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AN 8-PERIODIC EXACT SEQUENCE OF WITT GROUPS OF
AZUMAYA ALGEBRAS WITH INVOLUTION

URIYA A. FIRST*

ABSTRACT. Given an Azumaya algebra with involution (A, o) over a commuta-
tive ring R and some auxiliary data, we construct an 8-periodic chain complex
involving the Witt groups of (A, o) and other algebras with involution, and
prove it is exact when R is semilocal. When R is a field, this recovers an 8-
periodic exact sequence of Witt groups of Grenier-Boley and Mahmoudi, which
in turn generalizes exact sequences of Parimala—Sridharan—Suresh and Lewis.
We apply this result in several ways: We establish the Grothendieck—Serre
conjecture on principal homogeneous bundles and the local purity conjecture
for certain outer forms of GL, and Sp,,,, provided some assumptions on R.
We show that a 1-hermitian form over a quadratic étale or quaternion Azu-
maya algebra over a semilocal ring R is isotropic if and only if its trace (a
quadratic form over R) is isotropic, generalizing a result of Jacobson. We
also apply it to characterize the kernel of the restriction map W (R) — W (S)
when R is a (non-semilocal) 2-dimensional regular domain and S is a quadratic
étale R-algebra, generalizing a theorem of Pfister. In the process, we establish
many fundamental results concerning Azumaya algebras with involution and
hermitian forms over them.

INTRODUCTION

Central simple algebras with involution over fields, in the sense of [40, §2], play
a major role in the study of classical algebraic groups. Indeed, all forms of GL,,,
O,, and Sp,,, arise as the algebraic groups of unitary elements in a central simple
algebra with involution.

When the base field is replaced with a (commutative) ring R (always with 2 €
R*), the role of central simple algebras with involution is played by Azumaya
algebras with involution. These are the locally free R-algebras with R-involution
(A, o) which specialize to a central simple algebra with involution at the residue
field of every prime p € Spec R.

The Witt group of e-hermitian forms over (4, o), denoted W.(A4, ), is an impor-
tant invariant of (A, o), capturing fine arithmetic properties. For example, when
A is a field F' and ¢ = idp, the affirmation of the quadratic form version of Mil-
nor’s conjecture by Orlov, Vishik and Voevodsky [50] shows that the cohomology
groups HY (F, py o) can be recovered from W (F) := Wi (F,idp); this was recently
generalized to the case where A is a semilocal commutative ring by Jacobson [35].

In this paper, we introduce an 8-periodic chain complex involving the Witt group
of (A,0) — an Azumaya algebra with involution over R — and prove it is exact
when R is semilocal. Several applications of the exactness are then presented.
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The Main Result. Let R be a commutative ring with 2 € R*, let (4, 0) be an
Azumaya R-algebra with involution (o is applied exponentially) and let € € A be a
central element such that €7 = 1. Let A\, u € A* be elements satisfying A\ = — A,
1o = —p, \p = —p and A2 € R. Then the centralizer of X in A, denoted B, is
Azumaya over its center and 71 := o|p and 72 := Int(u~!) o 71 are involutions of
B. We construct an octagon, i.e. an 8-periodic chain complex, of Witt groups:

() (&) D)
(0.1) W.(A,0) —— W.(B,7) —= W_.(A,0) ——= W.(B, )

s T lpf)

W_e(B,12) <5= We(A 0) =<5 We(B,n) <5 W-:(4,0)
T2 P1 ™
Its maps are induced by functors between the relevant categories of hermitian forms;
their definition, which depends on X and p, is given in [3Al below.
The main result of this paper (Theorem [B4) asserts that the octagon (L)) is
exact when R is semilocal.

When R is a field, (@) is isomorphic to an octagon of Witt groups introduced by
Grenier-Boley and Mahmoudi [30, §6], who also proved it is exact]] Many special
cases of the latter result were known previously. For example, Parimala, Sridharan
and Suresh [10, Appendix] established the exactness of the top row of (0.I]) when R
is a field. Furthermore, the 5-term and 7-term exact sequences of Witt groups that
Lewis [43] associates to quadratic field extensions and quaternion division algebras,
respectively, can be recovered from (LI when R is a field. Predating Lewis, Baeza
[5l, Korollar 2.9] and Mandelberg [46, Proposition 2.1] established the exactness of
Lewis’ 5-term sequence at two places when R is semilocal; we extend these works in
[RAl showing that both of Lewis’ sequences remain exact when base ring is semilocal.

When R is a general, the octagon (0.I]) seem related to the octagon of L-groups
considered by Ranicki in [57, Remark 22.22]. Other octagons involving Witt groups
of central simple algebras with involution appear in [44] and [45].

In the process of proving the exactness of (II) when R is semilocal, we give
necessary and sufficient conditions for a hermitian space to be in the image of the
functors wgie) , wéig), pgie), péﬂ) (the exactness of the octagon answers this only up
to Witt equivalence), see Theorem [[Il These conditions, which seem novel even
when R is a field, involve the Brauer classes of A and B and the discriminant of the
hermitian space at hand; they are needed for some of the applications. For example,
given a unimodular (—¢)-hermitian space (P, f) over (4, o), we show that there ex-

ists a unimodular e-hermitian space (Q, g) over (B, 71) such that pge) (Q,9) = (P, f)
if and only if w3 (P, f) is hyperbolic and at least one of the following hold: (1) (72, ¢)
is not orthogonal (see D)), (2) the Brauer class of B is nontrivial, (3) (72,¢) is or-
thogonal, n := 3;,;5 is even and the discriminant of f (see 2H) equals A" (R*)2.
We further we show that any anistropic hermitian space whose Witt class lives in
the kernel of some map in () is the image of a hermitian space under the functor

corresponding to the preceding map in (0.1]), see Corollary [7.2]

