.100 Small non-coding microRNAs (miRNAs)
have emerged as the key in regulating gene expression and their
dysregulation in neurodegeneration. Alteration of
miRNA-mediated regulatory activity potentially upsets the deli-
cate balance required for neuronal cell development and sur-
vival, thereby contributing to disease onset and progression.101

CONCLUSIONS: IMPLICATIONS FOR RESEARCH
AND THERAPY
We postulate that ALS shares commonality with other neurode-
generative disorders in which there is a compelling body of evi-
dence to indicate that the onset of clinical symptoms is
preceded by a long presymptomatic period. Such a period may
last for years or possibly decades, with downstream events that
exceed the threshold for the emergence of clinical symptoms
becoming evident only years after the pathobiological disease
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process commenced. As stressed by Benatar and Wuu,18 con-
firmation of this is likely to have profound implications for
understanding disease biology, uncovering environmental risk
factors, developing effective therapies and even disease
prevention.

Genetic studies of late-onset neurodegenerations, including
ALS, have received much attention in the last decade, but the
link between manifestation of the disease phenotype and altered
biochemistry and cellular biology detected in blood, cerebro-
spinal fluid (CSF) or through imaging, as well as miRNA and
epigenetic changes, remains obscure.102 103 We suggest that
many different biomolecular events may impact normal develop-
ment in such a way that the disease only becomes clinically
apparent when intrinsic compensatory mechanisms break down,
perhaps decades after their onset. The processes involved are
complex, interactive and progressive. The clinical syndrome of
ALS becomes evident when neuronal and also possibly astroglial
metabolism is overwhelmed by the accumulation of biological
abnormality, especially involving energy kinetics, until a ‘tipping
point’ is reached. Stress imposed by the difficulty of metabolis-
ing proteinaceous waste products, shown by TDP-43 accumula-
tion in the proteasome and cytoplasm, is a marker of the
underlying, but currently poorly understood abnormality. The
disease begins clinically when the cell ‘falls over a cliff ’ into an
irreversible terminal cascade, leading to cell death.

It therefore follows that the current failure of therapies to
effectively modify ALS may largely reflect the long time elapsed
between the onset of the pathological process and the onset of
overt symptomatic disease. It therefore becomes imperative to
identify the primary targets of disease-causing proteins in this
preclinical stage by establishing presymptomatic diagnostic tools
to identify those at high risk of developing ALS.104

Furthermore, understanding the presymptomatic disease state is
essential to identifying compensatory mechanisms which allow
apparently normal brain functioning, despite ongoing neurode-
generation. A lengthy presymptomatic period with compro-
mised cellular and associated neural network dysfunction,
possibly arising in the perinatal period, opens a potentially
important window for neuroprotective intervention that might
allow rescue of dysfunctional but not yet dead neurons. It is
even possible that many of the agents previously trialled, which
have failed to show benefit in overt ALS, if given very early, may
have neuroprotective properties. Developmental aspects in the
context of the ALS clinical history and quantitating the impact
of external environmental features, having proved useful in
understanding autistic spectrum disorders, may in turn yield
further critical insight, specifically concerning the optimal time
to introduce potential neuroprotective therapy.105
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