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An 0.5-um CMOS Analog Random
Access Memory Chip for TeraOPS
Speed Multimedia Video Processing
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Abstract—Data compressing, data coding, and communica- I. INTRODUCTION
tions in object-oriented multimedia applications like telepresence, ,
computer-aided medical diagnosis, or telesurgery require an I_ELLULAR ne_ural networks (CNN_S) are anglog hon-
enormous computing power—in the order of trillions of oper- linear dynamic processor arrays in which direct inter-

ations per second (TeraOPS). Compared with conventional dig- connections among the basic processing units are restricted
ital technology, cellular neural/nonlinear network (CNN)-based to a finite local neighborhood [1]. Their potential for im-

computing is capable of realizing these TeraOPS-range image 56 processing applications was advanced shortly after their
processing tasks in a cost-effective implementation. To exploit .

the computing power of the CNN Universal Machine (CNN-UM), |nventloh [2] and is based _on the fact that mqny Image
the CNN chipset architecture has been developed—a mixed-signal Processing tasks can be realized by means of weighted local
hardware platform for CNN-based image processing. One of the interactions between neighboring pixels [1], [3]. Because
nonstandard components of the chipset is the cache memory of of their inherently parallel processing architecture, CNN’s

the analog array processor, the analog random access memory ; ; ; ; At
(ARAM). This paper reports on an ARAM chip that has been achieve a high computation speed in the realization of these

designed and fabricated in a 0.5vm CMOS technology. This tasks. Besides, the_ir uniformity gnd local cqnnectivity make
chip consists of a fully addressable array of 32x 256 analog them especially suited for VLSI implementation [4]—[8].

memory registers and has a packing density of 637 analog- The CNN paradigm provides the framework for the defi-
memory-cells/mn?. Random and nondestructive access of the nition of an algorithmically programmable analog array com-

memory contents is available. Bottom-plate sampling techniques ;e with supercomputer power on a chip: the CNN Universal
have been employed to eliminate harmonic distortion introduced

by signal-dependent feedthrough. Signhal coupling and interaction MaChine. (CNN'UM) _[9]' Its dual-com_puting property.enables
have been minimized by proper layout measures, including the the realization of highly complex image processing tasks
use of protection rings and separate power supplies for the by means of an on-chip analogic—analog and logic—stored
analog and the digital circuitry. This prototype features an program, and renders it a highly competitive alternative to the

equivalent resolution of up to 7 bits—measured by comparing the conventional diaital approach to parallel image processing [3
reconstructed waveform with the original input signal. Measured 9 PP P gep 93]

access times for writing/reading to/from the memory registers For example, almost *(Pentium pro_cessoirﬁre required for_
are of 200 ns. /O rates via the 16-line-wide /O bus exceed 10 the TeraFLOPS array computer shipped by Intel Corporation
Msamples/s. Storage time at room temperature is in the 80 to 100 in 1997 [10]. Whenever accuracy in the computation is not

ms range, without accuracy loss. a critical issue, as it actually happens in early-vision tasks
Index Terms—Analog image processing, analog memories, [11], CNN-UM analogic chips are advantageous in terms of
mixed-signal circuits. power consumption and computation speed as compared to

these digital counterparts [12].
The working CNN-UM chips reported to date, with up
to 20 x 22 [5], 16 x 16 [6], and 48 x 48 [7] cells,
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One possible strategy is using space-multiplexed, or mullines for video processing are presented in [21], and a high-
chip, CNN hardware [15]. In a multichip CNN, large arrayspeed SC sampling circuit is reported in [22] to capture
are built by interconnecting chips with a smaller number @&halog waveforms from an array of sensory devices. How-
cells. Each module operates simultaneously onto a fractionesfer, no random access or nondestructive reading of the
the input image which is, in this way, processed in parallehemory contents can be done. An ARAM for early vision
One drawback of this approach is the random fluctuatioapplications was reported in [23]. However, its accuracy
of the process parameters among the different processoedies on mismatch compensation, and no switching error
This may cause incorrect or inaccurate operation and, thusguction strategies are adopted. In this paper, an improved
requires the incorporation of different correction strategies; feersion of a well-known sample-and-hold (S/H) circuit is
instance, using tuning to correct parameter deviations duripgpposed to implement a fully addressable analog memory
the generation of the analog weights [16]. However, the majohip. It is realized in a 0.%4sm CMOS single-poly triple-metal
drawback of multichip CNN's is the very large number ofechnology and allows nondestructive reading and random
chip modules and, especially, the off-chip interconnectio@ecess to 32 256 memory locations with a cell density of
needed. For instance, around 8E3 chips and 4.1E5 connecti68g cells/mm. It features around 7 bits equivalent resolution
are required to process a 644 483 pixel video frame with writing/reading access times of 200 ns/200 ns and storage
using the 6x 6-cell CNN module reported in [17]. And time at room temperature in the 80 to 100 ms range. Besides,
around 75 chips and 3.8E4 connections are needed usiisgpower consumption is only 73 mW from a 3.3-V power
the 64 x 64 last generation analogic processor reportedipply—achieved through multiplexing of the active S/H
in [8]. circuitry.

