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AN 8-PERIODIC EXACT SEQUENCE OF WITT GROUPS OF

AZUMAYA ALGEBRAS WITH INVOLUTION

URIYA A. FIRST∗

Abstract. Given an Azumaya algebra with involution (A,σ) over a commuta-
tive ring R and some auxiliary data, we construct an 8-periodic chain complex
involving the Witt groups of (A, σ) and other algebras with involution, and
prove it is exact when R is semilocal. When R is a field, this recovers an 8-
periodic exact sequence of Witt groups of Grenier-Boley and Mahmoudi, which
in turn generalizes exact sequences of Parimala–Sridharan–Suresh and Lewis.
We apply this result in several ways: We establish the Grothendieck–Serre
conjecture on principal homogeneous bundles and the local purity conjecture
for certain outer forms of GLn and Sp2n, provided some assumptions on R.
We show that a 1-hermitian form over a quadratic étale or quaternion Azu-
maya algebra over a semilocal ring R is isotropic if and only if its trace (a
quadratic form over R) is isotropic, generalizing a result of Jacobson. We
also apply it to characterize the kernel of the restriction map W (R) → W (S)
when R is a (non-semilocal) 2-dimensional regular domain and S is a quadratic
étale R-algebra, generalizing a theorem of Pfister. In the process, we establish
many fundamental results concerning Azumaya algebras with involution and
hermitian forms over them.

Introduction

Central simple algebras with involution over fields, in the sense of [40, §2], play
a major role in the study of classical algebraic groups. Indeed, all forms of GLn,
On and Sp2n arise as the algebraic groups of unitary elements in a central simple
algebra with involution.

When the base field is replaced with a (commutative) ring R (always with 2 ∈
R×), the role of central simple algebras with involution is played by Azumaya
algebras with involution. These are the locally free R-algebras with R-involution
(A, σ) which specialize to a central simple algebra with involution at the residue
field of every prime p ∈ SpecR.

The Witt group of ε-hermitian forms over (A, σ), denotedWε(A, σ), is an impor-
tant invariant of (A, σ), capturing fine arithmetic properties. For example, when
A is a field F and σ = idF , the affirmation of the quadratic form version of Mil-
nor’s conjecture by Orlov, Vishik and Voevodsky [50] shows that the cohomology
groups Hi

ét(F,µ2,F ) can be recovered from W (F ) :=W1(F, idF ); this was recently
generalized to the case where A is a semilocal commutative ring by Jacobson [35].

In this paper, we introduce an 8-periodic chain complex involving the Witt group
of (A, σ) — an Azumaya algebra with involution over R — and prove it is exact
when R is semilocal. Several applications of the exactness are then presented.
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2 AN EXACT SEQUENCE OF WITT GROUPS

The Main Result. Let R be a commutative ring with 2 ∈ R×, let (A, σ) be an
Azumaya R-algebra with involution (σ is applied exponentially) and let ε ∈ A be a
central element such that εσε = 1. Let λ, µ ∈ A× be elements satisfying λσ = −λ,
µσ = −µ, λµ = −µλ and λ2 ∈ R. Then the centralizer of λ in A, denoted B, is
Azumaya over its center and τ1 := σ|B and τ2 := Int(µ−1) ◦ τ1 are involutions of
B. We construct an octagon, i.e. an 8-periodic chain complex, of Witt groups:

(0.1) Wε(A, σ)
π
(ε)
1 // Wε(B, τ1)

ρ
(ε)
1 // W−ε(A, σ)

π
(−ε)
2 // Wε(B, τ2)

ρ
(ε)
2

��
W−ε(B, τ2)

ρ
(−ε)
2

OO

Wε(A, σ)
π
(ε)
2

oo W−ε(B, τ1)
ρ
(−ε)
1

oo W−ε(A, σ)
π
(−ε)
1

oo

Its maps are induced by functors between the relevant categories of hermitian forms;
their definition, which depends on λ and µ, is given in 3A below.

The main result of this paper (Theorem 3.4) asserts that the octagon (0.1) is
exact when R is semilocal.

When R is a field, (0.1) is isomorphic to an octagon of Witt groups introduced by
Grenier-Boley and Mahmoudi [30, §6], who also proved it is exact.1 Many special
cases of the latter result were known previously. For example, Parimala, Sridharan
and Suresh [10, Appendix] established the exactness of the top row of (0.1) when R
is a field. Furthermore, the 5-term and 7-term exact sequences of Witt groups that
Lewis [43] associates to quadratic field extensions and quaternion division algebras,
respectively, can be recovered from (0.1) when R is a field. Predating Lewis, Baeza
[5, Korollar 2.9] and Mandelberg [46, Proposition 2.1] established the exactness of
Lewis’ 5-term sequence at two places when R is semilocal; we extend these works in
8A, showing that both of Lewis’ sequences remain exact when base ring is semilocal.

When R is a general, the octagon (0.1) seem related to the octagon of L-groups
considered by Ranicki in [57, Remark 22.22]. Other octagons involving Witt groups
of central simple algebras with involution appear in [44] and [45].

In the process of proving the exactness of (0.1) when R is semilocal, we give
necessary and sufficient conditions for a hermitian space to be in the image of the

functors π
(±ε)
1 , π

(±ε)
2 , ρ

(±ε)
1 , ρ

(±ε)
2 (the exactness of the octagon answers this only up

to Witt equivalence), see Theorem 7.1. These conditions, which seem novel even
when R is a field, involve the Brauer classes of A and B and the discriminant of the
hermitian space at hand; they are needed for some of the applications. For example,
given a unimodular (−ε)-hermitian space (P, f) over (A, σ), we show that there ex-

ists a unimodular ε-hermitian space (Q, g) over (B, τ1) such that ρ
(ε)
1 (Q, g) ∼= (P, f)

if and only if π2(P, f) is hyperbolic and at least one of the following hold: (1) (τ2, ε)
is not orthogonal (see 1D), (2) the Brauer class of B is nontrivial, (3) (τ2, ε) is or-

thogonal, n := rkR P
degA is even and the discriminant of f (see 2H) equals λn(R×)2.

We further we show that any anistropic hermitian space whose Witt class lives in
the kernel of some map in (0.1) is the image of a hermitian space under the functor
corresponding to the preceding map in (0.1), see Corollary 7.2.

While proving that the octagon (0.1) is exact when R is a field takes only several
pages, showing the exactness when R is semilocal is significantly more involved;
the proof occupies most of this paper, and is surveyed in 3C. One reason why the

1The term W−ε(B, τ1) on the bottom row of (0.1) and the maps adjacent to it differ from
their counterparts in [30, p. 980]. However, the octagons become the same once identifying the
term W−ε(B, τ1) on the bottom row of (0.1) with the corresponding term Wε(B, τ1) in op. cit.
via λ-conjugation (“scaling by λ”) in the sense of 2G below.
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field case is simpler is the fact that when R is a field, every Witt class contains a
representative with no isotropic vectors, which allows for a short clean proof; see
Remark 3.7. In contrast, the proof when R is semilocal relies on two ingredients:

careful analysis of the image of the functors π
(±ε)
∗ and ρ

(±ε)
∗ when R is a field,

and lifting of information from the residue fields of R to R itself, usually using
results from [25]. The complexity of the former ingredient manifests in the length

of Theorem 7.1, which describes the images of π
(±ε)
∗ and ρ

(±ε)
∗ when R is semilocal.

We do not know if (3.1) remains exact when R is not assumed to be semilocal.
However, Theorem 8.13 below (see also the proof of Corollary 8.3) can be regarded
as a positive partial result when R is a regular 2-dimensional domain. We further
note that if the Witt group Wε(A, σ) is replaced by the Zariski sheaf associated to
the presheaf U 7→Wε(AU , σU ) on SpecR, then (3.1) becomes an exact sequence of
sheaves. Indeed, it is exact at the stalks.

The octagon (0.1) also seems to be related with Bott periodicity. Clarifying this
connection seems an interesting problem, which may lead to new insights.

Applications. A celebrated application of the well-known exactness of (0.1) when
R is a field is Bayer-Fluckiger and Parimala’s proof of Serre’s Conjecture II for
classical groups [10].

Knowing that (0.1) is exact when R is semilocal allows for a new set of appli-
cations. Here, we use it to establish some open cases of the Grothendieck–Serre
conjecture and the local purity conjecture, show that the trace of a 1-hermitian
form over a quadratic étale or quaternion Azumaya algebra is isotropic if and only
if the original form is isotropic, and characterize the kernel of the restriction map
W (R) → W (S) when R is an arbitrary 2-dimensional regular domain and S is a
quadratic étale R-algebra. Further applications appear in [13].

In more detail, given a regular local ring R with fraction field K, Grothendieck
[31, Remark 3, pp. 26-27], [33, Remark 1.11.a] and Serre [67, p. 31] conjectured that
for every reductive (connected) group R-schemeG, the kernel of the restriction map

H1
ét(R,G) → H1

ét(K,G)

is trivial. Under the same assumptions, the local purity conjecture predicts that

im
(

H1
ét(R,G) → H1

ét(K,G)
)

=
⋂

p∈R(1)

(

H1
ét(Rp,G) → H1

ét(K,G)
)

,

where R(1) is the set of height-1 primes of R; we then say that purity holds for G.
In fact, both conjectures are believed to hold under the milder assumption that R
is a regular semilocal domain, which we assume through the following paragraphs.

The Grothendieck–Serre conjecture was addressed by numerous authors and is
known to hold in many cases. Most notably, Nisnevich [48] proved the conjecture
when R is a discrete valuation ring, Guo [34] established the case where R is a
semilocal Dedekind domain, and Fedorov–Panin [21] and Panin [53] proved the
conjecture when R contains a field. Many positive results for particular groups G
are known as well, see [51, §5] for a survey.

The local purity conjecture is also known to hold in many cases: Colloit-Thélène
and Sansuc showed that it holds for all reductive group schemes when dimR ≤ 2,
even without assuming that R is semilocal, see [16, Corollary 6.14]. When R is a
regular local ring containing a field k of characteristic 0, purity was established for
On, SOn, PGLn, SL1(A) (A is a central simple k-algebra), SLn/µd (d | n) and
Spinn in [52], and for groups of type G2 in [15]. In fact, for On, it is enough to
assume that k is any field of characteristic not 2, see Scully [66, p. 12] and also
Panin–Pimenov [54, Corollary 3.1].
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To relate the octagon (0.1) to the Grothendieck–Serre conjecture, let (A, σ) be
a degree-n Azumaya R-algebra with involution and let U(A, σ) denote the group
R-scheme of unitary elements in (A, σ). Then U(A, σ) is a form of GLn, On or
Spn, depending on whether σ is unitary, orthogonal or symplectic, respectively.
We show (Proposition 8.7) that if the restriction map

W1(A, σ) →W1(AK , σK)(0.2)

is injective, then the Grothendieck–Serre conjecture holds for the neutral component
of U(A, σ) (and, more generally, for the neutral component of the isometry group
scheme of any unimodular 1-hermitian form over (A, σ)); this is well-known when
A = R [17, Proposition 1.2].

In accordance with the Grothendieck–Serre conjecture, it is conjectured that
(0.2) is injective when R is regular semilocal. Provided 2 ∈ R×, this has been
established by Balmer–Walter [9, Corollary 10.4] (see also Pardon [55]) and Balmer–
Preeti [8, p. 3] when dimR ≤ 4 and A = R, and when R is local and contains a field
by Gille [29, Theorem 7.7]. We use the former result and the exactness of (0.1) to
establish the injectivity of W1(A, σ) →W1(AK , σK) in when dimR ≤ 4 and one of
the following hold:

(1) σ is unitary and indA = 1;
(2) σ is symplectic and indA ≤ 2;

see Theorem 8.9. As a result, the Grothendieck–Serre conjectures holds for U(A, σ)
if (1) or (2) holds and dimR ≤ 4 (Corollary 8.10).

By similar means, we use (0.1) together with results of Gille [29, Theorem 7.7]
and Scully [66, Theorem 5.1] to show that purity holds for U(A, σ) in cases (1)
and (2), provided that R is regular local and contains a field of characteristic not 2
(Theorem 8.12). Here, the exactness of (0.1) is not sufficient, and we have to use

the finer information provided by Theorem 7.1 about the image of π
(±ε)
∗ , ρ

(±ε)
∗ .

Suppose next that R is any semilocal ring and let (A, σ) be a quadratic étale
R-algebra with its standard involution, or a degree-2 Azumaya R-algebra with its
(unique) symplectic involution. Write Tr for the trace map from A to R. If (P, f)
is a unimodular 1-hermitian space over (A, σ), then (P,Tr ◦f) is a unimodular 1-
hermitian space over (R, idR). We show that Tr ◦f is isotropic if and only if f is
isotropic (Theorem 8.5). When R is a field, this goes back to Jacobson [36] (see
also [65, Theorems 10.1.1, 10.1.7]). The quick proof in the case R is a field does
not apply over rings, see Remark 8.6, and we instead appeal to our Theorem 7.1.

Finally, assume that R is any regular domain, possibly non-semilocal, let S be
a quadratic étale R-algebra and let θ be its standard involution (see 1C). When S
is a field, a famous theorem of Pfister [65, Theorem I.5.2] states that the kernel of
the restriction map W (R) → W (S) is generated by the diagonal quadratic form
〈1,−α〉, where S = R[

√
α]. Using our main result and Colloit-Thélène and Sansuc’s

purity result [16, Corollary 6.14], we generalize Pfister’s theorem to the case where
dimR ≤ 2, showing that the sequence

W1(S, θ)
[g] 7→[TrS/R ◦g]−−−−−−−−−→W (R)

[f ] 7→[fS]−−−−−→W (S)

is exact in the middle (Theorem 8.13). This result also applies in the generality of
quadratic étale coverings of regular integral 2-dimensional schemes.

Additional Results. The first two sections of this paper are concerned with gen-
eralizing many fundamental results about central simple algebras with involution
and hermitian forms over them to the context of Azumaya algebras with involution
over semilocal rings. For example, letting (A, σ) denote an Azumaya algebra with
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involution over a semilocal ring R with 2 ∈ R×, and letting (P, f) be a unimodular
ε-hermitian space over (A, σ), it is shown that:

• A contains a full idempotent e ∈ A with deg eAe = indA (Theorem 1.25).
• If σ is orthogonal or unitary, then the idempotent e can be chosen to satisfy
eσ = e (Theorem 1.30).

• (P, f) cancels from orthogonal sums (Theorem 2.2); this is essentially due
to Reiter [59] and Keller [37].

• If the Witt class of (P, f) is 0, then (P, f) is hyperbolic. If (P ′, f ′) is Witt
equivalent to (P, f) and P ∼= P ′, then (P, f) ∼= (P ′, f ′) (Theorem 2.8).

• If (σ, ε) is orthogonal or unitary, then (P, f) is diagonalizable whenever P
is a free A-module (Proposition 2.13).

• When Z(A) is connected, the isometry group of (P, f) acts transitively on
the set of Lagrangians of (P, f), provided it is nonempty (Lemma 2.22).

We note that the first result is false when R is not semilocal, see [2]. The second
result is particularly convenient when hermitian Morita theory is needed.

Outline. Sections 1 and 2 are preliminary and recall Azumaya algebras with in-
volution and hermitian forms, respectively. In Section 3, we construct the octagon
(0.1), prove it is a chain complex, and survey the proof of its exactness when R
is semilocal. The proof itself is carried in Sections 4–6 and is concluded in Sec-
tion 7. Finally, the applications to the Grothendieck–Serre conjecture, the local
purity conjecture and the generalizations of Jacobson and Pfister’s theorems are
given in Section 8.
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project at hand. We further thank Eva Bayer-Fluckiger and Raman Parimala for
many useful conversations and suggestions. The research was partially conducted
at the department of mathematics at University of British Columbia, where the
author was supported by a post-doctoral fellowship. We thank Ori Parzanchevski
for encouragement and motivation.

We are also grateful to anonymous referees for many useful suggestions which
have improved the exposition.

Notation and Conventions

Throughout this paper, a ring means a commutative (unital) ring. Algebras
are unital and associative, but not necessarily commutative. We assume that 2 is
invertible in all rings and algebras.

Unless otherwise indicated, R denotes a ring. Unadorned tensors and Hom-
sets are always taken over R. An R-ring means a commutative R-algebra. Given
p ∈ SpecR, we let k(p) denote the fraction field of R/p.

Let S be an R-ring. Given (right) R-modules M , N and f ∈ Hom(M,N), we
write MS := M ⊗ S and fS := f ⊗ idS ∈ HomS(MS , NS). When S = k(p) for
p ∈ SpecR, we write M(p) = Mk(p) and f(p) = fk(p), and let m(p) denote the
image of m ∈M in M(p). When S = Rp, we write Mp =MRp

and fp = fRp
.

Let M be a finite (i.e. finitely generated) projective R-module. The R-rank of
M , denoted rkRM , is the function SpecR → Z≥0 sending p to dimk(p)M(p); it is
locally constant relative to the Zariski topology [27, Theorem 2.3.5]. Thus, when
R is connected, we shall freely regard rkRM as an integer.

Statements and operations involving locally constant functions from SpecR to
Z should be interpreted point-wise. For example, the sum of two such functions is
taken point-wise, and relations such as “<” should be understood as holding after
evaluation at every p ∈ SpecR.



6 AN EXACT SEQUENCE OF WITT GROUPS

We will need to compare integer-valued functions defined on spectra of different
rings. To that end, given a ring homomorphism ι : R → S and f : SpecR → Z,
define ιf : SpecS → Z by (ιf)(q) = f(ι−1(q)). For example, ι rkRM = rkS MS. In
addition, if S is finite projective over R and N is a finite projective S-module of
rank that is constant along the fibers of SpecS → SpecR, then

rkS N · ι rkR S = ι rkRN.(0.3)

Given an R-algebra A, the units, the center, the Jacobson radical and the op-
posite algebra of A are denoted A×, Z(A), JacA and Aop, respectively. We write
ZA(X) for the centralizer of a subset X ⊆ A in A. The category of finite projective
right A-modules is denoted P(A). If a ∈ A×, then Int(a) denotes the inner auto-
morphism x 7→ axa−1 : A → A. Given an R-ring S, and P,Q ∈ P(A), the natural
map HomA(P,Q)⊗ S → HomAS (PS , QS) is an isomorphism [27, Theorem 1.3.26],
and we shall freely identify these S-modules.

In situations when an abelian groupM can be regarded as a module over multiple
R-algebras, we shall sometimes write MA to denote “M , viewed as a right A-
module”. In particular, AA denotes “A, viewed as a right module over itself”.
Similar notation will be applied to left modules, but with the subscript written on
the left, e.g., AA.

If e ∈ A is an idempotent, we shall freely identify EndA(eA) with eAe, where
eAe acts on eA via multiplication on the left. We say that e is full if AeA = A,
or equivalently, if eA is a progenerator [42, §18B]. (A right A-module M is called a
progenerator if M is finite projective and AA is isomorphic to a summand of Mn

for some n ∈ N.) The idempotent e is called primitive if e 6= 0 and eAe contains
no idempotents except 0 and e.

An R-algebra with involution means a pair (A, σ) consisting of an R-algebra
A and an R-linear involution σ : A → A. Involutions are applied exponentially
to elements of A, i.e., aσ stands for σ(a). Given ε ∈ Z(A) with εσε = 1, we let
Sε(A, σ) = {a ∈ A : a = εaσ}.

1. Azumaya Algebras With Involution

We recall the definition and some properties of Azumaya algebras with involu-
tion, giving particular attention to the case where the base ring R is semilocal.
When R is a field, all the material can be found in [40, Chapter I].

1A. Separable Projective Algebras. Recall that an R-algebra A is called sep-
arable if A is projective when endowed with the right Aop ⊗ A-module structure
determined by a · (xop ⊗ y) = xay, or equivalently, if the right Aop ⊗ A-module
homomorphism xop ⊗ y 7→ xy : Aop ⊗A→ A admits an Aop ⊗A-linear section.

By definition, the Azumaya R-algebras are the central separable R-algebras,
and the finite étale R-algebras are the finite projective commutative separable R-
algebras. There are many other equivalent definitions, see [27] and [39, III.§5], for
instance.

In the sequel, we shall often consider R-algebras A such that A is Azumaya
over Z(A) and Z(A) is finite étale over R. The following proposition lists a few
convenient equivalent characterizations of such algebras, which we call separable
projective after condition (SP2).

Proposition 1.1. Let A be an R-algebra. The following conditions are equivalent.

(SP1) A is Azumaya over Z(A) and Z(A) is finite étale over R.
(SP2) A is projective as an R-module and separable as an R-algebra.
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(SP3) A is finite projective as an R-module and, for all m ∈ MaxR, the k(m)-
algebra A(m) is semisimple and its center is a product of separable field
extensions of k(m).

Proof. (SP1) =⇒ (SP2) follows from [20, Theorem II.3.4(iii), Theorem II.3.8].
(SP2) =⇒ (SP1) follows from [20, Theorem II.3.8, Lemma II.3.1]. (SP2) =⇒ (SP3)
follows from [20, Proposition II.2.1, Corollary II.2.4] and the fact that (SP2) con-
tinues to hold after base-change. (SP3) =⇒ (SP2) follows from [20, Theorem II.7.1,
Corollary II.2.4]. �

We collect several facts about separable projective algebras.

Lemma 1.2 ([64, Proposition 2.14]). Let A be a separable R-algebra and let M
be a right A-module. If M is projective over R, then M is projective over A. The
converse holds when A is projective over R.

Lemma 1.3. Let A be a separable projective R-algebra and let S ⊆ Z(A) be an
R-subalgebra such that S is separable over R or an R-summand of Z(A). Then A
is separable projective over S and S is separable projective over R.

Proof. Suppose first that S is separable over R. That A is separable over S follows
from [20, Proposition II.1.12]. Since A is projective over R and S is separable over
R, the algebra A is projective as an S-module by Lemma 1.2. It is faithful over S
since S is a subring of A. Now, by [20, Corollary II.4.2], S is a summand of A, so
S is projective over R.

If S is summand of Z := Z(A), then S ∈ P(R). Thus, for every p ∈ SpecR,
the map S(p) → Z(p) is injective. Since Z(p) is a finite product of separable field
extensions of k(p), the same holds for S(p), and we conclude that S is also separable.
Proceed as in the previous paragraph. �

Lemma 1.4. Let A be a separable projective R-algebra, let B ⊆ A be a separable
projective R-subalgebra and let S be an R-ring. Then the natural map ZA(B)⊗S →
ZAS (BS) is an isomorphism. In particular, Z(A)⊗ S = Z(AS).

Proof. Write C = B⊗Aop and view A as a left C-module by setting (b⊗aop)·x = bxa
(a, x ∈ A, b ∈ B). Since C is separable over R and A ∈ P(R), Lemma 1.2
implies that A is projective as a C-module. Thus, the natural map EndC(A) ⊗
S → EndCS(AS) is an isomorphism. However, EndC(A) ∼= ZA(B) via ϕ 7→ ϕ(1),
and likewise EndCS (AS) ∼= ZAS (BS). The resulting isomorphism ZB(A) ⊗ S →
EndC(A)⊗S → EndCS (AS) → ZAS(BS) is the natural map ZA(B)⊗S → ZAS (BS)
and the proposition follows. �

Lemma 1.5. Let A be a separable projective R-algebra. Then JacA = JacR ·A =
⋂

m∈MaxR mA.

Proof. Since A is finite over R, we have JacR · A ⊆ JacA [39, Corollary II.4.2.4].
In addition, for all m ∈ MaxR, the ring A/mA = A(m) is semisimple by (SP3),
hence JacA ⊆ ⋂

m∈MaxR mA. It remains to show that
⋂

m∈MaxR mA ⊆ JacR · A.
Consider the exact sequence of R-modules 0 → JacR → R → ∏

m∈MaxRR/m.
Since A is a flat over R, tensoring with A gives an exact sequence 0 → JacR⊗A→
R ⊗ A → (

∏

m∈MaxR R/m) ⊗ A. Furthermore, since A is finitely presented, the
natural map (

∏

m∈MaxRR/m)⊗A→ ∏

m∈MaxR(R/m)⊗A ∼=
∏

m∈MaxRA/mA is an
isomorphism [42, Proposition 4.44]. Thus, 0 → JacR⊗A→ A→ ∏

m∈MaxRA/mA
is exact, and the exactness at A means that

⋂

m∈MaxR mA = JacR ·A. �

We also record the following general lemmas.

Lemma 1.6. Let A be a finite R-algebra and let a ∈ A. If a(m) ∈ A(m)× for all
m ∈ MaxR, then a ∈ A×.



8 AN EXACT SEQUENCE OF WITT GROUPS

Proof. Consider the map φ : A → A given by φ(x) = ax. Then φ(m) : A(m) →
A(m) is bijective for all m ∈ MaxR. As A is a finite R-module, φ is surjective ([68,
Tag 05GE] with f = 1), so aA = imφ = A. Likewise, Aa = A, so a ∈ A×. �

Lemma 1.7. Let A be a finite projective R-algebra, let P ∈ P(A) and let U and V
be summands of P . Suppose that P (m) = U(m) ⊕ V (m) for all m ∈ MaxR. Then
P = U ⊕ V .

Proof. We need to show that ψ : U × V → P given by ψ(u, v) = u + v is an
isomorphism. By assumption, imψ + Pm = P for all m ∈ MaxR. By Nakayama’s
Lemma annR(P/ imψ) is not contained in any maximal ideal, so it must be R.
Thus, P/ imψ = 0 and ψ is onto. Let K = kerψ. Since P is projective, ψ splits
and U × V ∼= P × K, hence rkR U + rkR V = rkR P + rkR P . Since P (m) =
U(m) ⊕ V (m) for all m ∈ MaxR, we have rkR U + rkR V = rkR P , so rkRK = 0
and kerψ = K = 0. �

1B. Azumaya Algebras. We refer the reader to [27, 7.§3], [39, III.§5.3] or [64,
Chapter 3] for the definition of the Brauer group of R. We denote it as BrR and
write its binary operation additively. The Brauer class of an Azumaya R-algebra
A is denoted [A].

As usual, the degree of an Azumaya R-algebra A is degA :=
√
rkRA, and its

index is indA := gcd{degA′ |A′ ∈ [A]}. Recall that both degA and indA are
functions from SpecR to N, and that the “gcd” in the definition of indA is evaluated
point-wise. Since A is a finite projective R-module, degA is locally constant relative
to the Zariski topology, and with a little more work, one sees that the same holds
for indA. When R is connected, both degA and indA are constant and may be
regarded as elements of N.

We alert the reader that in general, there may be noA′ ∈ [A] with degA′ = indA;
see [2]. However, this is true when R is semilocal, by Theorem 1.25 below.

Theorem 1.8 (Saltman [63]). Let A be an Azumaya R-algebra of degree dividing
n ∈ N. Then n · [A] = 0 in BrR.

Given P ∈ P(A), the reduced rank rkR P is (point-wise) divisible by degA;
indeed, by [40, pp. 5–6], degA(p) | dimk(p) P (p) for all p ∈ SpecR. It is therefore
convenient to introduce the reduced A-rank of P , defined by

rrkA P := rkR P/ degA.

This agrees with the reduced dimension defined in op. cit. when R is a field.
For example, rrkA(AA) = degA. If ι : R → S is a ring homomorphism, then
rrkAS PS = ι rrkA P . In particular, degAS = ιdegA.

Remark 1.9. If A is an R-algebra which is Azumaya over its center Z(A), then
we regard degA, indA and rrkA P (P ∈ P(A)) as functions from Spec Z(A) to Z.
Note also that [A] is a member of Br Z(A), rather than BrR.

We record a number of properties of the reduced rank which will be used many
times in the sequel.

Proposition 1.10. Let A be an Azumaya R-algebra and let P ∈ P(A). Then
rrkA P > 0 if and only if P is a progenertor.

Proof. Since rrkA(AA) = degA > 0, if P is a progenerator, then rrkA P > 0.
To see the converse, let T =

∑

φ imφ where φ ranges over HomA(P,A). It is

enough to prove that T = A, see [27, pp. 7–8]. Fix m ∈ MaxR. Since (rrkA P )(m) >
0, the A(m)-module P (m) is nonzero. Since A(m) is simple artinian, there exists
n ∈ N and a surjection ϕ : P (m)n → A(m). Since P is projective, there exists

https://stacks.math.columbia.edu/tag/05GE


AN EXACT SEQUENCE OF WITT GROUPS 9

ϕ̂ ∈ HomA(P
n, A) such that ϕ = ϕ̂(m), hence im(ϕ̂) +mA = A. Since im(ϕ̂) ⊆ T ,

this means that T +mA = A, or rather, (A/T )m = A/T . By Nakayama’s Lemma
annR(A/T ) is not contained in m. As this holds for all m ∈ MaxR, we must have
A/T = 0, so T = A. �

Proposition 1.11. Let A be an Azumaya R-algebra and suppose that P ∈ P(A)
satisfies rrkA P > 0. Then:

(i) B := EndA(P ) is an Azumaya R-algebra, degB = rrkA P and [B] = [A].
(ii) For all Q ∈ P(B), we have rrkB Q = rrkA(Q⊗B P ).
(iii) For every B′ ∈ [A], there exists P ′ ∈ P(A) with B′ ∼= EndA(P

′) and
rrkA P

′ = degB′ > 0.

Proof. (i) By Proposition 1.10, PA is a progenerator, and in particular faithful.
Thus, Aop embeds as an R-subalgebra of EndR(P ) via aop 7→ [x 7→ xa], and
B = ZAop(EndR(P )). Since both Aop and EndR(P ) are Azumaya R-algebras, B
is Azumaya over R and Aop ⊗ B ∼= EndR(P ) [20, Theorem II.4.3]. This implies
that degAop · degB = degEndR(P ) = rkR P . It follows that degB = rrkA P and
[Aop] + [B] = [EndR(P )] = 0, so [A] = [B].

(ii) By definition of the reduced rank, it enough to check the statement after
specializing to k(p) for all p ∈ SpecR. (Recall that ψ 7→ ψ ⊗ idk(p) : B(p) =
EndA(P ) ⊗ k(p) → EndA(p)(P (p)) is an isomorphism because P ∈ P(A).) Now
that R is a field, we may regard the reduced rank as an integer and further spe-
cialize to the algebraic closure, as it would not affect the reduced rank. When R is
algebraically closed, we may assume that A = Mn(R), P = Mm×n(R), B = Mm(R),
Q = Mt×m(R), and checking that rrkB Q = t = rrkA(Q⊗A P ) is routine.

(iii) By a Theorem of Bass, see [23, Theorem 9.2], exists is an progenerator
P ′ ∈ P(A) such that B′ ∼= EndA(P

′). The claim now follows from Proposition 1.10
and (i). �

Corollary 1.12. Let A be an Azumaya R-algebra and let e ∈ A be an idempotent.
Then e is full (i.e. AeA = A) if and only if rrkA eA > 0. In this case, eAe is an
Azumaya R-algebra, deg eAe = rrkA eA, [A] = [eAe] and for all P ∈ P(A), we have
rrkA P = rrkeAe Pe.

Proof. Recall that e is full if and only if eAA is a progenerator, and this is equivalent
to rrkA eA > 0 by Proposition 1.10. Since eAe = EndA(eA), the first three asser-
tions follow from Proposition 1.11(i). For the last assertion, note that by Morita
theory, Ae ∈ P(eAe) is a progenerator and A = EndeAe(Ae) [42, Corollary 18.21].
Applying Proposition 1.11(ii) with eAe, A, Ae in place of A, B, P , we see that
rrkeAe Pe = rrkeAe(P ⊗A Ae) = rrkA P . �

Corollary 1.13. Let A be an Azumaya R-algebra and let P ∈ P(A). Then indA |
rrkA P .

Proof. Since indA | degA = rrkAA, we may replace P with P ⊕A and assume that
rrkA P > 0. By Proposition 1.11(i), rrkA P = degEndA(P ) and EndA(P ) ∈ [A], so
rrkA P is divisible by indA. �

Proposition 1.14. Let A be an Azumaya R-algebra, let S be a finite étale R-
subalgebra of A and let ι : R → S be the inclusion map. Then B := ZA(S) is
Azumaya over S and [B] = [A⊗S] in BrS. Furthermore, A is projective as a right
S-module, and if rkS AA is constant along the fibers of SpecS → SpecR, then:

(i) degB · ι rkR S = ιdegA, and rrkB P = ι rrkA P for all P ∈ P(A), and
(ii) ι rrkA(Q ⊗B A) = ι rkR S · rrkB Q for all Q ∈ P(A) such that rrkB Q is

constant along the fibers of SpecS → SpecR.
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Proof. That B is Azumaya over S and [B] = [A ⊗ S] is well-known, see [64, The-
orem 3.10], for instance. That A is projective as a right S-module follows from
Lemma 1.2.

By Lemma 1.4, it is enough to prove (i) and (ii) after base changing to every
residue field of R, so assume R is a field. In fact, we may further base-change to
an algebraic closure of R and assume that R is algebraically closed. In this case,
S ∼= Rt for t = rkR S and A = Mn(R) for n = degA.

Let eij ∈ Mn(R) denote the n × n matrix with 1 at the (i, j)-entry and zeroes
elsewhere. Let f1, . . . , ft denote the primitive idempotents of S. Since rrkS AS

is constant, dimRAfi is independent of i, so AAf1 ∼= . . . ∼= AAft. This means
that each fi is an idempotent of rank s := n

t in A = Mn(R). Since all such
idempotents are conjugate, we may choose the identification of A with Mn(R) such

that fi =
∑is

j=(i−1)s+1 ejj . Thus,

B =







Ms(R)
. . .

Ms(R)






⊆ Mn(R).

Furthermore, every right A-module is isomorphic to Mm×n(R) for some m ≥ 0 and
any right B-module with constant S-rank is isomorphic to Mℓ×s(R)×· · ·×Mℓ×s(R)
(t times) for some ℓ ≥ 0. Now, verifying (i) and (ii) is straightforward. �

The requirement that rkS AA is contstant along the fibers of SpecS → SpecR
is guaranteed when rkR S = degA.

Corollary 1.15. Let A be an Azumaya R-algebra and let S be a finite étale sub-
algebra of A such that rkR S = degA. Then rkS AA = ιdegA (ι : R → S is the
inclusion), S = ZA(S) and [AS ] = 0.

Proof. We only need to show that rkS AA = ιdegA. The remaining assertions then
follow from Proposition 1.14.

The algebra A is an (A,S)-bimodule and hence a right module over Aop⊗S. By
Lemma 1.2, AAop⊗S is projective, so degAS | rkS AA. Furthermore, rkS AA > 0

because A is faithful as a right S-module. Let p ∈ MaxR and write S(p) =
∏t

i=1Ki,
where Ki is a k(p)-field. We need to show that dimKi(A⊗S Ki) = degA(p). Write
n = degA(p). Then n2 = dimk(p)A(p) =

∑

i[Ki : k(p)] dimKi(A ⊗S Ki) and
∑

i[Ki : k(p)] = dimk(p) S(p) = n. Since dimKi(A ⊗S Ki) is positive and divisible
by n, we must have dimKi(A⊗S Ki) = n for all i, as required. �

1C. Quadratic Étale Algebras. Finite étale R-algebras of R-rank 2 are also
called quadratic étale algebras. Every such algebra S admits a unique R-involution
θ : S → S such that R = {s ∈ S : sθ = s}; it is given by xθ = TrS/R(x) − x and

satisfies NrS/R(x) = xθx.2 See [39, Proposition I.1.3.4] for its uniqueness. Following
[39, I.§1.3], we call θ the standard R-involution of S.

For example, the R-algebraR×R is quadratic étale and its standard involution is
the exchange involution (x, y) 7→ (y, x). Furthermore, by our standing assumption
that 2 ∈ R×, the R-algebra R[x |x2 = a] is quadratic étale whenever a ∈ R× (use
(SP3) above), and its standard involution is determined by xθ = −x.
Lemma 1.16. Let S be a quadratic étale R-algebra. If R is connected and S is not
connected, then S ∼= R×R as R-algebras.

2If A is a finite projective R-algebra of rank n ∈ N, then the trace and norm maps
TrA/R,NrA/R : A → R take a ∈ A to −c1(a) and (−1)ncn(a), respectively, where Xn +

c1(a)Xn−1 + · · · + cn(a)X0 is the characteristic polynomial of [x 7→ ax] ∈ EndR(A) in the
sense of [27, Example 5.3.3].
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Proof. Let θ denote the standard R-involution of S, and let e ∈ S be a nontrivial
idempotent. Then eθe is a non-invertible idempotent of R, hence eθe = 0 (because
R is connected). This means that e + eθ is also an idempotent in R, and it is
nonzero because e(e + eθ) = e 6= 0. Since R is connected, e + eθ = 1. It is now
routine to check that r 7→ er : R → eS and s 7→ s + sθ : eS → R are mutually
inverse. Since the former map is an R-algebra homomorphism, we see that R ∼= eS
as R-algebras, and similarly R ∼= eθS = (1 − e)S. The lemma follows because
S ∼= eS × (1− e)S. �

Lemma 1.17. Let S be a quadratic étale R-algebra and let σ : S → S be an R-
involution. Then there exists a factorization R = R1 × R2 such that σR1 : SR1 →
SR1 is the standard R1-involution of SR1 and σR2 : SR2 → SR2 is the identity. In
particular, if R is connected, then σ is either the standard R-involution of S or idS.

Proof. This is a restatement of [39, Proposition III.4.1.2]. �

Lemma 1.18. Let S be a quadratic étale R-algebra. Then SS
∼= S×S as S-algebras.

Proof. This follows from the discussion in [39, III.§4.1]. �

Lemma 1.19. Suppose that R is semilocal and let S be a quadratic étale R-algebra
with standard involution θ. Then there exists λ ∈ S such that λ2 ∈ R×, λθ = −λ
and {1, λ} is an R-basis of S.

Proof. Since 2 ∈ R×, we have S = S1(S, θ) ⊕ S−1(S, θ) = R ⊕ S−1(S, θ), and so
S−1(S, θ) is a rank-1 projective R-module. Since R is semilocal, S−1(S, θ) is free.
Let λ be a generator of S−1(S, θ). Then λ

2 = −λ ·λθ = −NrS/R(λ) ∈ R and {1, λ}
is an R-basis of S. As a result, S ∼= R[x |x2 − a], where a = λ2. If a /∈ R×, then
there exists m ∈ MaxR with a ∈ m, and it follows that S(m) ∼= k(m)[x |x2 = 0] is
not étale over k(m). Thus, we must have λ2 = a ∈ R×. �

1D. Azumaya Algebras With Involution. Recall our standing assumption that
2 ∈ R×. An Azumaya algebra with involution3 over R is an R-algebra with invo-
lution (A, σ) such that A is separable projective over R and the homomorphism
r 7→ r · 1A : R → A identifies R with the σ-fixed elements of Z(A). Note that A
is not necessarily Azumaya as an R-algebra. Rather, A is Azumaya over Z(A), so
that degA is a function from Spec Z(A) to Z and [A] ∈ BrZ(A), cf. Remark 1.9.

If (A, σ) is an Azumaya R-algebra with involution and S is an R-ring, then
(AS , σS) is an Azumaya S-algebra with involution. Indeed, Z(AS) = Z(A) ⊗ S by

Lemma 1.4, and the exact sequence 0 → R
r 7→r·1A−−−−−→ Z(A)

a 7→a−aσ

−−−−−−→ R → 0 is split
at Z(A) because Z(A) = R1A ⊕ S−1(Z(A), σ), so it remains exact after tensoring
with S. Together, this means that s 7→ s · 1A : S → {a ∈ Z(AS) : a− aσS = 0} is
an isomorphism, hence our claim.

Example 1.20. Let A be a separable projective R-algebra, let σ : A → A be an
R-involution and let R1 := {s ∈ Z(A) : sσ = s}. Then (A, σ) is an Azumaya
R1-algebra with involution. Indeed, R1 is a R-summand of Z(A) because 2 ∈ R×,
so by Lemma 1.3, A is separable projective over R1 and R1 is finite étale over R.

When R is a field F , an Azumaya F -algebra with involution, (A, σ), is a central
simple F -algebra with involution in the sense of [40, pp. 13, 20]. The center of A
is then either F or a quadratic étale extension of F . In first case, A is a central
simple F -algebra and σ can be either of orthogonal or symplectic type, see [40,
§2.A]. When σ is symplectic, degA must be even [40, Proposition 2.6]. In the case

3This should be understood as “Azumaya algebra-with-involution” rather than “Azumaya-
algebra with involution”.
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Z(A) 6= F , the center is either F × F or a quadratic separable field extension of F ,
and σ is said to be of unitary type, see [40, §2.B].