While proving that the octagon (0.1]) is exact when R is a field takes only several
pages, showing the exactness when R is semilocal is significantly more involved;
the proof occupies most of this paper, and is surveyed in One reason why the

IThe term W_.(B, 1) on the bottom row of ([@I) and the maps adjacent to it differ from
their counterparts in [30} p. 980]. However, the octagons become the same once identifying the
term W_.(B, 71) on the bottom row of (0I) with the corresponding term W (B, 71) in op. cit.
via A-conjugation (“scaling by A\”) in the sense of RG] below.
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field case is simpler is the fact that when R is a field, every Witt class contains a
representative with no isotropic vectors, which allows for a short clean proof; see
Remark B771 In contrast, the proof when R is semilocal relies on two ingredients:
careful analysis of the image of the functors 7T£i€) and p,(kia) when R is a field,
and lifting of information from the residue fields of R to R itself, usually using
results from [25]. The complexity of the former ingredient manifests in the length
of Theorem [Tl which describes the images of m(ﬂis) and piig) when R is semilocal.

We do not know if (B]) remains exact when R is not assumed to be semilocal.
However, Theorem B.I3] below (see also the proof of Corollary B3]) can be regarded
as a positive partial result when R is a regular 2-dimensional domain. We further
note that if the Witt group We(A4, o) is replaced by the Zariski sheaf associated to
the presheaf U — W.(Ay,op) on Spec R, then ([B]) becomes an exact sequence of
sheaves. Indeed, it is exact at the stalks.

The octagon (II]) also seems to be related with Bott periodicity. Clarifying this
connection seems an interesting problem, which may lead to new insights.

Applications. A celebrated application of the well-known exactness of ([0.I]) when
R is a field is Bayer-Fluckiger and Parimala’s proof of Serre’s Conjecture II for
classical groups [10].

Knowing that (0.I]) is exact when R is semilocal allows for a new set of appli-
cations. Here, we use it to establish some open cases of the Grothendieck—Serre
conjecture and the local purity conjecture, show that the trace of a 1-hermitian
form over a quadratic étale or quaternion Azumaya algebra is isotropic if and only
if the original form is isotropic, and characterize the kernel of the restriction map
W(R) — W(S) when R is an arbitrary 2-dimensional regular domain and S is a
quadratic étale R-algebra. Further applications appear in [13].

In more detail, given a regular local ring R with fraction field K, Grothendieck
[31L, Remark 3, pp. 26-27], [33l, Remark 1.11.a] and Serre [67, p. 31] conjectured that
for every reductive (connected) group R-scheme G, the kernel of the restriction map

Hét (Rv G) - Hét (K7 G)
is trivial. Under the same assumptions, the local purity conjecture predicts that
im (Hét (R’ G) — Hét (Ka G)) = mpeR(l) (Hét(RPa G) — Hét(Ka G)) ’

where R() is the set of height-1 primes of R; we then say that purity holds for G.
In fact, both conjectures are believed to hold under the milder assumption that R
is a regular semilocal domain, which we assume through the following paragraphs.

The Grothendieck—Serre conjecture was addressed by numerous authors and is
known to hold in many cases. Most notably, Nisnevich [48] proved the conjecture
when R is a discrete valuation ring, Guo [34] established the case where R is a
semilocal Dedekind domain, and Fedorov—Panin [2I] and Panin [53] proved the
conjecture when R contains a field. Many positive results for particular groups G
are known as well, see [51l §5] for a survey.

The local purity conjecture is also known to hold in many cases: Colloit-Thélene
and Sansuc showed that it holds for all reductive group schemes when dim R < 2,
even without assuming that R is semilocal, see [I6, Corollary 6.14]. When R is a
regular local ring containing a field k of characteristic 0, purity was established for
0,, SO,,, PGL,, SL;(A) (A is a central simple k-algebra), SL,,/u,; (d | n) and
Spin,, in [52], and for groups of type Go in [I5]. In fact, for O,, it is enough to
assume that k is any field of characteristic not 2, see Scully [66, p. 12] and also
Panin-Pimenov [54, Corollary 3.1].
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To relate the octagon (0] to the Grothendieck—Serre conjecture, let (A, o) be
a degree-n Azumaya R-algebra with involution and let U(A, o) denote the group
R-scheme of unitary elements in (A, o). Then U(A4,0) is a form of GL,, O,, or
Sp,,, depending on whether ¢ is unitary, orthogonal or symplectic, respectively.
We show (Proposition B7) that if the restriction map

(0.2) Wi(A, o) — Wi(Ax, o)

is injective, then the Grothendieck—Serre conjecture holds for the neutral component
of U(A, o) (and, more generally, for the neutral component of the isometry group
scheme of any unimodular 1-hermitian form over (A, 0)); this is well-known when
A = R [I7, Proposition 1.2].

In accordance with the Grothendieck—Serre conjecture, it is conjectured that
[@2) is injective when R is regular semilocal. Provided 2 € R*, this has been
established by Balmer—Walter [, Corollary 10.4] (see also Pardon [55]) and Balmer—
Preeti [§, p. 3] when dim R < 4 and A = R, and when R is local and contains a field
by Gille [29, Theorem 7.7]. We use the former result and the exactness of (@) to
establish the injectivity of Wi (A4,0) — W1 (Ak,0k) in when dim R < 4 and one of
the following hold:

(1) o is unitary and ind A = 1;

(2) o is symplectic and ind A < 2;
see Theorem R0l As a result, the Grothendieck—Serre conjectures holds for U(A, o)
if (1) or (2) holds and dim R < 4 (Corollary RI0).