A different approach to using small-size CNN chips for In the next section, a brief review of video signal processing
large images is time-multiplexing. By taking advantage of thaith CNN's is given together with the specifications of the
computing power of the CNN-UM, a single chip can be use#RAM in the CNN chipset. Section IIl presents the details of
to process a complete video frame by operating on a fractitire ARAM prototype chip architecture and circuit design. Test
of the image at a time. A frame rate of 40 Hz—adequate foesults are displayed and discussed in Section IV. Finally, a
high-quality video applications [13]—represents a data flosummary of concluding remarks is given.
of 12.3E6 pixels per second. Real-time processing of such
a rate demands 81 ns processing time per pixel. Thus, by
allowing for a two-pixel-wide overlap between image subsets
in each scan direction—required for correct processing of the )
border pixels [18]—a 32x 32 CNN chip should be capable”- CNN-Based Image Processing and
of processing each subimage in about 7888 and 320us ARAM Chip Specifications
for a 64 x 64 chip. Because the time constant of CNN- In the CNN Universal Machine—which has been demon-
UM chips is in the range of Jus [4], [8] we can conclude strated to be universal in the Turing sense [24]—programmable
that the time-multiplexed approach is feasible and, hena®nlinear analog dynamics are combined with programmable
constitutes a more cost-effective solution than the multichipgic operations and analog and logic distributed memories.
one. Complex image processing tasks are described bgnafogic

The time-multiplexed approach requires the definition argtogram [25], consisting of a sequence of analog and logic
development of an appropriate hardware platform for theperations. This analogic program has to be compiled into
CNN processor: the CNN chipset [19]. It is designed ta platform-dependent machine code to be executed by a
support high-speed data transmission and interfacing of therticular hardware implementation. Fig. 1 depicts a diagram
analogic processor to the sensory devices and the digitdlthe CNN-UM and its principal building blocks: the basic
host circuitry. The analog RAM (ARAM) is one of theprocessing units (cells), and the global analogic programming
nonstandard parts of this chipset. It is a high-speed, short-tenmit (GAPU). The GAPU stores the analogic program and
memory buffer that operates as the cache memory [20] of tbentrols its execution. For this purpose, it is divided into
CNN processor. A straightforward realization of the requirelvo main functional blocks. The first one is the storage
functionality would be the use of a conventional digitalinit consisting of the analog program register (APR), the
RAM interfaced with A/D and D/A converters. However, thdogic program register (LPR), and the switch configuration
resulting I/O rates between the memory and the processegister (SCR). They contain the machine code instructions
would render this solution impractical, as will be discussefdr the analog and logic operations and the switch config-
later. In order to realize a direct data interchange betwearation, respectively. The second one is the global analogic
the memory and the processor, avoiding data conversion, ttntrol unit (GACU) that decodes these instructions into a
implementation of a truly analog RAM chip is proposedmicrocode that is transmitted to the cells. Inside the basic
For full compatibility with the digital host environment andcell, three parts can be distinguished which are responsible
reduced fabrication cost, this ARAM should be designed usifigr signal processing, storage, and control of the operation
standard CMOS. (Fig. 1). For the implementation of the programmable analog

The problem of on-chip analog signal storage has bedgnamics, the CNN core contains the integrator and the limiter
faced by different authors in connection to quite diverse aplocks. Synaptic operators can be considered a part of the
plications. Particularly, CMOS realizations of scanning delagnalog processing unit. A local logic unit (LLU) realizes

Il. VIDEO SIGNAL PROCESSING WITHCNN'’s
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Fig. 1. CNN Universal Machine architecture, basic processing cell, and global analog-and-logic programming unit.

programmable logic operations between stored binary magni-
tudes. Short-term storage of intermediate signals is realized
by local analog and logic memories (LAM’s and LLM’s). Rt
Signal transference and operation control is performed by ™ : Instruction bus
the local communication and control unit (LCCU). And, " : R

fiprocessor

finally, data exchange between the cell array and the ex- L Digital bus
ternal circuitry is realized via the local analog output unit
(LAOU).

In order to exploit the computing power of this architecture,
the CNN chipset shown in Fig. 2 has been developed to vl -
interface the CNN-UM processor to the sensors and the digital A“/;'°3[':A"" CHN- Ul
environment. Data transmission is supported by three different |- - o peoy
buses. A high-speed analog bus connects the processor, the|{ . R R 5 R
ARAM, and the video signal sources. The width of this 11 , m” e
analog bus is determined by the I/O bus of the CNN-UM 7 Analog bus
chip, otherwise it would limit the total throughput of the
system. Digital data are transmitted via the digital bus, which is Fig. 2. Diagram of the CNN chipset architecture.

interfaced to the analog bus through A/D and D/A converters.
In addition, thgre is a digital instruction bus. The require ubimages has to be captured, processed, and downloaded,
storage capacities and local throughput values have '[0t

e L . T
evaluated to determine the specifications for the nonstand%aS resul_tmg in the ff)llowmg total processing tiriigfor the
parts, i.e., the CNN-UM and the ARAM. i X N; input frame:

Assume an input image composed &f; x N;-pixels (M; — my)(IN;
(Fig. 2). It has to be decomposed imd, x N,-pixel subsets T, =" AL
that are temporarily stored one-by-one in the analog RAM
chip for their processing. However, pixels in the border qfjqre 1., Th, and T3,;, are the times required to acquire,
this M“.X Na window will not be _properly pro_cessgd unles?iownload, and process each subimage, respectively. For the
a certain overlap between the image fractions is aIIowe%.rmer two times, and assuming thi; and B,, are the
Therefore,m, andn, pixel overlaps in the vertical and the . ! ! ao
horizontal directions, respectively, are considered. Taking tmgdths of the input and output buses of the ARAM, the

into account, a straightforward calculation shows that following is obtained:

_no)

(Ma - mO)(Na - ”0)

M (Tal + Tap + Tao) (2)

(M — m,)(N; — n,) Ty = Mo Ne
k‘s = (1) Bai
(Ma_mO)(Na_HO) M -N
T = e e (3)

.
subimages are needed to cover the whole image. Each of these Bao *
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where 7,; and 7,, are the times required for writing and Several considerations can be made based upon this formula.
reading, respectively, an analog register of the ARAM chipFirst, the faster or the larger the CNN processor, the less
With regard to the processing tin#,, in (2), we have to restrictive the specifications on the ARAM are. Second, the
take into account that, in the more general case, the procedaeoger the analog memory buffer and the wider the 1/0 analog
size is smaller than the ARAM size. Hence, the necessity aridmsses, which is trivial, the longer 1/0 times can be allowed.
for another multiplexation. Assume the size of the processorWe find it convenient to illustrate this design equation
is M, x N, and that each analogic program contaims using some typical values and compare the results with the
data acquisition steps,., analog processing stepsy, logic conventional digital approach, which includes A/D and D/A
processing operations, amg data downloads. Thus, the timeconversion for storing and retrieving data from conventional
needed to perform the analogic algorithm on edéh x N, DRAM or SRAM. For instance, consider a frame rate of 40
subset is given by frames per second, an input image of 52512 pixels, an
analog memory buffer of 3% 256 registers, and a CNN
(Mo — mo)(Na — no) T (4) amay of 32x 32 cells. Consider as well a two-pixel-wide
(Mp, — mo)(Np —no) PP overlap in both vertical and horizontal scanning directions.
Then, allowing 40us to be the total processing time required
where by the CNN processor for each 32 32 subimage [4], [8],
I/O times divided by their respective bus widths cannot add
Tpp = niTpi + napLpap + nipLplp +nalpo ®) up to more than 48 ns. This can be achieved by the prototype
. , ) chip presented in this paper by means of a measured 200-
With Ty and Ty, as the times required for the analog anfly access time and the implemented 16-line 1/0 bus. On
the dlg_ltal C|rcu_|try of the C_:NN-UM to settle and c:ompletethe other hand, an analog RAM based on a DRAM and the
the logic operation, respectively. These parameters are parggf;esnonding A/D and D/A converters requires a duplication

the timing specs of the CNN'UM Chiprl’i, and I},O_in the of the hardware in order to achieve the required speed if we
expression above represent /O times which are given by qnsider a 10-ns conversion time and 20-ns memory access

Tap =

M. N time.
Thi = 5. v Furthermore, concurrent implementation of analog signal
M 1’}\7 storage embedded with CNN processing circuitry will result in
Tpo = —2—2 . 7, (6) an excessive area occupation if realized using digital blocks.
Bpo Therefore, the specifications for the ARAM block result as
follows.

where By,; and B,,, are the widths of the input and output o _ _ _ _

buses of the CNN-UM, respectively, ang; and . are the * Nonvolatility. The analog information contained in the
times required for updating and downloading analog data from Memory registers should be maintained for a sufficiently
one cell of the CNN array—also defined as temporal specs of 10ng time. In this case, and because of the high speed of
the processing chip. But let us focus on the specifications for the computation, a storage time of 100-200 ms should be

the analog memory chip. enough. Being a cache memory, power-off nonvolatility
Assume a frame rate df; frames per second. The follow- IS Not necessary. _

ing must be accomplished in order to process the whole input' Resolution Accuracy levels for a wide range of early-
image (M; x N;) in real-time: vision tasks are in the 0.8-1.5% range. It represents an
equivalent resolution of 6—7 bits. Cooperative phenomena

1 derived from the parallel processing nature of CNN'’s,

T, < —. (7 : : .
Ny like hyperacuity [26], allow for a moderate resolution

requirement.
Thus, from the mathematics above, the following design. Random AccesSome analogic algorithms designed for

equation can be obtained: the CNN Universal Machine [27] require repeated read-
ing and writing to a specific location of the memory.
1 Mo No(M; — mo)(Ni — no) <Tai Tao ) Thus, random access to any memory register should be
Ny = (Mo —mo)(Na —no) Bai  Bao provided.
n (M; — mo)(N; — 1) T ®) « Nondestructive Readin§or the same reason, reading any