Returning to the case R is arbitrary, we turn to define the type of the involution
σ. In fact, it will be convenient to define the type of a pair (σ, ε), where ε ∈ Z(A)
satisfies εσε = 1, with the type of σ being the type of (σ, 1).

To that end, suppose first that R is a field. We say that the type of (σ, ε)
is unitary if σ is unitary, i.e., when Z(A) 6= R. Suppose now that Z(A) = R.
Then ε ∈ {±1} and σ is either orthogonal or symplectic. We say that (σ, ε) is of
orthogonal type if either σ is orthogonal and ε = 1, or σ is symplectic and ε = −1.
In all other cases, (σ, ε) is said to be of symplectic type.

When R is arbitrary, the type of (σ, ε) is the function from SpecR to the set
{orthogonal, symplectic, unitary} assigning p the type of (σ(p), ε(p)). The type of
σ is the type of (σ, 1); this agrees with the definition of [39, III.§8]. We also say
that (σ, ε) is orthogonal (resp. symplectic, unitary) at p if (σ(p), ε(p)) is orthogonal
(resp. symplectic, unitary). The pair (σ, ε) is called orthogonal (resp. symplectic,
unitary) if this holds at all primes p ∈ SpecR. We remark that (σ, ε) is unitary if
and only if σ (i.e. (σ, 1)) is unitary.

Recall that Sε(A, σ) = {a ∈ A : εaσ = a}.
Proposition 1.21. Let (A, σ) be an Azumaya R-algebra with involution, let ε ∈
Z(A) be an element satisfying εσε = 1 and write n = degA.

(i) (σ, ε) is orthogonal if and only if rkR Sε(A, σ) =
1
2n(n+ 1) and Z(A) = R.

(ii) (σ, ε) is symplectic if and only if rkR Sε(A, σ) =
1
2n(n− 1) and Z(A) = R.

(iii) (σ, ε) is unitary if and only if rkR Z(A) = 2. In this case, Z(A) is a quadratic
étale R-algebra, σ|Z(A) is its standard involution and rkR Sε(A, σ) = n2.

(iv) There exists a factorization R ∼= Ro ×Rs ×Ru such that (σRo , ε⊗ 1Ro) is
orthogonal, (σRs , ε⊗ 1Rs) is symplectic and (σRu , ε⊗ 1Ru) is unitary.

(v) If R is connected, then (σ, ε) is either orthogonal, symplectic or unitary.

Proof. Suppose first that R is a field. If Z(A) = R, then ε ∈ {±1} and (i)–(iii)
follow from [40, Proposition 2.6]. If Z(A) 6= R, then by Hibert’s Theorem 90, there
exist δ ∈ Z(A) such that δσδ−1 = ε−1. One readily checks that δ · S1(A, σ) =
Sε(A, σ), so dimR Sε(A, σ) = dimR S1(A, σ), and the right hand side is n2 by [40,
Proposition 2.17]. It follows that (i)–(iii) hold in this case as well.

Parts (i)–(iii) for general R will follow from the field case if we show that the
natural maps Z(A)(p) → Z(A(p)) and (Sε(A, σ))(p) → Sε(A(p), σ(p)) are isomor-
phisms for all p ∈ SpecR. The former isomorphism is Lemma 1.4. To establish the
second, note that the short exact sequence Sε(A, σ) → A→ S−ε(A, σ) in which the
right arrow is given by a 7→ a − εaσ is split, because 2 ∈ R×, and thus it remains
exact after base-change along R → k(p).

Now, part (iv) follows readily from the fact that rkR Z(A) and rkR Sε(A, σ) are
locally constant functions, and part (v) follows from (iv). �

Corollary 1.22. Let (A, σ) be an Azumaya R-algebra with involution and let ε ∈
Z(A) be an element satisfying εσε = 1.

(i) For every δ ∈ Z(A) satisfying δσδ = 1 and every µ ∈ Sδ(A, σ) ∩ A×, the
pair (A, Int(µ) ◦ σ) is an Azumaya R-algebra with involution and the type
of (Int(µ) ◦ σ, δε) is the same as the type of (σ, ε).

(ii) For every idempotent e ∈ A with rrkA eA > 0 and eσ = e, the pair
(eAe, σ|eAe) is an Azumaya R-algebra with involution and the type of (σ|eAe, eε)
is the same as the type of (σ, ε).

Proof. (i) Checking that (A, Int(µ)◦σ) is an Azumaya R-algebra with involution is
straightforward. It is routine to check that x 7→ µx : Sε(A, σ) → Sδε(A, Int(µ) ◦ σ)
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is an R-module isomorphism, hence rkR Sε(A, σ) = rkR Sδε(A, Int(µ) ◦ σ). By
Proposition 1.21, this means that (σ, ε) and (Int(µ) ◦ σ, δε) have the same type.

(ii) Write σe := σ|eAe. By Corollary 1.12, eAe is Azumaya over Z(A). In
particular, a 7→ ea defines an isomorphism Z(A) → Z(eAe). This isomorphism is
compatible with σ, so r 7→ er : R → eAe identifies R with the σe-fixed elements in
Z(eAe). Thus, (eAe, σe) is an Azumaya R-algebra with involution.

Let p ∈ SpecR. Since rkR Z(A) = rkR Z(eAe), Proposition 1.21 implies that
(σ, ε) is unitary at p if and only if (σe, eε) is unitary at p. Furthermore, by [24,
Proposition 2.12], (σ, ε) is orthogonal at p if and only if (σe, eε) is orthogonal at p.
Thus, (σ, ε) and (σe, εe) have the same type. �

For later reference, we record the following easy consequence of Lemma 1.5 and
the Chinese Remainder Theorem.

Lemma 1.23. Let (A, σ) be an Azumaya algebra with involution over a semilocal
ring R. Write A = A/ JacA and let σ : A → A be the induced involution. Then
(A, σ) ∼=

∏

m∈MaxR(A(m), σ(m)) as R-algebras with involution, and each factor
(A(m), σ(m)) is a central simple k(m)-algebra with involution.

1E. Azumaya Algebras Over Semilocal Rings. We now specialize to the case
where R is semilocal and establish several results about Azumaya algebras and
Azumaya algebras with involution.

Lemma 1.24. Let A be an Azumaya algebra over a semilocal ring R and let P,Q ∈
P(A). Then P ∼= Q if and only if rrkA P = rrkAQ. Furthermore, P is isomorphic
to a summand of Q if and only if rrkA P ≤ rrkAQ.

Proof. The “only if” part of both statements is clear.
We first prove the “if” part of the second statement. Since rrkA P ≤ rrkAQ,

we have dimk(m) P (m) ≤ dimk(m)Q(m) for all m ∈ MaxR. Since A(m) is a central
simple k(m)-algebra, this means that P (m) is isomorphic to an A(m)-summand of
Q(m).

Write S = R/ JacR. Since R is semilocal, we have S =
∏

m∈MaxR k(m), AS =
∏

m∈MaxRA(m), PS =
∏

m∈MaxR P (m) and QS =
∏

m∈MaxRQ(m); the products
are all finite. By the previous paragraph there exists an A-module epimorphism
ϕ : QS → PS . Since P is projective, ϕ lifts to an A-module homomorphism
ψ : Q→ P . Since imϕ = PS , we have imψ+Pm = P for all m ∈ MaxR. Thus, as
in the proof of Lemma 1.7, imψ = P . Since P is projective, this means that P is
isomorphic to a summand of Q.

To prove the “if” part of the first statement, argue as above and note that
kerψ = 0, because rrkA P = rrkAQ. �

Theorem 1.25. Let A be an Azumaya algebra over a semilocal ring R. Then there
exists an idempotent e ∈ A such that eAe ∈ [A] and rrkA eA = deg eAe = indA.

Proof. We first claim that there exists P ∈ P(A) with rrkA P = indA. Write R =
∏t

i=1 Ri, where each Ri is connected. By working over each factor separately, we
may assume that R is connected. As a result, rrkA P is constant for all P ∈ P(A).

Since every B ∈ [A] is isomorphic to EndA(P ) for some P ∈ P(A) with rrkA P >
0 and degB = rrkA P (Proposition 1.11(iii)), we have indA = gcd{rrkA P |P ∈
P(A), rrkA P > 0}. Thus, in order to establish the existence of P ∈ P(A) with
rrkA P = indA, it is enough to show that for any P,Q ∈ P(A) with rrkAQ ≤
rrkA P , there exists S ∈ P(A) with rrkA S = rrkA P − rrkAQ. This follows readily
from Lemma 1.24.

Let P ∈ P(A) be a module with rrkA P = indA. By Lemma 1.24, P is isomor-
phic to a summand of AA, because rrkA P ≤ degA = rrkAAA. Therefore, there
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exists an idempotent e ∈ A such that P ∼= eA. The theorem now follows from
Corollary 1.12. �

We now turn to consider Azumaya R-algebras with involution.

Lemma 1.26. Let (A, σ) be an Azumaya algebra with involution over a semilocal
ring R and let ε ∈ Z(A) be an element with εσε = 1. If for every m ∈ MaxR, the
type of (σ, ε) at m is not symplectic, or degA(m) is even, then Sε(A, σ) ∩ A× 6= ∅.
Proof. Suppose first that R is a field and let S = Z(A). Then either S is a field, or
S = R × R. If S is a field, then the map s 7→ εsσ : S → S is an involution and its
nonzero fixed points are contained in Sε(A, σ) ∩ A×. If there are no such points,
then s = −εsσ for all s ∈ S, which implies ε = −1 (take s = 1) and σ|S = idS .
In this case, Sε(A, σ) ∩ A× 6= ∅ by [40, Corollary 2.8]. If S = R × R, then σ|S
is the exchange involution (x, y) 7→ (y, x) and ε = (α, α−1) for some α ∈ R×, so
(α, 1) ∈ Sε(A, σ) ∩ A×.

For general R, let m1, . . . ,mt denote the maximal ideals of R. By the previous
paragraph, for each i ∈ {1, . . . , t}, there exists ai ∈ Sε(A(mi), σ(mi))∩A(mi)

×. By
the Chinese Remainder Theorem, there exists a ∈ A with a(mi) = ai, for all i.
Replacing a with 1

2 (a + εaσ), we may assume that a ∈ Sε(A, σ). By Lemma 1.6,
a ∈ A×, so we are done. �

We finish with showing that idempotent e of Theorem 1.25 can sometimes be
chosen to be invariant under a given involution of A.

Proposition 1.27. Let (A, σ) be a central simple algebra with involution over a
field F and let n be a natural number divisible by indA and not exceeding degA. If
σ is symplectic, we further require that n is even. Then there exists an idempotent
e ∈ A such that eσ = e and deg eAe = rrkA eA = n

Proof. If A contains no σ-invariant idempotents other than 0 and 1, then [22,
Theorem 8.2] (for instance) implies that e = 1 is the required idempotent. Suppose
now that u ∈ A is a nontrivial σ-invariant idempotent and let v = 1−u. Since AuA
is a nonzero two-sided ideal of A invariant under σ, and since (A, σ) is a simple
ring with involution, AuA = A, and likewise AvA = A. Now, by Corollary 1.12,
deg uAu+deg vAv = rrkA(uA⊕vA) = rrkAA = degA, indA = induAu = ind vAv,
by Corollary 1.22(ii), σ|uAu and σ|vAv have the same type as σ. Express n as
n1 + n2 with n1 ≤ deg uAu, n2 ≤ deg vAv and such that n1, n2 are divisible by
indA, or lcm{2, indA} if σ is symplectic. Applying induction to (uAu, σ|uAu) and
(vAv, σ|vAv), we get σ-invariant idempotents e1 ∈ uAu, e2 ∈ vAv with deg eiAei =
ni (i = 1, 2). Take e = e1 + e2. �

Lemma 1.28. Let (A, σ) be an R-algebra with involution, let A = A/ JacA and let
σ : A → A denote the induced involution. Let η ∈ A be a σ-invariant idempotent.
If η is the image of an idempotent in A, then η is the image of a σ-invariant
idempotent in A.

Proof. Denote the image of a ∈ A in A as a. Let e ∈ A be an idempotent with
e = η. Since η = ησ, we have eA+(1−e)σA+JacA = A, so eA+(1−e)σA = A by
Nakayama’s Lemma. On the other hand, if a ∈ eA∩(1−e)σA, then (1−e)a = eσa =
0, hence (1− e+ eσ)a = 0. Since 1− e+ eσ = 1, we have 1− e+ eσ ∈ A×, so a = 0.
Thus, A = eA⊕ (1 − e)σA. Write 1 = e1 + f1 with e1 ∈ eA, f1 ∈ (1 − e)σA. It is
well-known that e1 and f1 are idempotents satisfying e1A = eA and f1 = (1−e)σA.
Now, e1 − eσ1e1 = (1 − e1)

σe1 = fσ
1 e1 = ((1 − e)σf1)

σee1 = fσ
1 (1 − e)ee1 = 0, so

e1 = eσ1e1. It follows that eσ1 = (eσ1e1)
σ = eσ1e1 = eσ1 . Finally, since e1 ∈ ηA

and 1− e1 ∈ (1 − η)A, we must have e1 = η, because A = ηA ⊕ (1 − η)A and
1 = η + (1− η). �
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Lemma 1.29. Let A be a semilocal R-algebra, let A := A/ JacA and let η ∈ A
be an idempotent. Then there exists an idempotent e ∈ A with e := e + JacA = η
if and only if there exists P ∈ P(A) such that P := P/P JacA ∼= ηA as right
A-modules.

Proof. For the “only if” part, take P = eA. We turn to prove the “if” part.
Note that P → P ∼= ηA is a projective covering; denote this map by f . Consider

the surjective homomorphism g : AA → ηA given by g(a) = ηa. Since f : P → ηA is
a projective covering, there exists a factorization AA = P1⊕Q and an isomorphism

P → P1 such that the composition P → P1
g−→ ηA is f . In particular, P1 =

ηA. Choose an idempotent e1 ∈ A such that P1 = e1A. Then e1A = ηA and
(1− e1)A ∼= A/e1A = A/ηA ∼= (1− η)A. Now, by [41, Exercise 21.16], there exists

x ∈ A
×

with xe′x−1 = η. Choose y ∈ A with y = x and take e = ye1y
−1. �

Theorem 1.30. Let (A, σ) be an Azumaya algebra with involution over a semilocal
ring R. Write S := Z(A) and let n ∈ Γ(SpecS,N). Suppose that n is invariant
under σ|S and satisfies indA | n and n ≤ degA. If σ is symplectic at p ∈ SpecR,
we also require that n(p) is even. Then there exists an idempotent e ∈ A such that
eσ = e and deg eAe = rrkA eA = n.

We remark that indA is a σ|S-invariant function from SpecS to N.

Proof. Let m1, . . . ,mt denote the maximal ideals of R. We use Lemma 1.23 to iden-
tify A := A/ JacA with

∏t
i=1A(mi). Since indA(mi) | (indA)(mi), we may apply

Proposition 1.27 to (A(mi), σ(mi)) and n(mi) and get a σ-invariant idempotent
ηi ∈ A(mi) with rrkA(mi) ηiA(mi) = n(mi). Let η = (ηi)

t
i=1 ∈ A. Then ησ = η.

By Theorem 1.25, there exists P ∈ P(A) such that rrkA P = n. Comparing
reduced ranks, one sees that P = P/P JacA ∼= P ⊗A A is isomorphic to ηA. Thus,
by Lemmas 1.28 and 1.29, there exists a σ-invariant idempotent e ∈ A projecting
onto η. Since rrkA(mi) eA(mi) = rrkA(mi) ηiA(mi) = n(mi) for all 1 ≤ i ≤ t, and
since rrkA eA is locally constant, we must have rrkA eA = n. �

2. Hermitian Forms

This section concerns with hermitian forms, mainly over Azumaya algebras with
involution, and related objects. See [39, Chapter I] for an extensive discussion of
hermitian forms in general.

Throughout this section, (A, σ) denotes an R-algebra with involution and ε is an
element of Z(A) satisfying εσε = 1. Recall our standing assumption that 2 ∈ R×.

2A. Hermitian Forms. We define ε-hermitian spaces over (A, σ) in the usual
way, i.e., as pairs (P, f) where P ∈ P(A) and f : P × P → A is a biadditive map
satisfying f(xa, yb) = aσf(x, y)b and f(x, y) = εf(y, x)σ (x, y ∈ P , a, b ∈ A). We
also say that f is an ε-hermitian form on P .

Given ε-hermitian spaces (P, f), (P ′, f ′) over (A, σ), an isometry (P, f) →
(P ′, f ′) is an A-module isomorphism ϕ : P → P ′ such that f ′(ϕx, ϕy) = f(x, y)
(x, y ∈ P ). If such an isometry exists, we write (P, f) ∼= (P ′, f ′) or f ∼= f ′. The
group of isometries from (P, f) into itself is denoted U(f). Orthogonal sums of
hermitian spaces or hermitian forms are defined in the usual way and are written
using the symbol ⊕. The n-fold orthogonal sum (P, f) ⊕ · · · ⊕ (P, f) is denoted
n · (P, f).

Example 2.1. Let a1, . . . , an ∈ Sε(A, σ). Then the map f : An×An → A given by
f((xi), (yi)) =

∑

i x
σ
i aiyi is an ε-hermitian form over (A, σ). We call f a diagonal

form and denote it by 〈a1, . . . , an〉(A,σ). A hermitian form which is isomorphic to
a diagonal form is called diagonalizable.



16 AN EXACT SEQUENCE OF WITT GROUPS

Given P ∈ P(A), let P ∗ denote HomA(P,A) endowed with the right A-module
structure given by (φa)x = aσ(φx) (φ ∈ P ∗, a ∈ A, x ∈ P ). If f is an ε-hermitian
form on P , then the map x 7→ f(x,−) : P → P ∗ is an A-module homomorphism.
When it is an isomorphism, we say that (P, f), or f , is unimodular4. The category
of unimodular ε-hermitian spaces over (A, σ) with isometries as its morphisms is
denoted

Hε(A, σ).

We shall need the following versions of Witt’s Cancellation Theorem and Witt’s
Extension Theorem. The cancellation is derived from cancellation results of Reiter
[59, Theorem 6.2] and Keller [37, Theorem 3.4.2].

Theorem 2.2. Suppose that (A, σ) is an Azumaya R-algebra with involution and
R is semilocal, and let (P1, f1), (P2, f2), (Q, g) ∈ Hε(A, σ). If f1 ⊕ g ∼= f2 ⊕ g, then
f1 ∼= f2.

Proof. Write R =
∏

iRi with each Ri a connected semilocal ring. Working over
each factor separately, we may assume that R is connected. Under this assumption,
we may further assume that rkR P1 > 0, because otherwise rkR P1 = rkR P2 = 0,
which implies P1 = P2 = 0 and f1 ∼= f2. At this point, we claim that we may apply
Keller’s cancellation result [37, Theorem 3.4.2(iii)] and conclude that f1 ∼= f2.
Indeed, in order to apply Keller’s theorem, we need to check that the number r
defined in op. cit. is 0 for the hermitian space (P1, f1). By Lemma 1.23, this is
equivalent to having P1(m) 6= 0 for all m ∈ MaxR, and this holds by our assumption
that rkR P1 > 0. Alternatively, one can use Reiter’s version of Witt’s Extension
Theorem [59, Theorem 6.2], which applies under similar conditions, to conclude the
proof. �

Theorem 2.3. Suppose that R is a henselian local ring and (A, σ) is a finite R-
algebra with involution. Let (P, f) ∈ Hε(A, τ) and let U, V be summands of P .
Then any isometry f |U×U → f |V×V extends to an isometry of f .

Proof. By a theorem of Azumaya [4, Theorem 24], A is a semiperfect ring. The
theorem therefore follows from [24, Corollary 4.9]. �

2B. The Witt Group. As usual, a Lagrangian of a unimodular hermitian space
(P, f) ∈ Hε(A, σ) is a summand L of P such that L = L⊥ := {x ∈ P : f(x, L) = 0}.
If (P, f) admits a Lagrangian, it is called metabolic. A convenient way to verify
that an A-submodule L ≤ P with f(L,L) = 0 is a Lagrangian is to exhibit another
submodule M ≤ P such that f(M,M) = 0 and L ⊕M = P . If such L and M
exist, (P, f) is called hyperbolic. In this case, the map x 7→ f(x,−) : M → L∗ is
an isomorphism of A-modules, and the induced map P = L ⊕M → L ⊕ L∗ is an
isometry from (P, f) to (L⊕ L∗,hε

L), where h
ε
L is the ε-hermitian form given by

h
ε
L(x⊕ φ, x′ ⊕ φ′) = φx′ + ε(φ′x)σ

(x, x′ ∈ P , φ, φ′ ∈ P ∗). Since we assume that 2 ∈ A×, any Lagrangian L admits a
Lagrangian M with L ⊕M = P [39, Proposition I.3.7.1], so metabolic spaces are
hyperbolic. Therefore, we shall only consider hyperbolic spaces in the sequel.

Recall that the Witt group of ε-hermitian forms over (A, σ), denoted

Wε(A, σ),

is the Grothendieck group of Hε(A, σ), relative to orthogonal sum, divided by the
subgroup spanned by the (representatives of) hyperbolic spaces. The class repre-
sented by (P, f) in Wε(A, σ) is denoted [P, f ] or [f ]. Two forms f , f ′ representing
the same element in Wε(A, σ) will be called Witt-equivalent; this happens if and

4Some texts use “regular” or “nondegenerate”.
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only if there exist hyperbolic forms h, h′ such that f ⊕ h ∼= f ′ ⊕ h′. Note that
−[f ] = [−f ] because f ⊕ (−f) is hyperbolic.

Example 2.4. We say that σ : A → A is an exchange involution if there exists
an idempotent η ∈ Z(A) such that ησ = 1 − η. For example, this is the case if
(A, σ) is an Azumaya R-algebra with involution and Z(A) = R×R, because σ|Z(A)

is the involution (r, s) 7→ (s, r) (see Proposition 1.21). In this situation, there
exists an R-algebra B such that (A, σ) ∼= (B × Bop, (x, yop) 7→ (y, xop)), hence
the name “exchange involution”. Indeed, take B = ηA; the required isomorphism
A→ B ×Bop is given by a 7→ (ηa, (ηaσ)op).

It easy to see that for any P ∈ P(A), we have P = Pη⊕Pησ. Furthermore, if f is
a unimodular ε-hermitian form on P , then f(Pη, Pη) = f(Pησ, Pησ) = 0 (because
ηση = 0), so f is hyperbolic and f ∼= h

ε
Pη. From this we see that every (P, f) ∈

Hε(A, σ) is hyperbolic and is determined up to isomorphism by the isomorphism
class of P . In particular, Wε(A, σ) = 0.

Recall that an ε-hermitian space (P, f) ∈ Hε(A, σ) is called isotropic if P admits
a nonzero summand M such that f(M,M) = 0. When no such M exists, (P, f) is
called anisotropic. We alert the reader that at this level of generality, the existence
of 0 6= x ∈ P such that f(x, x) = 0 does not imply that (P, f) is isotropic. However,
when A is semisimple artinian, xA is a summand of P , so f is isotropic if and only
if f(x, x) = 0 for some nonzero x ∈ P .

Proposition 2.5 ([39, Proposition I.3.7.9]). Every (P, f) ∈ Hε(A, σ) can be written
as an orthogonal sum of an anisotropic space and a hyperbolic space. In particular,
(P, f) is Witt equivalent to an anisotropic ε-hermitian space.

We proceed with showing that if (A, σ) is an Azumaya R-algebra with invo-
lution and R is semilocal, then every hermitian form representing 0 in Wε(A, σ)
is hyperbolic. Furthermore, two hermitian spaces in the same Witt class having
the same reduced rank are isomorphic. These statements may already fail for
(A, σ) = (R, idR) if R is not semilocal; see [7, Example 1.2.6], for instance.

Lemma 2.6. Suppose that (A, σ) is an Azumaya R-algebra with involution and let
P ∈ P(A). Then rkR P = rkR P

∗ and rrkA P
∗ = σ rrkA P , i.e., (rrkA P

∗)(p) =
(rrkA P )(p

σ) for all p ∈ Spec Z(A). In particular, if there exists a unimodular
ε-hemritian form on P , then rrkA P is σ-invariant.

Proof. Write S = Z(A). It is enough to prove lemma after specializing to the
residue fields of R, so assume R is a field.

If S is connected, then σ rrkA P = rrkA P and A is a simple artinian ring. Length
considerations force P ∼= P ∗, hence rkR P = rkR P

∗ and rrkA P
∗ = rrkA P =

σ rrkA P .
If S is not connected, then S = R×R and σ|R is the exchange involution. Thus,

as in Example 2.4, there exists a central simple R-algebra B such that (A, σ) ∼=
(B ×Bop, τ) where (x, yop)τ = (y, xop). Identifying A with B ×Bop, we can write
P = P1 × P2 where P1 ∈ P(B) and P2 ∈ P(Bop). Regarding P1 and P2 as A-
modules, one readily checks that (1B, 0

op
B ) annihilates P ∗

1 and (0B, 1
op
B ) annihilates

P ∗
2 , so P

∗
1 ∈ P(Bop) and P ∗

2 ∈ P(B). Since ∗ : P(A) → P(A) is a duality and
P(A) is abelian semisimple, P1 and P ∗

1 have the same A-length, so lengthB P1 =
lengthBop P ∗

1 . Likewise, lengthBop P2 = lengthB P
∗
2 . Since B and Bop are central

simple R-algebras of equal degree, this means that rkR P = rkR P
∗ and rrkA P

∗ =
rrkA(P

∗
2 × P ∗

1 ) = σ rrkA P .
Finally, if P carries a unimodular hermitian form, then P ∼= P ∗, so rrkA P =

rrkA P
∗ = σ rrkA P . �
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Lemma 2.7. Suppose that (A, σ) is an Azumaya algebra with involution over a
semilocal ring R, and let (P1, f1), (P2, f2) ∈ Hε(A, σ) be hyperbolic. If rrkA P1 ≤
rrkA P2, then there is V ∈ P(A) such that f1⊕hε

V
∼= f2. In particular, if rrkA P1 =

rrkA P2, then f1 ∼= f2.

Proof. Write S = Z(A). As in the proof of Theorem 2.2, we may assume that R is
connected.

Suppose first that S is not connected. By Lemma 1.16, S = R × R. Put
η = (1R, 0R) ∈ S. Then by Example 2.4, f1 ∼= h

ε
P1η

and f2 ∼= h
ε
P2η

. The assumption
rrkA P1 ≤ rrkA P2 means that rrkA P1η ≤ rrkA P2η, so by Lemma 1.24, there is
V ∈ P(A) such that P1η ⊕ V ∼= P2η. Then f1 ⊕ h

ε
V
∼= h

ε
P1η

⊕ h
ε
V
∼= h

ε
P2η

∼= f2.
Now assume that S is connected and write f1 ∼= h

ε
U1

and f2 ∼= h
ε
U2

with U1, U2 ∈
P(A). Lemma 2.6 and the connectivity of S imply that 2 rrkA U1 = rrkA P1 ≤
rrkA P2 = 2 rrkA U2. By Lemma 1.24, there is V ∈ P(A) such that U1 ⊕ V ∼= U2.
Then f1 ⊕ h

ε
V
∼= f2. �

Theorem 2.8. Suppose that (A, σ) is an Azumaya algebra with involution over a
semilocal ring R, and let (P, f), (P ′, f ′) ∈ Hε(A, σ).

(i) If rrkA P ≤ rrkA P
′, then there exists V ∈ P(A) such that f ⊕ h

ε
V
∼= f ′.

(ii) If [f ] = 0, then f is hyperbolic.
(iii) If [f ] = [f ′] and rrkA P = rrkA P

′, then f ∼= f ′.

Proof. (i) There are U,W ∈ P(A) such that f ⊕ h
ε
U

∼= f ′ ⊕ h
ε
W . Then rrkA(U ⊕

U∗)− rrkA(W ⊕W ∗) = rrkA P
′ − rrkA P ≥ 0, so by Lemma 2.7, there is V ∈ P(A)

such that hε
U
∼= h

ε
W ⊕hε

V . (Caution: U
∼=W ⊕V is a priori not guaranteed.) Then

(f⊕hε
V )⊕hε

W
∼= f⊕hε

U
∼= f ′⊕hε

W . By Theorem 2.2, this means that f⊕hε
V
∼= f ′.

(ii) Apply (i) with (P, f) being the zero hermitian space.
(iii) By (i), f ⊕ h

ε
V

∼= f ′ for some V ∈ P(A), and V = 0 because rrkA V =
rrkA P

′ − rrkA P = 0. �

We also record the following useful corollary to Lemma 2.6.

Corollary 2.9. Suppose that (A, σ) is an Azumaya R-algebra with involution and
let (P, f) ∈ Hε(A, σ).

(i) If R is connected, then rrkA P is constant.
(ii) If S := Z(A) is connected and f is hyperbolic, then there exists V ∈ P(A)

with rrkA P = 2 rrkA V .

Proof. (i) If S = R, then this is clear. If S 6= R, then S is a quadratic étale R-
algebra and σ|S is the standard R-involution of S (see 1C). Thus, σ acts transitively
on every fiber of SpecS → SpecR. By Lemma 2.6, this means that rrkA P is
constant on the fibers of SpecS → SpecR. Thus, by (0.3), we have ι rkR P =
ι rkR S · rkS P = 2 rkS P , where ι : R → S is the inclusion. Since the left hand side
is constant (R is connected), rrkA P is also constant.

(ii) There exists V ∈ P(A) such that P = V ⊕ V ∗. By Lemma 2.6, rrkA P =
rrkA V + σ rrkA V , and σ rrkA V = rrkA V because S is connected. �

2C. Base Change. Let R → S be a ring homomorphism. Given an ε-hermitian
space (P, f) over (A, σ), define its base change along R → S to be the ε-hermitian
space (PS , fS) over (AS , σS), where PS = P ⊗ S and fS is determined by fS(x ⊗
s, y ⊗ t) = f(x, y) ⊗ st (x, y ∈ P , s, t ∈ S). It is well-known that if (P, f) is
unimodular, resp. hyperbolic, then so is (PS , fS). When S = k(p) for p ∈ SpecR,
we shall write f(p) instead of fk(p).

Let ρ : (B, τ) → (A, σ) be a homomorphism of R-algebras with involution and
let δ ∈ Z(B) be an element such that δτδ = 1 and ε := ρ(δ) ∈ Z(A). We view
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A as a left B-module via ρ. For every δ-hermitian space (Q, g) over (B, τ), define
ρ(Q, g) to be (Q⊗B A, ρg), where ρg : (Q⊗B A)× (Q⊗B A) → A is the biadditive
pairing determined by ρg(x⊗ a, x′ ⊗ a′) = aσ · ρ(f(x, x′)) · a′ (x, x′ ∈ P , a, a′ ∈ A).
It is routine to check that ρ(Q, g) is an ε-hermitian space over (A, σ). Furthermore,
it is unimodular, resp. hyperbolic, when (Q, g) is. The assignment ρ extends to a
functor ρ : Hδ(B, τ) → Hε(A, σ) by setting ρϕ = ϕ⊗B idA.

5

2D. Adjoint Involutions. Let (P, f) ∈ Hε(A, σ). It is well-known that there
exists a unique R-linear involution θ : EndA(P ) → EndA(P ) satisfying f(ϕx, y) =
f(x, ϕθy) for all ϕ ∈ EndA(P ), see [39, I.§9.2]. It is called the adjoint involution of
f . Notice that U(f) coincides with the group U(EndA(P ), θ) := {ϕ ∈ EndA(P ) :
ϕθϕ = ϕϕθ = 1}.

If R → S is a ring homomorphism, then P ∈ P(A) implies that the natural map
EndA(P )⊗ S → EndAS(PS) is an isomorphism. Under this isomorphism, θS is the
adjoint involution of fS.

Example 2.10. Let α, β ∈ Sε(A, σ) ∩ A× and consider the diagonal binary ε-
hermitian form 〈α, β〉(A,σ) on A

2 (notation as in Example 2.1). Direct computation

shows that, upon realizing EndA(A
2
A) as M2(A), the adjoint involution of 〈α, β〉(A,σ)

is given by [ x y
z w ] 7→ [ α

−1xσα α−1zσβ

β−1yσα β−1wσβ
] (x, y, z, w ∈ A). When α, β ∈ Z(A), this

simplifies into [ x y
z w ] 7→ [

xσ γzσ

γ−1yσ wσ ], where γ = α−1β lives in S1(Z(A), σ).

Proposition 2.11. Suppose that (A, σ) is an Azumaya R-algebra with involution.
Let (P, f) ∈ Hε(A, σ) and let θ : EndA(P ) → EndA(P ) be the adjoint involution of
f . If rrkA P > 0, then (EndA(P ), θ) is an Azumaya R-algebra with involution and
θ and (σ, ε) have the same type.

Proof. Write S = Z(A). By Proposition 1.11(i), EndA(P ) is Azumaya over S. It
is easy to check that θ|S = σ|S , hence (EndA(P ), θ) is an Azumaya R-algebra with
involution. To see that the types of θ and (σ, ε) coincide, we need to check that
they coincide at every p ∈ SpecR, so we may assume R is a field. In this case,
it is clear that θ is unitary if and only if (σ, ε) is unitary. For the orthogonal and
symplectic cases, see [40, Theorem 4.2(1)]. �

The converse of Proposition 2.11, namely, that every involution of EndA(P ) is
adjoint to some hermitian form, holds when R is a field; see [40, Theorem 4.2]. In
fact, it holds in general if one allows hermitian forms to take values in (Aop, A)-
progenerators; see [22] and [23, §3–4]. We shall need a special case of the latter
observation.

Proposition 2.12. Suppose that (A, σ) is an Azumaya R-algebra with involution,
S := Z(A) is semilocal and A = EndS(Q) for some Q ∈ P(S). Then there exists
δ ∈ S with δσδ = 1 and a unimodular δ-hermitian form g : Q×Q→ S over (S, σ|S)
such that σ is adjoint to g. One has δ = 1 when σ is orthogonal and δ = −1 when
σ is symplectic.

Proof. By [62, Theorem 4.2] (or, alternatively, [23, Proposition 4.6]), there exist
δ1 ∈ S with δσ1 δ1 = 1, a rank-1 projective S-module L, a σ|S-linear involutive
automorphism τ : L → L, and a unimodular L-valued σ|S-sesquilinear form g :
Q × Q → L satisfying g(x, y) = δ1g(y, x)

τ and having σ as its adjoint involution.
(Here, unimodularity means that x 7→ g(x,−) : P → HomS(P,L) is bijective.)
Since S is semilocal, L ∼= SS , so we may assume L = S. Put δ2 = (1S)

τ . Then
σ ◦ τ ∈ EndS(S) = S maps 1S to δσ2 , and so it coincides with the S-endomorphism

5We do not write ρ(Q, g) as (PA, fA) because we reserve the subscript notation for base change
relative to the base ring R.
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s 7→ δσ2 s : S → S. As a result, sτσ = δσ2 s, or rather sτ = δ2s
σ, for all s ∈ S.

Taking s = δ2 and noting that δτ2 = 1 (because 1τ = δ2), we get δ2δ
σ
2 = 1. Thus,

g : P × P → S is a unimodular δ1δ2-hermitian form over (S, σ|S) with adjoint
involution σ. Write δ = δ1δ2.

By Proposition 2.11, the type of σ is the same as the type of (σ|S , δ). Thus,
δ = 1 if σ is orthogonal and δ = −1 if σ is symplectic. �

The following proposition can be proved directly, but we use Theorem 1.30 to-
gether with adjoint involutions to give a short proof.

Proposition 2.13. Suppose that (A, σ) is an Azumaya R-algebra with involution
and R is semilocal. Let (P, f) ∈ Hε(A, σ) and suppose that P is a free A-module. If
(σ, ε) is symplectic at p ∈ SpecR, we also assume that 2 | (degA)(p). Then (P, f)
is diagonalizable (see Example 2.1).

Proof. If P = 0, there is nothing to prove, so assume P 6= 0. Since P is free, we
have rrkA P > 0. Let B = EndA(P ) and let θ : B → B be the adjoint involu-
tion of f . By Proposition 1.11(i), indB = indA | degA and degA ≤ rrkA P =
degB. Furthermore, if (σ, ε), equivalently θ, is symplectic at p ∈ SpecR, then
2 | (degA)(p). Thus, by Theorem 1.30, there exists an idempotent e ∈ B such
that eσ = e and rrkB eB = degA. Write e′ = 1B − e. It is easy to check that
(P, f) = (eP, f |eP×eP ) ⊕ (e′P, f |e′P×e′P ). Furthermore, by Proposition 1.11(ii),
rrkA eP = rrkA eB ⊗B P = rrkB eB = degA, so eP ∼= AA (Lemma 1.24). Thus,
f |eP×eP

∼= 〈a〉 for some a ∈ Sε(A, σ). Proceed by induction on (e′P, f |e′P×e′P ). �

2E. The Isometry Group Scheme. Suppose that A is finite projective over R
and let (P, f) ∈ Hε(A, σ). By [11, Appendix], the functor S 7→ U(fS) from R-rings
to groups is represented by a smooth affine group R-scheme, denoted U(f). Since
U(f) → SpecR is smooth, by [32, Corollaire 15.6.5], U(f) admits a unique open
subgroup, U0(f), such that U0(f) → SpecR is connected, i.e., the fiber U0(f)×R

k(p) over Spec k(p) is connected for all p ∈ SpecR. Moreover, U0(f) → SpecR is
geometrically connected [68, Tag 04KV]. We call U0(f) the neutral component of
U(f) and write U0(f) = U0(f)(R).

Remark 2.14. In case the base ring R is not clear from the context, we shall
write UR(f), U

0
R(f), U

0
R(f) instead of U(f), U0(f), U0(f). However, somewhat

conveniently, if A is projective over R1 := S1(Z(A), σ), e.g., when A is separable
projective over R (Example 1.20), then U0(f) is independent of the base ring R.

Indeed, by [27, Proposition 2.4.6(1)], R1 is an R1-summand of A, and therefore
R1 is finite projective over R. Note that UR(f) = RR1/RUR1(f), where RR1/R is
the Weil restriction; see [14, §7.6], for instance. By [14, Proposition 7.6.2(i)], the
R1/R-Weil restriction of an open immersion is an open immersion, soRR1/RU

0
R1

(f)

is open in UR(f). In addition, since U0
R1

(f) → SpecR1 is geometrically con-

nected, affine and smooth, the fibers of RR1/RU
0
R1

(f) → SpecR are connected

([19, Proposition A.5.9]). As a result, U0
R(f) conincides with RR1/RU

0
R1

(f) and

U0
R(f) = (RR1/RU

0
R1

)(R) = U0
R1

(f). In particular, U0
R(f) is determined by (A, σ)

and is independent of R.

Remark 2.15. Keeping the previous assumptions, write E = EndA(P ) and let θ
denote the adjoint involution of f . Then U(f) coincides with U(E, θ), the group
R-scheme representing the functor S 7→ U(ES , θS) := {x ∈ ES : xθx = 1}. In-
deed, for any R-ring S, we have U(f)(S) = U(fS) = U(ES , θS) upon identify-
ing EndAS (PS) with EndA(P )S . As a result, U0(f) is the neutral component of
U(E, θ) → SpecR, denoted U0(E, θ).

https://stacks.math.columbia.edu/tag/04KV
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We describe U0(f) explicitly when (A, σ) is an Azumaya R-algebra with invo-

lution and rrkA P > 0. Since we can factor R as
∏t

i=1Ri such that rrkA⊗Ri PRi is
constant for all i, it is enough to consider the case where rrkA P is constant. By
Proposition 1.21(v), (σ, ε) is now either orthogonal, symplectic or unitary.

When (σ, ε) is symplectic or unitary, the fibers of U(f) → SpecR are well-
known to be outer forms of Sp2n or GLn, respectively; see [40, §23A]. Thus, they
are connected and U0(f) = U(f).

Suppose now that (σ, ε) is orthogonal, let E = EndA(P ) and let θ : E → E be the
adjoint involution of f . Then (E, θ) is an Azumaya R-algebra with an orthogonal
involution (Proposition 2.11). Let µ2,R → SpecR denote the affine group R-scheme

representing the functor S 7→ µ2(S) := {s ∈ S : s2 = 1}. For every R-ring S, the
reduced norm map, NrdES/S : ES → S (see [27, p. 410]), is compatible with base

change and restricts to a group homomorphism U(fS) = U(ES , θS) → µ2(S).
6

Thus, it determines a morphism of affine group R-schemes

Nrd : U(f) → µ2,R.

