
AMYTISS: Parallelized Automated
Controller Synthesis for Large-Scale

Stochastic Systems

Abolfazl Lavaei1(B), Mahmoud Khaled2,
Sadegh Soudjani3, and Majid Zamani1,4

1 Department of Computer Science,
LMU Munich, Munich, Germany

lavaei@lmu.de
2 Department of Electrical Engineering, TU Munich, Munich, Germany
3 School of Computing, Newcastle University, Newcastle upon Tyne, UK

4 Department of Computer Science, University of Colorado Boulder, Boulder, USA

Abstract. In this paper, we propose a software tool, called AMYTISS,
implemented in C++/OpenCL, for designing correct-by-construction
controllers for large-scale discrete-time stochastic systems. This tool is
employed to (i) build finite Markov decision processes (MDPs) as finite
abstractions of given original systems, and (ii) synthesize controllers for
the constructed finite MDPs satisfying bounded-time high-level prop-
erties including safety, reachability and reach-avoid specifications. In
AMYTISS, scalable parallel algorithms are designed such that they sup-
port the parallel execution within CPUs, GPUs and hardware accelera-
tors (HWAs). Unlike all existing tools for stochastic systems, AMYTISS
can utilize high-performance computing (HPC) platforms and cloud-
computing services to mitigate the effects of the state-explosion prob-
lem, which is always present in analyzing large-scale stochastic systems.
We benchmark AMYTISS against the most recent tools in the literature
using several physical case studies including robot examples, room tem-
perature and road traffic networks. We also apply our algorithms to a
3-dimensional autonomous vehicle and 7-dimensional nonlinear model of
a BMW 320i car by synthesizing an autonomous parking controller.

Keywords: Parallel algorithms · Finite MDPs · Automated controller
synthesis · Discrete-time stochastic systems · High performance
computing platform

1 Introduction

1.1 Motivations

Large-scale stochastic systems are an important modeling framework to describe
many real-life safety-critical systems such as power grids, traffic networks, self-
driving cars, and many other applications. For this type of complex systems,

A. Lavaei and M. Khaled—Authors have contributed equally.
This work was supported in part by the H2020 ERC Starting Grant AutoCPS (grant
agreement No. 804639).

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 461–474, 2020.
https://doi.org/10.1007/978-3-030-53291-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_24

462 A. Lavaei et al.

automating the controller synthesis procedure to achieve high-level specifica-
tions, e.g., those expressed as linear temporal logic (LTL) formulae [24], is inher-
ently very challenging mainly due to their computational complexity arising from
uncountable sets of states and actions. To mitigate the encountered difficulty,
finite abstractions, i.e., systems with finite state sets, are usually employed as
replacements of original continuous-space systems in the controller synthesis pro-
cedure. More precisely, one can first abstract a given continuous-space system by
a simpler one, e.g., a finite Markov decision process (MDP), and then perform
analysis and synthesis over the abstract model (using algorithmic techniques
from computer science [3]). Finally, the results are carried back to the original
system, while providing a guaranteed error bound [5,13–21,23].

Unfortunately, construction of finite MDPs for large-scale complex systems
suffers severely from the so-called curse of dimensionality : the computational
complexity grows exponentially as the number of state variables increases. To
alleviate this issue, one promising solution is to employ high-performance com-
puting (HPC) platforms together with cloud-computing services to mitigate the
state-explosion problem. In particular, HPC platforms have a large number of
processing elements (PEs) and this significantly affects the time complexity when
serial algorithms are parallelized [7].

1.2 Contributions

The main contributions and merits of this work are:

(1) We propose a novel data-parallel algorithm for constructing finite MDPs
from discrete-time stochastic systems and storing them in efficient dis-
tributed data containers. The proposed algorithm handles large-scale
systems.

(2) We propose a parallel algorithm for synthesizing discrete controllers using
the constructed MDPs to satisfy safety, reachability, or reach-avoid specifi-
cations. More specifically, we introduce a parallel algorithm for the iter-
ative computation of Bellman equation in standard dynamic program-
ming [26,27].

(3) Unlike the existing tools in the literature, AMYTISS accepts bounded distur-
bances and natively supports both additive and multiplicative noises with
different practical distributions including normal, uniform, exponential, and
beta.

We apply the proposed implementations to real-world applications including
robot examples, room temperature and road traffic networks, and autonomous
vehicles. This extends the applicability of formal methods to some safety-
critical real-world applications with high dimensions. The results show remark-
able reductions in the memory usage and computation time outperforming all
existing tools in the literature.

We provide AMYTISS as an open-source tool. After compilation,
AMYTISS is loaded via pFaces [10] and launched for parallel execution

AMYTISS: Parallelized Automated Controller Synthesis 463

within available parallel computing resources. The source of AMYTISS
and detailed instructions on its building and running can be found in:
https://github.com/mkhaled87/pFaces-AMYTISS

Due to lack of space, we provide details of traditional serial and proposed
parallel algorithms, case studies, etc. in an arXiv version of the paper [12].

1.3 Related Literature

There exist several software tools on verification and synthesis of stochastic
systems with different classes of models. SReachTools [30] performs stochastic
reachability analysis for linear, potentially time-varying, discrete-time stochas-
tic systems. ProbReach [25] is a tool for verifying the probabilistic reachability for
stochastic hybrid systems. SReach [31] solves probabilistic bounded reachability
problems for two classes of models: (i) nonlinear hybrid automata with para-
metric uncertainty, and (ii) probabilistic hybrid automata with additional ran-
domness for both transition probabilities and variable resets. Modest Toolset [6]
performs modeling and analysis for hybrid, real-time, distributed and stochastic
systems. Two competitions on tools for formal verification and policy synthesis
of stochastic models are organized with reports in [1,2].