(M, —m,)(Ny —n,) P memory location should not affect the contents, because
access to them might be required several times in an

It can be rewritten in order to leave all the terms corresponding  analogic program.

to the ARAM on one side « High SpeedNarrow access times to the memory allow for
a faster operation. Although difficult to achieve, access
M,N, Tai Tao . . . .
T N, =) FJr B times smaller than 100 ns will be required to realize
(Ma =mo)(Na —n0) \ Bai ~ Bao complex image processing tasks in real-time.
1/Ny Top 9) ¢ Input/Output On the one hand, a serial analog input

T (M =mo)(Ni =) (Mp—mo)(Ny —no) channel is needed to interface the image acquisition
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signal e.g. TDA8315T ’ UM
amplification
@ sync and level shifting -—— —
operation
FProgrammable control +
» Logic addressing
f (MHz) L te.g. ispLSI®2032V

700mV A Fig. 4. Composite video signal interface to the CNN chipset.

(b) 0 e X N
[ t' {seconds) CCD Imager :_L:
sync pulse 512%512 = 2 o E
~300mV--3 : Analog RAM | = S CNN-UM =
32 x 256 E § ; 16 %16 g
—EH =
Fig. 3. (a) Envelope spectrum of an NTSC signal, showing the lumi-
nance (Y) and the chrominance (C) centered around the color subcarrier -
(fso = 3.86 MHz), and (b) waveform of a scan line of the associated —
525/59.94 scanning standard. Analog RAM [
32x256 |
devices—CCD imager, composite-video signal source. =

On the other hand, the communication with the CNN-
UM processor is accelerated by the use of parallel analgg
channels of widthB,,; and B,,—see Fig. 2. P

Obviously, the memory cell should be the smallest possible
to allow obtaining the largest possible memory arrays withoaedes using the synchronization pulses that the NTSC decoder
important yield problems. Besides, compatibility with digitahas extracted from the raw input. Time requirements for the
CMOS voltage levels is implicitly assumed for integration wittRRAM in this video interface can be easily derived. Each
a digital environment at the system level via the instructioiname in the 525/59.94 scanning standard is composed of

5. ARAM chip interleaving for a pipelined architecture of the CNN
set.

and digital data buses. 780 x 525 pixels, including the required blanking intervals,
if a square pixel grid is employed—equal horizontal and
B. Video Signal Interface to the CNN Chipset vertical sample pitches. This means that each line of the

A standard composite video signal has a limited bandwidiff@ge, containing 780 pixels, will be transmitted in &8
of 5 MHz and must, hence, be sampled at a minimum rate of g@prox[mately. Acquisition of this serial data_ stream has to
Msamples/s. The maximum time interval between consecutiy@ realized at more than 12 Msamples/s; this means a time
samples is hence 100 ns. In addition, the composite vidgerval of 82 ns between samples. With the use of the ARAM
signal carries information on the luminance and chrominanftut bus (16-lines wide) and an appropriate demultiplexing
of each pixel and a synchronization pulse generated by Bk the analog data stream, samples can be taken at 1.31
raster scanning of the object picture. Fig. 3 displays ths. It is interesting to point out that one of the tasks to be
envelope spectrum of an NTSC-coded signal and the waRr&rformed by the ARAM chip is the reorganization of the
form of a scan line. Although NTSC is a color encodingiformation in such a way that it can be processed by the
standard, it is also commonly used to refer to its associate@N chip. Lines of the image are sampled by the ARAM
scanning standard 525/59.94. A simple implementation ofof€ by one, but the processor operatesidp x IV,-pixel
video-signal interface to the CNN chipset is portrayed ipieces of the input. Full addressing of the memory array
Fig. 4. It can be built up by using off-the-shelf component&nd random access to its contents make this re-ordering
Here, the incoming video signal (NTSC-coded in this caségasible.
is fed into a video decoder chip. It is decomposed into A different approach using interleaved memory chips and
its luminance (Y) and chrominance (C) components pl@ pipelined structure is depicted in Fig. 5. The pixel rate
the recovered timing signals. By now, only the luminancef the CCD imager is about 10.49 Mpixels/s for a frame
component will be of interest as we are not consideringte of 40 Hz, which means 95 ns per pixel in a serial
color information processing. After some amplification anttansmission. Using the 16-line input bus of the ARAM,
level shifting, if required, the ARAM chip takes samplesamples can be taken at 1.p8-intervals. This means that
of the input via the serial input channel. A programmablee have a 0.78-ms time period for updating the contents in
logic device generates control signals and memory addrélse memory chip. By means of a second analog RAM, the
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Fig. 6. (a) Storage capacitor and pass transistor and (b) errors in the sampling process.