The scheme-theoretic kernel of this morphism — call it K — is U0(f). Indeed, K
is open in U(f) because the trivial group R-scheme 1 is open in µ2,R (recall that

2 ∈ R×), and the fiber of K over p ∈ SpecR is U(E(p), θ(p)), which is a form of
SOn for n = degA(p) [40, §23B], hence connected.

We conclude the previous discussion with:

Proposition 2.16. Let (A, σ) be an Azumaya R-algebra with involution and let
(P, f) ∈ Hε(A, σ). Assume that rrkA P > 0. If (σ, ε) is symplectic or unitary, then
U0(f) = U(f). If (σ, ε) is orthogonal, then U0(f) = ker(Nrd : U(f) → µ2,R).

The following lemma is convenient for verifying equalities in µ2(R).

Lemma 2.17. Let α, β ∈ µ2(R). Then α = β if and only if α(m) = β(m) for all
m ∈ MaxR.

Proof. Write γ = α−1β. It is enough to prove that if γ(m) = 1 for all m ∈ MaxR,
then γ = 1. Note that 1

2 (1 − γ) is an idempotent. If γ(m) = 1 for all m ∈ MaxR,

then 1− γ ∈ JacR, so the idempotent 1
2 (1− γ) must be 0 and γ = 1. �

Following are two theorems that will play a major role in the sequel.

Theorem 2.18. Suppose that (A, σ) is an Azumaya R-algebra with involution and
R is semilocal, and let (P, f) ∈ Hε(A, σ). Then the specialization map U0(f) →
∏

m∈MaxR U
0(f(m)) is surjective.

Proof. Write R =
∏t

i=1 Ri with each Ri connected. Working over each factor
separately, we may assume R is connected. We may further assume that rrkA P > 0.

Let E and θ be as in Remark 2.15 and write U0(E, θ) = U0(E, θ)(R) = U0(f).
Then (E, θ) is Azumaya over R (Proposition 2.11), θ is either orthogonal, symplec-
tic, or unitary (Propositions 1.21(v)), and the theorem is equivalent to U0(E, θ) →
∏

m∈MaxR U
0(E(m), θ(m)) being surjective. This holds by [25, Theorem 2] (and

Proposition 2.16) when θ is orthogonal and by [25, Theorem 6] when θ is not or-
thogonal. �

6One can show that NrdE/R maps U(E, θ) to µ2(R), and similarly after base-changing to S,

as follows: By [39, III.§8.5] or [26, Theorems 5.17 & 5.37, Examples 7.3 & 7.4], there exists a
faithfully flat R-ring R′ such that (ER′ , θR′) ∼= (Mn(R′), t), where t is the transpose involution.
Now, for all x ∈ U(Mn(R′), t), we have Nrd(x)2 = det(x)2 = det(xtx) = 1, so Nrd(x) ∈ µ2(R′).
As a result, NrdE/R maps U(E, θ) to R ∩ µ2(R′) = µ2(R).
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Remark 2.19. Under the assumptions of Theorem 2.18, the specialization map
U(f) → ∏

m∈MaxR U(f(m)) may fail to be surjective in general. For example, take
R to be a connected semilocal ring with two maximal ideals, let (A, σ) = (R, idR)
and consider the 1-hermitian form f(x, y) = xy on R.

Theorem 2.20. Suppose that (A, σ) is an Azumaya R-algebra with involution,
(σ, ε) is orthogonal and R is semilocal. Let (P, f) ∈ Hε(A, σ) be hermitian space
with rrkA P > 0. Then Nrd : U(f) → µ2(R) is surjective if and only if [A] = 0.

Proof. As in the proof of Theorem 2.18, we may assume that R is connected, and
hence, µ2(R) = {±1}. Now, the theorem follows by applying [25, Theorem 1] to the
adjoint involution of f . Note that EndA(P ) is Azumaya over R because rrkA P > 0
(Proposition 1.11(i)). �

We finish with the following well-known theorem.

Theorem 2.21. Suppose that R is a field and A is finite dimensional over R, and
and let (P, f) ∈ Hε(A, σ). Then U0(f) → SpecR is a rational variety.

Proof (sketch). We already know that U0(f) → SpecR is irreducible. Let θ be the
adjoint involution of f and letV denote the affine R-variety representing the functor
S 7→ S−1(EndAS(PS), θS); it is isomorphic to An

R for n = dimR S−1(EndA(P ), θ).
A birational equivalence between V and U0(f) is given by the Cayley transform,
y 7→ (1 + y)(1 − y)−1 : V 99K U0(f), and its inverse, x 7→ −(1 + x)−1(1 − x) :
U0(f) 99K V. �

2F. More on Lagrangians. Throughout this subsection, (A, σ) denotes an Azu-
maya R-algebra with involution. Given (P, f) ∈ Hε(A, σ), let

Lag(f) = {L ⊆ P : L is a Lagrangian of f and rrkA L = 1
2 rrkA P}.

Recall from 2B that if L is a Lagrangian of f , then P = L ⊕ L∗, hence rrkA P =
rrkA L+ σ rrkA L by Lemma 2.6. Thus, if σ|Z(A) = idZ(A), or if Z(A) is connected,
then Lag(f) consists of all Lagrangians of f .

In this subsection, we collect several facts about the action of U0(f) on Lag(f).
Some of the results will require the use of sheaves, and we refer the reader to [39,
Chapter III.§2] for a scheme-free introduction, or [47] for an extensive treatment.

The map S 7→ Lag(fS) naturally extends to a functor, Lag(f), from R-rings
to sets. It is routine to check that Lagrangians descend along along faithfully
flat ring homomorphisms. That is, if S → T is a faithfully flat map of R-rings,
i1, i2 : T → T ⊗S T are the maps t 7→ t ⊗ 1 and t 7→ 1 ⊗ t, and L ∈ Lag(fT )
satsfies Lag(i1)(L) = Lag(i2)(L), then there exists a unique L0 ∈ Lag(fS) with
(L0) ⊗S T = L; consult [39, III.§§1–2]. Thus, Lag(f) is sheaf relative to the fppf
topology on the category of affine R-schemes, denoted (Aff/R)fppf .7 (In fact, it
can be shown that Lag(f) is represented by a non-affine R-scheme, but this fact
will not be needed in this work.) The group U(f) acts on Lag(f) in a way which
is compatible with base change, thus giving rise to an action of U(f) on Lag(f).

For the next results, given P,Q ∈ P(A) and f ∈ HomA(P,Q), recall that the
dual homomorphism f∗ ∈ HomA(Q

∗, P ∗) is defined by f∗φ = φ ◦ f (φ ∈ Q∗).

Lemma 2.22. Suppose that (A, σ) is an Azumaya R-algebra with involution and
R is semilocal. Let (P, f) ∈ Hε(A, σ). Then U(f) acts transitively on Lag(f),
provided it is nonempty.

7With the appropriate definitions, this functor also extends to a sheaf on the site of all R-
schemes with the fpqc topology.
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Proof. Let L1, L2 ∈ Lag(f). As explained in 2B, we can find isometries ϕi : h
ε
Li

→
f (i = 1, 2) such that ϕi restricts to the identity on Li. Since rrkA L1 = 1

2 rrkA P =
rrkA L2, there is an A-module isomorphism ψ : L1

∼= L2 (Lemma 1.24). Then

ψ̂ := ψ ⊕ (ψ∗)−1 : hε
L1

→ h
ε
L2

is an isometry taking L1 to L2. Now, ϕ2ψ̂ϕ
−1
1 is an

element of U(f) taking L1 to L2. �

Proposition 2.23. Suppose that (A, σ) is an Azumaya R-algebra with involution,
and let (P, f) ∈ Hε(A, σ). When viewed as sheaves on (Aff/R)Zar — the category
of affine R-schemes with the Zariski topology — the group U(f) acts transitively
on Lag(f), provided Lag(f) 6= ∅.

Proof. The statement means that for every R-ring S and L,M ∈ Lag(fS), there
exist α1, . . . , αt ∈ S and ϕi ∈ U(fSαi

) (i = 1, . . . , t) such that S =
∑

i αiS and

ϕi(LSαi
) = MSαi

for all i. Here, Sαi denotes the localization of S with respect to

{1, αi, α
2
i , . . . }.

Fix some p ∈ SpecS. By Lemma 2.22, there exists an isometry ψ ∈ U(fSp
)

with ψ(LSp
) = MSp

. It is easy to see that there exists α = α(p) ∈ S \ p and

ϕ = ϕ(p) ∈ U(fSα) such that ψ = ϕSp
and ϕ(LSα) =MSα . Now, since

∑

p
αpS = S,

there exist p1, . . . , pt ∈ S such that
∑t

i=1 α
(pi)S = S. The elements αi := α(pi) and

the isometries ϕi = ϕ(pi) fulfill all the requirements. �

Given P ∈ P(A) and b ∈ HomA(P, P
∗), write bt for the element of HomA(P, P

∗)
determined by (btx)y = ((by)x)σ (x, y ∈ P ). It is straightforward to check that
btt = b and (b ◦ ψ)t = ψ∗ ◦ bt for all ψ ∈ EndA(P ). We set Sε(P ) = {b ∈
HomA(P, P

∗) : b = εbt}.
Lemma 2.24. Let L ∈ P(A) and let B denote the subgroup of U(hε

L) consisting of
isometries ϕ satisfying ϕ(0⊕L∗) = 0⊕L∗. Then, writing elements of EndA(L ⊕ L∗)
as 2× 2 matrices, we have

B =

{[

a 0
b (a∗)−1

]

: a ∈ AutA(L), b ∈ HomA(L,L
∗), a∗ ◦ b ∈ S−ε(L)

}

.

Proof. That elements of B live in U(hε
L) and preserve 0⊕L∗ is routine. Conversely,

every element ϕ ∈ U(f) satisfying ϕ(0⊕L∗) = 0⊕L∗ can be written as [ a 0
b c ] with a ∈

AutA(L), b ∈ HomA(L,L
∗), c ∈ AutA(L

∗). Let x, x′ ∈ L and φ ∈ L∗. Unfolding
the equality hε

L([
0
φ ], [ x

′

0 ]) = h
ε
L(ϕ[

0
φ ], ϕ[ x

′

0 ]) gives φx′ = (cφ)(ax′) = (a∗(cφ))x′, so

a∗c = idL∗ , or rather, c = (a∗)−1. Unfolding hε
L([

x
0 ], [ x

′

0 ]) = h
ε
L(ϕ[

x
0 ], ϕ[ x

′

0 ]) gives
0 = (bx′)(ax) + ε((bx)(ax′))σ = (a∗(bx′))x + ε(bt(ax′))x, so a∗ ◦ b + εbt ◦ a = 0,
which means that a∗ ◦ b ∈ S−ε(L). �

The following proposition provides information about theU0(f)-orbits in Lag(f)
when (A, σ) is an Azumaya R-algebra with involution and (σ, ε) is orthogonal. It
will feature a number of times in the sequel.

Proposition 2.25. Suppose that (A, σ) is an Azumaya R-algebra with involution
and (σ, ε) is orthogonal. Let (P, f) ∈ Hε(A, σ), let L ∈ Lag(f) and suppose that
rrkA P > 0. Then there exists a unique U(f)-equivariant natural transformation of
functors from R-rings to sets,

ΦL = Φ
(f)
L : Lag(f) → µ2,R,

such that ΦL(L) = 1; here, U(f) acts on µ2,R via Nrd : U(f) → µ2,R. The map
ΦL has the following additional properties:

(i) ΦL(M)ΦM (K) = ΦL(K) and ΦL(M) = ΦM (L) for all L,M,K ∈ Lag(f).
(ii) Given (P ′, f ′) ∈ Hε(A, σ) and L′ ∈ Lag(f ′), we have ΦL⊕L′(M ⊕M ′) =

ΦL(M)ΦL′(M ′) for all M ∈ Lag(f), M ′ ∈ Lag(f ′).
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Proof. We may assume without loss of generality that (P, f) = (L ⊕ L∗,hε
L) and

identify L with its copy in P = L ⊕ L∗. A sheaf means a sheaf on the site
(Aff/R)fppf .

Given an R-ring S, let B = B(L) be as in Lemma 2.24. Let B denote the
subfunctor of U(f) determined by B(S) = B(LS). It is routine to check that
B is a group subsheaf of U(f). We let U(f)/B denote the quotient sheaf (note
that (U(f)/B)(S) is in general larger than U(fS)/B(LS)). By definition, B is the
stabilizer of the global section 0 ⊕ L∗ of Lag(f) under the action of U(f). Thus,
we have an induced morphism Ψ : U(f)/B → Lag(f), which is an isomorphism by
Proposition 2.23.

For every a ∈ EndA(L), we have Nrd(a
∗) = Nrd(a). Indeed, a 7→ a∗ : EndA(L) →

EndA(L
∗)op is an isomorphism of Azumaya R-algebras, and thus respects the re-

duced norm. This implies readily that B ⊆ ker(Nrd : U(f) → µ2,R). As a result,

there is an induced U(f)-equivariant map Nrd : U(f)/B → µ2,R. Let Φ0 denote

the composition Nrd◦Ψ−1 : Lag(f) → µ2,R. Then Φ0 is U(f)-equivariant. Writing
ξ = Φ0(L) ∈ µ2(R) and defining ΦL = ξ · Φ0, we see that ΦL is U(f)-equivariant
and satisfies ΦL(L) = 1.

Suppose that Φ′ : Lag(f) → µ2,R is another U(f)-equivariant natural trans-
formation satisfying Φ′(L) = 1. Let R′ be an R-ring and let M ∈ Lag(fR′). By
Proposition 2.23, there exists a faithfully flat R′-algebra R′′ and ϕ ∈ U(fR′′) such
that ϕ(LR′′) =M ⊗R′ R′′. Thus, Φ′(M ⊗R R

′′) = Nrd(ϕ)Φ′(L) = Nrd(ϕ)ΦL(L) =
ΦL(M ⊗R R′′) in µ2(R

′′). Since R′ → R′′ is faithfully flat, this means that
Φ′(M) = ΦL(M) in µ2(R

′), and we have shown that Φ′ = ΦL.

We turn to prove (i) and (ii):
(i) We apply Proposition 2.23 to assert the existence of a faithfully flat R-algebra

R′ and ϕ, ψ ∈ U(fR′) such that ϕ(LR′) = MR′ and ψ(MR′) = KR′ . Note that
ΦL(M) = Nrd(ϕ)ΦL(L) = Nrd(ϕ) in µ2(R

′), and similarly, ΦM (K) = Nrd(ψ),
ΦL(K) = Nrd(ψϕ) and ΦM (L) = Nrd(ϕ)−1. The identities in (i) follow readily
from these equalities and the fact that µ2(R) is 2-torsion.

(ii) By Proposition 2.23, there exists a faithfully flat R-algebra S and ϕ ∈ U(fS),
ϕ′ ∈ U(f ′

S) such that ϕL =M and ϕ′L′ =M ′. Then ΦL⊕L′(M⊕M ′) = ΦL⊕L′((ϕ⊕
ϕ′)(L⊕ L′)) = Nrd(ϕ⊕ ϕ′) = Nrd(ϕ)Nrd(ϕ′) = ΦL(M) · ΦL′(M ′). �

2G. Conjugation and Transfer. We now recall two special instances of hermit-
ian Morita equivalence that will be used repeatedly in the sequel. We address them
simply as “µ-conjugation” and “e-transfer”.

Recall that ε ∈ Z(A) satisfies εσε = 1. Let δ ∈ Z(A) be another element
satisfying δσδ = 1 and let µ ∈ Sδ(A, σ) ∩ A×. One readily checks that Int(µ) ◦ σ
is also an R-involution and (δε)Int(µ)◦σ(δε) = 1. Given (P, f) ∈ Hε(A, σ), define
µf : P × P → A by (µf)(x, y) = µ · f(x, y). Then µf is an εδ-hermitian form over
(A, Int(µ) ◦ σ) and

(P, f) 7→ (P, µf) : Hε(A, σ) → Hδε(A, Int(µ) ◦ σ)

is an equivalence of categories; morphisms are mapped to themselves. We call this
equivalence µ-conjugation. It has the following properties:

(c1) For every R-ring S, we have µ(fS) = (µf)S .
(c2) U(f) = U(µf). If A is finite projective over R, then U(f) = U(µf),

U0(f) = U0(µf) and U0(f) = U0(µf).
(c3) The forms f and µf have the same Lagrangians. In particular, f is hyper-

bolic if and only if µf is hyperbolic.
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Suppose further that (A, σ) is an Azumaya R-algebra with involution. Then, by
Corollary 1.22(i), (A, Int(µ)◦σ) is also an Azumaya R-algebra with involution, and
the types of (σ, ε) and (Int(µ)◦σ, δε) are equal. When (σ, ε) is orthogonal, we have:

(c4) Lag(f) = Lag(µf) and Lag(f) = Lag(µf).

(c5) For every L ∈ Lag(f) = Lag(µf), the maps Φ
(f)
L : Lag(f) → µ2,R and

Φ
(µf)
L : Lag(µf) → µ2,R of Proposition 2.25 coincide.

(Item (c5) follows from the uniqueness part in Proposition 2.25.)
Items (c1)–(c5) allow us to rephrase certain claims about ε-hermitian forms over

(A, σ) as claims about δε-hermitian forms over (A, Int(µ) ◦ σ). We shall address
this process as µ-conjugation in the sequel.

Next, let e ∈ A be an idempotent such that eσ = e and eAA is a progenerator, or
equivalently, AeA = A. When A is Azumaya over its center, this is also equivalent
to having rrkA eA > 0 (Proposition 1.10). By Morita theory, the functor P(A) →
P(eAe) sending a module P to Pe and a morphism ϕ : P → Q to ϕe := ϕ|Pe is an
equivalence; see [42, Example 18.30].

Write σe := σ|eAe and note that (eε)σe(eε) = 1. Given (P, f) ∈ Hε(A, σ), let
fe = f |Pe×Pe. It is well-known, see [24, Proposition 2.5, Remark 2.1] for instance,
that

(P, f) 7→ (Pe, fe) ∈ Hε(A, σ) → Heε(eAe, σe)

defines an equivalence of categories; isometries ϕ are mapped to ϕe. We call this
equivalence e-transfer. It has the following additional properties:

(t1) For every R-ring S, there is a natural isomorphism (fS)e ∼= (fe)S .
(t2) The map ϕ 7→ ϕe defines an isomorphism U(f) → U(fe). If A is fi-

nite projective over R, then it also defines isomorphisms U(f) → U(fe),
U0(f) → U0(fe) and U0(f) → U0(fe).

(t3) The map L 7→ Le defines a bijection between the Lagrangians of f and
the Lagrangians of fe. In particular, f is hyperbolic if and only if fe is
hyperbolic.

Suppose further that (A, σ) is an Azumaya R-algebra with involution. By Corol-
lary 1.22(ii), (eAe, σe) is also an Azumaya R-algebra with involution and the types
of (σ, ε) and (σe, eε) are the same. When (σ, ε) is orthogonal, we have:

(t4) The isomorphism ϕ 7→ ϕe : U(f) → U(fe) respects the reduced norm.
(t5) The map L 7→ Le defines isomorphisms Lag(f) → Lag(fe) and Lag(f) →

Lag(fe); its inverse is L′ 7→ L′A.

(t6) The composition Lag(f)
∼−→ Lag(fe)

ΦLe−−→ µ2,R coincides with ΦL (see
Proposition 2.25).

(Item (t4) follows from the fact that ϕ 7→ ϕe : EndA(P ) → EndeAe(Pe) is an
isomorphism of Azumaya algebras and so preserves the reduced norm. Item (t5)
follows from (t3) Corollary 1.12. Item (t6) follows from (t4) and the uniqueness
part of Proposition 2.25.) Note also that e-transfer preserves reduced rank by
Corollary 1.12.

Items (t1)–(t6) allow us to rephrase certain claims about ε-hermitian forms over
(A, σ) as claims about eε-hermitian forms over (eAe, σe). We shall address this
process as e-transfer in the sequel.

As a first example of using conjugation and transfer, we prove the following
result, which provides an alternative way to evaluate ΦL.

Proposition 2.26. With the notation of Proposition 2.25, let L,M ∈ Lag(f). For
every p ∈ SpecR, let Ip denote the intersection of L(p) and M(p) in P (p). Then

ΦL(M)(p) = (−1)rrkA(p) L(p)−rrkA(p) Ip
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in µ2(k(p)). In particular, if P = L⊕M , then ΦL(M) = (−1)rrkA L in µ2(R).

We alert the reader that Ip is in general not the image of L ∩M in P (p).

Proof. It is enough to prove the proposition when R is a field and p = 0 (the last
assertion will follow by virtue of Lemma 2.17). Note further that base-changing
from the field R to an algebraic closure does not affect the R-dimension of A, L,
M and I0 = L∩M , and thus rrkAM , rrkA L and rrkA I0 remain unchanged. This
allows us to further restrict to the case where R is an algebraically closed field. In
particular, [A] = 0 in BrR.

If σ is symplectic, then ε = −1 (because (σ, ε) is orthogonal) and degA is even.
By Lemma 1.26, there exists µ ∈ S−1(A, σ)∩A×. Applying µ-conjugation, we may
replace σ, ε, f with Int(µ) ◦ σ, −ε, µf and assume that σ is orthogonal and ε = 1.

Now, by Proposition 1.27, there exists an idempotent e ∈ A with eσ = e and
deg eAe = 1. Applying e-transfer, we may replace A, σ, P , f , L, M with eAe, σe,
Pe, fe, Le, Me and assume that A = R and σ = idR henceforth.

Write I = I0 = L∩M and fix R-subspacesW ⊆ L,W ′ ⊆M such that L = I⊕W
and M = I ⊕W ′. Let N = (W ⊕W ′)⊥ and fix a basis {x1, . . . , xn} to W . The
kernel of y 7→ f(y,−) : M → L∗ is M ∩ L⊥ = M ∩ L = I, so y 7→ f(y,−) :
W ′ → L∗ is injective. Since any element in the image of this map vanishes on
I, it follows that y 7→ f(y,−) : W ′ → W ∗ is also injective, and thus bijective
by conisdering R-dimensions. This means that there exists a basis {y1, . . . , yn}
to W ′ satisfying f(xi, yj) = δij . Consequently, f |W⊕W ′ is unimodular, and thus
P = N ⊕W ⊕W ′. Let ϕ ∈ EndR(P ) denote the endomorphism exchanging xi and
yi and fixing N . Then ϕ ∈ U(f) and Nrd(ϕ) = (−1)dimR W = (−1)rrkA L−rrkA I0 .
Since ϕL = ϕ(W + I) = W ′ + I = M , we have ΦL(M) = Nrd(ϕ), so we are
done. �

2H. The Discriminant. Classically, the discriminant of a nondegenerate sym-
metric bilinear space (V, b) over a field F is the coset in F×/(F×)2 represented

by (−1)
1
2 dimV (dimV−1) times the determinant of some Gram matrix of b, see [40,

p. 80]. If F carries a nontrivial involution σ : F → F with a fixed subfield F0, then
the discriminant of a unimodular 1-hermitian space (V, h) over (F, σ) is defined sim-
ilarly, but this time it is regarded as an element of F×

0 /NrF/F0
(F×) [40, p. 114].

These definitions do not generalize naively to hermitian forms over R-algebras with
involution (A, σ) because projective A-modules need not be free. However, in [40,
§7, §8, §10], a discriminant invariant was defined for 1-hermitian forms over cen-
tral simple algebras with an orthogonal or unitary involution. It agrees with the
classical discriminant and is compatible with extending the base field. Moreover, it
is invariant under conjugation and e-transfer (see 2G), because it is defined as an
invariant of the adjoint involution of the hermitian space, which is unaffected by
these operations.

Suppose henceforth that (A, σ) is an Azumaya R-algebra with involution. We
will need a generalization of the discriminant defined in [40, §7, §8, §10] to ε-
hermitian forms over (A, σ) when (σ, ε) is orthogonal or unitary. Unfortunately,
such a definition seems missing in the literature, and introducing one is out of the
scope of this work. We therefore give an ad hoc generalization of the definition in
op. cit. to some specific R,A, σ that will be needed in this work, and prove that
it has desired properties such as being invariant under conjugation and e-transfer.
Specifically, we shall restrict to rings R which are connected semilocal and consider
only the cases where (1) (σ, ε) is orthogonal, or (2) σ is unitary and [A] = 0 in
BrZ(A).

Suppose first that (σ, ε) is orthogonal and R is connected semilocal. Let (P, f) ∈
Hε(A, σ) be a hermitian space such that n := rrkA P is even and positive. Write
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E = EndA(P ) and let θ denote the adjoint involution of f . By Lemma 1.26, there
exists ϕ ∈ S−1(E, θ)∩E×. Following [40, §7], we define the discriminant of f to be

disc(f) = (−1)n/2 Nrd(ϕ) · (R×)2 ∈ R×/(R×)2.

This is well-defined by the following proposition. The discriminant of the zero form
is defined to be the trivial class (R×)2.

Proposition 2.27. Under the previous assumptions:

(i) disc(f) is well-defined, i.e., it is independent of the choice of ϕ.
(ii) Isomorphic forms have equal discriminants. The discriminant is unchanged

under µ-conjugation and e-transfer (see 2G).
(iii) If (P ′, f ′) ∈ Hε(A, σ) and rrkA P

′ is even, then disc(f⊕f ′) = disc(f) disc(f ′).
(iv) If (A, σ) = (R, idR), ε = 1 and f = 〈α1, . . . , α2n〉(R,idR), then disc(f) ≡

(−1)n
∏

i αi mod (R×)2.
(v) If d := degA is even, u ∈ S−ε(A, σ) ∩ A× and a1, . . . , an ∈ Sε(A, σ), then

disc(〈a1, . . . , an〉(A,σ)) ≡ (−1)nd/2 Nrd(u)n
∏n

i=1 Nrd(ai) mod (R×)2.

Proof. (i) See [40, Proposition 7.1] for the case R is a field. The same proof works
when R is general; for the definition of the Pfaffian over general rings and a proof
that its square is the reduced characteristic polynomial, see [38, p. 3].

(ii) The definition of disc(f) depends only on the isomorphism class of (E, θ)
and this remains unchanged if we replace f with an isomorphic form or perform
µ-conjugation or e-transfer.

(iii) Write n′ = rrkA P
′, let θ′ be the adjoint involution of f ′ and let ϕ′ ∈

S−1(EndA(P
′), θ′). One readily checks that

(f ⊕ f ′)((ϕ⊕ ϕ′)(x⊕ x′), y ⊕ y′) = −(f ⊕ f ′)(x ⊕ x′, (ϕ⊕ ϕ′)(y ⊕ y′))

for all x, y ∈ P and x′, y′ ∈ P ′. Thus, the adjoint involution of f ⊕ f ′ takes
ϕ⊕ ϕ′ to −(ϕ⊕ ϕ′), and, by definition, disc(f ⊕ f ′) ≡ (−1)(n+n′)/2 Nrd(ϕ⊕ ϕ′) ≡
(−1)n/2 Nrd(ϕ)(−1)n

′/2 Nrd(ϕ′) ≡ disc(f) disc(f ′) modulo (R×)2.
(iv) The proof of [40, Proposition 7.3(3)] applies verbatim.
(v) By (iii), it is enough to prove the case n = 1. Writing a = a1, and identifying

End(AA) with A via ϕ 7→ ϕ(1A), the adjoint involution of 〈a〉 is θ := Int(a−1) ◦ σ.
Thus, ua ∈ S−1(A, θ) ∩ A× and disc〈a〉 ≡ (−1)d/2 Nrd(ua) modulo (R×)2. �

Given a quadratic étale R-algebra S with standard involution θ (see 1C), we
define the norm form nS/R : S × S → R by nS/R(x, y) = 1

2 (x
θy + yθx); it is a

1-hermitian form over (R, idR). When R is semilocal, there is λ ∈ S such that
{1, λ} is an R-basis of S, λ2 ∈ R× and λθ = −λ (Lemma 1.19). Using this basis to
identify S with R2, one finds that nS/R

∼= 〈1,−λ2〉(R,id). In this case, we define

disc(S/R) := disc(nS/R) = λ2(R×)2.

Keeping our assumption that R is connected semilocal, we now proceed with
defining a discriminant for ε-hermitian spaces over (A, σ) when σ is unitary and
[A] = 0 in BrZ(A). Note that the reduced rank of any (P, f) ∈ Hε(A, σ) is constant
by Corollary 2.9(i). Write S = Z(A) and let NrS/R : S → R denote the norm map;
it is given by NrS/R(x) = xσx because σ|S is the standard R-involution of S.

Suppose first that degA = 1 and let (P, f) ∈ Hε(A, σ). Then A = S and
P is free. Let {xi}ni=1 be an S-basis of P and let g = (f(xi, xj))i,j denote
the corresponding Gram matrix. Since g is (σ, ε)-hermitian, det g = εn(det g)σ.
When n = rrkA P is even, this means that (−ε)−n/2 det g = ((−ε)−n/2 det g)σ, so
(−ε)−n/2 det g ∈ R×. In this case, the discriminant of f is defined to be

disc(f) = (−ε)−n/2 det g ·NrS/R(S×) ∈ R×/NrS/R(S
×).
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It is easy to see that this is independent of the basis {xi}ni=1. Moreover, isomorphic
forms have the same discriminant.

We extend this to any A with [A] = 0 as follows: Use Theorem 1.30 to choose an
idempotent e ∈ A with eσ = e and rrkA eA = 1. Noting that eAe ∼= S, we define

disc(f) := disc(fe) ∈ R×/NrS/R(S
×)

for every (P, f) ∈ Hε(A, σ) with rrkA P even. Here, fe : Pe × Pe → eAe is the
e-transfer of f , see 2G. This is well-defined by the following proposition.

Proposition 2.28. Under the previous assumptions:

(i) disc(f) is well-defined, i.e., it is independent of the choice of e.
(ii) Isomorphic forms have equal discriminants. The discriminant is unchanged

under µ-conjugation and e′-transfer (see 2G).
(iii) If (P ′, f ′) ∈ Hε(A, σ) and rrkA P

′ is even, then disc(f⊕f ′) = disc(f) disc(f ′).

Proof. (i) Let e′ ∈ A be another idempotent with e′σ = e′ and rrkA e
′A = 1. Then

eA ∼= e′A (Lemma 1.24). Every A-module homomorphism eA → e′A is given by
multiplication on the left with a unique element in e′Ae, so there exist u ∈ e′Ae
and v ∈ eAe′ such that uv = e′ and vu = e. We also see that vσv is invertible in
e′Ae′ = EndA(e

′A). Since deg e′Ae′ = 1, we have e′Ae′ = Se′. Write vσv = αe′

with α ∈ S×. Then α ∈ R× because vσv is fixed under σ. Identifying eAe and e′Ae′

with S = Z(A), it is routine to check that x 7→ xv : Pe → Pe′ defines an isometry
from αfe to fe′ (its inverse is y 7→ yu : Pe′ → Pe). Since rrkeAe Pe = rrkA P is
even, disc(αfe′) = disc(fe′) and it follows that disc(fe) = disc(fe′).

(ii) If (P, f) ∼= (P ′, f ′), then fe ∼= f ′
e, so disc(f) = disc(fe) = disc(f ′

e) = disc(f ′).
Let µ ∈ Sδ(A, σ), where δ ∈ Z(A) satisfies δσδ = 1, and write τ = Int(µ) ◦ σ.

Then τ is also unitary, and so there exists an idempotent e′ ∈ A with rrkA e
′A = 1

and e′τ = e′. As in the proof of (i), choose u ∈ e′Ae, v ∈ eAe′ such that uv = e′ and
vu = e. We have µvσv, uuσµ−1 ∈ e′Ae′ because e′µvσv = µµ−1e′µvσv = µe′σvσv =
µ(ve′)σv = µvσv and similarly uuσµ−1e′ = uuσµ−1. Furthermore, µvσv ·uuσµ−1 =
µvσeuσµ−1 = µ(uev)σµ−1 = µe′σµ−1 = e′τ = e′, hence µvσv ∈ (e′Ae′)× = e′S×.
Write µvσv = αe′ with α ∈ S×. As in the proof of (i), identifying eAe and e′Ae′

with S, we see that x 7→ xv : Pe→ Pe′ is an isometry from αfe to (µf)e′ . Thus,

disc((µf)e′ ) = α2nδ−n disc(fe),

where rrkA P = 2n. Straightforward computation shows that δ(µvσv)τ = µvσv.
Since τ |S = σ|S , this means that δασ = α, or rather, α2 = δNrS/R(α). Thus,

disc(µf) = disc((µf)e′ ) = α2nδ−n disc(fe) = disc(fe) = disc(f).
Next, let e′ ∈ A be an idempotent with e′σ = e′ and rrkA e

′A > 0. Then,
using Theorem 1.30, we can choose an idempotent e ∈ e′Ae′ with eσ = e and
rrke′Ae′ eAe

′ = 1. By Corollary 1.12, rrkA eA = rrke′Ae′ eAe
′ = 1, so disc(f) =

disc(fe) = disc(fe′).
(iii) We may replace f and f ′ with fe and f ′

e and assume that A = S. The
statement is now straightforward. �

We continue to assume that [A] = 0 and (σ, ε) is unitary. Let S = Z(A) and
θ = σ|S . Recall that with every α ∈ R×, we can associate a crossed produced
R-algebra

(S/R, α).

Its underlying R-module is the free right S-module with basis {1, u} and its multi-
plication is determined by the product in S and the rules u2 = α and su = usθ for
all s ∈ S. It is well-known that (S/R, α) is a quaternion (i.e. degree-2) Azumaya
R-algebra. Moreover, the map

α 7→ [(S/R, α)]
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determines a group homomorphism from R×/NrS/R(S
×) to BrR; see [64, Theo-

rem 7.1a] or [39, Lemma III.5.4.1, Corollary III.5.4.6].
Following [40, §10], given (P, f) ∈ Hε(A, σ) of even reduced rank, we write

D(f) = (S/R, disc f)

and define the discriminant Brauer class of f to be [D(f)].8 We remark that since R
is semilocal, using the discriminant Brauer class instead of the discriminant causes
no loss of information:

Proposition 2.29. Assume R is semilocal, let S be a quadratic étale R-algebra and
let α, β ∈ R×. Then [(S/R, α)] = [(S/R, β)] if and only if α ≡ β mod NrS/R(S

×).

Proof. We only need to check the “only if” part. Write A = (S/R, α), B = (S/R, β)
and let θ denote the standard R-involution of S. We have A = S⊕uS with u2 = α
and B = S ⊕ vS with v2 = β. Since R is semilocal and degA = degB, there exists
an R-algebra isomorphism ι : A→ B, see [61, Corollary 3.3].

We claim that there is an isomorphism ψ : A→ B which restricts to the identity
on S. To see this, view A as a right AS-module via x · (a ⊗ s) = sxa and B
as a right AS-module via y · (a ⊗ s) = sy · ιa (x ∈ A, y ∈ B, a ∈ A, s ∈ S).
Since rkS(AA) = 2 = rkS(BB), we have rrkAS A = rrkAS B. By Lemma 1.24,
there exists an AS-module isomorphism ξ : A → B. It induces an isomorphism
Int(ξ) : EndA(AA) → EndB(BB). Identifying EndA(AA) with A and EndB(BB)
with B via ϕ 7→ ϕ(1), we get an isomorphism ψ : A → B. Now, for all s ∈ S, we
have ψ(s) = (ξ ◦ [x 7→ sx] ◦ ξ−1)(1B) = ξ(s · ξ−1(1B)) = s · ξ−1ξ(1B) = s.

Let EA = {a ∈ A : sa = asθ for all s ∈ S} and define EB similarly. One readily
checks that EA = uS and EB = vS. Since ψ fixes S, we have ψ(EA) ⊆ EB. Thus,
ψ(u) = vs for some s ∈ S×. Now, α = u2 = ψ(u2) = (vs)2 = NrS/R(s)v

2 =
NrS/R(s)β. �

3. An Octagon of Witt Groups

In this section, we introduce an 8-periodic chain complex — an octagon, for
short — of Witt groups of Azumaya algebras with involution, generalizing a similar
octagon defined by Grenier-Boley and Mahmoudi for central simple algebras with
involution [30]. By the end of Section 7, we will show that this octagon is exact
when the base ring R is semilocal.

3A. The Octagon. Recall that R denotes a ring with 2 ∈ R×. Suppose we are
given the following data:

(G1) (A, σ) is an Azumaya R-algebra with involution (see 1D),
(G2) ε ∈ Z(A) satisfies εσε = 1,
(G3) λ, µ ∈ A× satisfy λσ = −λ, µσ = −µ, λµ = −µλ and λ2 ∈ Z(A).

Define the following:

(N1) S = Z(A),
(N2) B is the commutant of λ in A,
(N3) T = Z(B),
(N4) τ1 := σ|B ,
(N5) τ2 := Int(µ−1) ◦ σ|B , i.e. xτ2 = µ−1xσµ

Note that R ⊆ S ⊆ T ⊆ B ⊆ A and τ1, τ2 are R-linear involutions on B. Also,
λ2 ∈ R because (λ2)σ = (−λ)2 = λ2 and R = S1(Z(A), σ).

Lemma 3.1. In the previous notation, the following hold:

8When R is a field, our definition of D(f) does not agree with the definition given in [40, §10].
However, both definitions give the same Brauer class by [40, Corollary 10.35].
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(i) T is a quadratic étale S-algebra, {1, λ} is an S-basis of T and rkT (AA) is
constant along the fibers of SpecT → SpecS.

(ii) B is an Azumaya T -algebra, [B] = [A⊗S T ] in BrT and degB = 1
2 ιdegA,

where ι : S → T is the inclusion map.
(iii) A = B ⊕ µB, µB = Bµ and µ2 ∈ B.

Proof. Write T ′ = S[λ]. Since λ2 ∈ S, we have T ′ = S + λS. If a ∈ S ∩ λS, then a
commutes and anti-commutes with µ, so 2aµ = 0 and a = 0. Since annS λ = 0, this
means that T ′ ∼= S[x]/(x2 − λ2). Thus, T ′ is a quadratic étale S-algebra (see 1C).

We claim that rkT ′ AA is constant along the fibers of SpecT ′ → SpecS. To
see this, note that µλµ−1 = −λ, hence Int(µ)|T ′ coincides with the standard
S-involution of T ′, call it θ. This involution acts transitively on every fiber of
SpecT ′ → SpecS, so it is enough to show that rkT ′ AA = θ rkT ′ AA. However, this
follows from the fact that Int(µ) : A → A defines θ-linear isomorphism from A,
viewed as a right T ′-module, to itself.

Now, by Proposition 1.14, B = ZA(T
′) is an Azumaya T ′-algebra, [B] = [A ⊗S

T ′], and 2 degB = degB · ι rkS T ′ = ιdegA, where ι : S → T ′ is the inclusion map.
Since T = Z(B) = T ′, we have established (i) and (ii).

To prove (iii), let E denote the set of elements of A which anti-commute with
λ. One readily checks that µB ⊆ E and µ−1E ⊆ B, hence E = µB. Likewise,
E = Bµ, so µB = Bµ. Furthermore, B ∩ µB = B ∩ E consists of elements which
commute and anti-commutes with λ, so B ∩ µB = 0 (because 2λ ∈ A×). Finally,
every a ∈ A can be written as 1

2 (a + λ−1aλ) + 1
2 (a − λ−1aλ). It is easy to check,

using λ2 ∈ Z(A), that a+λ−1aλ ∈ B and a−λ−1aλ ∈ E, so A = B+E = B+µB.
We conclude that A = B ⊕ µB. Finally, µ2 ∈ B because µ2λ = −µλµ = λµ2. �

Before proceeding, let us present some examples where (G1)–(G3) hold.

Example 3.2. (i) Let α, β ∈ R×. Take A to be the quaternion Azumaya R-algebra
R〈λ, µ |λµ = −µλ, λ2 = α, µ2 = β〉 and σ to be the R-involution of A determined
by λσ = −λ and µσ = −µ. Then A, σ, λ, µ and any ε ∈ µ2(R) satisfy (G1)–(G3).
In this case, {1, λ, µ, λµ} is an R-basis of A, and it is routine to check that S = R,
B = R+ λR = R[λ], τ1 is the standard R-involution of T = B, and τ2 = idB.