By similar means, we use (0.1 together with results of Gille [29, Theorem 7.7]
and Scully [66, Theorem 5.1] to show that purity holds for U(4, o) in cases (1)
and (2), provided that R is regular local and contains a field of characteristic not 2
(Theorem BT2). Here, the exactness of () is not sufficient, and we have to use
the finer information provided by Theorem [Tl about the image of ﬂ&ie), p&ie).

Suppose next that R is any semilocal ring and let (A4,0) be a quadratic étale
R-algebra with its standard involution, or a degree-2 Azumaya R-algebra with its
(unique) symplectic involution. Write Tr for the trace map from A to R. If (P, f)
is a unimodular 1-hermitian space over (A, o), then (P, Trof) is a unimodular 1-
hermitian space over (R,idg). We show that Trof is isotropic if and only if f is
isotropic (Theorem ). When R is a field, this goes back to Jacobson [36] (see
also [65, Theorems 10.1.1, 10.1.7]). The quick proof in the case R is a field does
not apply over rings, see Remark [8.6] and we instead appeal to our Theorem [T.1]

Finally, assume that R is any regular domain, possibly non-semilocal, let .S be
a quadratic étale R-algebra and let 6 be its standard involution (see IC]). When S
is a field, a famous theorem of Pfister [65, Theorem 1.5.2] states that the kernel of
the restriction map W(R) — W (S) is generated by the diagonal quadratic form
(1, —a), where S = R[/a]. Using our main result and Colloit-Thélene and Sansuc’s
purity result [I6, Corollary 6.14], we generalize Pfister’s theorem to the case where
dim R < 2, showing that the sequence

[9]—[Trs/ R og]

is exact in the middle (Theorem BI3)). This result also applies in the generality of
quadratic étale coverings of regular integral 2-dimensional schemes.

Additional Results. The first two sections of this paper are concerned with gen-
eralizing many fundamental results about central simple algebras with involution
and hermitian forms over them to the context of Azumaya algebras with involution
over semilocal rings. For example, letting (A, o) denote an Azumaya algebra with



AN EXACT SEQUENCE OF WITT GROUPS 5

involution over a semilocal ring R with 2 € R*, and letting (P, f) be a unimodular
e-hermitian space over (A, o), it is shown that:

A contains a full idempotent e € A with degeAe = ind A (Theorem [[2H).

e If 0 is orthogonal or unitary, then the idempotent e can be chosen to satisfy
e? = e (Theorem [[30).

e (P, f) cancels from orthogonal sums (Theorem [2Z2]); this is essentially due
to Reiter [59] and Keller [37].

o If the Witt class of (P, f) is 0, then (P, f) is hyperbolic. If (P, f') is Witt
equivalent to (P, f) and P = P’, then (P, f) = (P’, f') (Theorem [ZJ)).

e If (0,¢) is orthogonal or unitary, then (P, f) is diagonalizable whenever P
is a free A-module (Proposition Z13).

e When Z(A) is connected, the isometry group of (P, f) acts transitively on

the set of Lagrangians of (P, f), provided it is nonempty (Lemma 2:22)).

We note that the first result is false when R is not semilocal, see [2]. The second
result is particularly convenient when hermitian Morita theory is needed.

Outline. Sections [I] and [2] are preliminary and recall Azumaya algebras with in-
volution and hermitian forms, respectively. In Section [3] we construct the octagon
(@), prove it is a chain complex, and survey the proof of its exactness when R
is semilocal. The proof itself is carried in Sections BHE and is concluded in Sec-
tion [[1 Finally, the applications to the Grothendieck—Serre conjecture, the local
purity conjecture and the generalizations of Jacobson and Pfister’s theorems are
given in Section

Acknowledgements. We are grateful to Eva Bayer-Fluckiger for suggesting us the
project at hand. We further thank Eva Bayer-Fluckiger and Raman Parimala for
many useful conversations and suggestions. The research was partially conducted
at the department of mathematics at University of British Columbia, where the
author was supported by a post-doctoral fellowship. We thank Ori Parzanchevski
for encouragement and motivation.

We are also grateful to anonymous referees for many useful suggestions which
have improved the exposition.

NOTATION AND CONVENTIONS

Throughout this paper, a ring means a commutative (unital) ring. Algebras
are unital and associative, but not necessarily commutative. We assume that 2 is
invertible in all rings and algebras.

Unless otherwise indicated, R denotes a ring. Unadorned tensors and Hom-
sets are always taken over R. An R-ring means a commutative R-algebra. Given
p € Spec R, we let k(p) denote the fraction field of R/p.

Let S be an R-ring. Given (right) R-modules M, N and f € Hom(M, N), we
write Mg := M ® S and fs := f ® idg € Homg(Mg, Ng). When S = k(p) for
p € Spec R, we write M(p) = M,y and f(p) = fi(p), and let m(p) denote the
image of m € M in M(p). When S = R, we write M, = Mp, and f, = fr,.

Let M be a finite (i.e. finitely generated) projective R-module. The R-rank of
M, denoted rkg M, is the function Spec R — Z>¢ sending p to dimy,) M (p); it is
locally constant relative to the Zariski topology [27, Theorem 2.3.5]. Thus, when
R is connected, we shall freely regard rkr M as an integer.