process can be pipelined in such a way that the first ARAM éstablishing the maximum sampling rate. The minimum ac-
working with the CNN processor while the second is beinguisition time required for this error to be smaller than 1/2
updated with the next 16 lines of the input image. AftetSB—that is, less thami/2¥+1, where N is the number of
that, the role of the memory chips is reversed, thus speedinits corresponding to the equivalent digital resolution, is given
up the system to meet the requirements for real-time imalgg

processing. At > (N +1)7 In2. (12)
. CIRCUIT DESIGN AND Once the acquisition transient settles, the S/H circuit is in
PROTOTYPE SYSTEM ARCHITECTURE track mode. Now, the voltage at the capacitor attempts to fol-

. _ low the input voltage. The circuit formed by the pass transistor
A. Errors in the Sampllng Process: Speed—Accuracy Tradecgfﬁd the storage Capacitd};nem acts as a single_pole |0W_pass

The nonidealities in the S/H process are evaluated by usifiéer- Although it does not have an important incidence on the
the circuit of Fig. 6(a), composed of a pass transistor and@gplitude of the tracked output, the phase shift introduced by
storage capacitor [28]. Its operation is affected by deterministitiS low-pass characteristic can be especially harmful when
and random errors. it is operating on signals modulated in phase. For a given

Let us consider the deterministic errors first. During thBequency of the input signaf;, this phase shift is calculated
track phase—while the pass transistor is ON—the finite ORF
resistance of the pass trapgistor originatesla sample acq.uisition benite = —atan(RonCaem27 f)- (13)
delay. Let us call the minimum and maximum input signal
voltagesV.,. and V. _, respectively. The full-scale input A further deterministic error arises at the falling edge of the
signal voltage can thus be defined4s=V,___ — V. . . The clock due to clock feedthrough. It manifests itself as a small
maximum step size occurs when the preceding sampled vatliecrepancy between the sampled voltage and the magnitude
is V... and the next one i%,___ or vice versa, that is, the actually held, which can be expressed as
input signal goes from one end to the other of its full scale
[see Fig. 6(b)]. In this case, the capacitor voltage is given by ) & C Cg;rlsc - [Vas — Vo, — Vo(Va, — Vas)]  (14)

mem gdas

t t
Ve(t) = Vern eXP<—;> F Verax [1 - eXP(‘;)} (10) where v;, is the undegraded sampled voltage valGg,,
is the parasitic overlap capacitor, ang-(V., — Vss) is a
where 7 = RonCuem, Ron being theon resistance of nonlinear function which accounts for the substrate effect.
the pass transistor. Therefore, the acquisition error decreabe feedthrough error is, hence, signal-dependent, and will
exponentially with time therefore induce harmonic distortion at the output. For the
computation of the harmonic distortion termig, must be
t expanded as a series of harmonics of a single-tone input
falt) = —4- e <_ RONCmenl) (11) voltage A - coswt. The second and third harmonic distortion
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terms, calculated as the ratio of the amplitudes of the second, ;-

and third harmonics with respect to the principal, result in
Cyds . v
Conem+Cods g
HD 1A od 4(¢B+VC\Q—VSS) 2
2 =3
3 c
_ _Ygds | e
Sl e o e <1 + WW)
(15) 3
and g
Cgyds . 3~ _
Conem+Cads Z
HDj = — A2 " 8(entveigves)?
3= an
I e e . S
Crmem+Cods QW
(16)
. . 4
where~ is the body-effect constang,g is a surface potential © farads) x10™

value close to the onset of strong inversion, widely taken as
twice the Fermi-level2¢r, and V|, is the dc component
of V..

Equation (12) shows that the acquisition time decreas@énsity is7? = 4kTRonAf. In addition, the single-pole
with the capacitor size and inversely with the aspe@w-pass filter formed by the access switch and the sampling
ratio—W/L—of the pass transistor. Such measures alsapacitor limits the bandwidth of the noise to an equivalent
reduce the phase shift given by (13). However, this causasise bandwidtt{4 RonxCien ) L. This results in a total noise
an increase on the feedthrough error. Also, the use of langewer at the output, the storage node in this case, being
switching devices results in heavy clock loads, producing
an excessive clock skew and, consequently, serious aperture 72 /Oo 1A, (G2 )2 - v? df = kT
jitter—a random variation of the delay between the edge of 0 Y Af Crem

the gate signal and the actual instant in which the circuit ) )
enters in hold mode. which is independent of the transistor size and can be reduced

This speed—accuracy tradeoff makes it necessary to c&-Using, once again, a larger sampling capacitor. Notice that
culate optimum sizes for the sampling capacitor and thé*Z/Cmem constitutes a limit to the dynamic range of the
access switch. On one side, the acquisition error is especiéﬁ}ﬁf’tem' For an S/H circuit that operates over the whole ra|l_-t0-
noticeable at higher frequencies because of the single-pBd Scale (3.3-V power supply voltage) with a 0.1-pF sampling
low-pass characteristic of the switch-capacitor circuit. Forci pacitor, the maximum achievable dynamic range will be

a desired acquisition time,, can be expressed as a functio proximately 84 dB. This is not a crucial issue in our case

of the capacitor size and the access transistor width, gi\}éuf?tusgnOrfetsrtlfair:ltitlevigelg\;va?ﬁgemsireri:llUtrlg::]erses?ﬁIr?rznsgrt:'e
that Rox = f(W). On the other side, while sampling low g signalp 9

frequency signals, the tracking period is large enough to allo%her applications.

a proper settling of the S/H circuit dynamics. Therefore,

the switching errore; is the major source of inaccuracy.