(ii) Write A0, σ0, λ0, µ0 for A, σ, λ, µ defined in (i) and let (A1, σ1) be another
Azumaya R-algebra with involution. Then (A, σ) := (A0 ⊗ A1, σ0 ⊗ σ1) is also
Azumaya over R because Z(A) = Z(A0) ⊗ Z(A1) = R ⊗ Z(A1) (see [60, Proposi-
tio 5.3.10(ii)] for the first equality), which means that R = {a ∈ Z(A) : aσ = a}.
Then A, σ, λ := λ0 ⊗ 1, µ := µ0 ⊗ 1 and any ε ∈ µ2(R) satisfy (G1)–(G3). Writ-
ing S1 = Z(A1) and letting θ denote the standard R-involution of R[λ0], we have
S = R ⊗ S1, B = R[λ0] ⊗ A1, T = R[λ0] ⊗ S1 (Lemma 1.4), τ1 = θ ⊗ σ1, and
τ2 = idR[λ0] ⊗σ1.

Using Lemma 3.1(iii), we can define the following maps:

(N6) π1, π2 : A→ B are defined by πi(b1 + µb2) = bi (b1, b2 ∈ B, i ∈ {1, 2}).
(For a definition of π1 not involving µ, see Lemma 4.2(i) below.) We now introduce
four functors:

(N7) For i = 1, 2, let π
(ε)
i : Hε(A, σ) → H(−1)i+1ε(B, τi) be defined by π

(ε)
i (P, f) =

(P, πif), where πif = πi ◦ f ; morphisms are mapped to themselves.

(N8) For i = 1, 2, let ρ
(ε)
i : Hε(B, τi) → H−ε(A, σ) be defined by ρ

(ε)
i (Q, g) =

(Q⊗B A, ρig), where ρig : (Q⊗B A)× (Q ⊗B A) → A is determined by

(ρ1g)(x⊗ a, x′ ⊗ a′) = aσλg(x, x′)a′,

(ρ2g)(x⊗ a, x′ ⊗ a′) = aσ(λµ)g(x, x′)a′

(x, x′ ∈ Q, a, a′ ∈ A); for a morphism ϕ, set ρ
(ε)
i ϕ = ϕ⊗B idA.
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When there is no risk of confusion, we will drop the superscript “(ε)”. The functors
π1, π2, ρ1, ρ2 are well-defined by the following lemma.

Lemma 3.3. The assignments π
(ε)
1 , π

(ε)
2 , ρ

(ε)
1 , ρ

(ε)
2 are functors. Moreover, they

take hyperbolic hermitian forms to hyperbolic hermitian forms.

Proof. Everything is straightforward except the fact that π1, π2, ρ1, ρ2 take uni-
modular hermitian forms to unimodular hermitian forms. We verify this fact case-
by-case.

The inclusion B → A induces a homomorphisms of R-algebras with involution
(B, τ1) → (A, σ), which we denote by ρ. Given (Q, g) ∈ Hε(B, τ1), the hermitian
space ρ1(Q, g) is just ρ(Q, λg), where λg is the λ-conjugation of g, see 2G, and ρ is
base change in the sense of 2C. Since both λ-conjugation and base change preserve
unimodularity, ρ1(Q, g) is unimodular.

Similarly, to see that ρ2(Q, g) is unimodular, let σ2 := Int((λµ)−1) ◦ σ and note
that the inclusion B → A also defines a morphism ρ′ : (B, τ2) → (A, σ2). It is
straightforward to check that ρ2g = (λµ)(ρ′g), so ρ2g is unimodular.

We proceed with checking that π1f is unimodular for all (P, f) ∈ Hε(A, σ). If x ∈
P satisfies π1f(x, P ) = 0, then f(x, P ) is a right ideal of A contained in kerπ = Bµ.
Thus, f(x, P ) ⊆ Bµ ∩ (Bµ)µ−1 = 0, and x = 0 because f is unimodular. Suppose

now that φ ∈ HomB(P,B). Define φ̂ : P → A by φ̂x = φx+φ(xµ)µ−1 . It is routine

to check that φ̂ ∈ HomA(P,A) and π1 ◦ φ̂ = φ. Since f is unimodular, there exists

x ∈ P with φ̂ = f(x,−), so φ = π1f(x,−).

That π2f is unimodular is shown similarly; define φ̂ by φ̂x = µ · φ(xµ) · µ−1 +
µφx. �

Lemma 3.3 implies that π
(ε)
1 , π

(ε)
2 , ρ

(ε)
1 , ρ

(ε)
2 induce maps between the relevant

Witt groups. These maps can be arranged in an octagon-shaped diagram:

(3.1) Wε(A, σ)
π
(ε)
1 // Wε(B, τ1)

ρ
(ε)
1 // W−ε(A, σ)

π
(−ε)
2 // Wε(B, τ2)

ρ
(ε)
2

��
W−ε(B, τ2)

ρ
(−ε)
2

OO

Wε(A, σ)
π
(ε)
2

oo W−ε(B, τ1)
ρ
(−ε)
1

oo W−ε(A, σ)
π
(−ε)
1

oo

We will see in Proposition 3.5 below that the octagon is a chain complex of abelian
groups.

The octagon is known to be exact when R is a field [30]; see the Introduction
for the history of this result. The purpose of this paper is to extend the exactness
of the octagon to semilocal rings. Specifically, we prove:

Theorem 3.4. Suppose that R is semilocal. Then the octagon (3.1) is exact.

The proof will occupy the following four sections and be concluded in Section 7;
its highlights are given in 3C. In the course of the proof, we will also determine the
images of the functors π1, π2, ρ1, ρ2 when T is connected semilocal (the exactness
of the octagon answers this only up to Witt equivalence), see Theorem 7.1. This
finer version will be required for some of the applications.

The remainder of this section is dedicated to proving that the octagon is a
complex, providing equivalent conditions for its exactness, and surveying how these
conditions will be proved under the assumption that R is semilocal.

3B. Equivalent Conditions for Exactness. Keep the assumptions of 3A. In
this subsection, we show that the exactness of the octagon (3.1) is equivalent to a
certain list of conditions involving R,A, σ, ε, λ, µ. The proof generally follow the
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same lines as the corresponding arguments given in [30, §3] and [10, Appendix],
both addressing the case S is a field.

Given a right B-module Q and a ∈ A, we write Q⊗a for the subset {q⊗a | q ∈ Q}
of Q⊗B A; it is a B-submodule of Q⊗B A if aB ⊆ Ba. If M is a subset of a right
A-module P , we write MA for the A-submodule generated by M .

We begin by showing that the octagon is a chain complex for any ring R.

Proposition 3.5. In the notation of 3A, (3.1) is a chain complex of abelian groups.

Proof. By symmetry, we only need to consider the top row of (3.1).

(3.1) is a complex at Wε(A, σ). Let (Q, g) ∈ H−ε(B, τ2). Then π1ρ2(Q, g) = (Q⊗B

A, π1ρ2g). Straightforward calculation shows that the B-sumodules M1 := Q ⊗ 1
and M2 := Q ⊗ µ satisfy π1ρ2g(M1,M1) = π1ρ2g(M2,M2) = 0 and M1 +M2 =
Q⊗B A. Thus, π1ρ2(Q, g) is hyperbolic.

(3.1) is a complex at W−ε(A, σ). The proof for Wε(A, σ) applies verbatim.

(3.1) is a complex at Wε(B, τ1). Let (P, f) ∈ Hε(A, σ). Then ρ1π1(P, f) = (P ⊗B

A, ρ1π1f). Define

L1 = {xµ⊗ 1 + x⊗ µ |x ∈ P},
L2 = {xµ⊗ 1− x⊗ µ |x ∈ P}.

It is easy to check that L1 and L2 are B-submodules of P ⊗AB and that L1+L2 =
P ⊗A B (recall that 2 ∈ R×). We claim that ρ1π1f(L1, L1) = ρ1π1f(L2, L2) = 0.
Indeed, let x, y ∈ P and write f(x, y) = α+ µβ with α, β ∈ B. Then

ρ1π1f(xµ⊗ 1 + x⊗ µ, yµ⊗ 1 + y ⊗ µ)

= ρ1π1f(xµ⊗ 1, yµ⊗ 1) + ρ1π1f(xµ⊗ 1, y ⊗ µ) + ρ1π1f(x⊗ µ, yµ⊗ 1)

+ ρ1π1f(x⊗ µ, y ⊗ µ)

= λπ1(µ
σ(α+ µβ)µ) + λπ1(µ

σ(α+ µβ))µ + µσλπ1((α + µβ)µ)

+ µσλπ1(α+ µβ)µ

= λµσαµ+ λµσµβµ+ µσλµβµ+ µσλαµ

= −λµαµ− λµ2βµ+ λµ2βµ+ λµαµ = 0,

hence ρ1π1f(L1, L1) = 0. Likewise, ρ1π1f(L2, L2) = 0, so ρ1π1f is hyperbolic.

(3.1) is a complex at Wε(B, τ2). This is similar to the proof of the case Wε(B, τ1);
define L1 and L2 in the same manner. �

We now give equivalent conditions for the exactness of the octagon (3.1).

Theorem 3.6. With the notation of 3A, consider the following conditions:

(E1) For every (P, f) ∈ Hε(A, σ) such that [π1(P, f)] = 0 in Wε(B, τ1), there
exists (P ′, f ′) in the Witt class of (P, f) and a Lagrangian M of π1(P

′, f ′)
with M · A = P ′.

(E2) For every (Q, g) ∈ Hε(B, τ1) such that [ρ1(Q, g)] = 0 in W−ε(A, σ), there
exists (Q′, g′) in the Witt class of (Q, g) and a Lagrangian L of ρ1(Q

′, g′)
with L⊕ (Q′ ⊗ 1) = Q′ ⊗B A as B-modules.

(E3) For every (P, f) ∈ H−ε(A, σ) such that [π2(P, f)] = 0 in Wε(B, τ2), there
exists (P ′, f ′) in the Witt class of (P, f) and a Lagrangian M of π2(P

′, f ′)
with M · A = P ′.

(E4) For every (Q, g) ∈ Hε(B, τ2) such that [ρ2(Q, g)] = 0 in W−ε(A, σ), there
exists (Q′, g′) in the Witt class of (Q, g) and a Lagrangian L of ρ2(Q

′, g′)
with L⊕ (Q′ ⊗ 1) = Q′ ⊗B A as B-modules.
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Then the exactness of (3.1) at the termsWε(A, σ), Wε(B, τ1), W−ε(A, σ), Wε(B, τ2)
on the top row is equivalent to the conditions (E1), (E2), (E3), (E4), respectively.

Remark 3.7. Conditions (E1)–(E4) are not difficult to verify when R is a field.
We illustrate this for (E2) and (E1).

In the context of (E2), using Proposition 2.5, choose (Q′, g′) to be anisotropic.
Since B is semisimple artinian, this means that g′(x, x) 6= 0 whenever x 6= 0. Now,
if L is a Lagrangian of ρ1g

′, then every x ∈ L ∩ (Q′ ⊗ 1) satisfies g′(x, x) = 0,
hence L ∩ (Q′ ⊗ 1) = 0. On the other hand, by Lemma 2.6, we have 2 dimR L =
dimR L + dimR L

∗ = dimR(Q
′ ⊗B A), and since Q′ ⊗B A = (Q′ ⊗ 1) ⊕ (Q′ ⊗ µ),

we have dimR(Q
′ ⊗ 1) = 1

2 dimR(Q
′ ⊗B A), so R-dimension considerations force

L⊕ (Q′ ⊗ 1) = Q′ ⊗B A.
Similarly, in the context of (E1), we may choose (P ′, f ′) so that f ′(x, x) 6= 0

whenever x 6= 0. If M is a Lagrangian of π1f
′, then every x ∈ M ∩Mµ satisfies

π1f(x, x) = π1f(xµ
−1, x) = 0, which means that f(x, x) = 0. Thus, M ∩Mµ = 0.

Since P ∼= M ⊕M∗ (the dual is taken relative to B), rkT0 P = rkT0 M + rkT0 M
∗,

where T0 = S1(T, τ). By Lemma 2.6, 2 rkT0 M = rkT0 P , so 2 dimRM = dimR P
and R-dimension considerations force M +Mµ = P . In particular, MA = P .

This argument relies critically on the fact that R is a field, and thus cannot be
naively generalized to more general rings.

Before proving Theorem 3.6, we first prove the following lemma.

Lemma 3.8. With notation as in 3A, let (P, f) ∈ Hε(A, σ) and let M be a La-
grangian of π1f , resp. π2f . Then MA = P if and only if M ⊕Mµ = P .

Proof. It is clear thatM⊕Mµ = P impliesMA = P , so we prove the converse. As
both M and Mµ are R-summands of P , the lemma will follow from Lemma 1.7 if
we show thatM(m)⊕Mµ(m) = P (m) for all m ∈ MaxR. We may therefore assume
that R is a field (the setting of 3A is preserved under base-change by Lemma 1.4).
SinceMA = P and A = B+Bµ, we haveM+Mµ = P . We observed in Remark 3.7
that 2 dimRM = dimR P , so this means that M ⊕Mµ = P . �

Proof of Theorem 3.6. We showed that the octagon is a chain complex in Propo-
sition 3.5. Moreover, the proof of that proposition shows that if (Q, g) = π1(P, f)
for (P, f) ∈ Hε(A, σ), then ρ1(Q, f) admits a Lagrangian L — L1 or L2 in the
notation of that proof — with L⊕ (Q⊗ 1) = Q⊗B A. Thus, condition (E2) follows
from the exactness of the octagon at Wε(B, τ1), and, in a similar manner, the ex-
actness of the octagon at Wε(A, σ), W−ε(A, σ), Wε(B, τ2) implies (E1), (E3), (E4),
respectively. It remains to show the converse.

(E1) implies exactness at Wε(A, σ) (top row). Suppose that (P, f) ∈ Hε(A, σ)
satisfies [π1(P, f)] = 0 inWε(B, τ1). By (E1) and Lemma 3.8, we may replace (P, f)
with a Witt equivalent hermitian space to assume that π1f admits a Lagrangian
M with P = M ⊕Mµ. Let g = (λµ)−1f |M×M . Since π1f(M,M) = 0, we have
g(M,M) ⊆ (λµ)−1 kerπ1 = −λ−1µ−1µB = B. We claim that g : M ×M → B is
a (−ε)-hermitian form over (B, τ2). Indeed, the sesquilinearily is straightforward,
and for all x, y ∈M , we have

−εg(y, x)τ2 = −εµ−1f(y, x)σ((λµ)−1)σµ

= −µ−1f(x, y)λ−1µ−1µ = µ−1λ−1f(x, y) = g(x, y)

(note that f(x, y) ∈ kerπ1 = µB and λ anti-commutes with elements from µB).
Next, we claim that (M, g) is unimodular. Suppose that g(x,M) = 0. Then

f(x,M) = 0, hence f(x, P ) = f(x,M +Mµ) = 0, and x = 0 by the unimodularity
of f . Now, let φ ∈ HomB(M,B). Using P = M ⊕ Mµ, define ψ : P → A by
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ψ(x + yµ) = λµ · φx + λµ · φy · µ for all x, y ∈ M . It is routine to check that
ψ ∈ HomA(P,A). Thus, there exists x ∈ P such that ψy = f(x, y) for all y ∈ P .
Furthermore, we have π1f(x,M) = π1(λµ · φ(M)) = 0, hence x ∈ M⊥(π1f) = M .
Since g(x, y) = (λµ)−1f(x, y) = (λµ)−1ψy = φy for all y ∈M , we have shown that
x 7→ g(x,−) :M → HomB(M,B) is bijective.

Finally, we show that ρ
(−ε)
2 (M, g) = (M ⊗B A, ρ2g) is isomorphic to (P, f). Let

ϕ denote the A-module homomorphism x ⊗ a 7→ xa : M ⊗B A → P ; it is clearly
surjective, and it is straightforward to check that f(ϕx, ϕy) = ρ2g(x, y) for all
x, y ∈M ⊗B A. The latter means that if x ∈ kerϕ, then ρ2g(x,M ⊗B A) = 0, and
thus x = 0 because ρ2g is unimodular. As a result, ϕ is injective, and therefore an

isometry from ρ
(−ε)
2 (M, g) to (P, f).

(E3) implies exactness at W−ε(A, σ) (top row). This similar to the exactness at
Wε(A, σ) with the difference that one defines g = λ−1f |M×M .

(E2) implies exactness at Wε(B, τ1). Let (Q, g) ∈ Hε(B, τ1) be a hermitian space
such that [ρ1(Q, g)] = 0 in W−ε(A, σ). By (E2), we may replace (Q, g) with a
Witt-equivalent space and assume that ρ1g admits a Lagrangian L such that such
that L ⊕ (Q ⊗ 1) = Q ⊗B A. Multiplying both sides with µ yields L ⊕ (Q ⊗ µ) =
Q⊗B A. This means that every x ∈ Q admits a unique element Jx ∈ Q such that
x⊗ 1 + Jx⊗ µ ∈ L.

The map J : Q→ Q is easily seen to satisfy:

J2x = xµ−2(3.2)

J(xb) = (Jx)(µbµ−1)

for all x ∈ Q, b ∈ B. We make Q into an A-module by setting

x(b1 + µb2) = xb1 + (Jx)µ2b2 (x ∈ Q, b1, b2 ∈ B).

Using (3.2), it is easy to see that this indeed defines an A-module structure (one
has to verify the identities (xµ)µ = x(µ2) and (xb)µ = (xµ)(µ−1bµ) for b ∈ B).

Since ρ1g(L,L) = 0, we have ρ1g(x ⊗ 1 + Jx ⊗ µ, y ⊗ 1 + Jy ⊗ µ) = 0 for all
x, y ∈ Q. Since A = B ⊕ µB, this means that

g(x, y) + µg(Jx, Jy)µ = 0,(3.3)

g(x, Jy)µ+ µg(Jx, y) = 0

for all x, y ∈ Q. Define f : Q×Q→ A by

f(x, y) = g(x, y)− µg(Jx, y) .

We claim that f is an ε-hermitian form over (A, σ). After unfolding the defini-
tions, this comes down to checking that f(xb, y) = bσf(x, y), f(x, yb) = f(x, y)b,
f(xµ, y) = µσf(x, y), f(x, yµ) = f(x, y)µ and f(x, y) = εf(y, x)σ for all x, y ∈ Q,
b ∈ B. The first three identities follow easily from (3.2). For the fourth and fifth
identities we also use (3.3):

f(x, yµ) = g(x, yµ)− µg(Jx, yµ)

= g(x, (Jy)µ2)− µg(Jx, (Jy)µ2)

= g(x, Jy)µ2 − µg(Jx, Jy)µ2

= −µg(Jx, y)µ+ g(x, y)µ

= (g(x, y)− µg(Jx, y))µ = f(x, y)µ ,
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εf(y, x)σ = εg(y, x)σ − εg(Jy, x)σµσ

= g(x, y) + g(x, Jy)µ

= g(x, y)− µg(Jx, y) = f(x, y) .

We claim that (QA, f) is unimodular. Indeed, suppose f(x,Q) = 0. Then, the
definition of f implies that g(x,Q) = 0, so x = 0 by the unimodularity of g. Now let
φ ∈ HomA(Q,A). Then π1 ◦ φ ∈ HomB(Q,B), hence there exists x ∈ Q such that
π1φy = g(x, y) for all y ∈ Q. Define ψy := φy − f(x, y). Then ψ ∈ HomA(Q,A)
satisfies imψ ⊆ kerπ1 = µB. Since imψ is a right ideal in A and bµ /∈ µB for all
0 6= b ∈ µB, it follows that ψ = 0 and φy = f(x, y) for all y ∈ Q.

Finally, it is clear that π1(Q, f) = (Q, g), so we have verified the exactness at
W ε(B, τ1).

(E4) implies exactness at Wε(B, τ2). Let (Q, g) ∈ W ε(B, τ2) be a hermitian space
such that [ρ2(Q, g)] = 0 in Wε(A, σ). By (E4), we can replace (Q, g) with a Witt
equivalent space and assume that ρ2g admits a Lagrangian L such that such that
L⊕ (Q⊗ 1) = Q⊗B A.

Define σ2 = Int(µ−1) ◦ σ. Then µ−1-conjugation (see 2G) induces a group
isomorphism (P, f) 7→ (P, µ−1f) : W−ε(A, σ) → Wε(A, σ2). Furthermore, one
readily checks that π2(P, f) = π1(P, µ

−1f). Thus, it is enough to show that there
exists (P, f) ∈ Wε(A, σ2) with π1(P, f) = (Q, g). This can be shown exactly as in
the proof that (E2) implies exactness at Wε(B, τ1). �

Remark 3.9. In the course of proving Theorem 3.6, we also showed:

(i) Given (P, f) ∈ Hε(A, σ), there exists (Q, g) ∈ H−ε(B, τ2) with ρ2g ∼= f if
and only if π1f admits a Lagrangian M for which M ·A = P .

(ii) Given (Q, g) ∈ Hε(B, τ1), there exists (P, f) ∈ Hε(A, σ) with π1f ∼= g if
and only if ρ1f admits a Lagrangian L for which L⊕ (Q ⊗ 1) = Q⊗B A.

(iii) Given (P, f) ∈ H−ε(A, σ), there exists (Q, g) ∈ Hε(B, τ1) with ρ1g ∼= f if
and only if π2f admits a Lagrangian M for which M ·A = P .

(iv) Given (Q, g) ∈ Hε(B, τ2), there exists (P, f) ∈ H−ε(A, σ) with π2f ∼= g if
and only if ρ2f admits a Lagrangian L for which L⊕ (Q ⊗ 1) = Q⊗B A.

3C. Overview of The Proof of Theorem 3.4. Keep the notation of 3A and
suppose that R is semilocal. Thanks to Theorem 3.6 and the antipodal symmetry
of (3.1), in order to prove Theorem 3.4, it is enough to establish the conditions
(E1)–(E4). The proof is somewhat involved, so we outline the argument first.

Let us consider condition (E2): We are given (Q, g) ∈ Hε(B, τ1) such that
[ρ1g] = 0 inH−ε(A, σ) and need to find a LagrangianL of ρ1g such that (Q⊗1)⊕L =
Q⊗BA, possibly after replacing (Q, g) with a Witt equivalent hermitian space. We
abbreviate Q⊗B A to QA and identify Q with its copy Q⊗ 1 in QA.

Fix a Lagrangian L′ of ρ1g; it exists by Theorem 2.8(ii). We assume that
rrkA L

′ = 1
2 rrkA P for simplicity, so that L′ ∈ Lag(ρ1g) (see 2F). Let m1, . . . ,mt

denote the maximal ideals of R. Suppose that we can find, for every 1 ≤ i ≤ t,
an isometry ϕi ∈ U0(ρ1g(mi)) such that Q(mi) ⊕ ϕi(L

′(mi)) = QA(mi). Then,
by Theorem 2.18, there exists ϕ ∈ U0(ρ1g) with ϕ(mi) = ϕi, and by Lemma 1.7,
Q⊕ ϕ(L′) = QA. We may therefore take L = ϕ(L′) and the proof of (E2) reduces
into proving the existence of ϕ1, . . . , ϕt.

Write k1 = k(m1), g1 = g(m1), Q1 = Q(m1), L
′
1 = L′(m1) and so on. In ideal

circumstances, e.g., when σ1 is unitary, we have U0(ρ1g1) = U(ρ1g1) (Proposi-
tion 2.16), and the existence of ϕ1 can be shown by proving the existence of some
L1 ∈ Lag(ρ1g1) with Q1 ⊕ L1 = Q1A1 and then using Lemma 2.22 to assert the
existence of ϕ1 ∈ U(ρ1g1) with ϕ1(L

′
1) = L1.
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To prove the existence of L1, we write g1 as a sum of an anisotropic form and
a hyperbolic form (Proposition 2.5) and treat each case separately. In fact, the
anisotropic case has already been addressed in Remark 3.7, so only the hyperbolic
case should be treated. In addition, when k1 is infinite, one can use the rationality
of the the k1-variety U0(f1) (see Theorem 2.21) to reduce to the case where k1
is algebraically closed (Proposition 4.14). Assuming k1 is algebraically closed or
finite, we have [A1] = 0 in BrS1 and [B1] = 0 in BrT1, in which case we can further
use µ-conjugation and e-transfer (see 2G) to reduce to the case where degB1 = 1
and degA1 = 2 (Reduction 4.10). After these reductions, establishing the existence
of L1 ∈ Lag(ρ1g1) with Q1 ⊕ L1 = Q1A1 becomes a technical check.

Unfortunately, it can happen that ϕ1 does not exist. Specifically, in the context
of (E2), this can happen when (σ, ε) is orthogonal, [B] = 0 and [A] 6= 0. In
order to understand what goes wrong, it is instructive to view Lag(ρ1g) as an
R-scheme on which U0(ρ1g) acts. Suppose that R is connected for simplicity.
Then Propositions 2.23 and 2.25 imply that Lag(ρ1g) is the disjoint union of two
components, both being homogeneous U0(ρ1g)-spaces. When rrkB Q is even, it
turns out that ϕ1 exists when L

′ lives in one of these two components, but not when
it lives in the other (Corollary 5.14). Moreover, the former component may have no
R-points. To overcome this, we put considerable work into effectively identifying
the “good” component of Lag(ρ1g) and understanding when does it have R-points
— if it is does not, then (Q, g) must be replaced with a Witt equivalent hermitian
space. When rrkB Q is odd, ϕ1 never exists, but then one can prove that g must
be hyperbolic (Proposition 5.10) and thus Witt equivalent to the zero form.

The proofs of conditions (E1), (E3) and (E4) follow a similar strategy and share
similar complications, notably when (σ, ε) or (τ2, ε) are orthogonal. The cases where
ϕ1, . . . , ϕt exist are precisely the ones featuring in parts (i)–(iv) of Theorem 7.1
below.

The argument we outlined is carried in Sections 4–7: Section 4 collects some
preliminary results, Section 5 establishes conditions (E2) and (E4), Section 6 es-
tablishes conditions (E1) and (E3), and the proof of Theorem 3.4 is concluded in
Section 7, which also brings some of its by-products.

In order to address (E2) and (E4), resp. (E1) and (E3), simultaneously, we
replace the setting of 3A with the more robust Notation 4.1 below, and use the
latter throughout Sections 4–6. We return to the setting of 3A in Section 7.

4. Preparation for The Proof of Theorem 3.4

This section collects preliminary results that will be used in proving conditions
(E1), (E2), (E3), (E4) of Theorem 3.6 when R is semilocal.

We begin with replacing the setting of 3A with a new one — Notation 4.1 —
that will be in use until the end of Section 6. The reason for the change of notation
is two-fold: first, it will ultimately allow us to treat (E2) and (E4), resp. (E1) and
(E3), simultaneously, and second, the new notation is amenable to µ-conjugation
and e-transfer in the sense of 2G (see 4D for a precise statement). We will explain
how Notation 4.1 specializes to that of 3A (in a few possible ways) in Section 7,
where we prove Theorem 3.4.

Notation 4.1. Let (A, σ) be an Azumaya R-algebra with involution and let ε ∈
Z(A) be an element satisfying εσ = ε. Write S = Z(A) and let T be a quadratic
étale S-subalgebra of A such that T σ = T and rkT AA is constant along the fibers
of SpecT → SpecS (we have A ∈ P(T ) by Lemma 1.2). Write B = ZA(T ) and
τ = σ|B . The inclusion S → T is denoted ι, and we let T0 = {t ∈ T : tσ = t}.
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We let ρ denote the inclusion map B → A, viewed as a homomorphism of R-
algebras with involution (B, τ) → (A, σ). Given Q ∈ P(B), we abbreviate Q⊗B A
to QA and identify Q as a B-submodule of QA via x 7→ x⊗ 1 (this map is injective
because QB is flat). If (Q, g) ∈ Hε(B, τ), we define ρ(Q, g) = (QA, ρg) as in 2C.

We let π : A → B denote a homomorphism of (B,B)-bimodules such that
π|B = idB. Given (P, f) ∈ Hε(A, σ), we write π(P, f) = (P, πf), where πf = π ◦ f .
We shall see below (Lemma 4.2) that π exists, is unique, and satisfies π ◦σ = τ ◦π.
Moreover, π(P, f) ∈ Hε(B, τ).

By Proposition 1.14, B is Azumaya over T , [B] = [A⊗S T ] in BrT and degB =
1
2 ιdegA. This means that B is separable projective over R, so by Example 1.20,
(B, τ) is Azumaya over T0. Proposition 1.14 also tells us that

ι rrkA P = rrkB P and ι rrkAQA = 2 rrkB Q

for all P ∈ P(A) and Q ∈ P(B) such that rrkB Q is constant on the fibers of
SpecT → SpecS. In addition, AB ∈ P(B) by Lemma 1.2. These facts will be used
freely and without comment.

We further note that the assumptions of Notation 4.1 continue to hold if we base
change along a ring homomorphism R → S, thanks to Lemma 1.4.

4A. Existence and Uniqueness of π.

Lemma 4.2. With Notation 4.1, the following hold:

(i) There exists a unique (B,B)-bimodule homomorphism π = πA,B : A → B
such that π|B = idB.

(ii) If there exists λ ∈ T such that λ2 ∈ S× and T = S ⊕ λS, then πa =
1
2 (a+ λ−1aλ) for all a ∈ A.

(iii) π ◦ σ = τ ◦ π.
(iv) E := kerπ satisfies A = B⊕E, E ·E = B, EA = A and rrkB EB = degB.
(v) When R is semilocal, there exists λ as in (ii) and µ ∈ A× such that E =

µB = Bµ, λµ = −µλ and π(b1+µb2) = b1 for all b1, b2 ∈ B.9 If degA = 2,
then we also have µ2 ∈ S×.

(vi) For all (P, f) ∈ Hε(A, σ), we have (P, πf) ∈ Hε(B, τ), where πf := π ◦ f .
Proof. (i) Write T e = T op ⊗S T and Be = Bop ⊗S B. We view A and B as right
Be-modules using their evident (B,B)-bimodule structure.

Since T is a separable S-algebra, the map µ : T e → T sending xop ⊗ y to xy is
split as a morphism of T e-modules. Let ξ : T → T e denote such a splitting, and let
e := ξ(1T ). It is well-known that e2 = e and e(1⊗ t) = e(top ⊗ 1) for all t ∈ T , see
[39, Lemma III.5.1.2] and its proof.

Note that e is a central idempotent in Be. Thus, A = Ae ⊕A(1 − e), and both
summands are Be-modules. Writing e =

∑

i u
op
i ⊗ vi with {ui, vi}i ⊆ T , we see

that for all b ∈ B, we have

be =
∑

i

uibvi = b
∑

i

uivi = b · 1T = b,

because
∑

i uivi = µ(e) = 1T . On the other hand, if a ∈ Ae, then for all t ∈ T , we
have

ta = a(top ⊗ 1) = ae(top ⊗ 1) = ae(1⊗ t) = a(1⊗ t) = at,

hence a ∈ B. We conclude that B = eA. This in turn means that π : a 7→ ae is
a Be-module homomorphism, or equivalently, a (B,B)-bimodule homomorphism,
which splits the inclusion B → A.

9Note that in contrast with 3A, we do no require λσ = −λ and µσ = −µ. Indeed, this cannot
be guaranteed in general. The situations considered in cases (i) and (ii) of Lemma 4.3 below are
such examples, the reason being that σ|B = idB or σ|E = idE .
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If π′ : A → B is another (B,B)-module homomorphism splitting B → A, then
B = Ae ⊆ ker(π − π′). On the other hand, since multiplying on the right by e
annihilates A(1−e) while fixing B, we haveA(1−e) ⊆ kerπ′. Since kerπ = A(1−e),
this means that ker(π − π′) ⊇ Ae +A(1− e) = A, so π = π′.

(ii) Using λ2 ∈ S and B = ZA(T ) = ZA(λ), it is routine to check that a 7→
1
2 (a+ λ−1aλ) is a (B,B)-bimodule homomorphism from A to B which restricts to
the identity on B. This map must be π by (i).

(iii) The uniqueness of π implies that τ ◦ π ◦ σ = π, or rather, π ◦ σ = τ ◦ π.
(iv) That A = B ⊕ E follows from the fact that π : A → B splits the inclusion

A→ B. Since rrkB AB = ιdegA = 2degB, this means that rrkB E = degB.
We proceed with checking that E ·E ⊆ B. It is enough to prove that this holds

after localizing at p for all p ∈ SpecR, so we may assume that R is local. In this
case, by Lemma 1.19, there exists λ ∈ T such that λ2 ∈ S× and T = S ⊕ λS. By
(ii), E consists of the elements which anti-commute with λ while B = ZA(λ). Thus,
E · E ⊆ B.

Now, since A = B ⊕E and BEB ⊆ E, the set E2 +E is a two sided ideal of A.
Since A is Azumaya over S, there exists IES such that E2+E = IA = IB+IE [20,
Lemma II.3.5]. It follows that E = IE and E2 = IB. If I 6= S, then annS E 6= 0
by Nakayama’s Lemma, which is impossible because rrkB E = degB > 0. Thus,
I = S and E2 = IB = B. This also means that EA ⊇ E2A = BA = A.

(v) The existence of λ follows from Lemma 1.19. By (iv), rrkB EB = degB,
so EB

∼= BB by Lemma 1.24. Let µ be a generator of EB. By (ii), 0 = π(µ) =
1
2 (µ+λ−1µλ), so λµ = −µλ. By (iv), B = E2 = µBµB ⊆ µA, so µ is invertible on
the right. This means that NrdA/S(µ) ∈ S×, hence µ ∈ A×. Now, since B = ZA(λ)
and E is the set of elements in A which anti-commute with λ (by (ii)), we have
E = µB = Bµ. This means that the map A = B ⊕ µB → B sending b1 + µb2 to
b1 (b1, b2 ∈ B) is a (B,B)-bimodule homomorphism which restricts to the identity
on B. Therefore, it must coincide with π. Finally, if degA = 2, then degB = 1, so
B = T and A is generated as an S-algebra by λ and µ. Since µ2 commutes with
both λ and µ, we have µ2 ∈ Z(A)× = S×.

(vi) It is straightforward to check that πf is an ε-hermitian form. We need
to show that πf is unimodular. Using (iv), choose {ui, vi}ti=1 ⊆ E such that
∑

i uivi = 1. Given φ ∈ HomB(P,B), define φ̂ : P → A by φ̂x = φx+
∑

i φ(xui)vi.

We claim that φ̂ ∈ HomA(P,A). Indeed, φ̂ is additive, and for all b ∈ B, b′ ∈ E

and x ∈ P , we have φ̂(xb) = φ(xb) +
∑

i φ(xbui)vi = φx · b+∑

i,j φ(xvjujbui)vi =

φx · b+∑

i,j φ(xvj)ujbuivi = φx · b+∑

j φ(xvj)ujb = φ̂x · b and φ̂(xb′) = φ(xb′) +
∑

i φ(xb
′ui)vi =

∑

i φ(xuivib
′) +

∑

i φx · b′uivi =
∑

i φ(xui)vib
′ + φx · b′ = φ̂x · b′.

A similar computation shows that φ 7→ φ̂ : HomB(P,B) → HomA(P,A) defines
an inverse to ξ 7→ π ◦ ξ : HomA(P,A) → HomB(P,B). The composition of the
latter map with x 7→ f(x,−) : P → HomA(P,A) is precisely x 7→ πf(x,−) : P →
HomB(P,B), so this map is bijective and πf is unimodular. �

4B. Some Structural Results.

Lemma 4.3. With Notation 4.1, suppose that R is semilocal, S = R and degB = 1.
Then there exist λ, µ ∈ A such that λ2, µ2 ∈ R×, λµ = −µλ, {1, λ} is an R-basis
of B, {1, λ, µ, µλ} is an R-basis of A, and:

(i) λσ = λ and µσ = −µ if τ = idT ;
(ii) λσ = −λ and µσ = µ if τ is unitary and σ is orthogonal;
(iii) λσ = −λ and µσ = −µ if σ is symplectic.

Furthermore, π(b1 + µb2) = b1 for all b1, b2 ∈ B.
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Proof. Let λ and µ be as in Lemma 4.2(v). Then all the requirements are fulfilled
except, maybe, (i)–(iii). Note also that we may replace µ with any element of µB×.

Let E = kerπ. Since Eσ = E, Bσ = B and A = B ⊕ E, we have S1(A, σ) =
S1(B, σ) ⊕ S1(E, σ) and S−1(A, σ) = S−1(B, σ) ⊕ S−1(E, σ).

Suppose that τ = idT . Then λ
σ = λ and S−1(A, σ) = S−1(B, σ) ⊕ S−1(E, σ) =

S−1(E, σ). By Lemma 1.26, there exists µ′ ∈ S−1(A, σ) ∩A×. Since µ′ ∈ E = µB,
we have µ′ = µt for some t ∈ T , so we may replace µ with µ′ and finish.

Suppose that τ is unitary and σ is orthogonal. Then τ is the standard R-
involution of T , so λσ = −λ. By Proposition 1.21, we have 1 = rkR S−1(A, σ) =
rkR S−1(B, σ) + rkR S−1(E, σ) = 1 + rkR S−1(E, σ), hence S−1(E, σ) = 0. Since
E = S1(E, σ) ⊕ S−1(E, σ), this means that E = S1(E, σ) and µ

σ = µ.
Finally, when σ symplectic, using Proposition 1.21 and the fact that R is a

summand of B, one finds that 1 = rkR S1(A, σ) ≥ rkR S1(R, σ) + rkR S1(E, σ) =
1+rkR S1(E, σ), hence S1(E, σ) = 0. This means that E = S−1(E, σ), so µ

σ = −µ
and (λµ)σ = −λµ. Now, λ = −µλµ−1 = (µλ)σµ−1 = λσµσµ−1 = −λσ. �

Lemma 4.4. With Notation 4.1, suppose that T ∼= S × S as S-algebras, and let
e, e′ ∈ T correspond to (1S , 0S), (0S , 1S) under this isomorphism. Then:

(i) B = eAe + e′Ae′.
(ii) rrkA eA > 0 and AeA = A.
(iii) eB is an Azumaya S-algebra of degree 1

2 degA and [eB] = [A] in BrS.
(iv) For every Q ∈ P(B), we have rrkAQA = rrkeB Qe+ rrke′B Qe

′.
(v) π : A→ B is given by πa = eae+ e′ae′.

Proof. (i) Since T = S[e], we have B = ZA(e). Using the Peirce decomposition of
A relative to e (i.e. A = eAe⊕ eAe′ ⊕ e′Ae⊕ e′Ae′ as abelian groups), it routine to
check that ZA(e) = eAe+ e′Ae′.

(ii) Since BB is a summand of BA (Lemma 4.2(iv)) and T is a T -summand of
B [27, Proposition 2.4.6(1)], eT ∼= S is an S-summand of eA, hence rrkA eA > 0.
That AeA = A follows from Corollary 1.12.

(iii) By (i), eB = e(eAe + e′Ae′) = eAe, and by Corollary 1.12 and (ii), eAe is
Azumaya over S and [eAe] = [A]. That deg eB = 1

2 degA follows from degB =
1
2 ιdegA.

(iv) SinceQ = Qe⊕Qe′ asB-modules, QA = QeA⊕Qe′A, so it is enough to check
that rrkeB Qe = rrkAQeA. By Corollary 1.12 and (ii), rrkAQeA = rrkeAeQeAe =
rrkeB Qe.

(v) Using (i), it is easy to check that a 7→ eae + e′ae′ is a homomorphism of
(B,B)-bimodules which splits B → A. Thus, it must coincide with π. �

4C. The Types of (σ, ε) and (τ, ε).

Lemma 4.5. With Notation 4.1, if σ is unitary, then so is τ .

Proof. It is enough to prove this when R is a field. Recall that T0 = S1(T, σ) and
let T1 = S−1(T, σ). Since 2 ∈ R×, we have T = T0 ⊕ T1. Since σ is unitary, S is
quadratic étale over R and σ|S is the standard R-involution of S. By Lemma 1.19,
there exists λ ∈ S× such that λσ = −λ. One readily checks that t 7→ λt : T0 → T1
is a T0-module isomorphism, so rkT0 T = 2. We observed in the comment after
Notation 4.1 that (B, τ) is Azumaya over T0. Since rkT0 T = 2, Proposition 1.21(iii)
implies that τ is unitary. �

Lemma 4.6. With Notation 4.1, if R is connected, then the type of (τ, ε) is constant
on SpecT0 (see 1D).