Statements and operations involving locally constant functions from Spec R to
7Z should be interpreted point-wise. For example, the sum of two such functions is
taken point-wise, and relations such as “<” should be understood as holding after
evaluation at every p € Spec R.
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We will need to compare integer-valued functions defined on spectra of different
rings. To that end, given a ring homomorphism ¢ : R — S and f : Spec R — Z,
define ¢f : Spec S — Z by (.f)(q) = f(:71(q)). For example, c.tkp M = rkg Mg. In
addition, if S is finite projective over R and N is a finite projective S-module of
rank that is constant along the fibers of Spec S — Spec R, then

(0.3) tke N -ttkp S = ttkp N.

Given an R-algebra A, the units, the center, the Jacobson radical and the op-
posite algebra of A are denoted A%, Z(A), Jac A and A°P, respectively. We write
Z A(X) for the centralizer of a subset X C A in A. The category of finite projective
right A-modules is denoted P(A). If a € A*, then Int(a) denotes the inner auto-
morphism x — aza~!: A — A. Given an R-ring S, and P,Q € P(A), the natural
map Homx (P, Q) ® S — Homu, (Ps,Qg) is an isomorphism [27, Theorem 1.3.26],
and we shall freely identify these S-modules.

In situations when an abelian group M can be regarded as a module over multiple
R-algebras, we shall sometimes write M4 to denote “M, viewed as a right A-
module”. In particular, A4 denotes “A, viewed as a right module over itself”.
Similar notation will be applied to left modules, but with the subscript written on
the left, e.g., 4 A.

If e € A is an idempotent, we shall freely identify Enda(eA) with eAe, where
eAe acts on eA via multiplication on the left. We say that e is full if AeA = A,
or equivalently, if eA is a progenerator [42] §18B]. (A right A-module M is called a
progenerator if M is finite projective and A4 is isomorphic to a summand of M™
for some n € N.) The idempotent e is called primitive if e # 0 and eAe contains
no idempotents except 0 and e.

An R-algebra with involution means a pair (4, 0) consisting of an R-algebra
A and an R-linear involution o : A — A. Involutions are applied exponentially
to elements of A, i.e., a” stands for o(a). Given ¢ € Z(A) with €7¢ = 1, we let
S:(A,o)={acA:a=ca}.

1. AZUMAYA ALGEBRAS WITH INVOLUTION

We recall the definition and some properties of Azumaya algebras with involu-
tion, giving particular attention to the case where the base ring R is semilocal.
When R is a field, all the material can be found in [40, Chapter IJ.

1A. Separable Projective Algebras. Recall that an R-algebra A is called sep-
arable if A is projective when endowed with the right A°? ® A-module structure
determined by a - (z°P ® y) = zay, or equivalently, if the right A°®? ® A-module
homomorphism z°° ® y — zy : AP ® A — A admits an A°? ® A-linear section.

By definition, the Azumaya R-algebras are the central separable R-algebras,
and the finite étale R-algebras are the finite projective commutative separable R-
algebras. There are many other equivalent definitions, see [27] and [39] II1.8§5], for
instance.

In the sequel, we shall often consider R-algebras A such that A is Azumaya
over Z(A) and Z(A) is finite étale over R. The following proposition lists a few
convenient equivalent characterizations of such algebras, which we call separable

projective after condition |(SP2)|

Proposition 1.1. Let A be an R-algebra. The following conditions are equivalent.

(SP1) A is Azumaya over Z(A) and Z(A) is finite étale over R.
(SP2) A is projective as an R-module and separable as an R-algebra.
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(SP3) A is finite projective as an R-module and, for all m € Max R, the k(m)-
algebra A(m) is semisimple and its center is a product of separable field
extensions of k(m).

Proof. |(SP1)] = |(SP2)| follows from [20, Theorem I1.3.4(iii), Theorem I1.3.8].
[(SP2)[|=|(SP1)| follows from [20, Theorem II.3.8, Lemma II1.3.1]. [(SP2)|=|(SP3)|
follows from [20, Proposition I1.2.1, Corollary I1.2.4] and the fact that con-
tinues to hold after base-change. [[SP3)| == [(SP2)| follows from [20, Theorem I1.7.1,
Corollary 11.2.4]. O

We collect several facts about separable projective algebras.

Lemma 1.2 ([64, Proposition 2.14]). Let A be a separable R-algebra and let M
be a right A-module. If M is projective over R, then M 1is projective over A. The
converse holds when A is projective over R.

Lemma 1.3. Let A be a separable projective R-algebra and let S C Z(A) be an
R-subalgebra such that S is separable over R or an R-summand of Z(A). Then A
is separable projective over S and S is separable projective over R.

Proof. Suppose first that S is separable over R. That A is separable over S follows
from [20, Proposition I1.1.12]. Since A is projective over R and S is separable over
R, the algebra A is projective as an S-module by Lemma [[L.2] Tt is faithful over S
since S is a subring of A. Now, by [20, Corollary 11.4.2], S is a summand of A, so
S is projective over R.

If S is summand of Z := Z(A), then S € P(R). Thus, for every p € Spec R,
the map S(p) — Z(p) is injective. Since Z(p) is a finite product of separable field
extensions of k(p), the same holds for S(p), and we conclude that S is also separable.
Proceed as in the previous paragraph. O

Lemma 1.4. Let A be a separable projective R-algebra, let B C A be a separable
projective R-subalgebra and let S be an R-ring. Then the natural map ZA(B)®S —
Zas(Bgs) is an isomorphism. In particular, Z(A) ® S = Z(Ag).