Being Cyas = W - CGSO, where CGSO is the vendor-B. Sample-and-Hold Stage Design

provided SPICE parameter for this process, the feedthroughrne ARAM chip includes 32 identical S/H lines whose
error can also be expressed as a function of the capacitor @agflematic is depicted in Fig. 8. It is based on the S/H circuit
switch sizes. Now, combining (11) and (14), and assumingr@ported in [29] and employs bottom-sampling of the analog
comparable influence of these two effects being the optimahnal to realize an offset-free and nondestructive recovery of
solution, the capacitor size for each value of the pass transistgs sampled data with reduced harmonic distortion. Assume

Fig. 7. Speed-accuracy tradeoff.

(18)

C

width can be obtained by solving this equation: first that the opamp has infinite dc gain and that clock
feedthrough and the parasitic capacitdy are negligible.
€a(Cmem, W) = € (Cmem, W) (17) The difference between the input voltage and a reference

voltageVrrr, selected for an adequate operation of the CMOS
which has been done applying a graphical method in Fig. %rimitives, and the opamp offset voltadg, is stored atC;,
There is also a random contribution to the sampling erraduring phasep, yieldingV,, = V; — Vs — Vrer. Then, during
When the pass transistor is ON, it can be considered tag next phase., the positive capacitor electrode is switched
a resistance that introduces a white noise, with Gaussianthe output node giving, = V¢, + Vos + Vrer and, hence,
amplitude and distribution, of thermal origin. Its noise powe¥, = V;, with no trace of the opamp offset voltage.
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Fig. 8. S/H line schematic including parasitic capacitance and opamp offset.

Mig
Consider now that feedthrough is not negligible. Because Fig. 9. Opamp schematic.
this S/H circuit employs bottom-plate sampling, the har-

monic distortion introduced in the sampling process due to
feedthrough can be eliminated. Here, an extra swit¢h

TABLE |
TRANSISTOR SIZES

is employed to isolate the bottom-plate of the capacitor at M, - M, 24/12
the end of the sampling phase. It is controlled by the signal
¢7 that falls slightly beforep,. In this way, the feedthrough M, 16/1.2
error is introduced via the bottom-plate 6f,..,, which is '
maintained at a constant voltagger by the opamp. Nowg ¢ M, M, 48/2.4
is independent of the input and, therefore, its derivatives with
respect toV; are equal to zero. Consequently, no harmonic Mo-M, 48/1.2
distortion due to clock feedthrough will be present at the
output. The stored voltage is only affected by an additional Mg-M, 24/2.4
voltage offset: a small pedestal error of magnitude
o Mg 24/0.6
£ = ﬁ—;—lngdq - [Vrer + Vo (Veer — Vss) — Vil
(19) the saturation region in strong inversion, one obtains

If the finite dc gain and the parasitic capacitor are accounted W (2xCy, - GBW)?

for, the output voltage is an attenuated copy of the input, and T T 2k dp (21)

an offset term appears
wherek,, is the intrinsic transconductance of the MOS tran-

1 Cp -t 1 Cp sistor. On the other hand, the necessary tail current is fixed
Vor 1+A_0 1+Ek Vi+A_O 1+C_k Vos- (20) by the slew-rate

Fig. 9 shows the opamp schematic, which has been realized Ip =SR- Cg. (22)
by means of a folded cascode architecture to better fit the 3.3-
V power supply voltage. For 7-bit equivalent resolution of the This current dete_rmines the appropriate aspect ratio of the
S/H circuit, and assuming that a 16-mV error is allowed fdpPut differential pair for a constanEBW of 20 MHz. The

each sample, the opamp output swing has to be larger than éq}ded-cascode output stage is specified by the dc gain. By

e . providing at least 60 dB for the dc gaindy = ¢, R,—the
Other opamp specifications a@BWof 20 MHz—required to error introduced by the parasitic capacitance is reduced to

follow the input during the tracking phase; and slew-rate (SR oy, AS g,., is now fixed, the output stage has to be

of 8 V/us—required to sample 4 MHz bandlimited signalgesigned so as to achieve the necessary output impedance.

with up to 2 V amplitude (peak-to-peak). Final compromises are resolved by phase margin and matching
Let g.,, be the small-signal transconductance of the tragensiderations. Table | shows transistor sizes.

sistors in the input differential-pair of the opamp, aihgd

be the tail current. A relation between the transistors’ aspdet Leakage Currents and Storage Time

ratio and/p can be derived from th&BW specifications.  During the hold period, several leakage currents attempt to

BecauseGBW= g,,,, /(2nCr,) and assuming operation withindischarge the storage capacitor, contributing to a degradation
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Fig. 10. Polysilicon over n-diffusion capacitor.