FAUST2 [29] generates formal abstractions for continuous-space discrete-time
stochastic processes, and performs verification and synthesis for safety and reach-
ability specifications. However, FAUST2 is originally implemented in MATLAB
and suffers from the curse of dimensionality due to its lack of scalability for
large-scale models. StocHy [4] provides the quantitative analysis of discrete-time
stochastic hybrid systems such that it constructs finite abstractions, and per-
forms verification and synthesis for safety and reachability specifications.

AMYTISS differs from FAUST2 and StocHy in two main directions. First,
AMYTISS implements novel parallel algorithms and data structures targeting
HPC platforms to reduce the undesirable effects of the state-explosion problem.
Accordingly, it is able to perform parallel execution in different heterogeneous
computing platforms including CPUs, GPUs and HWAs. Whereas, FAUST2 and
StocHy can only run serially on one CPU, and consequently, it is limited to
small systems. Additionally, AMYTISS can handle the abstraction construction
and controller synthesis for two and a half player games (e.g., stochastic systems
with bounded disturbances), whereas FAUST2 and StocHy only handle one and
a half player games (e.g., disturbance-free systems).

Unlike all existing tools, AMYTISS offers highly scalable, distributed execu-
tion of parallel algorithms utilizing all available processing elements (PEs) in any
heterogeneous computing platform. To the best of our knowledge, AMYTISS is
the only tool of its kind for continuous-space stochastic systems that is able to
utilize all types of compute units (CUs), simultaneously.

We compare AMYTISS with FAUST2 and StocHy in Table 1 in detail in terms
of different technical aspects. Although there have been some efforts in FAUST2

and StocHy for parallel implementations, these are not compatible with HPC plat-
forms. Specifically, FAUST2 employs some parallelization techniques using parallel

https://github.com/mkhaled87/pFaces-AMYTISS

464 A. Lavaei et al.

Table 1. Comparison between AMYTISS, FAUST2 and StocHy based on native features.

Aspect FAUST2 StocHy AMYTISS

Platform CPU CPU All platforms

Algorithms Serial on HPC Serial on HPC Parallel on HPC

Model Stochastic control
systems: linear, bilinear

Stochastic hybrid
systems: linear, bilinear

Stochastic control
systems: nonlinear

Specification Safety, reachability Safety, reachability Safety, reachability,
reach-avoid

Stochasticity Additive noise Additive noise Additive & multiplicative
noises

Distribution Normal, user-defined Normal, user-defined Normal, uniform,
exponential, beta,
user-defined

Disturbance Not supported Not supported Supported

for-loops and sparse matrices inside Matlab, and StocHy uses Armadillo, a multi-
threaded library for scientific computing. However, these tools are not designed for
the parallel computation on HPC platforms. Consequently, they can only utilize
CPUs and cannot run on GPUs or HWAs. In comparison, AMYTISS is developed
in OpenCL, a language specially designed for data-parallel tasks, and supports
heterogeneous computing platforms combining CPUs, GPUs and HWAs.

Note that FAUST2 and StocHy do not natively support reach-avoid specifica-
tions in the sense that users can explicitly provide some avoid sets. Implementing
this type of properties requires some modifications inside those tools. In addi-
tion, we do not make a comparison here with SReachTools since it is mainly for
stochastic reachability analysis of linear, potentially time-varying, discrete-time
stochastic systems, while AMYTISS is not limited to reachability analysis and
can handle nonlinear systems as well.

Note that we also provide a script in the tool repository1 that converts
the MDPs constructed by AMYTISS into PRISM-input-files [11]. In particular,
AMYTISS can natively construct finite MDPs from continuous-space stochastic
control systems. PRISM can then be employed to perform the controller synthesis
for those classes of complex specifications that AMYTISS does not support.

2 Discrete-Time Stochastic Control Systems

We formally introduce discrete-time stochastic control systems (dt-SCS) below.

Definition 1. A discrete-time stochastic control system (dt-SCS) is a tuple

Σ = (X,U,W, ς, f) , (1)
1 https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/interface/export

PrismMDP.m.

https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/interface/exportPrismMDP.m
https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/interface/exportPrismMDP.m

AMYTISS: Parallelized Automated Controller Synthesis 465

where,

– X ⊆R
n is a Borel space as the state set and (X,B(X)) is its measurable space;

– U ⊆R
m is a Borel space as the input set;

– W ⊆R
p is a Borel space as the disturbance set;

– ς is a sequence of independent and identically distributed (i.i.d.) random vari-
ables from a sample space Ω to a measurable set Vς

ς := {ς(k) : Ω → Vς , k ∈ N};

– f : X×U×W → X is a measurable function characterizing the state evolution
of the system.

The state evolution of Σ, for a given initial state x(0) ∈ X, an input sequence
ν(·) : N → U , and a disturbance sequence w(·) : N → W , is characterized by the
difference equations

Σ : x(k + 1) = f(x(k), ν(k), w(k)) + Υ (k), k ∈ N, (2)

where Υ (k) := ς(k) with Vς = R
n for the case of the additive noise, and Υ (k) :=

ς(k)x(k) with Vς equals to the set of diagonal matrices of the dimension n for
the case of the multiplicative noise [22]. We keep the notation Σ to indicate both
cases and use respectively Σa and Σm when discussing these cases individually.