Proof. Write C = B®A°P and view A as a left C-module by setting (b®aP)-x = bza
(a,z € A, b € B). Since C is separable over R and A € P(R), Lemma
implies that A is projective as a C-module. Thus, the natural map Ende¢(A4) ®
S — Endcg(Ag) is an isomorphism. However, Endc(A) = ZA(B) via ¢ — ¢(1),
and likewise Endeg(As) = Zag(Bs). The resulting isomorphism Zp(A4) ® S —
Ende(A)®S — Endeg (As) — Zas(Bg) is the natural map Z4(B)® S — Z a4 (Bs)
and the proposition follows. O

Lemma 1.5. Let A be a separable projective R-algebra. Then Jac A =JacR-A =

mmGMaxR mA.
Proof. Since A is finite over R, we have JacR - A C Jac A [39, Corollary 11.4.2.4].
In addition, for all m € Max R, the ring A/mA = A(m) is semisimple by
hence Jac A C [ cnvax p MA. It remains to show that (), cypax g MA € Jac R - A.
Consider the exact sequence of R-modules 0 — Jac R — R — [[cnax g 12/
Since A is a flat over R, tensoring with A gives an exact sequence 0 — Jac R® A —
R® A = ([[memax g B/m) ® A. Furthermore, since A is finitely presented, the
natural map ([ [, cniax g B/M) @A = [evax n(B/M)@A 2 [ cviax g A/mA is an
isomorphism [42} Proposition 4.44]. Thus, 0 = JacR® A = A = [[,cnax n A/mA
is exact, and the exactness at A means that (), cypay g MA = Jac R - A. O

We also record the following general lemmas.

Lemma 1.6. Let A be a finite R-algebra and let a € A. If a(m) € A(m)* for all
m € Max R, then a € A*.
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Proof. Consider the map ¢ : A — A given by ¢(z) = ax. Then ¢(m) : A(m) —
A(m) is bijective for all m € Max R. As A is a finite R-module, ¢ is surjective ([68]
Tag [05GE] with f = 1), so aA = im ¢ = A. Likewise, Aa = A, so a € A*. O

Lemma 1.7. Let A be a finite projective R-algebra, let P € P(A) and let U and V
be summands of P. Suppose that P(m) = U(m) @ V(m) for all m € Max R. Then
P=UaV.

Proof. We need to show that ¢ : U x V. — P given by ¥(u,v) = u + v is an
isomorphism. By assumption, im ¢ + Pm = P for all m € Max R. By Nakayama’s
Lemma anng(P/im1) is not contained in any maximal ideal, so it must be R.
Thus, P/im = 0 and % is onto. Let K = kert). Since P is projective, ¢ splits
and U x V =2 P x K, hence tkrU + tkgV = rkg P + kg P. Since P(m) =
U(m) @ V(m) for all m € Max R, we have rkrU +1krV =rkg P, sotkp K =0
and keryp = K = 0. O

1B. Azumaya Algebras. We refer the reader to [27, 7.§3], [39, I11.§5.3] or [64]
Chapter 3] for the definition of the Brauer group of R. We denote it as Br R and
write its binary operation additively. The Brauer class of an Azumaya R-algebra
A is denoted [A].

As usual, the degree of an Azumaya R-algebra A is deg A := \/rkg A, and its
index is ind A := ged{deg A"| A’ € [A]}. Recall that both deg A and ind A are
functions from Spec R to N, and that the “gcd” in the definition of ind A is evaluated
point-wise. Since A is a finite projective R-module, deg A is locally constant relative
to the Zariski topology, and with a little more work, one sees that the same holds
for ind A. When R is connected, both deg A and ind A are constant and may be
regarded as elements of N.

We alert the reader that in general, there may be no A’ € [A] with deg A’ = ind A4;
see [2]. However, this is true when R is semilocal, by Theorem [[.25] below.

Theorem 1.8 (Saltman [63]). Let A be an Azumaya R-algebra of degree dividing
n €N. Thenn-[A] =0 in BrR.

Given P € P(A), the reduced rank rkp P is (point-wise) divisible by deg A;
indeed, by [40, pp. 5-6], deg A(p) | dimy,) P(p) for all p € Spec R. It is therefore
convenient to introduce the reduced A-rank of P, defined by

rrka P :=rkp P/ deg A.

This agrees with the reduced dimension defined in op. cit. when R is a field.
For example, rrka(A4) = degA. If © : R — S is a ring homomorphism, then
rrkag Ps = trrk g P. In particular, deg As = tdeg A.

Remark 1.9. If A is an R-algebra which is Azumaya over its center Z(A), then
we regard deg A, ind A and rrkgy P (P € P(A)) as functions from SpecZ(A) to Z.
Note also that [A] is a member of BrZ(A), rather than Br R.

We record a number of properties of the reduced rank which will be used many
times in the sequel.

Proposition 1.10. Let A be an Azumaya R-algebra and let P € P(A). Then
rrka P > 0 if and only if P is a progenertor.

Proof. Since rrka(As) = deg A > 0, if P is a progenerator, then rrky P > 0.