which is in the 200 ms range for a 10-mV error. These figures,
dpwever, must be understood only as a guideline because of

of the sampled voltage value. In the first place, the rever Ve -
biased junction formed by the-diffusion area, correspondingthe strong sensitivity 01_‘ th_e Ieakage.currents to fche _operatlng
nperature. Also, the incidence of light on the circuit surface

to the source terminal of the pass transistor and the substri , i
an seriously degrade the contents of the memory because of

pumps out a current from the upper plate of the capacit% liaht-induced ) f f .
which can be approximated by the reverse-biased saturatlf "gnt-induced generation of an extra amount of carriers.

current of the parasitic diode. Another leakage is due to :

the subthreshold drain-to-source current of the pass M(@S ARAM Chip Floorplan

transistor. These effects add up, resulting in a total current inThis CMOS ARAM chip is composed of an array of
the range of the picoampere. Here, capacitors are implemend@dx 256 analog memory cells. Each one contains a capacitor,
by a poly-over-diffusion structure lying on top of a weakly@ pass transistor, and some local logic for address decoding.
doped n-well (Fig. 10). The n-well/p-substrate junction is thehhe system also includes some digital control circuitry and
reverse-biased, and the current that flows out of the bottéi /O interface consisting of an analog MUX/DEMUX and
plate of the capacitor corresponds to the associated revers@-output buffers. Fig. 11 shows a picture of the ARAM chip
bias saturation current. Since it is in the femtoampere rand@orplan. The memory matrix is arranged into 32 S/H lines
it limits the effect of the upper plate leakage. Stored voItaQ{é‘th 256 capacitors each. Random access to any memory
o

degradation in time during the hold period is now given by location is available with the help of two-binary-to-one-hot
address decoders. A code of 5 bits activates one out of the
dv. 1 dg~ j - 32 row selection lines, by means of the row address decoder.

dt  Coen  dt ~ C.A (23) Similarly, each one of the 256 columns is selected by an 8-
bit code. Different access schedules can be implemented by
where C,, is the capacitance per unit area of the poly-ovean adequate programming of the address codes. In order to

diffusion structure. In these conditions, a self-discharge ratjoid the selection of more than one capacitor per row at a

independent of the capacitor size, is defined time, which would seriously degrade the operation, a global
clock controls the duty cycle of the access signals, leaving
e — i(Dppno Dnnpo> (24) a tunable guard time interval for address codes to change.

=e C,\ L, L, Now, with respect to the I/O interface, the 32 data lines of

the array are multiplexed either to the 16-line wide 1/0O bus or
where ¢ is the charge of an electrorl), and D, are the the serial I/O channel. A digital control signal sets the serial
diffusion coefficients for holes and electrods, and L, their or parallel /O mode. Row selection signals are employed
diffusion lengths, and,o and n, are the minority-carrier to scan the 32 data lines with either the I/O serial channel
concentrations on each side of the junction. In this technology, the 16-line 1/0 bus. Some test pads have been added to
ree1r 1S 50 mV/s. The voltage at the capacitor decays theymaracterize the output buffers for a better analysis of the test
linearly in time during the hold period. A maximum storageesults.
time can be defined in terms of the accuracy requirements. FoGuidelines concerning signal interaction prevention in
an equivalent resolution a¥ bits and a full-scale range of themixed-signal IC’'s have been followed in the development
input signal given byA, the maximum storage tim@.:.) is of the prototype. It is a well-known fact that the integration
the period in which the difference betwe®&nand the initially of a significant amount of digital circuitry along with analog
stored voltage does not exceed2¥+1, which is 1/2 LSB, signal processing in the same substrate can potentially degrade
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Fig. 13. Recovered triangular and sine waveforms.

system performance. A conservative layout style, with ™
extensive use of grounded guard rings, reduces signal coupling Fig. 15. Input and output images (256 gray levels).
by opening alternative return paths to the currents induced into

the substrate [30]. This is reinforced by the implementation ) .
of separated power supply and ground connections for tA8v€ been tested and proved to be functional. No major

analog and digital circuitry and guard rings [31]. Digital linediscrepancies have been found during the test of the different
switching at higher rates have been routed over insensitvamples. First of all, a functional characterization test has been
areas and critical crossings have been shielded with a ground§€loped. Several input sine waves of different frequencies
metal intermediate layer. Also, analog bus lines are mafj@ve Peen sampled at different rates. Fig. 12 shows a plot of
wider and are separated to a larger distance than recommerid§gdneasured root-mean-square error during the reconstruction

by technology rules, in order to reduce crosstalk at high8f the input waveform. It has been computed by taking the
frequencies. square root of the average of the squared difference between

the input signal and the recovered waveform over fWie
samples of the input wave
IV. EXPERIMENTAL RESULTS
The first prototype of this ARAM chip has been integrated 1 X )
in the Hewlett-Packard 0.5m CMOS process offered by RMSE = N'Z(Vm - Vo)™ (26)
the MOSIS service. The 24 available samples of the chip k=1
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©

®

() (h) @)
Fig. 16. Test input and output images.