We should mention that our parallel algorithms are independent of the noise
distribution. For an easier presentation of the contribution, we present our algo-
rithms and case studies based on normal distributions but our tool natively
supports other practical distributions including uniform, exponential, and beta.
In addition, we provide a subroutine in our software tool so that the user can still
employ the parallel algorithms by providing the density function of the desired
class of distributions.

Remark 1. Our synthesis is based on a max-min optimization problem for two
and a half player games by considering the disturbance and input of the system
as players [9]. Particularly, we consider the disturbance affecting the system
as an adversary and maximize the probability of satisfaction under the worst-
case strategy of a rational adversary. Hence, we minimize the probability of
satisfaction with respect to disturbances, and maximize it over control inputs.

One may be interested in analyzing dt-SCSs without disturbances (cf. case stud-
ies). In this case, the tuple (1) reduces to Σ = (X,U, ς, f), where f : X×U → X,
and the Eq. (2) can be re-written as

Σ : x(k + 1) = f(x(k), ν(k)) + Υ (k), k ∈ N. (3)

Note that input models in this tool paper are given inside configuration text files.
Systems are described by stochastic difference equations as (2)–(3), and the user
should provide the right-hand-side of equations2. In the next section, we formally
define MDPs and discuss how to build finite MDPs from given dt-SCSs.
2 An example of such a configuration file is provided at: https://github.com/mkhaled

87/pFaces-AMYTISS/blob/master/examples/ex-toy-safety/toy2d.cfg.

https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/examples/ex_toy_safety/toy2d.cfg
https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/examples/ex_toy_safety/toy2d.cfg

466 A. Lavaei et al.

3 Finite Markov Decision Processes (MDPs)

A dt-SCS Σ in (1) is equivalently represented by the following MDP [8, Propo-
sition 7.6]:

Σ =(X,U,W, Tx),
where the map Tx : B(X) × X × U × W → [0, 1], is a conditional stochastic
kernel that assigns to any x ∈ X, ν ∈ U , and w ∈ W, a probability measure
Tx(·|x, ν, w). The alternative representation as the MDP is utilized in [28] to
approximate a dt-SCS Σ with a finite MDP ̂Σ using an abstraction algorithm.
This algorithm first constructs a finite partition of the state set X = ∪iXi, the
input set U = ∪iUi, and the disturbance set W = ∪iWi. Then representative
points x̄i ∈ Xi, ν̄i ∈ Ui, and w̄i ∈ Wi are selected as abstract states, inputs,
and disturbances. The transition probability matrix for the finite MDP ̂Σ is also
computed as

T̂x(x′|x, ν, w) = Tx(Ξ(x′)|x, ν, w), ∀x, x′ ∈ X̂, ∀ν ∈ Û ,∀w ∈ Ŵ , (4)

where the map Ξ : X → 2X assigns to any x ∈ X, the corresponding partition
element it belongs to, i.e., Ξ(x) = Xi if x ∈ Xi. Since X̂, Û and Ŵ are finite
sets, T̂x is a static map. It can be represented with a matrix and we refer to it,
from now on, as the transition probability matrix.

For a given logic specification ϕ and accuracy level ε, the discretization
parameter δ can be selected a priori such that

|P(Σ � ϕ) − P(̂Σ � ϕ)| ≤ ε, (5)

where ε depends on the horizon of formula ϕ, the Lipschitz constant of the
stochastic kernel, and the state discretization parameter δ (cf. [28, Theorem 9]).
We refer the interested reader to the arXiv version [12] for more details.

In the next sections, we propose novel parallel algorithms for the construction
of finite MDPs and the synthesis of their controllers.

4 Parallel Construction of Finite MDPs

In this section, we propose an approach to efficiently compute the transition
probability matrix T̂x of the finite MDP ̂Σ, which is essential for any controller
synthesis procedure, as we discuss later in Sect. 5.

4.1 Data-Parallel Threads for Computing T̂X

The serial algorithm for computing T̂x is presented in Algorithm 1 in the arXiv
version [12]. Computations of mean μ = f(x̄i, ν̄j , w̄k, 0), PDF(x |μ,Σ), where
PDF stands for probability density functions and Σ is a noise covariance matrix,
and of T̂x all do not share data from one inner-loop to another. Hence, this
is an embarrassingly data-parallel section of the algorithm. pFaces [10] can be
utilized to launch necessary number of parallel threads on the employed hardware
configuration (HWC) to improve the computation time of the algorithm. Each
thread will eventually compute and store, independently, its corresponding values
within T̂x.

AMYTISS: Parallelized Automated Controller Synthesis 467

4.2 Less Memory for Post States in T̂X

T̂x is a matrix with the dimension of (nx×nν ×nw, nx). The number of columns is
nx as we need to compute and store the probability for each reachable partition
element Ξ(x′

l), corresponding to the representing post state x′
l. Here, we consider

the Gaussian PDFs for the sake of a simpler presentation. For simplicity, we now
focus on the computation of tuple (x̄i, ν̄j , w̄k). In many cases, when the PDF is
decaying fast, only partition elements near μ have high probabilities of being
reached, starting from x̄i and applying an input ν̄j .