To see the converse, let T = Z¢> im ¢ where ¢ ranges over Homu (P, A). It is
enough to prove that T = A, see [27] pp. 7-8]. Fix m € Max R. Since (rrks P)(m) >
0, the A(m)-module P(m) is nonzero. Since A(m) is simple artinian, there exists
n € N and a surjection ¢ : P(m)” — A(m). Since P is projective, there exists
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@ € Homy (P, A) such that ¢ = ¢(m), hence im(¢) + mA = A. Since im(¢) C T,
this means that T+ mA = A, or rather, (A/T)m = A/T. By Nakayama’s Lemma
annpg(A/T) is not contained in m. As this holds for all m € Max R, we must have
A/T=0,s0T = A. O

Proposition 1.11. Let A be an Azumaya R-algebra and suppose that P € P(A)
satisfies rrky P > 0. Then:
(i) B :=Enda(P) is an Azumaya R-algebra, deg B = rtka P and [B] = [A].
(i1) For all Q € P(B), we have rrkp Q = rrka(Q ®p P).
(iii) For every B' € [A], there exists P' € P(A) with B’ = Enda(P’) and
rrky P’ = deg B’ > 0.

Proof. (i) By Proposition [[.T0, P4 is a progenerator, and in particular faithful.
Thus, A°" embeds as an R-subalgebra of Endgr(P) via a°® — [z +— za], and
B = Z o0 (Endg(P)). Since both A°" and Endg(P) are Azumaya R-algebras, B
is Azumaya over R and A°°? ® B = Endg(P) [20, Theorem II.4.3]. This implies
that deg A°P - deg B = degEndr(P) = rkr P. It follows that deg B = 1k P and
[4°P] + [B] = [Endg(P)] = 0, s0 [4] = [B].

(ii) By definition of the reduced rank, it enough to check the statement after
specializing to k(p) for all p € Spec R. (Recall that ¢ — 9 ® idy : B(p) =
Enda(P) ® k(p) — End,(P(p)) is an isomorphism because P € P(A).) Now
that R is a field, we may regard the reduced rank as an integer and further spe-
cialize to the algebraic closure, as it would not affect the reduced rank. When R is
algebraically closed, we may assume that A = M, (R), P = My, xn(R), B = M, (R),
Q = My (R), and checking that rrkp Q =t = 11k 4 (Q ®4 P) is routine.

(iii) By a Theorem of Bass, see [23] Theorem 9.2], exists is an progenerator
P’ € P(A) such that B’ =2 End 4(P’). The claim now follows from Proposition [[L.T0l
and (i). O

Corollary 1.12. Let A be an Azumaya R-algebra and let e € A be an idempotent.
Then e is full (i.e. AeA = A) if and only if rtkaeA > 0. In this case, eAe is an
Azumaya R-algebra, deg eAe = rrka eA, [A] = [eAe] and for all P € P(A), we have
rrka P = rrkea. Pe.

Proof. Recall that e is full if and only if eA 4 is a progenerator, and this is equivalent
to rrks eA > 0 by Proposition Since eAe = Enda(eA), the first three asser-
tions follow from Proposition [[LT[i). For the last assertion, note that by Morita
theory, Ae € P(ede) is a progenerator and A = End.a.(Ae) [42, Corollary 18.21].
Applying Proposition [[LTI(ii) with ede, A, Ae in place of A, B, P, we see that
rrkeae Pe = r1keac (P @4 Ae) =r1rtky P. O

Corollary 1.13. Let A be an Azumaya R-algebra and let P € P(A). Then ind A |
rrka P.

Proof. Since ind A | deg A = rrk4 A, we may replace P with P@® A and assume that
rrky P > 0. By Proposition [[L.TI[i), rrka P = deg End 4 (P) and End4(P) € [A], so
rrk 4 P is divisible by ind A. (]

Proposition 1.14. Let A be an Azumaya R-algebra, let S be a finite étale R-
subalgebra of A and let v : R — S be the inclusion map. Then B := Z(S) is
Azumaya over S and [B] = [A® S] in Br S. Furthermore, A is projective as a right
S-module, and if rkg Ay is constant along the fibers of Spec S — Spec R, then:
(i) deg B - 1rkp S = vdeg A, and rrkp P = v11ks P for all P € P(A), and
(ii) trrka(Q ®p A) = trkr S - rtkp @ for all Q € P(A) such that rrkp Q is
constant along the fibers of Spec S — Spec R.
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Proof. That B is Azumaya over S and [B] = [A ® 5] is well-known, see [64] The-
orem 3.10], for instance. That A is projective as a right S-module follows from
Lemma

By Lemma [[4] it is enough to prove (i) and (ii) after base changing to every
residue field of R, so assume R is a field. In fact, we may further base-change to
an algebraic closure of R and assume that R is algebraically closed. In this case,
S = Rt for t =1kg S and A = M, (R) for n = deg A.

Let e;; € M, (R) denote the n x n matrix with 1 at the (4, j)-entry and zeroes

elsewhere. Let f1,...,f: denote the primitive idempotents of S. Since rrkg Ag
is constant, dimp Af; is independent of i, so 4 Af; = ... = A Af;. This means
that each f; is an idempotent of rank s := % in A = M,(R). Since all such

idempotents are conjugate, we may choose the identification of A with M,,(R) such
that f; = Y00 ;1 .41 €j- Thus,
M, (R)
B= C M, (R).
M;(R)

Furthermore, every right A-module is isomorphic to M, x.(R) for some m > 0 and
any right B-module with constant S-rank is isomorphic to Myys(R) X - -+ X Mgy s(R)
(t times) for some ¢ > 0. Now, verifying (i) and (ii) is straightforward. O

The requirement that rkg A4 is contstant along the fibers of SpecS — Spec R
is guaranteed when rkr S = deg A.

Corollary 1.15. Let A be an Azumaya R-algebra and let S be a finite étale sub-
algebra of A such that tkgp S = deg A. Then rtks Ay = tdegA (1 : R — S is the
inclusion), S =7 (S) and [Ag] = 0.