Proof. By Proposition 1.21(v), (σ, ε) is either orthogonal, symplectic or unitary. If
(σ, ε) is unitary, then the lemma follows from Lemma 4.5. Suppose that (σ, ε) is
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orthogonal or symplectic. Then S = R. If T is connected, then the type of (τ, ε)
is constant (Proposition 1.21(v)), so assume that T is not connected. Now, by
Lemmas 1.16 and 1.17, T = R×R and τ |T is either the standard R-involution of T ,
or idT . In the former case, (τ, ε) is unitary, so assume τ |T = idT . Let e = (1R, 0R)
and e′ = (0R, 1R). By Lemma 4.4(i), (B, τ) = (eAe, σ|eAe) × (e′Ae′, σ|e′Ae′), and
by Corollary 1.22(ii), (σ|eAe, eε) and (σ|e′Ae′ , e

′ε) have the same type as (σ, ε), so
the type of (τ, ε) is constant. �

4D. Simultaneous Conjugation and Transfer. We check that the setting of
Notation 4.1 is compatible with µ-conjugation and e-transfer (see 2G).

Proposition 4.7. With Notation 4.1, let (P, f) ∈ Hε(A, σ) and (Q, g) ∈ Hε(B, τ).
Let δ ∈ S satisfy δσδ = 1 and let µ ∈ Sδ(B, τ) ∩B×. Then:

(i) The assumptions of Notation 4.1 continue to hold upon replacing σ, τ, ε with
Int(µ) ◦ σ, Int(µ) ◦ τ, δε.

(ii) ρ(µg) = µ(ρg) and π(µf) = µ(πf) (notation as in 2G).

Proof. (i) We need to check that Int(µ)◦σ is an involution of A which restricts to an
involution of T , and (δε)Int(µ)◦σ(δε) = 1. Noting that µ ∈ B = ZA(T ), µ

σ = δ−1µ
and T σ = T , this follows by straightforward computation.

(ii) Let y, y′ ∈ Q and a, a′ ∈ A. Then ρ(µg)(y⊗a, y′⊗a′) = aInt(µ)◦σµg(y, y′)a′ =
µaσµ−1µg(y, y′)a′ = µ(ρg)(y ⊗ a, y′ ⊗ a′), so ρ(µg) = µ(ρg). Now let x, x′ ∈ P .
Then π(µf)(x, x′) = π(µ · f(x, x′)) = µ · π(f(x, x′)) = µ(πf)(x, x′), where the
second equality holds because π is a left B-module homomorphism and µ ∈ B. �

Lemma 4.8. With Notation 4.1, let e ∈ B be an idempotent with rrkB eB > 0 and
let Q ∈ P(B). Then the map ξ = ξQ : Qe ⊗eBe eAe → Q ⊗B Ae determined by
ξ(x⊗ a) = x⊗ a (x ∈ Qe, a ∈ eAe) is an isomorphism of eAe-modules.

Proof. By Proposition 1.12, BeB = B. Choose elements {ui, vi}ti=1 ⊆ B such that
∑

i uievi = 1, and consider the map ψ : Q ⊗B Ae → Qe ⊗eBe eAe determined
by x ⊗ a 7→ ∑

i xuie ⊗ evia (x ∈ Q, a ∈ Ae). It is well-defined because for
all b ∈ B, we have ψ(xb ⊗ a) =

∑

i xbuie ⊗ evia =
∑

i,j xujevjbuie ⊗ evia =
∑

i,j xuje ⊗ evjbuievia =
∑

j xuje ⊗ evjba = ψ(x ⊗ ba). A similar computation
shows that ψ is an inverse of ξ. �

Proposition 4.9. With Notation 4.1, let (P, f) ∈ Hε(A, σ) and (Q, g) ∈ Hε(B, τ).
Let e ∈ B be an idempotent such that eσ = e and rrkB eB is positive and constant
along the fibers of Spec T → SpecS. Write τe = τ |eBe, σe = σ|eAe, ρe = ρ|eBe,
πe = π|eAe, fe = f |Pe×Pe, ge = g|Qe×Qe (see 2G). Then:

(i) The assumptions of Notation 4.1 apply upon replacing A, σ, ε, T,B, τ, ρ, π
with eAe, σe, eε, eT, eBe, τe, ρe, πe.

(ii) Upon identifying Q ⊗eBe eAe with Q ⊗B Ae as in Lemma 4.8, we have
ρege = (ρg)e. Furthermore, the map L 7→ Le defines a bijection from the
Lagrangians of ρg to the Lagrangians of ρege and, for a Lagrangian L of
ρg, we have L⊕Q = QA (as B-modules) if and only if Le⊕Qe = QAe.

(iii) πefe = (πf)e, the map M 7→ Me is a bijection between the Lagrangians of
πf and the Lagrangians of πefe and, for a Lagrangian M of πf , we have
MA = P if and only if Me · eAe = Pe.

Proof. By Proposition 1.12, BeB = B, hence AeA = ABeBA = ABA = A, and so
eAA is a progenerator. Thus, we can use (t1)–(t6) in 2G for both (B, τ) and (A, σ).

(i) Everything is straightforward except the fact that rkT (eAeeAe) is constant
along the fibers of SpecT → SpecS. To see this, we use Corollary 1.12 to get
rkT (eAeeAe) = deg eBe·rrkeBe(eAeeBe) = deg eBe·rrkB eAB = rrkB eB·ι rrkA eA =
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rrkB eB · 2 rrkB eB = 2(rrkB eB)2. Since rrkB eB is constant along the fibers of
SpecT → SpecS, so is rkT (eAeeAe).

(ii) This is straightforward; use facts (t1)–(t6) in 2G and Morita theory.
(iii) That (πf)e = πefe is straightforward. The second assertion is (t5) in 2G. For

the third assertion, note thatMA = P impliesMe·eAe =M(AeA)e =MAe = Pe,
and conversely,Me·eAe = Pe impliesMA =M(AeAeA) =Me·eAe·eA = Pe·eA =
P (AeA) = PA = P . �

4E. Two Important Reductions.

Reduction 4.10. With Notation 4.1, suppose that R is connected semilocal and
[B] = 0 in BrT (note that [A] = 0 in BrS implies [B] = [A ⊗S T ] = 0). We
claim that verifying statements about hermitian forms over (A, σ) and (B, τ) which
are amenable to conjugation and transfer (in the sense of 2G), e.g., the statements
L ⊕ Q = QA and MA = P from parts (ii) and (iii) of Proposition 4.9, can be
reduced into verifying them in the following setting, and without affecting the the
types of (σ, ε) and (τ, ε):

• degB = 1, i.e. B = T ,
• τ is orthogonal or unitary,
• σ is orthogonal or unitary.

This is done as follows: Applying Proposition 1.21(v) and Lemma 4.6 with ε = 1,
we see that the types of σ and τ are constant. If τ is not orthogonal or unitary,
then it is symplectic. In this case, by Lemma 1.26, there exists µ ∈ S−1(B, τ)∩B× .
By Proposition 4.7, we may apply µ-conjugation and replace σ, τ, ε with Int(µ) ◦
σ, Int(µ),−ε, thus changing τ into an orthogonal involution.

Next, by Theorem 1.30, there exists an idempotent e ∈ B such that eτ = e and
rrkB eB = deg eBe = indB = 1. By Proposition 4.9, we may apply e-transfer
and replace A, σ, ε, T,B, τ, ρ, π with eAe, σe, eε, eT, eBe, τe, ρe, πe and get degB =
indB = 1.

Finally, if σ is not orthogonal or unitary, then it is symplectic. In this case,
by Lemma 4.3, there exists λ ∈ T× with λσ = −λ. By Proposition 4.7, we can
apply λ-conjugation and replace σ, ε with Int(λ) ◦ σ, Int(λ),−ε, turning σ into an
orthogonal involution and leaving τ unchanged.

Reduction 4.11. Assume that R is connected semilocal and [A] = 0 in BrS.
After performing Reduction 4.10, Proposition 2.12 implies that σ is adjoint to a
unimodular binary δ-hermitian form over (S, σ|S), with δ = 1 if σ is orthogonal.
This form can be diagonalized by Proposition 2.13, so, by Example 2.10, we may
assume that A = M2(S) and σ is given by [ a b

c d ] 7→ [ aσ αcσ

α−1bσ dσ ] for some α ∈
S1(S, σ) ∩ S× = R×.

4F. Miscellaneous Results.

Lemma 4.12. With Notation 4.1, if (τ, ε) is orthogonal, then (σ, ε) is orthogonal.

Proof. It is enough to prove the lemma after specializing R to the algebraic closure
of each of its residue fields, so assume R is an algebraically closed field. Then
[B] = 0. We apply Reduction 4.10 to assume that degA = 2 and τ is orthogonal.
Since (τ, ε) is orthogonal, ε = 1. By Lemma 4.3(i), dimR S1(A, σ) = 3, so (σ, ε) is
orthogonal by Proposition 1.21. �

Lemma 4.13. With Notation 4.1, let P ∈ P(A).

(i) The map EndA(P )⊗S T → EndB(P ) given by sending ψ⊗ t to [x 7→ ψx · t]
is an isomorphism of T -algebras.

(ii) For all ψ ∈ EndA(P ), we have NrdEndA(P )/S(ψ) = NrdEndB(P )/T (ψ) in T .
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Proof. We may assume that rrkA P > 0, otherwise write R = R0 × annR P (use
[27, Proposition 1.1.15]) and work over R0.

(i) By Proposition 1.11(i), EndA(P ) is Azumaya over S, EndB(P ) is Azumaya
over T and deg EndB(P ) = rrkB P = ι rrkA P = ιdeg EndA(P ) = deg EndA(P )⊗S

T . Thus, the map EndA(P ) ⊗S T → EndB(P ) is a homomorphism of Azumaya
T -algebras of equal degrees. By [39, Corollary III.5.1.18], such a homomorphism is
always an isomorphism.

(ii) This follows from (i) and the fact that reduced norm is preserved under
base-change. �

Proposition 4.14. With Notation 4.1, suppose that R is an infinite field, and let
R be an algebraic closure of R. Let (Q, g) ∈ Hε(B, τ) and let L be a Lagrangian of
ρg. Let (P, f) ∈ Hε(A, σ) and let M be a Lagrangian of πf . Then:

(i) If there exists ϕ ∈ U0(ρgR) such that QR⊕ϕ(LR) = QAR, then there exists
ψ ∈ U0(ρg) such that Q ⊕ ψL = QA.

(ii) If there exists ϕ ∈ U0(πfR) such that ϕM · AR = PR, then there exists
ψ ∈ U0(πf) such that ψM ·A = P .

(See 2E for the definition of U0(−).)

Proof. (i) Consider U0(ρg) as a functor from R-rings to groups and define a sub-
functor R1 7→ X(R1) of U

0(ρg) by

X(R1) = {ψ ∈ U0(ρgR1) : QR1 ⊕ ψ(LR1) = QA}.
We claim that X is represented by open affine subscheme of U0(ρg), also denoted
X.

To see this, fix R-bases {xi}ri=1, {vi}si=1, {yi}r+s
i=1 to Q, L, QA, respectively.

These will also be viewed as R1-bases of QR1 , LR1 , QAR1 . The group U0(ρgR1)

is the zero locus of certain polynomial functions on EndR1(QAR1)
∼= R

(r+s)2

1 with
coefficients in R. Thus, it is enough to show that there exists a polynomial ξ ∈
R[x11, x12, . . . , x(r+s)(r+s)] such that X(R1) = {ψ ∈ U0(ρgR1) : ξ(ψ) ∈ R×

1 }.
To that end, given y ∈ QAR1 , let [y] denote the vector (α1, . . . , αr+s) ∈ Rr+s

1

for which y =
∑

i yiαi. Then the function sending a ∈ Rr2

1
∼= EndR1(QR1) to the

determinant of the (r+s)×(r+s) matrix with columns [v1], . . . , [vs], [ax1], . . . , [axr]
is a polynomial ξ ∈ R[x11, x12, . . . , x(r+s)(r+s)] having the desired property.

By Theorem 2.21, the irreducible R-variety U0(ρg) is rational. By the previous
paragraph,X is an open subvariety ofU0(ρg) and it is nonempty because ϕ ∈ X(R).
Thus, X is also rational. Since rational varieties have points over any infinite field,
X(R) 6= ∅ and the existence of ψ follows.

(ii) This is similar to (i), but one uses an open subscheme of U0(πf) defined as
follows: Write r = dimR P . Since ϕMR ·AR = PR, there exist pairs {(mi, ai)}ri=1 ⊆
M ×A such that {ϕmi ·ai}ri=1 forms an R-basis to PR. Given an R-ring R1, define
X(R1) to be the set of ψ ∈ U0(πfR1) such that {ψmi · ai}ri=1 is an R1-basis to
PR1 . �

5. Verification of (E2) and (E4)

Keep the assumptions of Notation 4.1. The purpose of this section is to prove:

Theorem 5.1. With Notation 4.1, suppose that R is semilocal and let (Q, g) ∈
Hε(B, τ). Assume that [ρg] = 0 in W ε(A, σ). Then:

(i) When T is connected, there exists a Lagrangian L of ρg such that L⊕Q =
QA if and only if:
(1) (σ, ε) is not orthogonal, or
(2) (τ, ε) is not unitary, or
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(3) [A] = 0 in BrS, or
(4) [B] 6= 0 in BrT , or

(5) (τ, ε) is unitary, [B] = 0, rrkB Q is even and [D(g)] = rrkB Q
2 [A]; here,

D(g) is the discriminant algebra of g, see 2H.

When none of (1)–(5) hold, rrkB Q is even, [D(g)] = ( rrkB Q
2 + 1) · [A] and

g is isotropic.
(ii) There exists (Q′, g′) ∈ Hε(B, τ) with [g] = [g′] and a Lagrangian L of ρg′

such that L⊕Q′ = Q′A.

In Section 7, we will use Theorem 5.1 to establish conditions (E2) and (E4) of
Theorem 3.6 when R is semilocal. The reader can skip to the next section without
loss of continuity.

It is enough to prove Theorem 5.1 when R is connected. Indeed, we can write R
as a finite product of connected semilocal rings and work over each factor separately.
In this case, by Proposition 1.21(v) and Lemma 4.6, exactly one of the following
hold:

(1) (σ, ε) is unitary or symplectic,
(2) (σ, ε) is orthogonal and (τ, ε) is orthogonal or symplectic,
(3) (σ, ε) is orthogonal and (τ, ε) is unitary.

The first two cases will be handled in Theorem 5.9 and the third case will be treated
in Theorem 5.21.

5A. Cases (1) and (2). We begin by establishing some special cases of Theo-
rem 5.1 in the context of case (1).

Proposition 5.2. With Notation 4.1, suppose that R is a field, S = R × R and
[A] = 0. Let (Q, g) ∈ Hε(B, τ) be a hermitian space such that rrkB Q is constant.
Then ρg admits a Lagrangian L satisfying Q⊕ L = QA.

Proof. We may apply Reduction 4.10 to assume that B = T and degA = 2.
Let η denote a nontrivial idempotent of S. Then ησ = 1−η. By Example 2.4, we

may assume that T = T1×T1, B = B1×Bop
1 and A = A1×Aop

1 , with T1 ⊆ B1 ⊆ A1,
and under these identifications, σ is the exchange involution (x, yop) 7→ (y, xop).
Furthermore, all hermitian forms over (B, τ) are hyperbolic, and every hermitian
space is determined up to isomorphism by its underlying module.

Write ε as (α, α−1) ∈ R×R and consider the ε-hermitian form g1 : B ×B → B
given by g1((x1, x

op
2 ), (y1, y

op
2 )) = (αx2y1, (y2x1)

op). It is easy to see that (B, g1) ∈
Hε(B, τ). Since rrkB B = 1 and rrkB Q is constant, we haveQ ∼= Bn for n = rrkB Q
(Lemma 1.24). As we noted above, this means that (Q, g) ∼= n · (B, g1). It is
therefore enough to prove the proposition for (Q, g) = (B, g1). In this case, the
isomorphism b ⊗ a 7→ ba : B ⊗B A → A is an isometry from (QA, ρg) to (A, f1),
where f1 is given by the same formula as g1.

Fix an identification A1
∼= M2(R). Since B1 = T1 is a quadratic étale R-algebra,

there exists t ∈ T1 such that r := t2 ∈ R× and T1 = R⊕ tR (Lemma 1.19). Thus,
t is conjugate to [ 0 r

1 0 ] in A1. Using this, we choose the identification A1
∼= M2(R)

to satisfy t = [ 0 r
1 0 ]. Now, B1 = T1 = [ 1 0

0 1 ]R + [ 0 r
1 0 ]R and one readily checks that

L = [ 1 0
0 0 ]A1 × (A1[ 0 0

0 1 ])
op is a Lagrangian of f1 = ρg1 satisfying B ⊕ L = A. �

Proposition 5.3. With Notation 4.1, suppose that S is a field, [A] = 0 and (σ, ε)
is symplectic or unitary. Let (Q, g) ∈ Hε(B, τ) be a hyperbolic hermitian space such
that rrkB Q is constant. Then ρg admits a Lagrangian L satisfying Q⊕ L = QA.

Proof. By Reduction 4.10, we may assume that both σ and τ are orthogonal or
unitary and degB = 1. Thus, B = T and degA = 2. We now split into cases.
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Case I. rrkB Q is even. We apply Reduction 4.11 to assume that A = M2(S) and

σ is given by [ a b
c d ] 7→ [ aσ αcσ

α−1bσ dσ ] for some α ∈ R×.

Consider the ε-hermitian form g1 : B2×B2 → B given by g1((x1, x2), (y1, y2)) =
xσ1y2 + εxσ2y1. Then (B2, g1) is a hyperbolic. Since degB = 1 and n := rrkB Q is
constant and even, we have, by Lemma 2.7, (Q, g) ∼= n

2 · (B2, g1). It is therefore

enough to prove the proposition for (Q, g) = (B2, g1). In this case, (QA, ρg) can
be identified with (A2, f1), where f1 : A2 × A2 → A is given by the same formula
as g1.

Given an R-subspace E of A, let Sε(E) = {a ∈ E : εaσ = a}. Suppose that
there exists s ∈ S−ε(A) \ S−ε(B) such that s ∈ A×. It is routine to check that
L = {(a, sa) | a ∈ A} is a Lagrangian of A satisfying L ∩ B2 = 0, which, by R-
dimension considerations, implies L⊕B2 = A2. It is therefore enough to establish
the existence of s. To that end, we split into subcases.

Subcase I.1. (σ, ε) is symplectic. This means that S = R, σ is orthogonal and
ε = −1. Let E1 = {[ a 0

0 a ] | a ∈ S} and E2 = {[ 0 αc
c 0 ] | c ∈ S}. Then E1 and E2 are

1-dimensional S-subspaces of S1(A). If Ei ∩S1(B) = 0 for some i ∈ {1, 2}, then we
can take any 0 6= s ∈ Ei. Otherwise, since dimS B = 2, we have B = E1 + E2, so
take s = [ 1 α

1 0 ].

Subcase I.2. (σ, ε) is unitary. Then S is quadratic étale over R and τ is unitary
(Lemma 4.5). By Hilbert’s Theorem 90, there exists δ ∈ S× such that δ−1δσ = ε.
Since S−ε(A) = δ−1S−1(A), we reduce into verifying the existence of s′ ∈ S−1(A) \
S−1(B) with s′ ∈ A×.

Since σ and τ are unitary involutions, we have dimR S−1(A) = (degA)2 = 4
and dimR S−1(B) = (degB)2 · rkR S = 2 (Proposition 1.21). Let E1 = {[ a 0

0 a ] | a ∈
S−1(S)} and E2 = {[ 0 −αcσ

c 0 ] | c ∈ S}. Then E1 and E2 are R-subspaces of S−1(A)
of dimensions 1 and 2, respectively, and E2 \ {0} consists of invertible elements. If
S−1(B) 6= E2, then take any s′ ∈ E2\S−1(B). If S−1(B) = E2, then S−1(B)∩E1 =
E2 ∩ E1 = 0 and we can choose any nonzero s′ ∈ E1.

Case II. rrkB Q is odd. Writing (Q, g) ∼= (U ⊕U∗,hε
U ) with U ∈ P(B), Lemma 2.6

implies that rrkB Q = rrkB U + σ(rrkB U). Since rrkB Q is odd, rrkB U cannot be
σ-invariant. In particular, rrkB U is non-constant, forcing T = S × S.

Let e denote a nontrivial idempotent of T . We identify A with M2(S) in such a
way that the idempotent e corresponds to [ 1 0

0 0 ]. Under this identification, B is the
subalgebra of diagonal matrices.

We have eσ ∈ {e, 1 − e}. Since eσ = e implies that rrkB U is fixed by σ, we
must have eσ = 1 − e. We conclude that B = T = S × S and τ is the exchange
involution. Now, by Example 2.4, every unimodular ε-hermitian form over (B, τ)
is hyperbolic and determined up to isomorphism by its underlying module.

At this point, we claim that we may assume that ε = 1. Indeed, if σ is unitary,
then S is a quadratic étale R-algebra and σ|S is its standard involution. Thus,
by Hibert’s Theorem 90, there exists µ ∈ S× with µ(µ−1)σ = ε−1, or rather,
µ ∈ Sε−1(S, σ|S) ∩ S×. Applying µ-conjugation, see 2G and Proposition 4.7, we
may assume that ε = 1. If σ is not unitary, then R = S, σ is orthogonal and
ε = −1, so we can repeat the previous argument with µ := (1S ,−1S) ∈ S ×S = T ;
this will turn σ into a symplectic involution.

Define g1 : B × B → B by g1(x, y) = xτy. Then g1 is a hyperbolic 1-hermitian
form. Since rrkB B = degB = 1, we have (Q, g) ∼= n · (B, g1) for n = rrkB Q,
and so it enough to prove the proposition when (Q, g) = (Q, g1). In this case,
b ⊗ a 7→ ba : BA → AA is an isomorphism under which f1 := ρg1 is given by
f1(x, y) := xσy. Again, we split into subcases.
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Subcase II.1. (σ, ε) is symplectic. Since ε = 1, the involution σ is the unique
symplectic involution of M2(S), given by [ a b

c d ]
σ = [ d −b

−c a ] [40, Proposition 2.21].

Now, it is routine to check that L = {[ α β
α β ] |α, β ∈ S} is a Lagrangian of ρf

satisfying B ⊕ L = A.

Subcase II.2. (σ, ε) is unitary. Since eσ = 1−e, there are σ|S-linear automorphisms

σ2, σ3 : S → S such that σ : A → A is given by [ a b
c d ]

σ = [ dσ σ2b
σ3c aσ ]. Furthermore,

σ2 ◦ σ2 = σ3 ◦ σ3 = idS .
Since S is a quadratic field extension of R and 2 ∈ S×, there exists δ ∈ S× with

δσ = −δ. Choose some c ∈ S×. Then c = 1
2 (c − σ3c) +

1
2δ

−1δ(c + σ3c), hence at
least one of (c−σ3c), δ(c+σ3c) is nonzero. Replacing c with (c−σ3c) or δ(c+σ3c),
we may assume that σ3c = −c and c 6= 0. Now, it is straightforward to check that
L = [ 1 0

c 0 ]A = {[ α β
cα cβ ] |α, β ∈ S} is a Lagrangian of ρf satisfying B ⊕ L = A. This

completes the proof. �

Lemma 5.4. With Notation 4.1, suppose that S is field. Let (Q, g) ∈ Hε(B, τ) be
an anisotropic hermitian space such that ρg is hyperbolic. Then rrkB Q is constant.

Proof. This is clear if T is a field, so assume T = S×S and let e denote a nontrivial
idempotent in T . Then eτ ∈ {e, 1 − e}. By Lemma 2.6, rrkB Q is τ -invariant, so
it constant when eτ = 1 − e. It remains to consider the case eτ = e. Writing
e′ := 1− e, we need to show that rrkeB Qe = rrke′B Qe

′.
By Lemma 4.4, eB = eAe, e′B = e′Ae′ and AeA = A. Moreover, (B, τ) =

(eB, τ |eB) × (e′B, τ |e′B), because eτ = e. Thus, we may consider hermitian forms
over (eB, τ |eB), resp. (e′B, τ |e′B), as hermitian forms over (B, τ). Given (V, h) ∈
Hε(eB, τ |eB) (resp. (V, h) ∈ Hε(e′B, τ |e′B)), we write (V A, ρh) ∈ Hε(A, σ) for the
hermitian space obtained by regarding (V, h) as a hermitian space over (B, τ) and
then base-changing along the inclusion morphism ρ : (B, τ) → (A, σ).

For the sake of contradiction, suppose that rrkeB Qe 6= rrke′B Qe
′. By ap-

plying Lemma 4.4(iv) to QeB and Qe′B, we see that rrkAQeA 6= rrkAQe
′A.

Viewing ge and ge′ (notation as in 2G) as hermitian forms over (B, τ), we have
(Q, g) = (Qe, ge) ⊕ (Qe′, ge′). Thus, ge and ge′ are anisotropic. Furthermore,
[ρ(ge)] + [ρ(ge′)] = [ρg] = 0 in Wε(A, σ), so ρ(ge) and −ρ(ge′) are Witt equiv-
alent. Since the underlying modules of ρ(ge) and −ρ(ge′), namely, QeA and
Qe′A, are not isomorphic, either ρ(ge) or ρ(ge′) is isotropic [56, §3.4(2)] (for in-
stance). Without loss of generality, suppose that V is a nonzero A-summand
of QeA such that ρ(ge)(V, V ) = 0. Then V e is a nonzero B-module (because
V eA = V AeA = V A = V ) and summand of QeAe = Qe such that g(V e, V e) = 0,
contradicting our assumption that g is anisotropic. �

Lemma 5.5. With Notation 4.1, let (Q, g) ∈ Hε(B, τ), and let L be a Lagragian
of ρg satisfying Q ⊕ L = QA. Suppose that rrkB Q is constant. Then rrkAQA is
even and rrkA L = 1

2 rrkAQA.

Proof. We have rrkB QA = ι rrkAQA = 2 rrkB Q, hence rrkB L = rrkB QA −
rrkB Q = 1

2 rrkB QA. The lemma follows because rrkB L = ι rrkA L and rrkB QA =
ι rrkAQA. �

Proposition 5.6. With Notation 4.1, suppose that R is a field and (σ, ε) is sym-
plectic or unitary. Let (Q, g) ∈ Hε(B, τ) and assume that rrkB Q is constant and
ρg admits a Lagrangian L with rrkA L = 1

2 rrkAQA. Then there exists ϕ ∈ U0(ρg)
such that Q ⊕ ϕL = QA.

Proof. By Proposition 4.14(i), when R is infinite, it is enough to prove the propo-
sition after base-changing to an algebraic closure of R, in which case [A] = 0. On
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the other hand, if R is finite, then [A] = 0 by Wedderburn’s theorem. We may
therefore assume that [A] = 0.

Suppose first that S is a field. Using Proposition 2.5, write (Q, g) = (Q1, g1) ⊕
(Q2, g2) with g1 anisotropic and g2 hyperbolic. Then [ρg1] = [ρg] = 0 in Wε(A, σ),
so ρg1 is hyperbolic by Theorem 2.8(ii). Let L1 be a Lagrangian of ρg1. By arguing
as in Remark 3.7, we see that Q1 ⊕ L1 = Q1A. Now, by Lemma 5.4, rrkB Q1 is
constant, and thus, so is rrkB Q2. With this at hand, Proposition 5.3 says that ρg2
admits a Lagrangian L2 such that Q2 ⊕ L2 = Q2A.

Let L′ = L1 ⊕ L2. Then Q ⊕ L′ = QA. By Lemmas 5.5 and 2.22, there exists
ϕ ∈ U(ρg) such that ϕL = L′. Since (σ, ε) is symplectic or unitary, we have
U(ρg) = U0(ρg) (Proposition 2.16), so we are done.

If S is not a field, Proposition 5.2 implies that there exists L′ ∈ Lag(ρg) with
Q⊕ L′ = QA and we can finish the proof as in the previous paragraph. �

We proceed with showing that Proposition 5.6 also holds in the context of
Case (2), namely, when (σ, ε) is orthogonal and (τ, ε) is orthogonal or symplec-
tic. This is similar to the proof of Proposition 5.6, but a few modifications are
required in order to account for the possibility that U0(ρg) is smaller than U(ρg).

Proposition 5.7. With Notation 4.1, suppose S is a field, [A] = 0, (σ, ε) is
orthogonal, and τ |T = idT . Let (Q, g) ∈ Hε(B, τ) be a hyperbolic hermitian
space such that rrkB Q is constant and positive, and let L be a Lagrangian of ρg.
Then there exist ϕ1, ϕ−1 ∈ U(ρg) such that Nrd(ϕ1) = 1, Nrd(ϕ−1) = −1 and
Q⊕ ϕ1L = Q⊕ ϕ−1L = QA.

Proof. As noted in 2F, since (σ, ε) is orthogonal, all Lagrangians of ρg have reduced
rank 1

2 rrkA P and are thus isomorphic as A-modules (Lemma 1.24). Thus, by
Lemma 2.22, U(ρg) acts transitively on Lag(ρg). It is therefore enough to prove
the proposition for a single Lagrangian L0 of our choice.

By Reductions 4.10 and 4.11, we may assume that B = T , A = M2(S), ε = 1
and σ is orthogonal and given by [ a b

c d ]
σ = [ a αc

α−1b d ] for some α ∈ S×.
As noted in Case II of the proof of Proposition 5.3, since σ|T = idT , the reduced

rank of Q is even. Thus, arguing as in Case I of that proof, we may assume that
(Q, g) = (B2, g1) with g1 given by g1((x1, x2), (y1, y2)) = xσ1y2 + xσ2y1. We identify
QA with A2 and EndA(QA) with M2(A) in the obvious way. The form f1 := ρg1
is defined by same formula as g1 and we take L0 := A× 0 as our fixed Lagrangian.

Existence of ϕ1. Let s = [ 0 −α
1 0 ] ∈ M2(S) = A. Then sσ = −s, s ∈ A× and

s /∈ B = T because σ|T = idT . It is routine to check that ϕ1 := [ 1 0
s 1 ] ∈ M2(A) is

an isometry of ρg and ϕ1L0 = {(a, sa) | a ∈ A}. Now, as in Case I of the proof of
Proposition 5.3, we have Q⊕ ϕ1L0 = QA.

Existence of ϕ−1. Since B = T is a quadratic étale S-algebra, we can write B =
S ⊕ λS with λ2 ∈ S×. The assumption σ|T = idT allows us to write λ = [ x1 αx2

x2 x3 ]
with x1, x2, x3 ∈ S. Let

ψ :=

[

1
1

1
1

]

∈ M4(S) = M2(A)

It is routine to check that ψ ∈ U(ρg), Nrd(ψ) = −1, and

ψL0 = {([ 0 0
c d ], [

a b
0 0 ]) | a, b, c, d ∈ S}.

Now, if x2 6= 0, then B2 ⊕ ψL0 = A2 and we can take ϕ−1 = ψ. On the other
hand, if x2 = 0, then B = [ S 0

0 S ], and hence ψ(B2) = B2. This means that
B2 + ψϕ1L0 = ψ(B2 + ϕ1L0) = ψ(A2) = A2, so we can take ϕ−1 = ψϕ1. �
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Proposition 5.8. With Notation 4.1, suppose that S is a field, (σ, ε) is orthogonal,
and τ |T = idT . Let (Q, g) ∈ Hε(B, τ) and assume that rrkB Q is constant and ρg
admits a Lagrangian L. Then there exists ϕ ∈ U0(ρg) such that Q⊕ ϕL = QA.

Proof. As in the proof of Proposition 5.6, we can reduce to the case where [A] =
0 and write (Q, g) = (Q1, g1) ⊕ (Q2, g2) with g1 anisotropic and g2 hyperbolic.
Furthermore, rrkB Q2 is constant, ρg1 is hyperbolic and any Lagrangian U of ρg1
satisfies Q1 ⊕ U = Q1A.

If Q2 = 0, then L is a Lagrangian of (P1, f1) = (P, f) and we can take ϕ = idP .
Assume Q2 6= 0, let U be a Lagrangian of ρg1 and let V be a Lagrangian of ρg2.

By Proposition 5.7, there exist ϕ1, ϕ−1 ∈ U(ρg2) such that Q2 ⊕ ϕiV = Q2A and
Nrd(ϕi) = i for i ∈ {±1}. Then Li := U⊕ϕiV (i = ±1) is a Lagrangian of ρg having
the same reduced rank as L (see 2F) and satisfying Q⊕Li = QA. By Lemma 2.22,
there exists ψ ∈ U(ρg) such that ψL = L1. If Nrd(ψ) = 1, take ϕ = ψ. On the
other hand, if Nrd(ψ) = −1, then we can take ϕ := (idP1 ⊕ϕ−1ϕ

−1
1 )ψ, because

ϕL = U ⊕ ϕ−1ϕ
−1
1 (ϕ1V ) = L−1 and Nrd(ϕ) = Nrd(ϕ−1ϕ1)

−1 Nrd(ψ) = 1. �

We can now establish Theorem 5.1 in cases (1) and (2)

Theorem 5.9. Assuming R is connected, Theorem 5.1 holds when (σ, ε) is sym-
plectic or unitary, or (τ, ε) is orthogonal or symplectic.

Proof. We only prove part (ii). It will be clear from the proof that we can take
(Q′, g′) = (Q, g) when T is connected, which is exactly what we need to show in
order to prove (i).

Recall that we are given (Q, g) ∈ Hε(B, τ) such that [ρg] = 0 in Wε(A, σ). We
need to show that ρg admits a Lagrangian L such that Q⊕L = QA, possibly after
replacing g with a Witt equivalent form. By Theorem 2.8(ii), ρg is hyperbolic.

We may assume that S is connected. If not, then S = R×R (Lemma 1.16), and
by Example 2.4, g is hyperbolic. We may therefore replace g with the zero form
and take L = 0.

We may also assume that rrkB Q is constant. Indeed, if rrkB Q is not constant,
then T is not connected. Now, by Lemma 1.16 and our assumption that S is
connected, T ∼= S×S, so T has exactly two primitive idempotents, denoted e and e′.
If σ swaps e and e′, then rrkB Q is constant because it is σ-invariant (Lemma 2.6),
so it must be the case that σ fixes e and e′. By Lemma 4.4, B = eAe ⊕ e′Ae′ and
[eB] = [A]. Thus, ind eB = indA, and similarly, ind e′B = indA. Let U be a finite
projective eB-module of reduced rank ind eB and let V be a finite projective e′B-
module of reduced rank ind e′B; they exist by Theorem 1.25. By Lemma 1.24 and
Corollary 1.13, there are r, s ∈ Z such that Q ∼= U r ⊕ V s, and by Lemma 4.4(iv),
rrkAQA = rrkeB U

r + rrke′B V
r = (r + s) indA. Applying Corollary 2.9(ii) to

(QA, ρg), we see that there exists W ∈ P(A) with rrkAQA = 2 rrkAW . Since
indA | rrkAW (Corollary 1.13), rrkAQA is an even multiple of indA, and so
r ≡ s mod 2. Now, if r > s, we can replace g with g ⊕ ( r−s

2 ) · hε
V and if r < s,

we can replace g with g ⊕ ( s−r
2 ) · hε

U . After this modification, we get r = s, which
means that rrkB Q is constant.

Fix a Lagrangian L of ρg. Since S is connected, rrkA L = 1
2 rrkAQA (see 2F). Let

m1, . . . ,mt denote the maximal ideals of R. By Propositions 5.6 and 5.8, for every
1 ≤ i ≤ t, there exists ϕi ∈ U0(ρg(mi)) such that Q(mi) ⊕ ϕi(L(mi)) = QA(mi).
By Theorem 2.18, there exists ϕ ∈ U0(ρg) such that ϕ(mi) = ϕi. This means that
Q(mi)⊕ (ϕL)(mi) = QA(mi) for all i, so by Lemma 1.7, we have Q⊕ (ϕL) = QA.
Since ϕL is a Lagrangian of QA, we are done. �

5B. Case (3). We now turn to prove Theorem 5.1 in Case (3), namely, when R is
connected, (σ, ε) is orthogonal and (τ, ε) is unitary. Note that S = R.
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This case is more subtle than Cases (1) and (2) because the key Propositions 5.6
and 5.8 no longer hold. The proof will therefore consist of characterizing when
these propositions fail, and bypassing the failure when they do.

We begin with treating the case where rrkB Q is odd; this case is degenerate.

Proposition 5.10. With Notation 4.1, suppose that R is connected semilocal, (σ, ε)
is orthogonal and τ is unitary. Let (Q, g) ∈ Hε(B, τ) and assume that ρg is hy-
perbolic and rrkB Q is not constant or not even. Then T is not connected and g is
hyperbolic.

Proof. If T is not connected, then T ∼= R×R by Lemma 1.16, and g is hyperbolic
by Example 2.4 (applied to (B, τ)). It is therefore enough to show that T is not
connected.

For the sake of contradiction, suppose that T is connected. Then rrkB Q is con-
stant and odd. Furthermore, by Corollary 2.9(ii), there exists V ∈ P(A) such that
2ι rrkA V = ι rrkAQA = 2 rrkB Q. Thus, n := rrkA V is odd. By Corollary 1.13,
indA | n, so by Theorem 1.8, n[A] = 0 in BrR. On the other hand, since A has an
R-involution, 2[A] = 0, so [A] = 0.

We now apply Reductions 4.10 and 4.11 to assume that B = T , A = M2(S),

ε = 1 and σ : A→ A is orthogonal and given by [ a b
c d ]

σ = [
a ηc

η−1b d ] for some η ∈ S×.

By Lemma 1.19, there exists λ ∈ T× such that λσ = −λ and T = R ⊕ λR.
Then λ = [ 0 ηc

−c 0 ] for some c ∈ S×, and consequently T = R[ 1 0
0 1 ] ⊕ R[ 0 η

−1 0 ].
Furthermore, by Proposition 2.13, g is diagonalizable, so there exist α1, . . . , αn ∈
S1(T, τ) ∩ T× = R× such that g ∼= 〈α1, . . . , αn〉(T,τ) (notation as in Example 2.1).
Note that n = rrkB Q is odd.

Let e := [ 1 0
0 0 ]. Then e is an idempotent satisfying eσ = e, eAe = eR and

AeA = A, hence e-transfer (see 2G) induces an group isomorphism [f ] 7→ [fe] :
W1(A, σ) → W1(R, idR). It is routine to check that upon identifying Ae with
R2 via [ a 0

c 0 ] 7→ (a, c), the bilinear form (ρg)e : Ane × Ane → eR ∼= R is just
〈α1, ηα1, . . . , αn, ηαn〉(R,idR). By assumption, this form is hyperbolic, so it is iso-
morphic to n〈1,−1〉(R,idR) (Lemma 2.7). Comparing discriminants (using Propo-

sition 2.27(iv)), we find that (−η)n is a square in R×. Since n is odd, this means
that −η is a square in R×, say −η = r2. Then 1

2 [
1 r

r−1 1
] = 1

2 [
1 0
0 1 ] − 1

2r [
0 η
−1 0 ] is a

nontrivial idemptonent in T , contradicting our assumption that T is connected. �

Recall from 2F that Lag(f) denotes the set of Lagrangians L of (P, f) ∈ Hε(A, σ)
with rrkA L = 1

2 rrkA P . When (σ, ε) is orthogonal, Lag(f) consists of all the
Lagrangians of f , and when R is semilocal, any two Lagrangians in Lag(f) are
isomorphic (Lemma 1.24). These facts will be used without comment in the sequel.

Proposition 5.11. With Notation 4.1, suppose that (σ, ε) is orthogonal and τ
is unitary. Let (Q, g) ∈ Hε(B, τ) and assume that ρg is hyperbolic and rrkB Q
is even. Then there exists a unique U(ρg)-equivariant natural transformation of
functors from R-rings to sets,

Φg : Lag(ρg) → µ2,R,

such that for any R-ring R1 and any idempotent e1 ∈ TR1 with e1 + eσ1 = 1, one
has Φg(PR1e1AR1) = 1. The map Φg has the following additional properties:

(i) If there exists an idempotent e ∈ T such that eσ + e = 1, then Φg = ΦPeA

(notation as in Proposition 2.25).
(ii) If n := rrkB Q is constant and M ∈ Lag(g), then Φg(MA) = (−1)

n
2 .