We set a cutting probability threshold γ ∈ [0, 1] to control how many partition
elements around μ should be stored. For a given mean value μ, a covariance
matrix Σ and a cutting probability threshold γ, x ∈ X is called a PDF cutting
point if γ = PDF(x|μ,Σ). Since Gaussian PDFs are symmetric, by repeating
this cutting process dimension-wise, we end up with a set of points forming a
hyper-rectangle in X, which we call it the cutting region and denote it by X̂Σ

γ .
This is visualized in Fig. 1 in the arXiv version [12] for a 2-dimensional system.
Any partition element Ξ(x′

l) with x′
l outside the cutting region is considered to

have zero probability of being reached. Such approximation allows controlling
the sparsity of the columns of T̂x. The closer the value of γ to zero, the more
accurate T̂x in representing transitions of ̂Σ. On the other hand, the closer the
value of γ to one, less post state values need to be stored as columns in T̂x. The
number of probabilities to be stored for each (x̄i, ν̄j , w̄k) is then |X̂Σ

γ |.
Note that since Σ is fixed prior to running the algorithm, number of columns

needed for a fixed γ can be identified before launching the computation. We can
then accurately allocate a uniform fixed number of memory locations for any
tuple (x̄i, ν̄j , w̄k) in T̂x. Hence, there is no need for a dynamic sparse matrix data
structure and T̂x is now a matrix with a dimension of (nx × nν × nw, |X̂Σ

γ |).

4.3 A Parallel Algorithm for Constructing Finite MDP ̂Σ

We present a novel parallel algorithm (Algorithm 2 in the arXiv version [12])
to efficiently construct and store T̂x as a successor. We employ the discussed
enhancements in Subsect. 4.1 and 4.2 within the proposed algorithm. We do not
parallelize the for-loop in Algorithm 2, Step 2, to avoid excessive parallelism (i.e.,
we parallelize loops only over X and U , but not over W). Note that, practically,
for large-scale systems, |X̂ × Û | can reach up to billions. We are interested in the
number of parallel threads that can be scheduled reasonably by available HW
computing units.

5 Parallel Synthesis of Controllers

In this section, we employ dynamic programming to synthesize controllers for
constructed finite MDPs ̂Σ satisfying safety, reachability, and reach-avoid prop-
erties [26,27]. The classical serial algorithm and its proposed parallelized version
are respectively presented as Algorithms 3 and 4 in the arXiv version [12]. We

468 A. Lavaei et al.

should highlight that the parallelism here mainly comes from the parallelization
of matrix multiplication and the loop over time-steps cannot be parallelized due
to the data dependency. More details can be found in the arXiv version.

5.1 On-the-Fly Construction of T̂X

In AMYTISS, we also use another technique that further reduces the required
memory for computing T̂x. We refer to this approach as on-the-fly abstractions
(OFA). In OFA version of Algorithm 4 [12], we skip computing and storing
the MDP T̂x and the matrix T̂0x (i.e., Steps 1 and 5). We instead compute the
required entries of T̂x and T̂0x on-the-fly as they are needed (i.e., Steps 13 and
15). This significantly reduces the required memory for T̂x and T̂0x but at the
cost of repeated computation of their entries in each time step from 1 to Td. This
gives the user an additional control over the trade-off between the computation
time and memory.

5.2 Supporting Multiplicative Noises and Practical Distributions

AMYTISS natively supports multiplicative noises and practical distributions such
as uniform, exponential, and beta distributions. The technique introduced in
Subsect. 4.2 for reducing the memory usage is also tuned for other distributions
based on the support of their PDFs. Since AMYTISS is designed for extensi-
bility, it allows also for customized distributions. Users need to specify their
desired PDFs and hyper-rectangles enclosing their supports so that AMYTISS
can include them in the parallel computation of T̂x. Further details on specifying
customized distributions are provided in the README file.

AMYTISS also supports multiplicative noises as introduced in (2). Currently,
the memory reduction technique of Subsect. 4.2 is disabled for systems with mul-
tiplicative noises. This means users should expect larger memory requirements for
systems with multiplicative noises. However, users can still benefit from the pro-
posedOFAversion to compensate for the increase inmemory requirement.Weplan
to include this feature for multiplicative noises in a future update of AMYTISS.
Note that for a better demonstration, previous sections were presented by the addi-
tive noise and Gaussian normal PDF to introduce the concepts.

6 Benchmarking and Case Studies

AMYTISS is self-contained and requires only a modern C++ compiler. It sup-
ports all major operating systems: Windows, Linux and Mac OS. Once compiled,
utilizing AMYTISS is a matter of providing text configuration files and launch-
ing the tool. AMYTISS implements scalable parallel algorithms that run on top
of pFaces [10]. Hence, users can utilize computing power in HPC platforms and
cloud computing to scale the computation and control the computational com-
plexities of their problems. Table 2 lists the HW configuration we use to bench-
mark AMYTISS. The devices range from local devices in desktop computers to
advanced compute devices in Amazon AWS cloud computing services.

AMYTISS: Parallelized Automated Controller Synthesis 469

Table 2. HW configurations for benchmarking AMYTISS.