Proof. We only need to show that rkg A4 = tdeg A. The remaining assertions then
follow from Proposition [[L.T4]

The algebra A is an (A, S)-bimodule and hence a right module over A°? ® S. By
Lemma [[2] Ajorgs is projective, so deg Ag | rkg Ax. Furthermore, rkg Ay > 0
because A is faithful as a right S-module. Let p € Max R and write S(p) = [['_, Ki,
where K is a k(p)-field. We need to show that dimg, (A ®g¢ K;) = deg A(p). Write
n = degA(p). Then n? = dimy) A(p) = > ;[K; ¢ k(p)]dimg, (A ®s K;) and
> ilKi 2 k(p)] = dimy,y S(p) = n. Since dimg, (A ®s K;) is positive and divisible
by n, we must have dimg, (A ®g K;) = n for all ¢, as required. O

1C. Quadratic Etale Algebras. Finite étale R-algebras of R-rank 2 are also
called quadratic étale algebras. Every such algebra S admits a unique R-involution
0:S — Ssuchthat R={s €S : s’ =s}; it is given by 2/ = Trg,p(z) — = and
satisfies Nrg,/p(z) = 2920 See [39, Proposition I.1.3.4] for its uniqueness. Following
[39, 1.§1.3], we call 0 the standard R-involution of S.

For example, the R-algebra R x R is quadratic étale and its standard involution is
the exchange involution (x,y) — (y,z). Furthermore, by our standing assumption
that 2 € RX, the R-algebra R[z |22 = a] is quadratic étale whenever a € R* (use
(SP3)| above), and its standard involution is determined by z? = —z.

Lemma 1.16. Let S be a quadratic €tale R-algebra. If R is connected and S is not
connected, then S =2 R X R as R-algebras.

2If A is a finite projective R-algebra of rank m € N, then the trace and mnorm maps
Trp/r;Nra/r + A — R take a € A to —ci(a) and (—1)"cn(a), respectively, where X™ +
c1(@)X™ 1 + .-+ 4+ cn(a)XO is the characteristic polynomial of [z + az] € Endg(A) in the
sense of [27] Example 5.3.3].
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Proof. Let 6 denote the standard R-involution of S, and let e € S be a nontrivial
idempotent. Then e’e is a non-invertible idempotent of R, hence e’e = 0 (because
R is connected). This means that e + €’ is also an idempotent in R, and it is
nonzero because e(e 4 e?) = e # 0. Since R is connected, e + ¢’ = 1. Tt is now
routine to check that r + er : R — eS and s — s+ s’ : ¢S — R are mutually
inverse. Since the former map is an R-algebra homomorphism, we see that R = eS
as R-algebras, and similarly R = €S = (1 —¢)S. The lemma follows because
S>eSx(l—e)S. O

Lemma 1.17. Let S be a quadratic étale R-algebra and let o : S — S be an R-
involution. Then there exists a factorization R = Ry X Ro such that or, : Sp, —
Sr, is the standard Ry-involution of Sr, and oRr, : Sr, — SR, s the identity. In
particular, if R is connected, then o is either the standard R-involution of S oridg.

Proof. This is a restatement of [39, Proposition 111.4.1.2]. O
Lemma 1.18. Let S be a quadratic étale R-algebra. Then Sg =2 Sx.S as S-algebras.
Proof. This follows from the discussion in [39, IT1.§4.1]. O

Lemma 1.19. Suppose that R is semilocal and let S be a quadratic étale R-algebra
with standard involution 0. Then there exists A € S such that \2 € R*, \? = —)\
and {1,\} is an R-basis of S.

Proof. Since 2 € R*, we have S = §1(5,0) @ S_1(5,0) = R ® S_1(5,0), and so
S_1(5,0) is a rank-1 projective R-module. Since R is semilocal, S_1(S5,0) is free.
Let A be a generator of S_1(9,6). Then A2 = =X+ A = —Nrg/p(\) € R and {1,A}
is an R-basis of S. As a result, S = R[z|2? — a], where a = \2. If a ¢ R*, then
there exists m € Max R with a € m, and it follows that S(m) = k(m)[z|2? = 0] is
not étale over k(m). Thus, we must have \> = a € R*. O

1D. Azumaya Algebras With Involution. Recall our standing assumption that
2 € R*. An Azumaya algebra with involutiont] over R is an R-algebra with invo-
lution (A, o) such that A is separable projective over R and the homomorphism
r—r-14: R — A identifies R with the o-fixed elements of Z(A). Note that A
is mot necessarily Azumaya as an R-algebra. Rather, A is Azumaya over Z(A), so
that deg A is a function from Spec Z(A) to Z and [A] € BrZ(A), cf. Remark [L9
If (A,0) is an Azumaya R-algebra with involution and S is an R-ring, then

(As,os) is an Azumaya S-algebra with involution. Indeed, Z(Ag) = Z(A) ® S by
r—=r-1la Z(A) ar—a—a®

Lemma [[L4] and the exact sequence 0 — R R — 0 is split
at Z(A) because Z(A) = R14 ® S_1(Z(A),0), so it remains exact after tensoring
with S. Together, this means that s+ s-14: 5 — {a € Z(Ag) : a —a =0} is
an isomorphism, hence our claim.

Example 1.20. Let A be a separable projective R-algebra, let 0 : A — A be an
R-involution and let Ry := {s € Z(A) : s = s}. Then (A,0) is an Azumaya
Rj-algebra with involution. Indeed, Ry is a R-summand of Z(A) because 2 € R*,
so by Lemma [[3] A is separable projective over Ry and Rj is finite étale over R.