(iii) If (Q′, g′) ∈ Hε(B, τ) is another hermitian space such that ρg′ is hyperbolic
and rrkB Q

′ is even, then Φg⊕g′(L ⊕ L′) = Φg(L) · Φg′(L′) for all L ∈
Lag(ρg), L′ ∈ Lag(ρg′).
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(iv) If e ∈ B is an idempotent such that eτ = e and rrkB eB is positive and
constant on the fibers of SpecT → SpecR, then Φg(L) = Φge(Le) for all
L ∈ Lag(ρg) (notation as in 2G).

Note thatQR1e1 is a Lagrangian of gR1 (see Example 2.4), and thereforeQR1e1AR1

is a Lagrangian of ρgR1 . We alert the reader that Φg is not defined when rrkB Q is
not even.

Proof. Fix a Lagrangian L0 of ρg and let Φ0 := ΦL0 be as in Proposition 2.25.
Let R1 be an R-ring and let e, e′ ∈ TR1 be two idempotents satisfying e +

eσ = e′ + e′σ = 1. We claim that Φ0(QR1eAR1) = Φ0(QR1e
′AR1), or rather,

ΦQR1eAR1
(QR1e

′AR1) = 1 (Proposition 2.25(i)). Base changing along R → R1,
we may assume that R1 = R. Now, by Lemma 2.17, it is enough to show that
ΦQeA(Qe

′A)(m) = 1 in k(m) for all m ∈ MaxR, so assume that R is a field.
Since e ∈ T is an idempotent satisfying eσ + e = 1, it is nontrivial and hence
T = R × R. Similarly, e′ is nontrivial, so e = e′ or e = 1 − e′. In the first case,
we have QeA = Qe′A and ΦQeA(Qe

′A) = 1. In the second case, QA = QeA ⊕
Qe′A, so ΦQeA(Qe

′A) = (−1)rrkA QeA = (−1)rrkeB Qe = 1 by Proposition 2.26,
Lemma 4.4(iv), and the fact rrkB Q is even. This proves the claim.

Write R0 = T . Then TR0
∼= R0 × R0 by Lemma 1.18. Let e0 ∈ TR0 correspond

to (1R0 , 0R0) under this isomorphism. Since τ |T is the standard R-involution of T ,
we have e0 + eσ0 = 1.

Write θ := Φ0(PR0e0AR0) ∈ µ2(R0). We claim that θ is in fact in µ2(R).
Let i1, i2 : R0 → R0 ⊗ R0 denote the maps r 7→ r ⊗ 1 and r 7→ 1 ⊗ r re-
spectively. By what we have shown above, i1θ = Φ0(PR0⊗R0(i1e0)AR0⊗R0) =
Φ0(PR0⊗R0(i2e0)AR0⊗R0) = i2θ. Since µ2,R is a sheaf on (Aff/R)fpqc, and since
R → R0 is faithfully flat, this means that θ ∈ µ2(R).

Define Φg := θ−1 ·Φ0. It is clear that Φg is U(ρg)-equivariant. Let R1 and e1 ∈
TR1 be as in the proposition. Then, in µ2(R0⊗R1), we have Φg(QR0⊗R1e1AR0⊗R1) =
Φg(QR0⊗R1e0AR0⊗R1) = Φg(QR0e0AR0) = θ−1θ = 1. Since R1 → R0 ⊗R1 is faith-
fully flat, this means that Φg(QR1e1AR1) = 1 in µ2(R1).

Suppose that Φ′ : Lag(ρg) → µ2,R also satisfies the conditions of the Proposi-
tion. Then, by Proposition 2.25, both Φ′ and Φ must coincide with ΦQR0e0AR0

on

the subcategory of R0-rings. Since µ2 and Lag(ρg) are sheaves over (Aff/R)fpqc
and since R→ R0 is faithfully flat, this forces Φ′ = Φg.

We finish with verifying (i)–(iv). Since R → R0 is faithfully it is enough to
prove these statements after base-changing to R0. We may therefore assume that
T = R×R and there exists an idempotent e0 ∈ T with eσ0 + e0 = 1.

(i) This is immediate from the uniqueness part of Proposition 2.25.
(ii) We have Me0 = M ∩ Qe0. Since BA is flat, this means that Me0A =

MA ∩ Qe0A. By (i) and Proposition 2.26, Φg(MA) = (−1)rrkA Qe0A−rrkA Me0A,
and rrkAQe0A− rrkAMe0A = rrke0B Qe0 − rrke0B Me0 = n

2 by Lemma 4.4(iv).
(iii) This follows from (i) and Proposition 2.25(ii).
(iv) This follows readily from (i), item (t6) in 2G and Proposition 4.9(i). �

Proposition 5.12. With Notation 4.1, suppose that R is a field, [A] = 0, (σ, ε) is
orthogonal and τ is unitary. Let (Q, g) ∈ Hε(B, τ) be a hyperbolic hermitian space
such that rrkB Q is constant and even. Then:

(i) There exists L ∈ Lag(ρg) such that Q⊕ L = QA and Φg(L) = 1.
(ii) There is no L ∈ Lag(ρg) such that Q⊕ L = QA and Φg(L) = −1.

Proof. By Reduction 4.10 and Proposition 5.11(iv), we may assume that B = T ,
A = M2(R), ε = 1 and σ is orthogonal.
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(i) By Reduction 4.11, we may assume that σ is given by [ a b
c d ]

σ = [ a αc
α−1b d ] for

some α ∈ R×. Arguing as in Case I of the proof of Proposition 5.3, we may assume
that (Q, g) = (B2, g1), where g1((x1, x2), (y1, y2)) = xσ1y2 + xσ2y1. By Lemma 1.19,
there exists λ ∈ T such that T = R ⊕ λR and λτ = −λ. This forces B = T =
[ 1 0
0 1 ]R+ [ 0 α

−1 0 ]R. Now, it is routine to check that L = {([ 0 0
c d ], [

a b
0 0 ]) | a, b, c, d ∈ S}

is a Lagrangian of ρg satisfying B2 ⊕ L = A2. That Φg(L) = 1 will follow once we
prove (ii).

(ii) Step 1. It is enough to prove the statement after base-changing to an algebraic
closure of R, so assume that R is an algebraically closed field. In this case, B =
T = R × R and τ is the exchange involution. By Example 2.4, this means that
g ∼= n〈1〉(B,τ), where n = rrkB Q and 〈1〉(B,τ) is the hermitian form (x, y) 7→ xτy
on B. We may therefore assume that (Q, g) = (Bn, n〈1〉(B,τ)).

Arguing as in Subcase II.2 of the proof of Proposition 5.3, we may identify A
with M2(R) in such a way that B is the algebra of diagonal matrices and σ is given
by [ a b

c d ]
σ = [ d σ2b

σ3c a ]σ, where σ2, σ3 are R-linear automorphisms of R of order 2.
Since σ2, σ3 ∈ {± idR} and dimR S−1(A, σ) = 1 (Proposition 1.21), we must have
σ2 = σ3 = idS , hence σ is given by [ a b

c d ]
σ = [ d b

c a ].

Step 2. Let Ã = Mn(A) and let σ̃ : Ã→ Ã be given by (aij)
σ̃ = (aσji). Define B̃ and

τ̃ similarly and let ρ̃ : B̃ → Ã denote the inclusion map. Let e ∈ B̃ = Mn(B) denote

the matrix with 1 in the (1, 1)-entry and 0 elsewhere, and let g̃ : B̃× B̃ → B̃ denote
the diagonal hermitian form 〈1〉(B̃,τ̃) (see Example 2.1). It is easy to check that the

assumptions of Notation 4.1 apply to Ã, σ̃, T (embedded diagonally in Ã = Mn(A))

and B̃. Furthermore, under the evident isomorphisms eB̃e ∼= B, B̃e ∼= Bn, one finds
that, the e-transfer g̃e (see 2G) is just g. Thus, by Propositions 4.9(ii) and 5.11(iv),

it is enough to prove that ρ̃g̃ admits no Lagrangians L̃ with B̃ ⊕ L̃ = Ã and
Φg̃(L̃) = −1.

Note that (Ã, σ̃) ∼= (M2(R), σ) ⊗ (Mn(R), t), where t denotes the transpose in-

volution. Thus, we may identify Ã with M2n(R) in such a way that σ̃ is given
by

[

a b
c d

]σ̃

=

[

dt bt

ct at

]

,

where a, b, c, d ∈ Mn(R). Under this identification, B̃ = {[ a d ] | a, d ∈ Mn(R)} and

T = {[ α1n β1n
] |α, β ∈ R}, where 1n is the n× n identity matrix.

Overriding previous notation, let e = [ 1n 0
0 0 ]. Then eÃ = B̃eÃ is a Lagrangian of

ρ̃g̃, and Φg̃(eÃ) = 1 by the defining property of Φg̃. Since U(ρ̃g̃) acts transitively
on Lag(ρ̃g̃) (Lemma 2.22), it is enough to prove that for every ϕ ∈ U(ρ̃g̃) with

Nrd(ϕ) = −1, we have B̃ + ϕeÃ 6= Ã. Identifying EndÃ(ÃÃ) with Ã (acting

on the left on itself) and writing ϕ = [ x x′

y y′ ] with x, x′, y, y′ ∈ Mn(R), we get

ϕeÃ = {[ xa xb
ya yb ] | a, b ∈ Mn(R)}, from which it follows readily that

B̃ + ϕeÃ = Ã ⇐⇒ x, y ∈ GLn(R).

Step 3. Recall that R is assumed to be algebraically closed. We shall view all finite
dimensional R-vector spaces and the group U(Ã, σ̃) = U(ρ̃g̃) as varieties over R

in the obvious way. Recall from Proposition 2.16 that U(Ã, σ̃) has two (Zariski)

connected components — U0(Ã, σ̃) := U0(ρ̃g̃) and U1(Ã, σ̃) := U(Ã, σ̃) \U0(Ã, σ̃).

Consider the morphism ψ : U(Ã, σ̃) → Mn(R)×Mn(R) given by [ x x′

y y′ ] 7→ (x, y).

By Step 2, we need to show that ψ(U1(Ã, σ̃)) does not meet GLn(R) × GLn(R).
Since GLn(R)×GLn(R) is Zariski open in Mn(R)×Mn(R), it is enough to verify

this after replacing U1(Ã, σ̃) with a Zariski dense subset.
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Step 4. In what follows, we shall write matrices a ∈ Mn(R) in 2 × 2 block form
[ a11 a12
a21 a22

], where a11 is a 1× 1 matrix. With this notation, let

u :=

[ [

0 0
0 1n−1

]

[ 1 0
0 0 ]

[ 1 0
0 0 ]

[

0 0
0 1n−1

]

]

and note that u ∈ U(Ã, σ̃) and Nrd(u) = −1.
For all a, b ∈ S−1(Mn(R), t), c ∈ GLn(R), define

ξ(a, b, c) = u ·
[

1 0
a 1

] [

c 0
0 (ct)−1

] [

1 b
0 1

]

= u ·
[

c cb
ac acb+ (ct)−1

]

.

It is easy to check that ξ is a morphisms of R-varieties from S−1(Mn(R), t) ×
S−1(Mn(R), t)×GLn(R) to U

1(Ã, σ̃) that is injective on R-points. Since U1(Ã, σ̃) ∼=
U0(Ã, σ̃) as R-varieties, and since U0(Ã, σ̃) is just SO2n(R), it follows that the
source and target of ξ have the same dimension (i.e. 1

2 (2n)(2n− 1) = 1
2n(n− 1) +

1
2n(n− 1) + n2). Thus, by Chevalley’s Theorem, im(ξ) is dense in U1(Ã, σ̃).

Writing a =
[

0 a12
a21 a22

]

∈ S−1(Mn(S), t) and c = [ c11 c12
c21 c22 ] ∈ GLn(R), one readily

checks that

ξ(a, b, c) =

[

[ a12c21 a12c22
c21 c22 ] ∗

∗ ∗

]

.

Since [ a12c21 a12c22
c21 c22 ] is never invertible (multiply by

[

1 −a12
0 1

]

on the left), we see

that ψ(im(ξ)) does not meet GLn(R)×GLn(R). Since im(ξ) is dense in U1(Ã, σ̃),
this completes the proof. �

Remark 5.13. In Proposition 5.12, one can similarly show that if rrkB Q is con-
stant and odd, then there is no L ∈ Lag(ρf) such that Q ⊕ L = QA: Replace ξ

with the maps ξ0(a, b, c) = [ 1 0
a 1 ] [

c 0
0 (ct)−1 ] [ 1 b

0 1 ] and ξ1(a, b, c) = [ 0 1n
1n 0 ]ξ0(a, b, c) and

note that a cannot be invertible when n is odd.

Corollary 5.14. With Notation 4.1, suppose that (σ, ε) is orthogonal and τ is uni-
tary. Let (Q, g) ∈ Hε(B, τ) and assume that ρg hyperbolic and rrkB Q is constant
and even. If L ∈ Lag(ρg) satisfies Q⊕ L = QA, then Φg(L) = 1.

Proof. Let K be an algebraically closed R-field. Then TK ∼= K × K. Thus, by
Example 2.4, gK is hyperbolic. Now, by Proposition 5.12, Φg(LK) = 1. Thanks to
Lemma 2.17, Φg(L) = 1 follows by letting K range over the algebraic closures of
the residue fields of R. �

Now we can prove an analogue to Propositions 5.6 and 5.8 in Case (3).

Proposition 5.15. With Notation 4.1, suppose that R is a field, (σ, ε) is orthogonal
and τ is unitary. Let (Q, g) ∈ Hε(B, τ), let L ∈ Lag(ρg) and assume that rrkB Q
is constant and even. Then there exists ϕ ∈ U0(ρg) such that Q⊕ϕL = QA if and
only if Φg(L) = 1.

Proof. If Q⊕ϕL = QA for ϕ ∈ U0(ρg), then Φg(L) = Nrd(ϕ)Φg(L) = Φg(ϕL) = 1
by Corollary 5.14. We turn to prove the converse.

As in the proof of Proposition 5.6, we can reduce to the case where [A] =
0 and write (Q, g) = (Q1, g1) ⊕ (Q2, g2) with g1 anisotropic and g2 hyperbolic.
Furthermore, there exists a Lagrangian L1 of ρg1 such that Q1 ⊕ L1 = Q1A.

By Proposition 5.10, rrkB Q1 is constant and even, and hence so is rrkB Q2.
Thus, by Proposition 5.12(i), there exists L2 ∈ Lag(ρg2) with Q2 ⊕ L2 = Q2A.

Let L′ := L1 ⊕ L2. Then L′ ∈ Lag(ρg) and Q ⊕ L′ = QA. By Lemma 2.22,
there exists ϕ ∈ U(ρg) such that L′ = ϕL. By Corollary 5.14, 1 = Φg(L

′) =
Nrd(ϕ)Φg(L) = Nrd(ϕ), so Nrd(ϕ) = 1 and the proposition follows. �
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From Proposition 5.15, we see that in order to apply the proof of Theorem 5.9
to our situation, we have to find L ∈ Lag(ρg) satisfying Φg(L) = 1. The purpose
of the following propositions is to characterize precisely when such L exists.

We begin by noting that, in many cases, Φg is constant on the set Lag(ρg).

Proposition 5.16. With Notation 4.1, suppose that R is connected semilocal, (σ, ε)
is orthogonal and τ is unitary. Let (Q, g) ∈ Hε(B, τ) be an ε-hermitian space such
that ρg is hyperbolic and rrkB Q is even. Then Φg : Lag(ρg) → µ2(R) = {±1} is
onto if and only if [A] = 0 and Q 6= 0.

Proof. The proposition is clear when Q = 0, so assume Q 6= 0.
Suppose that Φg is onto. Then there are L0, L1 ∈ Lag(ρg) such that Φg(L0) = 1

and Φg(L1) = −1. By Lemma 2.22, there exists ϕ ∈ U(ρg) such that ϕL0 = L1,
hence Nrd(ϕ) = Nrd(ϕ)Φg(L0) = Φg(L1) = −1. By Theorem 2.20, this means that
[A] = 0.

Conversely, if [A] = 0, then Theorem 2.20 implies the existence of ϕ ∈ U(ρg)
with Nrd(ϕ) = −1. Choose some L ∈ Lag(ρg). Then Φg(ϕL) = −Φg(L), hence Φg

is onto. �

Proposition 5.17. Under the assumptions of Proposition 5.16, if T is connected
and [B] 6= 0, then Φg(L) = 1 for all L ∈ Lag(ρg).

Proof. For the sake of contradiction, suppose that there exists L ∈ Lag(ρg) with
Φg(L) = −1. By Lemma 1.18, TT ∼= T ×T as T -algebras. Since τT is unitary, there
exists e ∈ TT such that eτ+e = 1. By the definition of Φg, we have Φg(QT eAT ) = 1,
so Φg is not constant on Lag(ρgT ). Now, applying Proposition 5.16 to gT (here we
need T to be connected), we get [B] = [AT ] = 0, a contradiction. �

The next lemmas and proposition concern with the case [B] = 0. They will only
be needed in proving part (i) of Theorem 5.1. We shall make use of the discriminant
algebra D(g) defined in 2H.

Lemma 5.18. With Notation 4.1, suppose that R is semilocal, degB = 1, σ is
orthogonal, τ is unitary and ε = 1. Define λ, µ as in Lemma 4.3(ii) (so λσ = −λ
and µσ = µ). Let (Q, g) ∈ H1(B, τ) and assume that ρg is hyperbolic and rrkB Q
is constant and even. Let x1, x2 ∈ Q and write x = x1 + x2µ ∈ QA.

(i) If ρg(x, x) = 0 and g(x1, x1) ∈ B×, then Q1 := x1B+x2B is a summand of
Q with B-basis {x1, x2}. Writing g1 = g|Q1×Q1 , the form g1 is unimodular,
xA ∈ Lag(ρg1), Q1 ⊕ xA = Q1A and [D(g1)] = [A] in BrR.

(ii) If rrkB Q ≥ 4, then there exist x1, x2, x as in (i).

Proof. (i) Write α := g(x1, x1) ∈ B×. Since g is 1-hermitian and µb = bσµ for all
b ∈ B, we have 0 = ρg(x, x) = g(x1, x1)+2µg(x2, x1)+µ

2g(x2, x2), so g(x1, x2) = 0
and g(x2, x2) = −µ2g(x1, x1). By examining the Gram matrix of g relative to
{x1, x2}, we see that {x1, x2} is a g-orthogonal basis to Q1 and g1 is unimodular
and isomorphic to 〈α,−µ2α〉(B,τ). Thus, D(g) = (B/R, µ2α2) ∼= (B/R, µ2) ∼= A
(see 2H). Let x′ = x1−µx2. One readily checks that ρg(x′, x′) = 0 and xA⊕x′A =
Q1A, hence xA ∈ Lag(ρg1).

We finish by checking that Q1 ⊕ xA = Q1A. If y ∈ Q1 ∩ xA, then there is a ∈ A
such that y = xa = x1a + x2µa. Since {x1, x2} is a B-basis of Q1, {x1, x2} is an
A-basis of Q1A, so y ∈ Q1 implies that a, µa ∈ B. As a result a ∈ B ∩ µ−1B =
B ∩ µ(µ−2B) ⊆ B ∩ µB = 0 (because µ−2 ∈ ZA(λ) = B), and y = xa = 0. This
means that Q1 ∩ xA = 0. On the other hand, Q1 + xA ⊇ x1B + x2B + (x1 +
x2µ)B+(x1µ+ x2µ

2)B ⊇ x1B+ x2B+ x1µB+ x2µB = Q1A, so Q1 ⊕ xA = Q1A.

(ii) Step 1. We first prove the claim when R is a field. Using Proposition 2.5,
write (Q, g) = (Q1, g1) ⊕ (Q2, g2) with g1 anisotropic and g2 hyperbolic. Since
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[ρg1] = [ρg] = 0, the form ρg1 is hyperbolic (Theorem 2.8(ii)). Since rrkB Q ≥ 4,
either Q1 6= 0 or rrkB Q2 ≥ 4.

Assume Q1 6= 0. Since ρg1 is hyperbolic, there exists 0 6= x ∈ Q1A such that
ρg1(x, x) = 0. Write x = x1 + x2µ with x1, x2 ∈ Q1. If x1 = 0, replace x with xµ.
Since g1 is an anisotropic and T is semisimple artinian, g1(x1, x1) ∈ S1(B, τ)\{0} =
R×, so x1, x2 satisfy the requirements.

Assume rrkB Q2 ≥ 4. Since g2 is hyperbolic, it has an orthogonal summand
isomorphic to the hyperbolic form 〈1,−1, µ2,−µ2〉(B,τ) (Lemma 2.7). Now take x1
and x2 to be the elements corresponding to (0, 0, 0, 1) and (1, 0, 0, 0) in Q.

Step 2. We continue to assume that R is field. Let x, y ∈ QA be two elements
such that ρg(x, x) = ρg(y, y) = 0 and rrkA xA = rrkA yA = 2. We claim that there
exists ϕ ∈ U0(ρg) such that ϕx = y.

By Theorem 2.3, there exists ψ ∈ U(ρg) such that ψx = y. If Nrd(ψ) = 1, then
we can take ϕ = ψ, so assume Nrd(ψ) = −1. In this case, [A] = 0 by Theorem 2.20.

Since ρg is unimodular and xA is a free summand of QA, there exists x′ ∈ QA
such that ρg(x, x′) = 1. Write V = xA+ x′A. Since ρg(x, x) = 0, the restriction of

ρg to V is unimodular (the matrix [ ρg(x,x) ρg(x,x′)

ρg(x′,x) ρg(x′,x′)
] = [ 0 1

1 ∗ ] is invertible), so QA =

V ⊕ V ⊥. Let h = ρg|V ⊥×V ⊥ . Since ι rrkAQA = 2 rrkB Q ≥ 8 and rrkA V = 4, we
have V ⊥ 6= 0. Thus, by Theorem 2.20, there exists ψ1 ∈ U(h) with Nrd(ψ1) = −1.
Take ϕ = ψ ◦ (idV ⊕ψ1).

Step 3. We finally establish the existence of x1, x2 in general. Let L ∈ Lag(ρg).
Then ι rrkA L = 1

2 ι rrkAQA = rrkB Q ≥ 4, so L admits a summand isomorphic to
AA (Lemma 1.24). Let y be a generator of such a summand.

Let m1, . . . ,mt denote the maximal ideals of R. By Step 1, for all 1 ≤ i ≤ t,
there exists xi = x1i+x2iµ, with x1i, x2i ∈ Q(mi), such that ρg(mi)(xi, xi) = 0 and
g(mi)(x1i, x1i) ∈ B(mi)

×. We observed in the proof of (i) that rrkA(mi) xiA(mi) =

2, so by Step 2, there exists ϕi ∈ U0(ρg(mi)) such that ϕi(y(mi)) = xi. By
Theorem 2.18, there exists ϕ ∈ U0(ρg) such that ϕ(mi) = ϕi for all i. Let x = ϕy
and write x = x1 + x2µ with x1, x2 ∈ Q. Since QA = Q ⊕ Qµ (because A =
B ⊕Bµ), we have x1(mi) = x1i for all i, hence g(x1, x1) ∈ B× (Lemma 1.6). Since
ρg(x, x) = ρg(y, y) = 0, we are done. �

Lemma 5.19. With Notation 4.1, suppose that R is semilocal, degA = 2, σ is
orthogonal and ε = 1. Let α, β ∈ R×. If f := 〈α, β〉(A,σ) is hyperbolic, then there

exists x ∈ A× such that xσx = −αβ−1

Proof. The claim is equivalent to the existence of x = (x1, x2) ∈ A××A× such that
f(x, x) = αx1x

σ
1 + βx2x

σ
2 = 0. Note that if the equality holds, then x1 is invertible

if and only if x2 is invertible. Since f is hyperbolic, there exists an A-basis {u, v}
to A2 such that f(u, u) = 0. Write u = (u1, u2) ∈ A2.

Step 1. Suppose R is a field. We claim that there exists ϕ ∈ U0(f) such that
ϕu ∈ A× × A×. If u1 ∈ A× or u2 ∈ A×, then we can take ϕ = idA2 , so assume
that both u1 and u2 are not invertible. In particular, A cannot be a division
algebra, hence A ∼= M2(R) and rrkAAu1 and rrkAAu2 cannot exceed 1. Since u
can be completed to an A-basis of A2, we must have Au1 + Au2 = A. Length
consideration now force u1 and u2 to be rank-1 matrices with Au1∩Au2 = 0. Since
αuσ1u1 = −βuσ2u2, this means that uσ1u1 = 0.

Arguing as in Reduction 4.11, we may identify A with M2(R) in such a way that

σ is given by [ a b
c d ]

σ = [
a γc

γ−1b d ] for some γ ∈ R×. The condition uσ1u1 = 0 is easily
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seen to imply that −γ is a square. Write −γ = δ2 with δ ∈ R× and let c := −αβ−1,

x1 = 1A, x2 =

[

c+1
2

δ(c−1)
2

c−1
2δ

c+1
2

]

,

and x = (x1, x2) ∈ A2. It is routine to check that detx2 = c and f(x, x) = 0. Since
xA is a summand of A2

A, there exists ϕ ∈ U(f) such that ϕu = x (Theorem 2.3).
If Nrdϕ = 1, we are done. If not, replace x2 with [ 1 0

0 −1 ]x2 and ϕ with ψϕ where
ψ ∈ U(f) is given by ψ(z1, z2) = (z1, [

1 0
0 −1 ]z2).

Step 2. We now prove the general case. Let m1, . . . ,mt denote the maximal ideals of
R. By Step 1, for all 1 ≤ i ≤ t, there exists ϕi ∈ U0(f(mi)) such that ϕi(u(mi)) ∈
A(mi)

× × A(mi)
×. By Theorem 2.18, there exists ϕ ∈ U0(f) with ϕ(mi) = ϕi for

all i. Now, by Lemma 1.6, x = (x1, x2) := ϕu ∈ A× × A× and f(x, x) = f(u, u) =
0. �

Proposition 5.20. With Notation 4.1, suppose that R is semilocal, T is connected,
[A] 6= 0, [B] = 0, (σ, ε) is orthogonal and τ is unitary. Let (Q, g) ∈ Hε(B, τ)
be a hermitian space such that ρg is hyperbolic and n := rrkB Q is even. Then
Φg(L) = 1 for some L ∈ Lag(ρg) if and only if [D(g)] = n

2 · [A]. When this fails,
[D(g)] = (n2 + 1) · [A] and g is isotropic.

Proof. By Reduction 4.10 and Proposition 5.11(iv), we may assume that degB = 1,
degA = 2, σ is orthogonal and ε = 1. Let λ, µ ∈ A× be as in Lemma 4.3(ii) (so
λσ = −λ and µσ = µ). By Proposition 5.16, Φg is constant on Lag(ρg); we shall
denote the value that it attains by Φ̄g ∈ {±1}. The proposition clear if n = 0, so
assume n > 0.

Suppose n ≥ 4. Then by Lemma 5.18, we can write (Q, g) = (Q1, g1)⊕ (Q2, g2),
where rrkB Q1 = 2, [D(g1)] = [A] and there exists L ∈ Lag(ρg1) with Q1 ⊕ L =
Q1A. By Corollary 5.14, Φ̄g1 = 1. Since Φ̄g = Φ̄g1Φ̄g2 (Proposition 5.11(iii)),
[D(g)] = [D(g1)] + [D(g2)] (Proposition 2.28(iii)) and [ρ2g] = [ρg] = 0 in Wε(A, σ)
(so ρ2g is hyperbolic by Theorem 2.8(ii)), the proposition will hold for (Q, g) if it
holds for (Q2, g2). Repeating this process, we reduce to the case n = 2.

Suppose henceforth that n = 2. By Proposition 2.13, we may assume that
g = 〈α, β〉(B,τ) for some α, β ∈ B× ∩ S1(B, τ) = R×, and by Lemma 5.19, there

exists x ∈ A× such that xσx = −αβ−1. Note that disc(g) ≡ −αβ ≡ −αβ−1 mod
NrT/R(T

×), hence [D(g)] = [(B/R,−αβ−1)] (see 2H).
Write x = b1 + µb2 with b1, b2 ∈ B. Since µσ = µ and µb = bσµ for all b ∈ B,

we have

−αβ−1 = xσx = (bσ1 b1 + µ2bσ2 b2) + 2µb1b2.

Thus, b1b2 = 0 and bσ1 b1 + µ2bσ2 b2 = αβ−1. Arguing as in [58, Example 9.4] (for
instance), we see that NrdA/R(x) = bσ1 b1 − µ2bσ2 b2. Since NrdA/R(x) ∈ R×, this
means that b1B + b2B = B.

We claim that b1 = 0 or b2 = 0. Indeed, b1B = b1(b1B + b2B) = b21B, so
there exists c ∈ B with b1 = b21c. In particular, b1c is an idempotent. Since T is
connected, b1c = 0 or b1c = 1. In the first case, b1 = b21c = 0, whereas in the second
case, b1 ∈ B×, so b2 = 0 because b1b2 = 0.

Assume b1 = 0. Then x = µb2 ∈ A× and −αβ−1 = µ2bσ2 b2, hence [D(g)] =

[(B/R, µ2)] = [A]. Let L = [ 1
µb2 ]A and L′ = [ −1

µb2
]A. One readily checks that

ρg(L,L) = ρg(L′, L′) = 0 and L ⊕ L′ = A2, hence L ∈ Lag(ρg). Furthermore,

B2 ∩ L = 0 and [ 01 ], [
1
0 ], [

µ

µ2bσ2
], [ b

−1
2
µ ] ∈ B2 + L, so B2 ⊕ L = A2 and Φ̄g = 1 by

Corollary 5.14.
Assume b2 = 0. Then x = b1 and −αβ−1 = bσ1 b1, hence [D(g)] = [(B/R, 1)] = 0.

Now, Theorem 1.8 and and our assumption that [A] 6= 0 imply that [D(g)] =
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(22 + 1)[A] 6= [A]. Furthermore, it is routine to check that M = [ 1
b1 ]B is a La-

grangian of g, so g is hyperbolic (and in particular isotropic) and Φ̄g = −1 by
Proposition 5.11(ii).

Since we cannot have both b1 = 0 and b2 = 0 (because x ∈ A×), the proposition
follows. �

We finally complete the proof Theorem 5.1 by establishing case (3).

Theorem 5.21. Theorem 5.1 holds when R is connected, (σ, ε) is orthogonal and
τ is unitary.

Proof. Recall that we are given (Q, g) ∈ Hε(B, τ) such that [ρg] = 0 in Wε(A, σ).
By Theorem 2.8(ii), ρg is hyperbolic.

(i) Since T is connected, n := rrkB Q is even by Proposition 5.10.
Suppose that there exists L ∈ Lag(ρg) with Q ⊕ L = QA. By Corollary 5.14,

Φg(L) = 1. Now, if [A] 6= 0 and [B] = 0, then we must have [D(g)] = n
2 · [A] by

Proposition 5.20, as required.
Conversely, suppose that [A] = 0, or [B] 6= 0, or [D(g)] = n

2 · [A]. If there exists
L ∈ Lag(ρg) with Φg(L) = 1, then we can argue as in the last paragraph of the
proof of Theorem 5.9, using Proposition 5.15 instead of Propositions 5.6 and 5.8,
to prove the existence of L′ ∈ Lag(ρg) with Q ⊕ L′ = QA. The existence of L
follows from Proposition 5.16 if [A] = 0, from Proposition 5.17 if [B] 6= 0, and
from Proposition 5.20 if [A] 6= 0 and [B] = 0. Proposition 5.20, also tells us that
[D(g)] = (n2 + 1)[A] and g is isotropic when [A] 6= 0, [B] = 0 and [D(g)] 6= n

2 · [A].
(ii) We need to prove the existence of L ∈ Lag(ρg) with Q ⊕ L = QA, possibly

after replacing (Q, g) with a Witt-equivalent hermitian space.
If T is not connected, then, as explained in the proof of Proposition 5.10, g is

hyperoblic and can thus be replaced with zero form.
Suppose that T is connected. As in the proof of (i), rrkB Q is even and it is

enough to find L ∈ Lag(ρg) with Φg(L) = 1. Moreover, we showed that L exists
if [B] 6= 0 in BrT , so we only need to consider the case where [B] = 0. Let L ∈
Lag(ρg). If Φg(L) = 1, we are done, so assume Φg(L) = −1. Since [B] = 0 = [T ],
there exists N ∈ P(B) with rrkB N = deg T = 1 (Proposition 1.11(iii)). Consider
(Q′, g′) := (Q, g) ⊕ (N ⊕ N∗,hε

N ), which is Witt-equivalent to (Q, g). By parts
(ii) and (iii) of Proposition 5.11, we have Φg′(L ⊕ NA) = Φg(L) · Φhε

N
(NA) =

(−1) · (−1) = 1. We may therefore replace (Q, g), L with (Q′, g′), L ⊕ N and
finish. �

6. Verification of (E1) and (E3)

Keep the assumptions of Notation 4.1. The purpose of this section is to prove:

Theorem 6.1. With Notation 4.1, suppose that R is semilocal and let (P, f) ∈
Hε(A, τ) be a hermitian spaces such that [πf ] = 0 in Wε(B, τ).

(i) Assume that T is connected and (τ, ε) is not orthogonal. Then there exists a
Lagrangian M of πf such that MA = P if and only if (τ, ε) not unitary, or
(σ, ε) is not symplectic, or 4 | rrkA P . When these conditions fail, [A] = 0
in BrS and f is hyperbolic.

(ii) Assume that T is connected and (τ, ε) is orthogonal. Then (σ, ε) is orthogo-
nal. Moreover, there exists a Lagrangian M of πf such that MA = P if and

only if [B] 6= 0 in BrT , or rrkA P is even and disc(f) = disc(T/R)
1
2 rrkA P

(see 2H). When these conditions fail, [A] = 0 in BrS, rrkA P is even,

disc(f) = disc(T/R)
1
2 rrkA P+1 and f is isotropic.

(iii) There exists (P ′, f ′) ∈ Hε(A, σ) with [f ] = [f ′] and a Lagrangian M of πf ′

such that MA = P ′.
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In Section 7, we will use this theorem to establish conditions (E1) and (E3) of
Theorem 3.6 when R is semilocal. The reader can skip to the next section without
loss of continuity.

As with Theorem 5.1, it is enough to prove the theorem when R is connected.
In this case, by Lemma 4.6, exactly one of the following hold:

(1) (τ, ε) is symplectic or unitary,
(2) (τ, ε) is orthogonal.

These cases are treated in Theorems 6.10 and 6.20, respectively.

6A. Non-Connected Cases. We begin by addressing the simpler case where T
is not connected. Some of the observations made here will be used later.

First, we consider the case where S is not connected.

Proposition 6.2. Theorem 6.1(iii) holds when R is connected and S is not con-
nected.

Proof. In this case, S = R × R (Lemma 1.16) and τ |S is the exchange involution.
As observed in Example 2.4, this means that every (P, f) ∈ Hε(A, σ) is hyperbolic.
Replacing (P, f) with zero form, Theorem 6.1(iii) holds trivially. �

If S is connected and T is not connected, then T ∼= S × S (Lemma 1.16), hence
T admits two nontrivial idempotents, call them e and e′ := 1− e. We have eσ = e
or eσ = e′. We devote some attention to the case eσ = e, working in slightly greater
generality for later reference.

With Notation 4.1, suppose that T = S × S (but not that S is connected),
let e := (1S , 0S) and assume eσ = e. By Lemma 4.4, we have A = AeA, B =
eB ⊕ e′B = eAe ⊕ e′Ae′ and π : A → B is given by a 7→ eae + e′ae′. Since
eσ = e, we may view (B, τ) as (eB, τe)×(e′B, τe′ ), where τe = τ |eB and τe′ = τ |e′B.
Thus, every hermitian space (Q, g) ∈ Hε(B, τ) factors as (Qe, ge)×(Qe′, ge′), where
ge = g|Qe×Qe and ge′ = g|Qe′×Qe′ are ε-hermitian forms over (eB, τe) and (e′B, τe′),
respectively. The following simple observation will be important in the sequel.

Proposition 6.3. Under the previous assumptions and identifications, for every
(P, f) ∈ Hε(A, σ), the hermitian space (P, πf) is (Pe, fe) × (Pe′, fe′), where fe
denotes the e-transfer of f (see 2G), and likewise for fe′ .

Proof. This is straightforward. �

Proposition 6.4. Theorem 6.1(iii) holds when S is connected and T is not con-
nected.

Proof. Write T = S × S and let e = (1S , 0S). By Lemma 4.4(ii), rrkA eA > 0 and
AeA = A. Since S is connected, eσ = e or eσ = 1− e.

If eσ = e, then fe is hyperbolic by Proposition 6.3 and the fact that πf is
hyperbolic (Theorem 2.8(ii)). By item (t3) in 2G, this means that f is hyperbolic,
so we may replace (P, f) with zero form and finish.

Suppose that eσ = 1 − e. Then M := Pe is a Lagrangian of πf (Example 2.4).
Since MA = PeA = PAeA = PA = P , we are done. �

6B. Case (1). We now prove Theorem 6.1 in case (1), namely, when R is connected
and (B, τ) is unitary or symplectic. As with Theorem 5.1, we first establish some
special cases.

Proposition 6.5. With Notation 4.1, suppose that R is a field, S ∼= R × R and
[A] = 0. Let (P, f) ∈ Hε(A, σ) be a hermitian space such that rrkA P is even. Then
there exists M ∈ Lag(πf) such that MA = P and rrkB M = 1

2 rrkB P .
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Proof. By Reduction 4.10, we may assume that B = T and degA = 2. Note that
rrkA P is constant by Corollary 2.9(i).

By assumption, there exists a nontrivial idempotent e ∈ S such that e+ eσ = 1.
By Example 2.4, we may assume that A = A1 ×Aop

1 for a central simple R-algebra
A1 and that σ is the exchange involution (x, yop) 7→ (y, xop). It is easy to see that
there are R-subalgebras T1 ⊆ B1 ⊆ A1 such that T = T1 ×T op

1 , B = B1 ×Bop
1 and

B1 = ZT1(A1). Furthermore, ε = (ε1, ε
−1
1 ) for some ε1 ∈ R×.

Consider the ε-hermitian form f1 : A×A→ A given by f1((x1, x
op
2 ), (y1, y

op
2 )) =

(ε1x2y1, (y2x1)
op). Since rrkA P is even and constant, and since degA = 2, there

exists n ∈ N such that P ∼= An
A. By Example 2.4, this means that (P, f) ∼= n·(A, f1).

It is therefore enough to prove the proposition for (P, f) = (A, f1).
Let π1 := πA1,B1 : A1 → B1 be as in Lemma 4.2. The uniqueness of π forces

π(x, yop) = (π1x, (π1y)
op) for all x, y ∈ A1. Let E1 = kerπ1. Then M := E1 ×Bop

1

and M ′ := B1 ×Eop
1 are submodules of AB satisfying f1(M,M) = f1(M

′,M ′) = 0
and M ⊕M ′ = A. Thus, M is a Lagrangian of πf1. In addition, Lemma 4.2(iv)
tells us that E1A1 = A1, so MA = E1A1 ×Aop

1 B
op
1 = A, as required. �

The following proposition holds without restrictions on the type of (τ, ε).

Proposition 6.6. With Notation 4.1, suppose that S is a field and [A] = 0. Let
(P, f) ∈ Hε(A, σ) be a hyperbolic hermitian space. If 4 | rrkA P , then πf admits a
Lagrangian M such that MA = P and rrkB M = 1

2 rrkB P .

Proof. By Reduction 4.10, we may assume that B = T and degA = 2. Consider
the hyperbolic ε-hermitian form f1 : A2 × A2 → A given by f1((x1, y1), (x2, y2)) =
xσ1y2 + εxσ2y1. Writing n = 1

4 rrkA P , we have n · (A2, f1) ∼= (P, f) by Lemma 2.7.

It is therefore enough to prove the proposition for (A2, f1). Write E = kerπ and
let M := B × E and M ′ := E × B; both M and M ′ are right B-submodules of
A2. One readily checks that πf1(M,M) = πf1(M

′,M ′) = 0 and A2
A = M ⊕M ′.