Id Description PEs Frequency

CPU1 Local machine: Intel Xeon E5-1620 8 3.6 GHz

CPU2 Macbook Pro 15: Intel i9-8950HK 12 2.9 GHz

CPU3 AWS instance c5.18xlarge: Intel Xeon Platinum 8000 72 3.6 GHz

GPU1 Macbook Pro 15 laptop laptop: Intel UHD Graphics 630 23 0.35 GHz

GPU2 Macbook Pro 15 laptop: AMD Radeon Pro Vega 20 1280 1.2 GHz

GPU3 AWS p3.2xlarge instance: NVIDIA Tesla V100 5120 0.8 GHz

Table 3 shows the benchmarking results running AMYTISS with these HWCs
for several case studies and makes comparisons between AMYTISS, FAUST2, and
StocHy. We employ a machine with Windows operating system (Intel i7@3.6 GHz
CPU and 16 GB of RAM) for FAUST2, and StocHy. It should be mentioned that
FAUST2 predefines a minimum number of representative points based on the
desired abstraction error, and accordingly the computation time and memory
usage reported in Table 3 are based on the minimum number of representative
points. In addition, to have a fair comparison, we run all the case studies with
additive noises since neither FAUST2 nor StocHy supports multiplicative noises.

To show the applicability of our results to large-scale systems, we apply our
techniques to several physical case studies. We synthesize controllers for 3- and
5-dimensional room temperature networks to keep temperatures in a comfort
zone. Furthermore, we synthesize controllers for road traffic networks with 3
and 5 dimensions to keep the density of the traffic below some desired level.
In addition, we apply our algorithms to a 2-dimensional nonlinear robot and
synthesize controllers satisfying safety and reach-avoid specifications. Finally,
we consider 3- and 7-dimensional nonlinear models of an autonomous vehicle
and synthesize reach-avoid controllers to automatically park the vehicles. For
details of case studies, see the arXiv version [12].

Table 3 presents a comparison between AMYTISS, FAUST2 and StocHy w.r.t
the computation time and required memory. For each HWC, we show the time in
seconds to solve the problem. Clearly, employing HWCs with more PEs reduces
the time to solve the problem. This is a strong indication for the scalability of
the proposed algorithms. Since AMYTISS is the only tool for stochastic systems
that can utilize the reported HWCs, we do not compare it with other similar
tools.

In Table 3, first 13 rows, we also include the benchmark provided in StocHy
[4, Case study 3]. Table 4 in the arXiv version [12] shows an additional compar-
ison between StocHy and AMYTISS on a machine with the same configuration
as the one employed in [4] (a laptop having an Intel Core i7 − 8550U CPU
at 1.80GHz with 8 GB of RAM). StocHy suffers significantly from the state-
explosion problem as seen from its exponentially growing computation time.
AMYTISS, on the other hand, outperforms StocHy and can handle bigger sys-
tems using the same hardware.

470 A. Lavaei et al.

T
a
b
le

3
.

C
o
m

p
a
ri

so
n

b
et

w
ee

n
A
M
Y
T
IS
S
,
FA

U
S
T

2
a
n
d
S
to
cH

y
b
a
se

d
o
n

th
ei

r
n
a
ti

v
e

fe
a
tu

re
s

fo
r

se
v
er

a
l

(p
h
y
si

ca
l)

ca
se

st
u
d
ie

s.
C

S
B

re
fe

rs
to

th
e

co
n
ti

n
u
o
u
s-

sp
a
ce

b
en

ch
m

a
rk

p
ro

v
id

ed
in

[4
].
†r

ef
er

s
to

ca
se

s
w

h
en

w
e

ru
n
A
M
Y
T
IS
S

w
it

h
th

e
O

F
A

a
lg

o
ri

th
m

.
N

/
M

re
fe

rs
to

th
e

si
tu

a
ti

o
n

w
h
en

th
er

e
is

n
o
t

en
o
u
g
h

m
em

o
ry

to
ru

n
th

e
ca

se
st

u
d
y.

N
/
S

re
fe

rs
to

th
e

la
ck

o
f
n
a
ti

v
e

su
p
p
o
rt

fo
r

n
o
n
li
n
ea

r
sy

st
em

s.
(K

x
)

re
fe

rs
to

a
n

1
0
0
0
-t

im
es

sp
ee

d
u
p
.
T

h
e

p
re

se
n
te

d
sp

ee
d
u
p

is
th

e
m

a
x
im

u
m

sp
ee

d
u
p

va
lu

e
a
cr

o
ss

a
ll

re
p
o
rt

ed
d
ev

ic
es

.
T

h
e

re
q
u
ir

ed
m

em
o
ry

u
sa

g
e

a
n
d

co
m

p
u
ta

ti
o
n

ti
m

e
fo

r
FA

U
S
T

2
a
n
d
S
to
cH

y
a
re

re
p
o
rt

ed
fo

r
ju

st
co

n
st

ru
ct

in
g

fi
n
it

e
M

D
P

s.
T

h
e

re
p
o
rt

ed
ti

m
es

a
n
d

m
em

o
ri

es
a
re

re
sp

ec
ti

v
el

y
in

se
co

n
d
s

a
n
d

M
B

,
u
n
le

ss
o
th

er
u
n
it

s
a
re

d
en

o
te

d
.