It is important to mention that no correction of the outpubccurring during address changes are captured. The magnitude
buffer offset or the feedthrough-induced pedestal error haek the single-tone at 10 kHz is nearly 80 dB above the
been made. Fig. 13 displays a reconstructed triangular waheckground level. The following peak in magnitude, which
sampled at 10 kHz and a recovered sine wave sampled at 1#Kes place at the sampling rate, is approximately 30 dB below
kHz. The computed absolute RMSE is in the 13-25 mV rangie sine wave tone. Fig. 15 displays the input and the output
which means a relative error of 0.7-1.4% for a 1.8-V outpgignals as 32x 256-pixel images using a linear 256-level
swing. grayscale (8 bits deep). Each pixel in the image represents

A revealing picture of the test results is obtained by conthe voltage at a memory capacitor in the array. The absolute
puting the FFT of the output signal. In this case, a 10-kHz simalue of the difference between the input and output images
wave has been sampled at 250 ksamples/s. It has been feid tepresented in the same grayscale.
the ARAM chip through the serial input channel, therefore, Besides, some real images have been loaded to the chip
8192 samples of the input waveform have been taken. Fig. 44 200 ns per pixel and downloaded at 800 ns, using the
shows the spectrum of the output signal, directly measurBe&-controlled CNN chip set implementation described in
from the output of the chip without eliminating irrelevan{32]. Higher speeds, 200 ns/200 ns, have been measured
information or filtering the digitizer readings. This means that a dedicated PCB. Fig. 16 displays the input and out-
not only the stored voltage samples but also the voltage pe@kg pictures together with a grayscale representation of the
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Fig. 17. Degradation of the stored voltage (24 cells).

i ¥, g v . g = TABLE I

-—-*EX ——;\}kﬁﬁ_};j_if,.ﬁ!/ “/""[-{éffz_' ARAM PROTOTYPE DATA
% - 1 - 5: Number of pixels 8192(32 x 256)
= -

P Cell-array area 3.73mm X 3.45mm
< 5 :
o= Cell-density 637cells/mm”™
i -

ol 5 System area (w/o pads) 4.13mm % 3.89mm
:;__’ = Die Area 4.77mm X 4.47mm
—_— o

- T: Package (used pins) PGA-84M(81)
,/?":3 {1

ft bl Power supply 33V

A : -~ ...

éf_ s ey Power dissipation 72.86mW @33V

: R
z ; .:; Sampling time 200ns
/ e Reading time 200ns
s lﬁ ZE0TE TEHIL YANAAN AN

Fig. 18. Die photograph of the ARAM prototype. VO rates (via 16-lines bus) | 4pove |0Msamples/s
Input range [0.6,2.4]V
absolute difference between them. The first two examples -
are 512x 512-pixel pictures in a 256-level grayscale. The Output swing [0.6,2.4]V
last one is a 256x 256-pixel color picture. They have Storage time (1.5% error) | §0-100ns
been processed in 3% 128-pixel pieces because of test
equipment requirements. Some spatial noise can be detected Measured resolution 6-7bits (0.7-1.5%)

in the output picture. It is partly due to image partitioning
and, on the other side, due to an improper tracking of thiee first, one-hundred-twenty-ninth, two-hundred-fifty-seventh,
input at the beginning of each pixel group—uvertical lines and three-hundred-eighty-fifth pixels. Because of the clocking
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scheme adopted to avoid the selection of more than one]
memory register at a time, the feedback loop of the opamp in

the S/H stage is left open for a certain period. Consequently,
the voltage of the output node goes up to the power supplg]
voltage or down to the negative rail. In these conditions, the

slew-rate of the opamp is insufficient to catch up with the inplﬁo]
in the required acquisition time.

Finally, storage time has been measured for randomly déll
lected cells of the array. Fig. 17 shows the difference between
the initially stored voltage and the measured voltage througiz]
time. These data represent 24 cells in the 24 different samples
of the chip. Stored voltage degradation exceeds the requirﬁg
accuracy levels after 80-100 ms. Recursive reading of the
same memory spot does not have a noticeable influence [&4
the stored voltage.

Finally, Fig. 18 shows a photograph of the prototype circuijis]
and Table Il provides a survey of data extracted from the tests
results. [16]

V. CONCLUSIONS

The only missing part of the CNN chipset architecturé?]
has been implemented. A random access analog memory
chip has been designed and integrated in a standargr.5-[18]
CMOS single-poly triple-metal technology. Measured equiv-
alent resolution is about 7 bits. Storage time is larger than
80 ms at room temperature. DC power dissipation remains]
73 mW for a 3.3-V power supply. Access times of 200 ns
have been obtained. Higher sampling and output rates
be achieved using the 16-line wide analog 1/O bus. In future
generations of the CNN Universal Chip, an embedded afi}]
distributed version of this analog RAM will be implemented.
The reported prototype is now being employed in differentz]
experiments related to video signal processing in multimedia
applications. 23]
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