Thus, M is a Lagrangian of πf . By Lemma 4.2(iv), we have MA = A2 and
rrkB M = 2 rrkB B = 2 = 1

2 rrkB A
2
B. �

Proposition 6.7. With Notation 4.1, suppose that S is a field, [A] = 0 and (τ, ε)
is symplectic or unitary. If τ is unitary, we also assume that (σ, ε) is not sym-
plectic. Let (P, f) ∈ Hε(A, σ) be a hyperbolic hermitian space. Then there exists a
Lagrangian M of πf such that MA = P and rrkB M = 1

2 rrkB P .

Proof. By Reductions 4.10 and 4.11, we may assume that B = T , A = M2(S),
τ is orthogonal or unitary, and σ is orthogonal or unitary and given by [ a b

c d ] 7→
[ aσ αcσ

α−1bσ dσ ] for some α ∈ R×. By Corollary 2.9(ii), rrkA P is even.

Let (P1, f1) be a hyperbolic hermitian space such that rrkA P1 = 2. Then, by
Lemma 2.7, (P, f) ∼= n · (P1, f1) for some n ∈ N. It is therefore enough to prove
the proposition for (P1, f1). We now split into cases, making different choices of
(P1, f1) in each case.

Case I. τ |T is not the standard S-involution of T . We may assume that ε = −1.
This already holds when σ|S = idS , because then τ is orthogonal while (τ, ε) is
symplectic. When σ|S 6= idS , by Hilbert’s Theorem 90, there exists η ∈ S with
ηση−1 = −ε and we can apply η-conjugation (see 2G, Proposition 4.7) to replace
f , ε with ηf , −1.

Consider the hyperbolic (−1)-hermitian form f1 : A×A→ A given by f1(x, y) =
xσ[ 0 −α

1 0 ]y; note that rrkAA = 2 and [ S S
0 0 ] is a Lagrangian of f1.

We claim that there exists λ ∈ T such that λ2 ∈ S×, T = S ⊕ λS and λσ = λ.
If σ|S = idS , then σ|T = idT and the existence of λ follows from Lemma 1.19.
If σ|S 6= idS , then τ is unitary (Lemma 4.5), so T is quadratic étale over T0 :=
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S1(T, τ), which is in turn quadratic étale over R and satisfies T0∩S = S1(S, σ) = R.
Applying Lemma 1.19 to T0, we see that there exists λ ∈ T×

0 \ R and λ2 ∈ R×.
Thus, λσ = λ, and T = S ⊕ λS because λ /∈ S and dimS T = 2.

The conditions λ = λσ and λ2 ∈ S× force λ = [ a αb
b −a ] for some a, b ∈ S such that

aσ = a and a2 + αb2 ∈ S×. Using Lemma 4.2(ii), it is routine to check that

π([ 0 −α
1 0 ]) = 1

2 [
0 −α
1 0 ] + 1

2 [
a αb
b −a ]

−1[ 0 −α
1 0 ][ a αb

b −a ] = 0.

Thus, for all x, y ∈ B, we have

πf1(x, y) = π(xτ [ 0 −α
1 0 ]y) = xτπ([ 0 −α

1 0 ])y = 0.

It follows that B is a Lagrangian of πf1. Since rrkB BB = 1 = 1
2 rrkB A and

BA = A = P , we are done.

Case II. τ |T is the standard S-involution of T . Since τ is unitary, (σ, ε) is necessarily
orthogonal. Thus, σ is orthogonal and ε = 1.

By Proposition 1.21, dimS S−1(T, σ) = 1 = dimS S−1(A, σ), so we must have
T = S + S−1(A, σ) = S ⊕ λS with λ := [ 0 α

−1 0 ]. Using Lemma 4.2(ii), it is routine

to check that π : A→ B is given by π[ x y
z w ] = 1

2 (x + w)[ 1 0
0 1 ] +

1
2 (α

−1y − z)[ 0 α
−1 0 ].

Consider the 1-hermitian hyperbolic form f1 : A × A → A given by f(x, y) =
xσ[ 0 α

1 0 ]y (the space [ S S
0 0 ] is a Lagrangian). As in Case I, one readily checks that

π[ 0 α
1 0 ] = 0 and hence B is the required Lagrangian of πf1. �

The case where τ is unitary and (σ, ε) is symplectic is addressed in the following
proposition. Note that we allow R to be semilocal.

Proposition 6.8. With Notation 4.1, suppose that R is connected semilocal and
(σ, ε) is symplectic. Let (P, f) ∈ Hε(A, σ). Then:

(i) If τ is unitary, T is connected, [A] 6= 0 and πf is hyperbolic, then 4 | rrkA P .
(ii) If [A] = 0, then f is hyperbolic.
(iii) If τ is unitary, T is connected, [A] = 0 and πf admits a Lagrangian M

with MA = P , then 4 | rrkA P .
Proof. Note that S = R, and thus T quadratic étale over R. By Lemma 1.17 and
the connectivity of R, the involution τ |T : T → T is either idT or the standard R-
involution of T . Thus, when τ : B → B is unitary, τ |T is the standard R-involution
of T .

(i) Since τ is unitary, τ |T is the standard involution of T . For the sake of
contradiction, suppose that rrkA P is not divisible by 4. By Corollary 2.9(ii), there
exists V ∈ P(B) such that rrkB P = 2 rrkB V . Since rrkB PB = ι rrkA P , we have
rrkA P = 2n, where n := rrkB V . Thus, rrkB V is odd. By Corollary 1.13 and
Theorem 1.8, n[B] = 0. On the other hand, 2[B] = 2[AT ] = 0, because A has an
involution of the first kind, so [B] = 0. We now apply Reduction 4.10 to assume
that B = T , degA = 2, σ is orthogonal and ε = −1.

By Lemma 1.26, there exists c ∈ S−1(T, τ) ∩ T×. We apply c-conjugation, see
2G and Proposition 4.7, to replace σ, f , ε by Int(c) ◦ σ, cf , −ε. Now, ε = 1 and σ
is symplectic. Let λ, µ ∈ A× be as in Lemma 4.3(iii) (so λσ = −λ and µσ = −µ)
and note that S1(A, σ) = R.

Since rrkA P = 2n, the A-module P is free (Lemma 1.24). Thus, by Proposi-
tion 2.13, we may assume that f = 〈α1, . . . , αn〉(A,σ) with α1, . . . , αn ∈ S1(A, σ) ∩
A× = R×. Now, it is routine to check that, upon identifying B2

B with AB via
(b1, b2) 7→ b1 + µb2, the form πf is just 〈α1,−ηα1, α2,−ηα2, . . . , αn,−ηαn〉(T,τ),

where µ2 = η. Since πf is hyperbolic, ηn ≡ disc(πf) ≡ disc(n · 〈1,−1〉(T,τ)) ≡
1 mod NrT/R(T

×) (see 2H). Since n is odd, this means that there exists t ∈ T×

with tσt = η = µ2. As µb = bσµ for all b ∈ B, the element e := 1
2 (1 + µ−1t) is

an idempotent. Furthermore, e /∈ {0, 1}, otherwise µ ∈ B. Thus, eAA is a proper
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nonzero summand of AA, so rrkA eA = 1. But this means that [A] = [eAe] = 0
(Corollary 1.12), a contradiction.

(ii) By Reduction 4.10, we may assume that σ is orthogonal, hence ε = −1. By
Theorem 1.30, there exists e ∈ A such that rrkA eA = 1 and eσ = e. Applying
e-transfer (see 2G), we may replace A, σ, f with eAe, σ|eAe, fe and assume that
A = R and f : P × P → R is an anti-symmetric unimodular bilinear form. Every
such f is hyperbolic, e.g., apply the argument in [65, Lemma 7.7.2] to a basis
element of P .

(iii) Arguing as in (i), we may assume that B = T , degA = 2, σ is symplectic
and ε = 1. Let λ, µ ∈ A× be as in Lemma 4.3(iii). Then, writing τ1 := τ , τ2 = idB

and π1 := π, we are in the situation of 3A. Thus, by Remark 3.9(i), there exists
(Q, g) ∈ H−1(T, idT ) such that ρ2(Q, g) ∼= (P, f). Since g : Q × Q → T is an
anti-symmetric unimodular bilinear form, rrkB Q must be even, and since rrkB Q
is constant (T is connected), we have ι rrkA P = ι rrkAQA = 2 rrkB Q. It follows
that 4 | rrkA P . �

Proposition 6.9. With Notation 4.1, suppose that R is a field and (τ, ε) is unitary
or symplectic. Let (P, f) ∈ Hε(A, σ) be a hermitian space such that rrkA P is even
and πf is hyperbolic. If τ is unitary and (σ, ε) is symplectic, we also assume that
4 | rrkA P . Let M be a Lagrangian of πf such that rrkB M = 1

2 rrkB P . Then there

exists ϕ ∈ U0(πf) such that ϕM · A = P .

Proof. Thanks to Proposition 4.14, when R is infinite, it is enough to prove the
proposition after base-changing to an algebraic closure of R, in which case [A] = 0.
On the other hand, if R is finite, then [A] = 0 by Wedderburn’s theorem. We may
therefore assume that [A] = 0.

We claim that πf admits a Lagrangian M ′ such that M ′A = P and rrkB M
′ =

1
2 rrkB P . To that end, we split into three cases.

Case I. S is not a field. Then M ′ exists by Proposition 6.5.

Case II. S is a field, τ is unitary and (σ, ε) is symplectic. Then f is hyperbolic by
Proposition 6.8(ii) and 4 | rrkB P by assumption, so M ′ exists by Proposition 6.6.

Case III. S is a field, and τ is not unitary or (σ, ε) is not symplectic. Using Propo-
sition 2.5, write (P, f) = (P1, f1) ⊕ (P2, f2) with f1 anisotropic and f2 hyperbolic.
Then [πf1] = [πf ] = 0 in Wε(B, τ), so [πf1] is hyperbolic by Theorem 2.8(ii).

By virtue of Remark 3.7, any Lagrangian M1 of πf1 satisfies M1A = P1. We
claim that one can choose M1 such that rrkB M1 = 1

2 rrkB P . Indeed, by Corol-
lary 2.9(ii), rrkA P2 is even, so rrkA P1 is also even. Thus, rrkB P1 is even. Since
[B] = [A⊗S T ] = [T ], there exists V ∈ P(B) such that rrkB V = deg T = 1 (Propo-
sition 1.11(iii)). By Lemmas 2.7 and 2.6, there is an isometry hε

V n → πf1, where
n = 1

2 rrkB T . Take M1 to be the image of V n in P1.
Next, by Proposition 6.7, there exists a Lagrangian M2 of πf2 with M2A = P2

and rrkB M2 = 1
2 rrkB P2. Take M

′ =M1 ⊕M2.

Now, since rrkB M
′ = 1

2 rrkB P = rrkB M , Lemma 2.22 and Proposition 2.16

imply that there exists ϕ ∈ U0(πf) such that ϕM =M ′, so ϕM ·A = P . �

Theorem 6.10. Theorem 6.1 holds when R is connected and (τ, ε) is symplectic
or unitary.

Proof. Recall that we are given (P, f) ∈ Hε(A, σ) such that [πf ] = 0. By Theo-
rem 2.8(ii), πf is hyperbolic.

(i) Suppose that that πf admits a Lagrangian M such that MA = P . If τ is
unitary and (σ, ε) is symplectic, then parts (i) and (iii) of Proposition 6.8 imply
that 4 | rrkA P . Moreover, part (i) of this proposition implies that [A] = 0 when τ is
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unitary, (σ, ε) is symplectic and 4 ∤ rrkA P . In this case, part (ii) of that proposition
says that f is hyperbolic.

Conversely, suppose that (τ, ε) is symplectic, or (σ, ε) is not symplectic, or 4 |
rrkA P . Let M be a Lagrangian of πf and let m1, . . . ,mt denote the maximal
ideals of R. By Proposition 6.9, for all 1 ≤ i ≤ t, there exists ϕi ∈ U0(πf(mi))
such that ϕi(M(mi)) · A(mi) = P (mi). By Theorem 2.18, there exists ϕ ∈ U0(πf)
such that ϕ(mi) = ϕi for all i. Thus, M ′ := ϕM is a Lagrangian of πf such that
M ′A+ Pmi = P for all i. By Nakayama’s Lemma annR(P/M

′A) is not contained
in any maximal ideal of R, so it must be R and M ′A = P .

(ii) This statement is vacuous under our assumptions.
(iii) By Proposition 6.2, Proposition 6.4 and (i), we only need to consider the

case where T is connected, τ is unitary, (σ, ε) is symplectic and [A] = 0. In this
case, f is hyperbolic by Proposition 6.8(ii), so we may take f ′ to be the zero form
and let M = 0. �

6C. Case (2). We now prove Theorem 6.1 in Case (2), namely, when R is con-
nected and (τ, ε) is orthogonal. The main difference with Case (1) is the failure of
Proposition 6.9. Thus, the majority of the argument will be dedicated to effectively
characterizing the Lagrangians M of πf for which Proposition 6.9 fails.

Throughout this subsection, we assume, on top of Notation 4.1, that (τ, ε) is
orthogonal, hence τ |T = idT and S = R. This also means that (σ, ε) is orthogonal
(Lemma 4.12).

Following Remark 2.14, given (Q, g) ∈ Hε(B, τ), we write UT (g) for the group
T -scheme of isometries of g, and U(g) = UR(g) for the R-scheme of isometries of g.
The corresponding neutral components are denoted U0

T (g) and U0(g) = U0
R(g). It

was observed in Remark 2.14 that RT/RUT (g) = U(g) and RT/RU
0
T (g) = U0(g),

where RT/R is the Weil restriction. Combining this with Proposition 2.16, we see

that U0(g) is the scheme-theoretic kernel of

RT/R(Nrd) : U(g) = RT/RUT (g) → RT/Rµ2,T .

We abbreviate RT/R(Nrd) to Nrd. The norm map NrT/R : T → R induces a
morphism of affine group R-schemes,

NrT/R : RT/Rµ2,T → µ2,R,

and its kernel is µ2,R, viewed as a subgroup R-scheme ofRT/Rµ2,T via the inclusion
R → T . We write

N := NrT/R ◦Nrd : U(g) → µ2,R.

Given (P, f) ∈ Hε(A, σ), Lemma 4.13(ii) implies that the diagram

U(f) �
� //

Nrd

��

U(πf)

Nrd

��
µ2(R)

�

� // µ2(T )

commutes. Thus, given ϕ ∈ U(f), we may speak about the reduced norm of ϕ
without specifying if we view ϕ as an isometry of f or πf .

Finally, recall from 2F that Lag(πf) denotes the set of LagrangiansM of πf with
rrkB M = 1

2 rrkB P , and these are all the Lagrangians of πf because τ |T = idT . In
particular, if πf is hyperbolic, then ι rrkA P = rrkB P must be even. Recall also the
sheaf Lag(πf) over (Aff/T )fppf ; we write RT/RLag(πf) for its Weil restriction,
which is the sheaf on (Aff/R)fppf mapping an R-ring S to Lag(πfS).

Lemma 6.11. With Notation 4.1, suppose that (τ, ε) is orthogonal. Let (P, f) ∈
Hε(A, σ) and assume that πf is hyperbolic. Then (PT , fT ) is hyperbolic.
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Proof. By Lemma 1.18, we have TT ∼= T × T . Let e := (1T , 0T ) ∈ TT . By
assumption, πfT is hyperbolic, so by Proposition 6.3, the e-transfer of fT (see 2G)
is also hyperbolic. Thus, fT is hyperbolic. �

Proposition 6.12. With Notation 4.1, suppose that (τ, ε) is orthogonal. Let
(P, f) ∈ Hε(A, τ) and assume that πf is hyperbolic. Let U(πf) act on µ2,R via N .
Then there exists a unique U(πf)-equivariant natural transformation,

Ψf : RT/RLag(πf) → µ2,R,

such that for any R-ring R1 and any L1 ∈ Lag(fR1), one has Ψf(L1) = 1 in µ2(R1).
The map Ψf has the following additional properties:

(i) If f is hyperbolic and L ∈ Lag(f), then Ψf = NrT/R ◦RT/RΦ
(πf)
L (notation

as in Proposition 2.25).
(ii) If (P ′, f ′) ∈ Hε(A, σ) and πf ′ is hyperbolic, then Ψf⊕f ′(M⊕M ′) = Ψf (M)·

Ψf ′(M ′) for all M ∈ Lag(πf), M ′ ∈ Lag(πf ′).
(iii) Let e ∈ B be a σ-invariant idempotent such that rrkB eB is positive and

constant on the fibers of Spec T → SpecR. Then Ψf (M) = Ψfe(Me) for
all M ∈ Lag(πf) (notation as in 2G).

Note that L1 is a Lagrangian of πfR1 because we can find L′
1 ∈ Lag(fR1) such

that L1 ⊕ L′
1 = P as A-modules (see 2B) and πf(L1, L1) = πf(L′

1, L
′
1) = 0.

Proof. Fix someM0 ∈ Lag(πf), write Φ0 = RT/RΦ
(πf)
M0

: RT/RLag(πf) → RT/Rµ2

(see Proposition 2.25 for the definition of ΦM0), and let Ψ0 := NrT/R ◦Φ0. It is
clear that Ψ0 : RT/RLag(πf) → µ2,R is U(πf)-equivariant.

We claim that for any R-ring R1 and V,W ∈ Lag(fR1), we have Ψ0(V ) = Ψ0(W )
in µ2(R1). Since µ2,R is a sheaf on (Aff/R)fpqc, it is enough to check that Ψ0(V ) =
Ψ0(W ) after base-changing along a faithfully flat ring homomorphism R1 → R2.
By Proposition 2.23, we can choose R2 such that there exists ϕ ∈ U(fR2) with
V ⊗R1 R2 = ϕ(W ⊗R1 R2). Since Nrd(ϕ) ∈ µ2(R2) and Ψ0 is U(πf)-equivariant,
we have Ψ0(V ⊗R1 R2) = NrT/R(Nrd(ϕ)) · Ψ0(W ⊗R1 R2) = Ψ0(W ⊗R1 R2) in
µ2(R2), as required.

Let R0 := T . Then fR0 is hyperbolic by Lemma 6.11. Fix some L0 ∈ Lag(fR0)
and write θ := Ψ0(L0) ∈ µ2(R0). We claim that θ is in fact in µ2(R). To that end,
let i1, i2 : R0 → R0 ⊗R0 denote the homomorphisms r 7→ r ⊗ 1, r 7→ 1⊗ r. By the
previous paragraph, we have i1Ψ0(L0) = Ψ0(L0 ⊗i1 (R0 ⊗R0)) = Ψ0(L0 ⊗i2 (R0 ⊗
R0)) = i2Ψ0(L0) in µ2(R0 ⊗R0). Since µ2,R is a sheaf on (Aff/R)fpqc, this means
that θ ∈ µ2(R).

Define Ψf = θ−1 · Ψ0. Then Ψf : RT/RLag(πf) → µ2 is U(πf)-equivariant
and Ψf(L0) = 1 in µ2(R0). Let R1 be an R-ring and let L1 ∈ Lag(fR1). By what
we have shown above, Ψ0(L1 ⊗R1 (R0 ⊗ R1)) = Ψ0(L0 ⊗R0 (R0 ⊗ R1)) = θ in
µ2(R0 ⊗R1). Since R1 → R0 ⊗R1 is faithfully flat, this means that Ψ0(L1) = θ in
µ2(R1), so Ψf(L1) = 1. Thus, Ψf satisfies the condition in the proposition.

If Ψ′ : RT/RLag(πf) → µ2,R also satisfies the condition in the proposition,
then Ψ′(L0) = 1 = Ψ(L0). If R1 is an R-ring and M ∈ Lag(πfR1), then, by
Proposition 2.23, there exists a faithfully flat R0⊗R1-ring R2 and ϕ ∈ U(πfR2) such
that ϕ(L0 ⊗R0 R2) = M ⊗R1 R2. Thus, Ψ′(M) = N(ϕ)Ψ′(L0) = N(ϕ)Ψf (L0) =
Ψf (M) in µ2(R2). Since R1 → R0 ⊗ R1 → R2 is faithfully flat, this means that
Ψ′(M) = Ψf(M) in µ2(R1), so Ψ′ = Ψf .

We finally verify the additional properties (i)–(iii).
(i) Take M0 = L and L0 = LR0 in the construction of Ψf ; one gets θ = 1.
(ii) It is enough to prove the equality after base-changing to R0. It is then a

consequence of (i) (take L = L0) and Proposition 2.25(ii).



62 AN EXACT SEQUENCE OF WITT GROUPS

(iii) Again, we may base change to R0 first. The claim then follows from (i) and
item (t6) in 2G. �

It turns out that Ψf is often constant on Lag(πf).

Lemma 6.13. With Notation 4.1, suppose that R is connected semilocal and (τ, ε)
is orthogonal. Let (P, f) ∈ Hε(A, τ) and assume that πf is hyperbolic. Then
Ψf : Lag(πf) → µ2(R) = {±1} is onto if and only if T ∼= R × R, [A] = 0 and
P 6= 0.

Proof. The lemma is clear if P = 0, so assume P 6= 0.
Let M,M ′ ∈ Lag(πf). By Lemma 2.22, there exists ϕ ∈ U(πf) such that

ϕM = M ′, hence NrT/R(Nrd(ϕ))Ψf (M) = Ψf (M
′). From this we see that the

condition that Ψf : Lag(πf) → µ2(R) is onto is equivalent to the existence of
ϕ ∈ U(πf) with NrT/R Nrd(ϕ) = −1 in µ2(R).

Suppose that [A] = 0 and T = R×R, and let e = (1R, 0R) and e
′ = (0R, 1R). By

Proposition 6.3, we may identify U(πf) with U(fe)×U(fe′), and under this identi-
fication, Nrd : U(πf) → µ2(T ) is just Nrd×Nrd : U(fe)×U(fe′) → µ2(R)×µ2(R).
Since [Be] = [Be′] = [A] = 0 (Lemma 4.4(iii)), this map is onto by Theorem 2.20.
One readily checks that NrT/R : µ2(T ) → µ2(R) is also onto, so we conclude that
there exists ϕ ∈ U(πf) with NrT/R Nrd(ϕ) = −1.

Conversely, suppose that ϕ ∈ U(πf) satisfies NrT/R Nrd(ϕ) = −1. If T were
connected, then we would have NrT/R(µ2(T )) = NrT/R({±1}) = 1, so we must
have T ∼= R × R (Lemma 1.16) and Nrd(ϕ) ∈ {(1,−1), (−1, 1)}. Let e and e′

denote the nontrivial idempotents of T . Appealing to Proposition 6.3 as in the
previous paragraph, we see that ϕ|Pe ∈ U(fe) and ϕ|Pe′ ∈ U(fe′), and either
Nrd(ϕ|Pe) = −1 or Nrd(ϕ|Pe′ ) = −1. Thus, by Theorem 2.20, [eAe] = 0 or
[e′Ae′] = 0. Since [A] = [eAe] = [e′Ae′] (Lemma 4.4(iii)), [A] = 0. �

Proposition 6.14. With Notation 4.1, suppose that R is a field, T ∼= R × R,
[A] = 0 and (τ, ε) is orthogonal. Let (P, f) ∈ Hε(A, σ) be a hyperbolic hermitian
space. Then there exists M ∈ Lag(πf) with MP = A. Every such M satisfies

Ψf (M) = (−1)
1
2 rrkA P .

Proof. By Reduction 4.10, Corollary 1.12 and Proposition 6.12(iii), we may assume
that B = T , degA = 2 and τ is orthogonal. As a result, ε = 1. Recall that σ is
also orthogonal in this case (Lemma 4.12).

Let e denote a nontrivial idempotent of T . We identify A with M2(R) in such a
way that e = [ 1 0

0 0 ]. Thus, B = T = R + Re consist of the diagonal matrices, and
π : A→ B is given by π[ a b

c d ] = [ a 0
0 d ]. Since e

σ = e, there exist α ∈ R× such that σ
is given by σ : [ a b

c d ] 7→ [ a αc
α−1b d ].

Let f1 : A × A → A be the hyperbolic 1-hermitian form given by f1(x, y) =
xσ[ 0 α

1 0 ]y ([R R
0 0 ] is a Lagrangian). Since rrkAA = 2 and rrkA P is even (because πf

is hyperbolic), we have (P, f) ∼= rrkA P
2 · (A, f1) (Lemma 2.7). Thus, it is enough to

prove the existence ofM when (P, f) = (A, f1). To that end, takeM := B = [R 0
0 R ];

it is a Lagrangian because A =M ⊕M ′ and f1(M
′,M ′) = 0 for M ′ = [ 0 R

R 0 ].
We proceed with proving the second statement of the proposition. Suppose that

M ∈ Lag(πf) satisfies MA = P . Write e′ = 1 − e. Using Proposition 6.3, we
shall view πf as fe × fe′ and identify U(πf) and Lag(πf) with U(fe)×U(fe′) and
Lag(fe)× Lag(fe′), respectively.

SinceM ∈ Lag(πf), we haveMe ∈ Lag(fe), and soMeA ∈ Lag(f) (see item (t5)
in 2G). Similarly, Me′A ∈ Lag(f). Since MA = P , we haveMeA+Me′A = P and
A-length considerations force P =MeA⊕Me′A.

By Lemma 2.22, there exists ϕ ∈ U(f) such that ϕ(MeA) = Me′A. Write
ϕe = ϕ|Pe. Then, viewing (ϕe, 1) as an element of U(fe) × U(fe′) = U(πf) and
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working in Lag(πf) = Lag(fe)× Lag(fe′), we have

(ϕe, 1) ·M = (ϕe, 1)(Me,Me′) = (ϕe(Me),Me′)

= (ϕ(MeA) · e,Me′) = (Me′Ae,Me′Ae′) =Me′A.

By Proposition 6.12, we have N(ϕe, 1) ·Ψf(M) = Ψf (Me′A) = 1, because Me′A ∈
Lag(f). Furthermore, by Proposition 2.26,MeA⊕Me′A = P implies that Nrd(ϕ) =

(−1)
1
2 rrkA P . Together, this gives Ψf (M) = N(ϕe, 1)

−1 = Nrd(ϕe) · Nrd(1) =

Nrd(ϕ) = (−1)
1
2 rrkA P , as required. �

Corollary 6.15. With Notation 4.1, suppose that (τ, ε) is orthogonal. Let (P, f) ∈
Hε(A, σ) and let M ∈ Lag(πf). If MA = P , then Ψf(M) = (−1)

1
2 rrkA P .

Proof. By Lemma 2.17, it is enough to prove the corollary after specializing to an
algebraic closure of k(p) for all p ∈ SpecR, so assume that R is an algebraically
closed field. Then [A] = 0 and T ∼= R×R. We claim that f is hyperbolic. Indeed,
fT is hyperbolic by Lemma 6.11 and T ∼= R × R, so f is also hyperoblic. The
corollary therefore follows from Proposition 6.14. �

Proposition 6.16. With Notation 4.1, suppose that (τ, ε) is orthogonal and R is
a field. Let (P, f) ∈ Hε(A, σ) and let M ∈ Lag(πf). Then there exists ϕ ∈ U0(πf)

such that ϕM ·A = P if and only if Ψf(M) = (−1)
1
2 rrkP A.

Proof. If ϕM · A = P for ϕ ∈ U0(πf), then Ψf(M) = N(ϕ)Ψf (M) = Ψf(ϕM) =

(−1)
1
2 rrkP A by Corollary 6.15. We turn to prove the converse.

Using Proposition 2.5, write (P, f) = (P1, f1)⊕ (P2, f2) with f1 anisotropic and
f2 hyperbolic. Since [πf1] = [πf ] = 0 in Wε(B, τ), the form πf1 is hyperoblic
by Theorem 2.8(ii). Let M1 ∈ Lag(πf1). Arguing as in Remark 3.7, we see that

M1A = P1, and Ψf1(M1) = (−1)
1
2 rrkA P1 by Corollary 6.15. We now split into

cases.

Case I. [A] = 0 and T ∼= R× R. By Proposition 6.14, there exists M2 ∈ Lag(πf2)
such that M2A = P2. Write M ′ = M1 ⊕M2. Since M ′A = P , we have Ψf (M

′) =

(−1)
1
2 rrkA P by Corollary 6.15. By Lemma 2.22, there exists ψ ∈ U(πf) such that

ψM = M ′. Since Ψf (M
′) = (−1)

1
2 rrkA P = Ψf (M), this means that Nrd(ψ) ∈

ker(NrT/R : µ2(T ) → µ2(R)) = µ2(R).
If Nrd(ψ) = 1, take ϕ to be ψ. If Nrd(ψ) = −1, then P 6= 0. Since [A] = 0,

Theorem 2.20 implies that there exists ξ ∈ U(f) with Nrd(ξ) = −1. Then ξ is an
A-linear isometry of πf , hence ξψM is a Lagrangian of πf satisfying ξψM · A =
ξ(ψM · A) = ξP = P , so take ϕ = ξψ.

Case II. [A] = 0 and T is a field. Let L2 ∈ Lag(f2). By definition, we have

Ψf2(L2) = 1, hence Ψf(M1 ⊕ L2) = Ψf1(M1) · Ψf2(L2) = (−1)
1
2 rrkA P1 (Propo-

sition 6.12(ii)). On the other hand, by Lemma 6.13, Ψf (M1 ⊕ L2) = Ψf (M) =

(−1)
1
2 rrkA P , so 1

2 rrkA P2 = 1
2 (rrkA P − rrkA P1) must be even. Now, by Proposi-

tion 6.6, there exists M2 ∈ Lag(πf2) such that M2A = P2. Proceed as in Case I.

Case III. [A] 6= 0. By Wedderburn’s Theorem, R is infinite. Therefore, thanks
to Proposition 4.14(ii), we are reduced into proving the proposition when R is
algebraically closed. This is covered by Case I. �

From Proposition 6.16, we see that in order to apply the proof of Theorem 6.10
to our situation, we need to find a Lagrangian M ∈ Lag(πf) with Ψf (M) =

(−1)
1
2 rrkA P . The following two propositions, which address the cases [B] 6= 0 and

[B] = 0 respectively, characterize precisely when such M exists.
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Proposition 6.17. With Notation 4.1, suppose that R is semilocal, T is connected
and (τ, ε) is orthogonal. Let (P, f) ∈ Hε(A, σ) and assume that πf is hyperbolic.

If [B] 6= 0, then Ψf (M) = (−1)
1
2 rrkP A for all M ∈ Lag(πf).

Proof. For the sake of contradiction, suppose that there exists M ∈ Lag(πf) with

Ψf (M) = (−1)
1
2 rrkP A+1. By Lemma 6.11, there exists L ∈ Lag(fT ), and rrkAT L

is constant because it equals 1
2 rrkAT PT .

Suppose that rrkAT L is odd. Then (rrkAT L) · [AT ] = 0 by Corollary 1.13 and
Theorem 1.8, and 2[AT ] = 0 because AT has a T -involution. Thus, [B] = [AT ] = 0,
a contradiction.

Suppose that rrkAT L is even. Then 1
2 rrkA P is also even. Now, Ψf (MT ) =

Ψf (M) = −1 while Ψf(L) = 1. By Lemma 6.13, this means that [B] = [AT ] = 0,
so again, we have reached a contradiction. �

Lemma 6.18. With Notation 4.1, suppose that R is semilocal, degB = 1, τ = idB

and ε = 1. Let (P, f) ∈ Hε(A, σ) and assume that πf is hyperbolic and rrkA P is
constant and greater than 2. Then there exists x ∈ P such that f(x, x) ∈ A× and
πf(x, x) = 0.

Proof. Define λ, µ as in Lemma 4.3(i) (so λσ = λ and µσ = −µ).
Step 1. We first prove the existence of x when R is a field. Write (P, f) = (P1, f1)⊕
(P2, f2) with f1 anisotropic and f2 hyperbolic (Proposition 2.5). As in the proof
of Proposition 6.16, πf1 and πf2 are hyperbolic, so both rrkA P1 and rrkA P2 are
even. By assumption, rrkA P1 > 0 or rrkA P2 ≥ 4.

If rrkA P1 > 0, then there exists nonzero x ∈ P1 such that πf1(x, x) = 0.
Thus, f1(x, x) ∈ S1(A, σ) ∩ kerπ = µλR. Since f1 is anisotropic, f1(x, x) 6= 0, so
f(x, x) = f1(x, x) ∈ µλR× ⊆ A×.

If rrkA P2 ≥ 4, then f2 has an orthogonal summand isomorphic to 〈µλ,−µλ〉(A,σ)

(Lemma 2.7). Now take x to be the vector corresponding to (1A, 0A) ∈ A2 in P .

Step 2. We continue to assume that R is a field. Let x, y ∈ P be two elements such
that πf(x, x) = πf(y, y) = 0 and rrkB xB = rrkB yB = 1. We claim that there
exists ϕ ∈ U0(πf) such that ϕx = y.

Suppose first that T is a field. Our assumptions imply that xB ∼= yB as B-
modules. Since πf is unimodular, there exists x′ ∈ P such that πf(x, x′) = 1.
In particular, the restriction of f to Q = xB ⊕ xB′ is unimodular, so P = Q ⊕
Q⊥. Since rrkB P = ι rrkA P ≥ 4, we have Q⊥ 6= 0. By Theorem 2.20, there
exists ψ0 ∈ U(f |Q⊥×Q⊥) with Nrd(ψ0) = −1. Let ψ = idQ ⊕ψ0 ∈ U(πf). By
Theorem 2.3, there exists ϕ ∈ U(πf) with ϕx = y. If Nrd(ϕ) = 1, we are done.
If not, Nrd(ϕ) = −1 (because T is a field) and we can replace ϕ with ϕψ to get
Nrd(ϕ) = 1.

When T is not a field, we have T = R × R and we can apply the argument of
the previous paragraph separately over each factor of T .

Step 3. We now prove the proposition for all R. Since rrkB P = ι rrkA P ≥ 4 and
πf is hyperbolic, there exists y ∈ P such that πf(y, y) = 0 and yB is a summand
of PB of reduced rank 1.

Let m1, . . . ,mt denote the maximal ideals of R. By Step 1, for all 1 ≤ i ≤ t,
there exists xi ∈ P (mi) such that πf(mi)(xi, xi) = 0 and f(mi)(xi, xi) ∈ A(mi)

×.
The latter condition implies that annB(mi) xi = 0, so rrkB(mi) xiB(mi) = 1. Thus,

by Step 2, there exists ϕi ∈ U0(πf(mi)) such that ϕiy = xi.
By Theorem 2.18, there exists ϕ ∈ U(πf) such that ϕ(mi) = ϕi for all 1 ≤ i ≤ t.

Let x = ϕy. Then f(x, x) = f(y, y) = 0 and f(x, x)(mi) = f(mi)(xi, xi) ∈ A(mi)
×

for all i. By Lemma 1.6, f(x, x) ∈ A×, as required. �
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The next proposition makes use of the discriminant of hermitian forms over
(A, σ), see 2H.

Proposition 6.19. With Notation 4.1, suppose that R is semilocal, T is connected,
[B] = 0 and (τ, ε) is orthogonal. Let (P, f) ∈ Hε(A, σ) and assume that πf is hyper-

bolic. Then Ψf (M) ≡ (−1)
1
2 rrkA P for some M ∈ Lag(πf) if and only if disc(f) =

disc(T/R)
1
2 rrkA P . When this fails, [A] = 0, disc(f) = disc(T/R)

1
2 rrkA P+1 and f

is isotropic.

Proof. Recall that rrkA P is even because πf is hyperbolic. Furthermore, rrkA P is
constant because T is connected. By Reduction 4.10, we may assume that degB =
1, degA = 2, τ = idT and ε = 1. Define λ, µ as in Lemma 4.3(i) (so λσ = λ and
µσ = −µ). By Lemma 6.13, Ψf is constant on Lag(πf) and we denote the value
that it attains by Ψ̄f . The proposition is clear if P = 0, so assume P 6= 0.

Suppose first that rrkA P > 2. By Lemma 6.18, there exists x ∈ P with
f(x, x) ∈ A× and πf(x, x) = 0. Write P1 = xA, P2 = P⊥

1 and let fi = f |Pi×Pi

(i = 1, 2). Since f(x, x) ∈ A×, we have (P, f) = (P1, f1) ⊕ (P2, f2). Moreover,
f(x, x) ∈ kerπ ∩ S1(A, σ) ∩ A× = µλR×, so (P1, f1) ∼= 〈αµλ〉(A,σ) for some

α ∈ R×. Thus, disc(f1) ≡ −Nrd(µ)Nrd(αµλ) ≡ α2λ2 ≡ disc(T/R) mod (R×)2

(Proposition 2.27(v)). Since πf(x, x) = πf(xµ, xµ) = 0 and xA = xB ⊕ xµB,
we have xB ∈ Lag(πf1). Moreover, xB · A = xA implies that Ψ̄f1 = −1 (Corol-
lary 6.15). Since πf1 is hyperbolic, [πf2] = [πf ] = 0 in Wε(B, τ), so πf2 is hy-
perbolic by Theorem 2.8(ii). Now, disc(f) = disc(f1) disc(f2) = disc(T/R) disc(f2)
and Ψ̄f = Ψ̄f1Ψ̄f2 = −Ψ̄f2 (Proposition 6.12(ii)), so the proposition holds for (P, f)
if and only if it holds for (P2, f2). Replacing (P, f) with (P2, f2) and repeating this
process, we eventually reduce to the case where rrkA P = 2.

Suppose henceforth that rrkA P = 2. We may assume that P = AA and f =
〈a〉(A,σ) for some a ∈ S1(A, σ) ∩ A×. Write a = b1 + µb2 with b1, b2 ∈ B and

let θ denote the standard R-involution of T (so λθ = −λ). Note that aσ = a
implies bθ2 = −b2 and, by Proposition 2.27(v), disc(f) ≡ −Nrd(µ)Nrd(b1 + µb2) ≡
µ2(bθ1b1 − µ2bθ2b2) ≡ µ2(bθ1b1 + µ2b22) mod (R×)2.

Straightforward computation shows that the Gram matrix of πf relative to the
B-basis {1, µ} is

X =

[

b1 −µ2b2
−µ2b2 −µ2bθ1

]

∈ GL2(T ).

Thus, disc(πf) ≡ µ2bθ1b1 + µ4b22 ≡ disc(f) mod (T×)2. Since πf is hyperbolic,
disc(πf) = (T×)2, so there exists d ∈ T× such that

d2 = µ2(bθ1b1 + µ2b22) ≡ disc(f) mod (R×)2.

Identifying AB with B2 via the basis {1, µ}, let M = [−µ2b2+d
−b1

]T + [ µ2bθ1
−µ2b2−d

]T

and M ′ = [−µ2b2−d
−b1

]T + [ µ2bθ1
−µ2b2+d

]T . Viewing M a subset of A, we have

M = (−µ2b2 + d− µb1)T + (µ2bθ1 − µ3b2 − µd)T.

We claim that M +M ′ = B2. To see this, observe that [−2µ2b2
−2b1

] = [−µ2b2+d
−b1

] +

[−µ2b2−d
−b1

] and [−2µ2bθ1
2µ2b2

] = −[ µ2bθ1
−µ2b2−d

]− [ µ2bθ1
−µ2b2+d

] live inM+M ′, and they generate

B2
B because they are the columns of the matrix [ 0 2

−2 0 ]X ∈ GL2(T ). Furthermore,
we have M ∩M ′ = 0 because

[

b1 −µ2b2+d

−µ2b2−d −µ2bθ1

]

M = 0 and
[

b1 −µ2b2−d

−µ2b2+d −µ2bθ1

]

M ′ = 0,

while [
b1 −µ2b2+d

−µ2b2−d −µ2bθ1
]+ [

b1 −µ2b2−d

−µ2b2+d −µ2bθ1
] = 2X ∈ GL2(T ). It is routine to check

that πf(M,M) = πf(M ′,M ′) = 0, so we conclude that M ∈ Lag(πf).
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We claim that d ∈ R× or d ∈ λR×. Indeed, write d = α + βλ with α, β ∈ R.
Then (α2 + λ2β2) + 2αβλ = d2 ∈ R×, so αβ = 0 and αR + βR = R (because
d2 = α2+λ2β2 ∈ αR+βR). Multiplying the latter equation by α, we get α2R = αR,
so there exists c ∈ R with cα2 = α. The element αc is an idempotent and R is
connected, hence αc ∈ {0, 1}. If αc = 0, then α = cα2 = 0 and d ∈ λR×. On the
other hand, if αc = 1, then β = 0, because αβ = 0, and d ∈ R×.