P
ro

b
le

m
S
p
e
c
.

|X̂
×

Û
|

T
d

A
M
Y
T
IS
S

(t
im

e
)

F
A
U
S
T

2
fS
to
cH

y
S
p
e
e
d
u
p

w
.r

.t

M
e
m

.
C

P
U

1
C

P
U

2
C

P
U

3
G

P
U

1
G

P
U

2
G

P
U

3
M

e
m

.
T

im
e

M
e
m

.
T

im
e

F
A
U

S
T

S
to

cH
y

2
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
4

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
1

≤
1
.0

0
.0

0
2

8
.5

0
.0

1
5

2
0

x
1
5
0

x

3
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
8

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
1

≤
1
.0

0
.0

0
2

8
.5

0
.0

8
2
0

x
8
0
0

x

4
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
1
6

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
2

≤
1
.0

0
.0

1
8
.5

0
.1

7
5
0

x
8
5
0

K
x

5
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
3
2

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
3

≤
1
.0

0
.0

1
8
.7

0
.5

4
3
3

x
1
.8

K
x

6
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
6
4

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
6

4
.2

5
1

1
.2

9
.6

2
.1

7
2
.0

K
x

3
.6

K
x

7
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
1
2
8

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
1
2

3
8
.2

6
6

1
2
.9

9
.5

7
5

K
x

7
.9

K
x

8
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
2
5
6

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
2
6

3
4
4
.3

3
7

2
6
.6

4
0
.5

1
4
.2

K
x

1
5
.6

K
x

9
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
5
1
2

6
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
5
7

3
G

B
5
0
1

8
0
.7

1
7
1
.6

8
7
.8

K
x

3
0
.1

K
x

1
0
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
1
0
2
4

6
4
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

1
2
2

N
/
M

2
9
7
.5

3
8
5
.5

N
/
A

3
2

K
x

1
1
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
2
0
4
8

6
1
6
.0

1
.0

9
1
2

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

2
8
4

N
/
M

1
G

B
1
7
0
8
.2

N
/
A

6
0

K
x

1
2
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
4
0
9
6

6
6
4
.0

4
.3

0
2
9

4
.1

9
6
9

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

6
2
4

N
/
M

4
G

B
1
1
2
1
6

N
/
A

1
7
9

K
x

1
3
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
8
1
9
2

6
2
5
6
.0

1
8
.6

8
1

1
9
.3

7
4

1
.8

5
1
5

1
.6

8
0
2

≤
1
.0

0
.1

2
7
7

N
/
M

N
/
A

≥
2
4
h

N
/
A

≥
6
7
6

K
x

1
4
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
1
6
3
8
4

6
1
0
2
4
.0

8
1
.6

4
7

9
4
.7

5
0

7
.9

9
8
7

7
.3

4
8
9

6
.1

6
3
2

0
.2

7
3
9

N
/
M

N
/
A

≥
2
4
h

N
/
A

≥
3
2
0

K
x

2
-d

R
o
b
o
t†

S
a
fe

ty
2
0
3
4
0
1

8
≤

1
.0

8
.5

2
9
9

5
.0

9
9
1

0
.7

5
7
2

≤
1
.0

≤
1
.0

0
.0

1
5
4

N
/
A

N
/
A

N
/
A

N
/
A

2
-d

R
o
b
o
t

R
.A

v
o
id

7
4
1
3
2
1

1
6

4
8
2
.1

6
4
8
.5

9
3

1
8
.5

5
4

4
.5

1
2
7

2
.5

3
1
1

3
.4

3
5
3

0
.3

0
8
3

N
/
S

N
/
S

N
/
A

N
/
A

2
-d

R
o
b
o
t†

R
.A

v
o
id

7
4
1
3
2
1

1
6

4
.2

4
8
4

1
3
2
.1

0
4
1
.8

6
5

1
1
.7

4
5

5
.3

1
6
1

3
.6

2
6
4

0
.1

3
0
1

N
/
A

N
/
A

N
/
A

N
/
A

3
-d

R
o
o
m

T
e
m

p
.

S
a
fe

ty
7
7
7
6

8
6
.4

4
5
1

0
.1

0
7
2

0
.0

9
1
5

0
.0

1
2
0

≤
1
.0

≤
1
.0

0
.0

0
1
8

3
.1

2
1
2
4
7

N
/
M

6
9
2

K
x

N
/
A (c
o
n
ti
n
u
ed

)

AMYTISS: Parallelized Automated Controller Synthesis 471

T
a
b
le

3
.
(c
o
n
ti
n
u
ed

)

P
ro

b
le

m
S
p
e
c
.

|X̂
×

Û
|

T
d

A
M
Y
T
IS
S

(t
im

e
)

F
A
U
S
T

2
fS
to
cH

y
S
p
e
e
d
u
p

w
.r

.t

M
e
m

.
C

P
U

1
C

P
U

2
C

P
U

3
G

P
U

1
G

P
U

2
G

P
U

3
M

e
m

.
T

im
e

M
e
m

.
T

im
e

F
A
U

S
T

S
to

cH
y

3
-d

R
o
o
m

T
e
m

p
.†

S
a
fe

ty
7
7
7
6

8
≤

1
.0

0
.5

7
0
1

0
.3

4
2
2

0
.0

6
2
7

≤
1
.0

≤
1
.0

0
.0

0
2
8

N
/
A

N
/
A

N
/
A

N
/
A

5
-d

R
o
o
m

T
e
m

p
.

S
a
fe

ty
2
7
9
9
3
6

8
3
3
3
8
.4

2
0
0
.0

0
1
0
7
.9

3
1
9
.3

7
6

1
0
.0

8
4

N
/
M

1
.8

6
6
3

2
G

B
3
2
4
8

N
/
M

1
7
4
0

x
N

/
A

5
-d

R
o
o
m

T
e
m

p
.†

S
a
fe

ty
2
7
9
9
3
6

8
1
.3

6
7
1
6
.8

4
3
5
8
.2

3
6
3
.7

5
8

3
0
.1

3
1

2
2
.3

3
4

0
.5

6
3
9

N
/
A

N
/
A

N
/
A

N
/
A

3
-d

R
o
a
d

T
ra

ffi
c

S
a
fe

ty
2
1
2
5
7
6
4

1
6

1
7
6
5
.7

2
9
.2

0
0

1
3
1
.3

0
3
.0

5
0
8

5
.7

3
4
5

1
0
.2

3
4

1
.2

8
9
5

N
/
M

N
/
M

N
/
A

N
/
A

3
-d

R
o
a
d

T
ra

ffi
c
†

S
a
fe

ty
2
1
2
5
7
6
4

1
6

1
4
.1

9
1
6
0
.4

5
4
1
2
.7

9
1
3
.6

3
2

1
2
.7

0
7

1
1
.6

5
7

0
.3

0
6
2

N
/
A

N
/
A

N
/
A

N
/
A

5
-d

R
o
a
d

T
ra

ffi
c

S
a
fe

ty
6
8
8
4
1
4
7
2

7
8
7
9
7
.4

N
/
M

5
3
7
.9

1
3
8
.6

3
5

N
/
M

N
/
M

4
.3

9
3
5

N
/
M

N
/
M

N
/
A

N
/
A

5
-d

R
o
a
d

T
ra

ffi
c
†

S
a
fe

ty
6
8
8
4
1
4
7
2

7
3
9
3
.9

1
1
4
8
.5

1
5
2
5
.1

9
5
.7

6
7

4
4
.2

8
5

3
6
.4

8
7

0
.7

3
9
7

N
/
A

N
/
A

N
/
A

N
/
A

3
-d

V
e
h
ic

le
R

.A
v
o
id

1
5
2
8
0
6
5

3
2

1
6
1
4
.7

2
.5

h
1
.1

h
8
7
1
.8

9
8
9
8
.3

8
2
7
1
.4

1
1
0
.2

3
5

N
/
S

N
/
S

N
/
A

N
/
A

3
-d

V
e
h
ic

le
†

R
.A

v
o
id

1
5
2
8
0
6
5

3
2

1
1
.1

7
2
.8

h
1
.9

h
8
7
9
.7

8
9
0
3
.2

6
1
3
.5

5
1
0
7
.6

8
N

/
A

N
/
A

N
/
A

N
/
A

7
-d

B
M

W
3
2
0
i

R
.A

v
o
id

3
9
3
7
5
0
0

3
2

1
0
1
6
9
.4

N
/
M

≥
2
4
h

2
1
.5

h
N

/
M

N
/
M

8
2
5
.6

2
N

/
S

N
/
S

N
/
A

N
/
A

7
-d

B
M

W
3
2
0
i†

R
.A

v
o
id

3
9
3
7
5
0
0

3
2

3
0
.6

4
≥

2
4
h

≥
2
4
h

≥
2
4
h

≥
2
4
h

≥
2
4
h

1
2
5
1
.7

N
/
A

N
/
A

N
/
A

N
/
A

472 A. Lavaei et al.

As seen in Table 3, AMYTISS outperforms FAUST2 and StocHy in all the case
studies (maximum speedups up to 692000 times). Moreover, AMYTISS is the only
tool that can utilize the available HW resources. The OFA feature in AMYTISS
reduces dramatically the required memory, while still solves the problems in a
reasonable time. FAUST2 and StocHy fail to solve many of the problems since
they lack the native support for nonlinear systems, they require large amounts
of memory, or they do not finish computing within 24 hours.

Note that considering only dimensions of systems can be sometimes mislead-
ing. In fact, number of transitions in MDPs (|X̂ × Û |) can give a better judg-
ment on the size of systems since it directly affects the memory/time needed for
solving the problem. For instance in Table 3, the number of transitions for the
14-dimensional case study is 16384, while for the 5-dimensional room temper-
ature example is 279936 transitions (i.e., almost 17 times bigger). This means
AMYTISS can clearly handle much larger systems than existing tools.

Acknowledgment. The authors would like to thank Thomas Gabler for his help
in implementing traditional serial algorithms for the purpose of analysis and then
comparing with the parallel ones.

References

1. Abate, A., et al.: ARCH-COMP19 category report: stochastic modelling. EPiC
Ser. Comput. 61, 62–102 (2019)

2. Abate, A., et al.: ARCH-COMP18 category report: Stochastic modelling. In:
ARCH@ ADHS, pp. 71–103 (2018)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Cauchi, N., Abate, A.: StocHy: automated verification and synthesis of stochastic
processes. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp.
247–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 14

5. Haesaert, S., Soudjani, S.: Robust dynamic programming for temporal logic control
of stochastic systems. CoRR abs/1811.11445 (2018). http://arxiv.org/abs/1811.
11445

6. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

7. Jaja, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Boston (1992)
8. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997).

https://doi.org/10.1007/b98838
9. Kamgarpour, M., Ding, J., Summers, S., Abate, A., Lygeros, J., Tomlin, C.: Dis-

crete time stochastic hybrid dynamical games: Verification & controller synthesis.
In: Proceedings of the 50th IEEE Conference on Decision and Control and Euro-
pean Control Conference, pp. 6122–6127 (2011)