Now, if d = αλ for some α ∈ R×, then disc(f) = λ2(R×)2 = disc(T/R), and

2αλµ = µ3b2 + αλµ− µ2bθ1 + µ2bθ1 − µ3b2 − αµλ

= (−µ2b2 + d− µb1)µ+ (µ2bθ1 − µ3b2 − µd) ∈MA

(note that b2µ = µbθ2 = −µb2). Thus, MA = A and Ψ̄f = −1 by Corollary 6.15.
On the other hand, if d ∈ R×, then disc(f) = (R×)2 = disc(T/R)2 and

(−µ2b2 + d− µb1)µ = −(µ2bθ1 − µ3b2 − µd) ∈M,

(µ2bθ1 − µ3b2 − µd)µ = −(−µ2b2 + d− µb1)µ
2 ∈M.

Thus, M is an A-module, and it follows that π(f(M,M)µ) = πf(M,Mµ) =
πf(M,M) = 0, hence f(M,M) = 0. Similarly, M ′ is also an A-module with
f(M ′,M ′) = 0, so f is hyperbolic and M is a Lagrangian of f . In particular,
f is isotropic. Now, by the characterizing property of Ψf in Proposition 6.12,
Ψ̄f = Ψf (M) = 1, and by Corollary 6.15, there is noM ′ ∈ Lag(πf) withM ′A = P .
Moreover, rrkAM = 1

2 rrkAA = 1, so [A] = [EndA(M)] = [R] = 0 by Proposi-
tion 1.11(i).

The proposition follows because only one of the previous cases can hold. Indeed,
we cannot have Ψ̄f = 1 and Ψ̄f = −1 simultaneously. �

Theorem 6.20. Theorem 6.1 holds when (τ, ε) is orthogonal.

Proof. Recall that we are given (P, f) ∈ Hε(A, σ) such that [πf ] = 0 in Wε(B, τ).
By Theorem 2.8(ii), πf is hyperoblic. As explained in the introduction to this
subsection, this means that rrkA P is even.

(i) This part is vacuous under our assumptions.
(ii) The pair (σ, ε) is orthogonal by Lemma 4.12.
Suppose that there exists M ∈ Lag(πf) with MA = P . Then Ψf(M) =

(−1)
1
2 rrkA P by Corollary 6.15. Now, by Proposition 6.19, either [B] 6= 0, or

disc(f) = disc(T/R)
1
2 rrkA P , as required.

Conversely, suppose that [B] 6= 0, or disc(f) = disc(T/R)
1
2 rrkA P . If there exists

M ∈ Lag(πf) with Ψf (M) = (−1)
1
2 rrkA P , then we can argue as in the second

paragraph of the proof of Theorem 6.10(i), replacing Proposition 6.9 with Propo-
sition 6.16, to show that there exists M ′ ∈ Lag(πf) with M ′A = P . The existence
of M follows from Proposition 6.17 if [B] 6= 0 and from Proposition 6.19 if [B] = 0.

Proposition 6.19 also implies that [A] = 0, disc(f) = disc(T/R)
1
2 rrkA P+1 and f

is isotropic if [B] = 0 and disc(f) 6= disc(T/R)
1
2 rrkA P .

(iii) By Propositions 6.2 and 6.4, we may assume that T is connected. By (ii),

we may further assume that [B] = 0 and disc(f) 6= disc(T/R)
1
2 rrkA P , in which case

[A] = 0 and Ψf(M) = (−1)
1
2 rrkA P+1 for all M ∈ Lag(πf).

Fix some M ∈ Lag(πf). Since [A] = [R], there exists V ∈ P(A) such that
rrkA V = degR = 1 (Proposition 1.11(iii)). Then M ⊕ V is a Lagrangian of π(f ⊕
h
ε
V ) which satisfies Ψf⊕hε

V
(M ⊕ V ) = (−1)

1
2 rrkA P+1Ψhε

V
(V ) = (−1)

1
2 rrkA P+1 =

(−1)
1
2 rrkA(P⊕V ⊕V ∗) (Proposition 6.12(ii), Lemma 2.6). Replacing (P, f) and M

with (P ⊕V ⊕V ∗, f ⊕hε
V ) and M ⊕V , we may assume that Ψf (M) = (−1)

1
2 rrkA P

and proceed as in the proof of the “if” part of (ii). �
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7. Proof of Theorem 3.4

We can now prove Theorem 3.4. We use the notation of 3A.

Proof of Theorem 3.4. Assume R is semilocal, and recall from 3A that (A, σ) is an
Azumaya R-algebra with involution, λ, µ ∈ A× satisfy λ2 ∈ S := Z(A), λµ = −µλ,
λσ = −λ, µσ = −µ, and we have B = ZA(λ), T = S[λ], τ1 = σ|B, τ2 = Int(µ−1) ◦
σ|B . To avoid later ambiguity, we henceforth write σ1 in place of σ.

By Lemma 3.1, R,S, T,B,A satisfy the assumptions of Notation 4.1. Further-
more, π1 coincides with π = πA,B of Lemma 4.2. We shall consider four possibilities
for the involution σ in Notation 4.1, namely, σ1 (i.e. σ from 3A), Int(λ−1) ◦ σ1,
Int(µ−1) ◦ σ1 and Int((λµ)−1) ◦ σ1. The involution τ = σ|B from Notation 4.1 is
τ1 in the first two cases and τ2 in the last two cases, because λ commutes with
elements from B. Recall that ρ : (B, τ) → (A, σ) is the inclusion map.

According to Theorem 3.6, we need prove conditions (E1), (E2), (E3), (E4).

Proof of (E1). Let (P, f) ∈ Hε(A, σ1) and assume [π1f ] = 0. Then existence of the
required Lagrangian of π1f follows by applying Theorem 6.1(iii) to (P, f) with σ1
in place of σ.

Proof of (E2). Let (Q, g) ∈ Hε(B, τ1) and assume [ρ1g] = 0 in W−ε(A, σ). Put
σ = Int(λ−1) ◦ σ1 and τ = τ1. Then ρ1g = λρg, where the right hand side is
λ-conjugation (see 2G) of the base-change of g along ρ (see 2C). Thus, [ρg] = 0 in
Wε(A, σ), so by Theorem 5.1(ii), there exists (Q′, g′) ∈ Hε(B, τ1) with [g] = [g′]
and a Lagrangian L of ρg′ such that L ⊕Q′ = Q′A. Since L is also a Lagrangian
of ρ1g

′ = λρg′, we have established (E2) for (Q, g).

Proof of (E3). Let (P, f) ∈ H−ε(A, σ1) and assume [π2f ] = 0. Put σ = Int(µ−1) ◦
σ1, τ = τ2 and let f2 = µ−1f ∈ Hε(A, σ). Then π2f = πf2. By applying
Theorem 6.1(iii) to (P, f2), we see that there exists (P ′, f ′

2) ∈ Hε(A, σ) with
[f2] = [f ′

2] and a Lagrangian M of π2f
′
2 such that MA = P ′. Put f ′ = µf ′

2.
Then (P ′, f ′) ∈ H−ε(A, σ1), [f

′] = [f ] and M is a Lagrangian of π2f
′ = πf ′

2 with
MA = P ′.

Proof of (E4). Let (Q, g) ∈ Hε(B, τ2) and assume [ρ2g] = 0. Put σ = Int((λµ)−1)◦
σ1 and τ = τ2. Then ρ2g = (λµ)ρg, and the proof proceeds as in the case of (E2).

This completes the proof of Theorem 3.4. �

In fact, Theorems 5.1 and 6.1 allow us to describe the image of the functors
π1, π2, ρ1, ρ2 when T is connected. This description is given in the following theo-
rem, which can be regarded as a refinement of Theorem 3.4; it will be needed for
some of the applications.

Theorem 7.1. With notation as in 3A, suppose that R is semilocal and T is
connected.

(i) Let (P, f) ∈ Hε(A, σ). Then there exists (Q, g) ∈ H−ε(B, τ2) with ρ2g ∼= f
if and only if [π1f ] = 0 and one of the following hold:
(1) (σ, ε) is not symplectic;
(2) 4 | rrkA P .
If [π1f ] = 0 and conditions (1)–(2) fail, then [A] = 0 and f is hyperbolic.

(ii) Let (Q, g) ∈ Hε(B, τ1). Then there exists (P, f) ∈ Hε(A, σ) with π1f ∼= g
if and only if [ρ1g] = 0 and one of the the following hold:
(1) (σ,−ε) is not orthogonal;
(2) [A] = 0;
(3) [B] 6= 0;

(4) (σ,−ε) is orthogonal, [B] = 0, rrkB Q is even and [D(g)] =
rrkQ B

2 [A]
(see 2H; τ1 is unitary).
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If [ρ1g] = 0 and conditions (1)–(4) fail, then rrkB Q is even, [D(g)] =

(
rrkQ B

2 + 1)[A] and g is isotropic.
(iii) Let (P, f) ∈ H−ε(A, σ). Then there exists (Q, g) ∈ Hε(B, τ1) with ρ1g ∼= f

if and only if [π2f ] = 0 and one of the following hold:
(1) (τ2, ε) is not orthogonal;
(2) [B] 6= 0;

(3) (τ2, ε) is orthogonal, rrkA P is even, and disc(f) = disc(T/R)
1
2 rrkA P

(see 2H; (σ,−ε) is orthogonal in this case).
If [π2f ] = 0 and conditions (1)–(3) fail, then [A] = 0, rrkA P is even,

disc(f) = disc(T/R)
1
2 rrkA P+1 and f is isotropic.

(iv) Let (Q, g) ∈ Hε(B, τ2). Then there exists (P, f) ∈ Hε(A, σ) with π2f ∼= g
if and only if [ρ2g] = 0.

Proof. We will use the notation and observations from the first two paragraphs of
the proof of Theorem 3.4. In particular, we write σ1 for σ of 3A.

(i) By Remark 3.9(i), (Q, g) exists if and only if π1f admits a LagrangianM with
MA = P . Put σ = σ1 and τ = τ1, and observe that τ : B → B is unitary because
τ1|T 6= idT and T is connected (see Proposition 1.21). Applying Theorem 6.1(i) to
f with σ1 in place of σ now gives the required statement.

(ii) By Remark 3.9(ii), (P, f) exists if and only if ρ1g admits a Lagrangian L
with Q ⊕ L = QA. Put σ = Int(λ−1) ◦ σ1 and τ = τ1. Then ρ1g = λρg (notation
as in 2C, 2G), so ρg ∈ Hε(A, σ) has the same Lagrangians as ρ1g. The statement
therefore follows by applying Theorem 5.1(i) to (Q, g); note that (σ, ε) and (σ1,−ε)
have the same type by Corollary 1.22(i).

(iii) By Remark 3.9(iii), (Q, g) exists if and only if π2f admits a Lagrangian M
with MA = P . Put σ = Int(µ−1) ◦ σ1, τ = τ2 and let f2 = µ−1f ∈ Hε(A, σ2).
Then π2f = πf2 and both forms have the same Lagrangians. In addition, f is
isotropic if and only if f2 is isotropic, and disc(f) = disc(f2) (Proposition 2.27(ii)).
The statement therefore follows by applying parts (i) and (ii) of Theorem 6.1 to
(P, f2). Note that (σ, ε) and (σ1,−ε) have the same type by Corollary 1.22(i), and
(τ, ε) cannot be unitary if (σ, ε) is symplectic, because τ2|T = idT when σ1|S = idS .

(iv) By Remark 3.9(iv), (P, f) exists if and only if ρ2g admits a Lagrangian
L with Q ⊕ L = QA. Put σ = Int((λµ)−1) ◦ σ1 and τ = τ2. Then, as in (ii),
ρ2g = (λµ)ρg, and the statement follows by applying Theorem 5.1(i) to (Q, g).
Note that (τ, ε) is not unitary when (σ, ε) is orthogonal, again because τ2|T = idT
when σ|S = idS . �

Corollary 7.2. With the notation of 3A, suppose that R is a semilocal and T
is connected. Let (P, f) ∈ Hε(A, σ) be anisotropic and assume that [π1f ] = 0 in
Wε(B, τ). Then there exists (Q, g) ∈ H−ε(B, τ2) with ρ2g ∼= f .

Similar statements hold for the image of π1, ρ1, π2.

Corollary 7.3. With the notation of 3A, suppose that R is a regular semilocal
domain with fraction field K and T is connected. Let (P, f) ∈ Hε(A, σ) and assume
that [π1f ] = 0 in Wε(B, τ). Then there exists (Q, g) ∈ H−ε(B, τ2) with ρ2g ∼= f if
and only if there exists (Q′, g′) ∈ H−ε(BK , τ2,K) with ρ2g

′ ∼= fK.
Similar statements hold for the image of π1, ρ1, π2.

Proof. Since R is a regular domain and T is connected and finite étale over R, the
ring T is also a regular domain [68, Tag 03PC]. In particular, TK is a field. By
the Auslander–Goldman theorem [3, Theorem 7.2], the natural maps BrR → BrK
and BrT → BrTK are injective. Thus, [A] = 0 if and only if [AK ] = 0 and
[B] = 0 if and only if [BK ] = 0. Furthermore, since R is integrally closed, the map
R×/(R×)2 → K×/(K×)2 is injective. Finally, since T is connected, the type of

https://stacks.math.columbia.edu/tag/03PC
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(τ2, ε) is the same as the type of (τ2,K , ε) and the type of (σ,±ε) is the same as the
type of (σK ,±ε). The corollary now follows readily from Theorem 7.1. �

8. Applications

8A. Quadratic Étale and Quaternion Azumaya Algebras. When R is a field,
Grenier-Boley and Mahmoudi [30] noted that the octagon (3.1) recovers two exact
sequences of Lewis [43] involving Witt groups associated to separable quadratic
field extensions and quaternion division algebras. We generalize these sequences
to quadratic étale algebras and quaternion (i.e. degree-2) Azumaya algebras over
semilocal rings.

Before we begin, recall from Lemma 1.19 that when R is semilocal (and 2 ∈ R×),
every quadratic étale R-algebra is of the form R[λ |λ2 = α] for some α ∈ R×, and in
this case, the standard R-involution sends λ to −λ. Quaternion R-algebras admit
a similar description, which is well-known when R is a field.

Lemma 8.1. Let A be a quaterion Azumaya algebra over a semilocal ring R. Then
there exist λ, µ ∈ A such that λ2, µ2 ∈ R×, λµ = −µλ and {1, λ, µ, µλ} is an R
basis of A. Furthermore, A admits a unique symplectic involution, σ, which satisfies
λσ = −λ and µσ = −µ.
Proof. It is enough to consider the case where R is connected. Otherwise, write R
as a product of connected rings and work over each factor separately.

The map σ : a 7→ TrdA/R(a) − a is a symplectic involution of A, see [62, The-
orem 4.1]. It is unique by [39, Proposition I.1.3.4]. By Lemma 1.26, there exists
λ ∈ S−1(A, σ) ∩ A×. Then −λ = λσ = Trd(λ) − λ, hence Trd(λ) = 0. Thus,
λ2 = Trd(λ)λ−Nrd(λ) = −Nrd(λ) ∈ R×. Since R∩λR ⊆ S1(A, σ)∩S−1(A, σ) = 0,
it follows that T := R[λ] is a quadratic étale R-algebra with R-basis {1, λ}. By
Corollary 1.15, rrkT AA = 2, so we are in the setting of Notation 4.1 and the lemma
follows from Lemma 4.3. (Of course, there are more direct proofs.) �

Corollary 8.2. Let R be a semilocal ring, let A be a quaternion Azumaya R-
algebra and let λ, µ, σ be as in Lemma 8.1. Write B = R[λ] and τ = σ|B. Then
the sequence

0 →W1(A, σ)
π1−→W1(B, τ)

ρ1−→ W−1(A, σ)
π2−→W1(B, idB)

ρ2−→W−1(A, σ)

π1−→W−1(B, τ)
ρ1−→W1(A, σ) → 0

in which the maps are defined as in 3A (with τ1 = τ and τ2 = idB) is exact.

Proof. By Proposition 6.8(ii), W−1(B, idB) = 0. The corollary therefore follows
from Theorem 3.4. �

Corollary 8.3. Let R be a semilocal ring and let T be a quadratic étale R-algebra
with standard involution θ. Let ρ : R → T denote the inclusion map, viewed as a
morphism from (R, idR) to (T, θ) or (T, idT ), and let λ ∈ T be an element such that
λ2 ∈ R× and T = R ⊕ λR (λ always exists by Lemma 1.19). Then the sequence

0 →W1(T, θ)
Tr−→W1(R, idR)

λρ−→W1(T, idT )
Tr−→W1(R, idR)

λρ−→W−1(T, θ) → 0

with maps given by Tr(g) = TrT/R ◦g, λρ(f) = λ · ρf (notation as in 2C, 2G) is
exact.

Baeza [5, Korollar 2.9] and Mandelberg [46, Proposition 2.1] established the
exactness at the left-to-middle and middle terms, respectively. Baeza [6, Theo-
rem V.5.8] later proved the exactness at these terms without assuming that 2 ∈ R×

and gave an alternative ending to the exact sequence.
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Proof. Let A = M2(R) and let σ : A → A be the symplectic involution [ a b
c d ] 7→

[ d −b
−c a ]. Write α := λ2. We embed (T, θ) in (A, σ) by identifying λ with [ 0 α

1 0 ].

Let µ := [ 1 0
0 −1 ]. Then A, σ, λ, µ,B := T and τ := θ satisfy the assumptions of

Corollary 8.2. By Proposition 6.8(ii), W1(A, σ) = 0, so the exact sequence of
Corollary 8.2 reduces to:

0 →W1(T, θ)
ρ1−→W−1(A, σ)

π2−→W1(T, idT )
ρ2−→W−1(A, σ)

π1−→W−1(T, θ) → 0

(8.1)

Let u = 2[ 0 1
−1 0 ], e = [ 1 0

0 0 ], and let t denote the transpose involution on A. Then
u-conjugation induces an isomorphism W−1(A, σ) → W1(M2(R), t) and e-transfer
induces an isomorphismW1(M2(R), t) →W1(R, idR); see 2G. We claim that under
the resulting isomorphismW−1(A, σ) → W1(R, idR), the maps ρ1, π2, ρ2, π1 in (8.1)
become Tr, (−λ)ρ,Tr, λρ, respectively. This will imply that the sequence in the
corollary is exact (the sign change in the second map does not matter).

To see that ρ1 and ρ2 correspond to Tr, note that for every Q ∈ P(B), the map
x 7→ xe : Q → QAe is a natural isomorphism of R-modules. Indeed, it is routine
to check this for Q = BB and the general case follows from the naturality and the
fact that every Q ∈ P(B) is a summand of Bn

B for some n. One readily checks
that eτu(λx)e = eτu(λµx)e = eTrT/R(x) for all x ∈ T . Using this, it is routine to
check that, upon identifying eAe with R, the isomorphism x 7→ xe : Q → QAe is
an isometry from Tr g to (u(ρ1g))e, resp. (u(ρ2g))e, which is what we want.

We now show that π1 and π2 correspond to λρ and (−λ)ρ, respectively. Given
V ∈ P(R), we view V 2 as a right A-module by considering pairs in V 2 as 1× 2 ma-
trices and letting A = M2(R) act by matrix multiplication. If (V, f) ∈ H1(R, idR),

let f ′ : V 2×V 2 → A be given by f ′((x, y), (z, w)) = [
f(x,z) f(x,w)
f(y,z) f(y,w) ]. Then (V 2, f ′) is

a 1-hermitian space over (A, t) and f ′
e
∼= f . It is enough to show that π1(u

−1f ′) ∼=
λρf and π2(u

−1f ′) ∼= (−λ)ρf . The A-module V 2 inherits a T -module struc-
ture, and the map x ⊗ (a + λb) 7→ (2xa, 2xαb) : VT → V 2 (x ∈ V , a, b ∈ R)
is an isomorphism of T -modules. (As in the previous paragraph, it is enough to
check this for V = RR.) Note also that π1[ a b

c d ] =
1
2 (a + d) + 1

2 (α
−1b + c)λ and

π2[ a b
c d ] =

1
2 (a − d) + 1

2 (α
−1b − c)λ (e.g. use Lemma 4.2(ii)). It is now routine to

check that the isomorphism VT → V 2 is an isometry from λρf to π1(u
−1(f ′)), resp.

from (−λ)ρf to π2(u
−1(f ′)), which is what we want. �

Corollary 8.4. Let A be a quaternion Azumaya algebra over a semilocal ring R
and let σ : A→ A be the unique symplectic involution of A. Then the map

[f ] 7→ [TrdA/R ◦f ] :W1(A, σ) →W1(R, idR)

is injective.

Proof. Let λ, µ, σ be as in Lemma 8.1 and let B, τ be as in Corollary 8.2. Corol-
laries 8.2 and 8.3 imply that the maps π1 : W1(A, σ) → W1(B, τ) and TrB/R :
W1(B, τ) → W1(R, idR) are injective. Their composition is the map in the corol-
lary. �

We now generalize a theorem of Jacobson [36] (see [65, Theorems 10.1.1, 10.1.7]
for a modern restatement) from fields to semilocal rings. Here we need Corollary 7.2.

Theorem 8.5. Let A be a quadratic étale (resp. quaternion Azumaya) algebra
over a semilocal ring R and let σ : A → A be the standard involution (resp.
unique symplectic involution) of A. Write Tr = TrA/R (resp. Tr = TrdA/R) and let

(P, f), (P ′, f ′) ∈ H1(A, σ). Then:

(i) (P, f) is isotropic if and only if (P,Tr ◦f) ∈ H1(R, idR) is isotropic.
(ii) (P, f) ∼= (P ′, f ′) if and only if (P,Tr ◦f) ∼= (P ′,Tr ◦f ′) in H1(R, idR).
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Proof. (i) By writing R as a product of connected rings and working over each
factor separately, we may assume that R is connected.

We begin with the case where A is quadratic étale over R and Tr = TrA/R. If A
is not connected, then A = R×R and σ is the exchange involution (x, y) 7→ (y, x)
(Lemma 1.16). In this case, (P, f) is always hyperbolic (Example 2.4) and thus so
is (P,Tr f). A hyperbolic space is isotropic if and only if its underlying module is
nonzero, so the equivalence holds.

Suppose now that A is connected. It is clear that if (P, f) is isotropic, then so is
(P,Tr f). Conversely, assume that (P,Tr f) is isotropic. By Proposition 2.5, there
is anisotropic (Q, g) ∈ H1(R, idR) and a nonzero U ∈ P(R) such that Tr f ∼= g⊕h1

U .
By Corollary 7.2 and the isomorphism between (8.1) and the exact sequence in the
Corollary 8.3, there is (P ′′, f ′′) ∈ H1(A, σ) such that Tr f ′′ ∼= g. Corollary 8.3
also tells us that Tr : W1(A, σ) → W1(R, idR) is injective, so [f ′′] = [f ]. Since
Tr f ∼= Tr f ′′ ⊕ h

1
U , we have rrkA P

′′ < rrkA P . Thus, Theorem 2.8(i) implies that
there is a nonzero V ∈ P(A) such that f ∼= f ′′ ⊕ h

1
V , so f is isotropic.

We now consider with the case where A is quaternion Azumaya. Define B, τ1
and π1 as in Corollary 8.2. Since we proved part (i) for quadratic étale algebras,
and since TrdA/R = TrB/R ◦π1, it is enough to show that (P, f) is isotropic if and
only if (P, π1f) is isotropic. The “only if” part is clear so we turn to the “if”
part. Suppose that (P, π1f) is isotropic. Using Proposition 2.5, choose anisotropic
(Q, g) ∈ Hε(B, τ1) and nonzero U ∈ P(B) such that π1f ∼= g ⊕ h

1
U . If B is

connected, then arguing as in the previous paragraph shows that f is isotropic. If
B is not connected, then B = R × R by Lemma 1.16. Let e = (1, 0) ∈ B. By
Lemma 4.4(iii), we have [A] = [eB] = [R] = 0 in BrR, so by Lemma 6.8(ii), f is
hyperbolic and therefore isotropic (P 6= 0 because π1f is isotropic).

(ii) The map Tr : W1(A, σ) → W1(R, idR) is injective by Corollary 8.3 in the
quadratic étale case and by Corollary 8.4 in the quaternion Azumaya case. The
statement now follows from Theorem 2.8(iii). �

Remark 8.6. When R is a field, Theorem 8.5(i) is straightforward. Indeed, if there
is some nonzero x ∈ P with Tr f(x, x) = 0, then f(x, x) = 0 because f(x, x) ∈
S1(A, σ) = R. Since R is a field, xA is an A-summand of P , so the form f
is isotropic. However, this argument does not work when R is a semilocal ring,
because xA may not be an A-summand of P even when xR is an R-summand of
P . For example, take R = Z(5), A = Z(5)[i] where i =

√
−1, let σ : A → A act by

complex conjugation and consider f = 〈1,−1〉(A,σ). Put x = (1 + 2i, 1 + 2i) ∈ A2.

Then Tr f(x, x) = 0 and xR is an R-summand of A2
A, but A/xA has nonzero

5-torsion elements, which means that xA cannot be an A-summand of A2
A.

8B. The Grothendieck–Serre Conjecture. Let R be a regular local ring with
fraction field K. Recall from the introduction that the Grothendieck–Serre conjec-
ture asserts that for every reductive (connected) group R-scheme G, the restriction
map H1

ét(R,G) → H1
ét(K,G) has trivial kernel. We now use the corollaries of 8A

and results of Balmer–Walter [9] and Balmer–Preeti [8] to establish the conjecture
for some outer forms of GLn and Sp2n when dimR ≤ 4. (Note that in contrast to
many sources discussing the conjecture, R is not assumed to contain a field.)

In order to translate statements about Witt groups to cases of the Grothendieck–
Serre conjecture, we use the following proposition. The case A = R is contained in
[17, Proposition 1.2].

Proposition 8.7. Let R be a semilocal regular domain with fraction field K, let
(A, σ) be an Azumaya R-algebra with involution and let ε ∈ Z(A) be an element
such that εσε = 1. Then the following conditions are equivalent:



72 AN EXACT SEQUENCE OF WITT GROUPS

(a) The restriction map Wε(A, σ) →Wε(AK , σK) is injective.
(b) Every two hermitian spaces (P, f), (P ′, f ′) ∈ Hε(A, σ) such that fK ∼= f ′

K

are isomorphic.
(c) The restriction map H1

ét(R,U(f)) → H1
ét(K,U(f)) has trivial kernel for all

(P, f) ∈ Hε(A, σ),
(d) The restriction map H1

ét(R,U
0(f)) → H1

ét(K,U
0(f)) has trivial kernel for

all (P, f) ∈ Hε(A, σ).

Proof. (a) =⇒ (b): By (a), [f ] = [f ′] in Wε(A, σ). Since PK
∼= P ′

K , we have
rrkA P ∼= rrkA P

′, so f ∼= f ′ by Theorem 2.8(iii).
(b) =⇒ (a): Let (P, f) ∈ Hε(A, σ) and suppose that [fK ] = 0. Then, by

Theorem 2.8(ii), fK is hyperbolic, say (PK , fK) ∼= (Q ⊕Q∗,hε
Q) with Q ∈ P(AK).

Since R is regular, indA = indAK [1, Proposition 6.1]. Thus, by Theorem 1.25
and Corollary 1.13, there is L ∈ P(A) with rrkA L = rrkAK Q. By Lemma 1.24,
Q ∼= LK . This means that fK ∼= h

ε
Q
∼= (hε

L)K , so by (b), f ∼= h
ε
L and [f ] = 0.

(b) ⇐⇒ (c): It is well-known that H1
ét(R,U(f)) is in correspondence with iso-

morphism classes of hermitian spaces (P ′, f ′) ∈ Hε(A, σ) that become isomorphic
to (P, f) after base-changing to some faithfully flat finitely presented (i.e. fppf) R-
algebra, see [12, Proposition 5.1], for instance. By [11, Proposition A.1], (P ′, f ′) is
such a space if and only if rrkA P = rrkA P

′, or equivalently, rrkAK PK = rrkAK P
′
K .

The equivalence now follows from the fact that the correspondence is compatible
with base change.

(c) ⇐⇒ (d): If (σ, ε) is symplectic or unitary, then U0(f) = U(f) (Proposi-
tion 2.16) and the statement is trivial.

Assume (σ, ε) is orthogonal. Then 1 → U0(f) → U(f)
Nrd−−→ µ2 → 1 is a short

exact sequence of sheaves on (Aff/R)ét. (To see that the last map is surjective,
pass to the stalks and apply Theorem 2.20.) This induces a commutative diagram
of pointed sets,

U(f)
Nrd //

��

{±1} // H1
ét(R,U

0(f)) //

α

��

H1
ét(R,U(f))

β

��

// H1
ét(R,µ2)

γ

��
U(fK)

Nrd // {±1} // H1
ét(K,U

0(f)) // H1
ét(K,U(f)) // H1

ét(K,µ2)

in which the rows are cohomology exact sequences and the vertical arrows are
restriction maps. We need to prove that α has trivial kernel if and only if β has
trivial kernel.

The map γ has trivial kernel by [18, Proposition 2.2], for instance. Thus, the
Four Lemma implies that β has trivial kernel whenever α has trivial kernel.

Next, since R is regular, [A] = 0 if and only if [AK ] = 0 [3, Theorem 7.2]. Thus,
by Theorem 2.20, Nrd : U(f) → {±1} and Nrd : U(fK) → {±1} have the same
image. Using this, an easy diagram chase shows that if β has trivial kernel, then
so does α. �

Conditions (a)–(d) of Proposition 8.7 are conjectured to hold under the assump-
tions of the proposition. This was affirmed by Gille [29, Theorem 7.7] (see also
section 3.3 of that paper) when R is regular local and contains a field. Further-
more, we have:

Theorem 8.8 (Balmer, Preeti, Walter). Let R be a semilocal regular domain with
dimR ≤ 4 and let K denote the fraction field of R. Then the restriction map
W1(R, idR) → W1(K, idK) is injective.
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Proof. Balmer and Walter [9, Corollary 10.4] proved the theorem when R is local,
and Balmer and Preeti [8, p. 3] showed that it is enough to require that R is
semilocal. �

We establish the following additional cases.

Theorem 8.9. Let R be a regular semilocal domain with dimR ≤ 4, let K denote
the fraction field of R and let (A, σ) be an Azumaya R-algebra with involution.
Assume that

(1) indA = 1 and σ is unitary, or
(2) indA ≤ 2 and σ is symplectic.

Then restriction map W1(A, σ) →W1(AK , σK) is injective.

Proof. When indA = 1 and σ is symplectic, we have W1(A, σ) = 0 (Proposi-
tion 6.8(ii)). We may therefore assume that indA = 2 when σ is symplectic.

By Theorem 1.30, there exists a σ-invariant idempotent e ∈ A such that deg eAe =
indA. Applying e-transfer (see 2G), we may assume that degA = indA, namely,
that A is quadratic étale or quaternion Azumaya over R.

Consider the commutative square

W1(A, σ) //

��

W1(R, idR)

��
W1(AK , σK) // W1(K, idK)

in which the vertical arrows are restriction maps and the horizonal arrows are
given by [f ] 7→ [TrA/R ◦f ] if A is quadratic étale, or [f ] 7→ [TrdA/R ◦f ] if A is
quaternion Azumaya. The right vertical arrow is injective by Theorem 8.8 and the
top horizontal arrow is injective by Corollary 8.3 when A is quadratic étale, and by
Corollary 8.4 when A is quaternion Azumaya. Thus, the left vertical arrow is also
injective. �

As a corollary, we verify some cases of the Grothendieck–Serre conjecture.

Corollary 8.10. With notation and assumptions as in Theorem 8.9, the restriction
map H1

ét(R,U(A, σ)) → H1
ét(K,U(A, σ)) has trivial kernel.

Proof. We have U(A, σ) ∼= U(f), where f : A × A → A is the 1-hermitian form
f(x, y) = xσy, so the corollary follows from Proposition 8.7 and Theorem 8.9. �

8C. Purity. Let R be a regular domain with fraction field K and let G be a
reductive (connected) group R-scheme. Recall from the introduction that we say
that purity holds for G if

im
(

H1
ét(R,G) → H1

ét(K,G)
)

=
⋂

p∈R(1)

(

H1
ét(Rp,G) → H1

ét(K,G)
)

,

where R(1) denotes the set of height-1 primes in SpecR. The local purity conjecture
asserts that purity holds for G whenever R is regular semilocal.

The following proposition allows us to prove purity for some group schemes by
establishing certain results about hermitian forms.

Proposition 8.11. Let R,A, σ, ε and K be as in Proposition 8.7. Suppose that:

(1) every anisotropic ε-hermitian space over (A, σ) remains anisotropic after
base changing along R → K, and

(2) im
(

Wε(A, σ) →Wε(AK , σK)
)

=
⋂

p∈R(1) im
(

Wε(Ap, σp) →Wε(AK , σK)
)

.

Then the equivalent conditions of Proposition 8.7 hold, and purity holds for U(f)
for every (P, f) ∈ Hε(A, σ).
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Both (1) and (2) are conjectured to hold when R is a regular semilocal domain.

Proof. We first prove that condition (a) of Proposition 8.7 holds. Let w be a
Witt class in ker(Wε(A, σ) → Wε(AK , σK)). By Proposition 2.5, w is represented
by an anisotropic (P, f) ∈ Hε(A, σ). Since [fK ] = 0, the form fK is hyperoblic
(Theorem 2.8(ii)). If P 6= 0, then fK is isotropic, and by assumption (1), so is f ,
contradicting our choice of f . Thus, P = 0 and w = 0.

Next, let (P, f) ∈ Hε(A, σ). Recall from the proof of Proposition 8.7 that
H1

ét(R,U(f)) classifies isomorphism classes of hermitian spaces (P ′, f ′) ∈ Hε(A, σ)
with rrkA P = rrkA P

′. Thus, purity for U(f) is the equivalent to saying that if
(P0, f0) ∈ Hε(AK , σK) is such that for every p ∈ R(1), there is (P ′, f ′) ∈ Hε(Ap, σp)
with f ′

K
∼= f0, then there is (P ′′, f ′′) ∈ Hε(A, σ) such that f ′′

K
∼= f0.

Given (P0, f0) ∈ Hε(AK , σK), assumption (2) implies that there is (P̃ , f̃) ∈
Hε(A, σ) such that [f0] = [f̃K ]. By Proposition 2.5, we may take f̃ to be anisotropic.

By (1), f̃K is also anisotropic. By Corollary 2.9(i), rrkAK P̃K and rrkAK P0 are

constant. If rrkAK P̃K > rrkAK P0, then by Theorem 2.8(i), there is a nonzero

V ∈ P(AK) such that f̃K ∼= f0 ⊕h
ε
V , contradicting the fact that f̃K is anisotropic.

Thus, rrkAK P̃K ≤ rrkAK P0. Applying Theorem 2.8(i) again, we get V ∈ P(AK)

such that f̃K ⊕hε
V
∼= f0. As in the proof of Proposition 8.7, there is L ∈ P(A) with

V ∼= LK , so f0 ∼= (f̃ ⊕ h
ε
L)K . �

Condition (1) of Proposition 8.11 is known as purity for Wε(A, σ). Provided R
is regular local and contains a field, it was established by Ojanguren and Panin [49]
when A = R and ε = 1, and by Gille [29, Theorem 7.7] for general A, σ, ε.

Condition (2) was proved by Panin and Pimenov [54, Theorem 1.1] for (A, σ) =
(R, idR) when R is a regular semilocal domain containing an infinite field k, and
Scully [66, Theorem 5.1] eliminated the assumption that k is infinite.

We use these results together with Theorem 8.5 to prove purity for some outer
forms of GLn and Sp2n.

Theorem 8.12. Let R be a regular local ring containing a field and let K denote
the fraction field of R. Let (A, σ) be a quadratic étale R-algebra with its standard
involution or a quaternion Azumaya R-algebra with its symplectic involution. Let
(P0, f0) ∈ H1(AK , σK) be a hermitian space such that for every p ∈ R(1), there

exists (P (p), f (p)) ∈ H1(Ap, σp) such that (P0, f0) ∼= (P
(p)
K , f

(p)
K ). Then there exists

(P, f) ∈ H1(A, σ) such that (P0, f0) ∼= (PK , fK). Equivalently, for every (P, f) ∈
H1(A, σ), purity holds for U(f).

Proof. We need to prove conditions (1) and (2) of Proposition 8.11. We noted above
that (1) holds in our situation, see Gille [29, Theorem 7.7], so it remains to prove
(2). Suppose that (P, f) ∈ H1(A, σ) is anisotropic and let Tr be as in Theorem 8.5.
By part (i) of that theorem, (P,Tr ◦f) is an anisotropic 1-hermitian space over
(R, idR), and by [66, Theorem 5.1], so is (PK ,Tr ◦fK). Applying Theorem 8.5(i)
again, shows that (PK , fK) is anisotropic, which is what we want. �

8D. The Kernel of The Restriction Map. In our final application we char-
acterize the kernel of the restriction map W1(R, idR) → W1(S, idS) when R is a
2-dimensional regular domain (not necessarily semilocal) and S is a quadratic étale
R-algebra. When R is a field, this is a celebrated theorem of Pfister, see [65,
Theorem I.5.2], for instance.

The proof makes use of Colloit-Thélène and Sansuc’s purity theorem in dimen-
sion 2 [16, Corollary 6.14] and a theorem of Pardon [55, Theorem 5] asserting
that W1(R, idR) → W1(K, idK) is injective when R is regular of dimension 2 with
fraction field K.
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Theorem 8.13. Let R be a regular domain of dimension ≤ 2 and let S be a
quadratic étale R-algebra with standard involution θ. Then the sequence

W1(S, θ)
[g] 7→[TrS/R ◦g]−−−−−−−−−→W1(R, idR)

[f ] 7→[fS ]−−−−−→W1(S, idS)

is exact in the middle.

Proof. When S is not connected, S = R × R (Lemma 1.16) and the theorem is
straightforward. Assume that S is a domain henceforth. We abbreviate TrS/R to
Tr and let K denote the fraction field of R.

The sequence is a chain complex in the middle by virtue of Proposition 3.5 and
the proof of Corollary 8.3; this can also be checked directly.

Let (P, f) ∈ H1(R, idR) and assume that [fS ] = 0 in W1(S, idS). Then [fS⊗K ] =
0 in W1(SK , idSK ). By virtue of Corollary 8.3, there exists (Q0, g0) ∈ H1(SK , θK)
such that [Tr g0] = [fK ]. Adding a hyperbolic space to (Q0, g0), we may assume
that dimK Q0 > dimK PK .

Write f ′
0 = Tr g0. Then there exists a K-vector space V such that f ′

0
∼= fK ⊕h1

V .
Choose U ∈ P(R) with UK

∼= V and let f ′ = f ⊕ h
1
U . Then f

′
K

∼= f ′
0 = Tr g0.

Let p ∈ R(1). By Corollary 7.3 and the proof of Corollary 8.3, there exists

(Q(p), g(p)) ∈ H1(Sp, θp) such that Tr g(p) ∼= f ′
p. In particular, Tr g

(p)
K

∼= f ′
K = Tr g0.

Since Tr :W1(SK , θK) →W1(K, idK) is injective (Corollary 8.3), [g
(p)
K ] = [g0], and

since dimK Q
(p)
K = dimK Q0, this means that g

(p)
K

∼= g0.
Fix some (W,h) ∈ H1(S, θ) with rkS W = dimSK Q0. Recall from the proof of

(b) ⇐⇒ (c) in Proposition 8.7, that H1
ét(R,U(h)) classifies isomorphism classes of

unimodular 1-hermitian forms (W ′, h′) over (S, θ) with rkS W = rkS W
′. Further-

more, U(h) → SpecR is reductive (see 2E). Thus, by Colloit-Thélène and Sansuc’s
theorem on purity in dimension 2 [16, Corollary 6.14], there exists (Q, g) ∈ H1(S, θ)
such that gK ∼= g0.

Note that [Tr gK ] = [Tr g0] = [fK ]. By [55, Theorem 5] or [9, Corollary 10.2]
(here we need dimR ≤ 3), the map W1(R, idR) → W1(K, idK) is injective, so
[Tr g] = [f ]. �

Remark 8.14. Theorem 8.13 also holds if R → S is replaced with a quadratic
étale covering of regular integral schemes Y → X ; the proof is exactly the same.
For the definition of the Witt group in this more general setting, consult [7, §1.2.1]
and [28, §1.5, §1.6].
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[4] Gorô Azumaya. On maximally central algebras. Nagoya Math. J., 2:119–150, 1951.
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