10. Khaled, M., Zamani, M.: pFaces: an acceleration ecosystem for symbolic control.
In: Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, pp. 252–257 (2019)

https://doi.org/10.1007/978-3-030-17465-1_14
http://arxiv.org/abs/1811.11445
http://arxiv.org/abs/1811.11445
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/b98838

AMYTISS: Parallelized Automated Controller Synthesis 473

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

12. Lavaei, A., Khaled, M., Soudjani, S., Zamani, M.: AMYTISS: parallelized auto-
mated controller synthesis for large-scale stochastic system. arXiv:2005.06191, May
2020

13. Lavaei, A., Soudjani, S., Majumdar, R., Zamani, M.: Compositional abstractions
of interconnected discrete-time stochastic control systems. In: Proceedings of the
56th IEEE Conference on Decision and Control, pp. 3551–3556 (2017)

14. Lavaei, A., Soudjani, S., Zamani, M.: Compositional synthesis of finite abstrac-
tions for continuous-space stochastic control systems: a small-gain approach. In:
Proceedings of the 6th IFAC Conference on Analysis and Design of Hybrid Sys-
tems, vol. 51, pp. 265–270 (2018)

15. Lavaei, A., Soudjani, S., Zamani, M.: From dissipativity theory to compositional
construction of finite Markov decision processes. In: Proceedings of the 21st ACM
International Conference on Hybrid Systems: Computation and Control, pp. 21–30
(2018)

16. Lavaei, A., Soudjani, S., Zamani, M.: Compositional abstraction-based synthesis
of general MDPs via approximate probabilistic relations. arXiv: 1906.02930 (2019)

17. Lavaei, A., Soudjani, S., Zamani, M.: Compositional construction of infinite
abstractions for networks of stochastic control systems. Automatica 107, 125–137
(2019)

18. Lavaei, A., Soudjani, S., Zamani, M.: Compositional abstraction-based synthesis
for networks of stochastic switched systems. Automatica 114, 108827 (2020)

19. Lavaei, A., Soudjani, S., Zamani, M.: Compositional abstraction of large-scale
stochastic systems: a relaxed dissipativity approach. Nonlinear Anal. Hybrid Syst.
36, 100880 (2020)

20. Lavaei, A., Soudjani, S., Zamani, M.: Compositional (in)finite abstractions for
large-scale interconnected stochastic systems. IEEE Trans. Autom. Control. (2020).
https://doi.org/10.1109/TAC.2020.2975812

21. Lavaei, A., Zamani, M.: Compositional construction of finite MDPs for large-scale
stochastic switched systems: a dissipativity approach. In: Proceedings of the 15th
IFAC Symposium on Large Scale Complex Systems: Theory and Applications
52(3), 31–36 (2019)

22. Li, W., Todorov, E., Skelton, R.E.: Estimation and control of systems with mul-
tiplicative noise via linear matrix inequalities. In: Proceedings of the American
Control Conference, pp. 1811–1816 (2005)

23. Mallik, K., Schmuck, A., Soudjani, S., Majumdar, R.: Compositional synthesis of
finite-state abstractions. IEEE Trans. Autom. Control. 64(6), 2629–2636 (2019)

24. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57 (1977)

25. Shmarov, F., Zuliani, P.: ProbReach: verified probabilistic delta-reachability for
stochastic hybrid systems. In: Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pp. 134–139 (2015)

26. Soudjani, S.: Formal abstractions for automated verification and synthesis of
stochastic systems. Ph.D. thesis, Technische Universiteit Delft, The Netherlands
(2014)

27. Soudjani, S., Abate, A.: Adaptive and sequential gridding procedures for the
abstraction and verification of stochastic processes. SIAM J. Appl. Dyn. Syst.
12(2), 921–956 (2013)

https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
http://arxiv.org/abs/2005.06191
http://arxiv.org/abs/1906.02930
https://doi.org/10.1109/TAC.2020.2975812

474 A. Lavaei et al.

28. Soudjani, S., Abate, A., Majumdar, R.: Dynamic Bayesian networks as formal
abstractions of structured stochastic processes. In: Proceedings of the 26th Inter-
national Conference on Concurrency Theory, pp. 1–14 (2015)

29. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: Formal Abstractions of
Uncountable-STate STochastic Processes. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 23

30. Vinod, A.P., Gleason, J.D., Oishi, M.M.: SReachTools: a MATLAB stochastic
reachability toolbox. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 33–38 (2019)

31. Wang, Q., Zuliani, P., Kong, S., Gao, S., Clarke, E.M.: SReach: a probabilistic
bounded delta-reachability analyzer for stochastic hybrid systems. In: Roux, O.,
Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 15–27. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23401-4 3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-319-23401-4_3
http://creativecommons.org/licenses/by/4.0/

	AMYTISS: Parallelized Automated Controller Synthesis for Large-Scale Stochastic Systems
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Related Literature

	2 Discrete-Time Stochastic Control Systems
	3 Finite Markov Decision Processes (MDPs)
	4 Parallel Construction of Finite MDPs
	4.1 Data-Parallel Threads for Computing X
	4.2 Less Memory for Post States in X
	4.3 A Parallel Algorithm for Constructing Finite MDP "0362

	5 Parallel Synthesis of Controllers
	5.1 On-the-Fly Construction of X
	5.2 Supporting Multiplicative Noises and Practical Distributions

	6 Benchmarking and Case Studies
	References