When R is a field F', an Azumaya F-algebra with involution, (4, o), is a central
simple F-algebra with involution in the sense of [40, pp. 13, 20]. The center of A
is then either F' or a quadratic étale extension of F'. In first case, A is a central
simple F-algebra and o can be either of orthogonal or symplectic type, see [40]
§2.A]. When o is symplectic, deg A must be even [40, Proposition 2.6]. In the case

3This should be understood as “Azumaya algebra-with-involution” rather than “Azumaya-
algebra with involution”.
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Z(A) # F, the center is either F' X F' or a quadratic separable field extension of F,
and o is said to be of unitary type, see [40, §2.B].

Returning to the case R is arbitrary, we turn to define the type of the involution
o. In fact, it will be convenient to define the type of a pair (o, ¢), where £ € Z(A)
satisfies e7¢ = 1, with the type of o being the type of (o, 1).

To that end, suppose first that R is a field. We say that the type of (o,¢)
is unitary if o is unitary, i.e., when Z(A) # R. Suppose now that Z(A) = R.
Then € € {£1} and o is either orthogonal or symplectic. We say that (o, ¢) is of
orthogonal type if either ¢ is orthogonal and € = 1, or ¢ is symplectic and € = —1.
In all other cases, (,¢) is said to be of symplectic type.

When R is arbitrary, the type of (o,¢) is the function from Spec R to the set
{orthogonal, symplectic, unitary} assigning p the type of (o(p),e(p)). The type of
o is the type of (o,1); this agrees with the definition of [39, IIT.§8]. We also say
that (o, ) is orthogonal (resp. symplectic, unitary) at p if (o(p),e(p)) is orthogonal
(resp. symplectic, unitary). The pair (o,¢) is called orthogonal (resp. symplectic,
unitary) if this holds at all primes p € Spec R. We remark that (o,¢) is unitary if
and only if o (i.e. (0,1)) is unitary.

Recall that S.(4,0) ={a € A : ea” = a}.

Proposition 1.21. Let (A,0) be an Azumaya R-algebra with involution, let e €
Z(A) be an element satisfying € = 1 and write n = deg A.
(i) (0,€) is orthogonal if and only if tkg S-(A,0) = sn(n+1) and Z(A) = R.
(ii) (o,€) is symplectic if and only if tkp S-(A,0) = 2n(n — 1) and Z(A) = R.
(iii) (o,€) is unitary if and only if tkp Z(A) = 2. In this case, Z(A) is a quadratic
étale R-algebra, oy ay is its standard involution and tkg S:(A,0) = n?.
(iv) There exists a factorization R = R, X Ry X Ry, such that (og,,e @ 1g,) is
orthogonal, (og.,e ® 1g,) is symplectic and (g, e ® 1R, ) is unitary.
(v) If R is connected, then (o,¢) is either orthogonal, symplectic or unitary.

Proof. Suppose first that R is a field. If Z(A) = R, then ¢ € {£1} and (i)—(iii)
follow from [40, Proposition 2.6]. If Z(A) # R, then by Hibert’s Theorem 90, there
exist § € Z(A) such that §°6~! = e71. One readily checks that § - S1(A,0) =
S:(A, ), so dimr S.(A,0) = dimpg S1(4, ), and the right hand side is n? by [40,
Proposition 2.17]. Tt follows that (i)—(iii) hold in this case as well.

Parts (i)—(iii) for general R will follow from the field case if we show that the
natural maps Z(A)(p) — Z(A(p)) and (S:(A,0))(p) — S(A(p),o(p)) are isomor-
phisms for all p € Spec R. The former isomorphism is Lemma [[4 To establish the
second, note that the short exact sequence S:(A,0) - A — S_.(A, 0) in which the
right arrow is given by a — a — £a? is split, because 2 € R*, and thus it remains
exact after base-change along R — k().

Now, part (iv) follows readily from the fact that rkp Z(A) and rkr S.(A, o) are
locally constant functions, and part (v) follows from (iv). O

Corollary 1.22. Let (A,0) be an Azumaya R-algebra with involution and let ¢ €
Z(A) be an element satisfying 7 = 1.
(i) For every 6 € Z(A) satisfying 6°0 = 1 and every pu € Ss(A,0) N A, the
pair (A, Int(n) o o) is an Azumaya R-algebra with involution and the type
of (Int(u) o 0, d¢) is the same as the type of (o, ¢).
(ii) For every idempotent e € A with rtkaeA > 0 and e = e, the pair
(eAe,0lcac) is an Azumaya R-algebra with involution and the type of (o|cac, €€)
is the same as the type of (o,¢).

Proof. (i) Checking that (A, Int(u)o o) is an Azumaya R-algebra with involution is
straightforward. It is routine to check that x +— px : Sc(A4,0) — Ss(A, Int(u) o o)
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is an R-module isomorphism, hence rkp S:(A,0) = rkg Ssc(A4,Int(p) o o). By
Proposition [[L2T] this means that (o,e) and (Int(u) o 0, de) have the same type.

(ii) Write o, := 0lcae. By Corollary [[T2 eAe is Azumaya over Z(A). In
particular, a — ea defines an isomorphism Z(A) — Z(eAe). This isomorphism is
compatible with o, so r + er : R — eAe identifies R with the o.-fixed elements in
Z(eAe). Thus, (eAe,0.) is an Azumaya R-algebra with involution.

Let p € Spec R. Since rkg Z(A) = rkgr Z(eAe), Proposition [[221] implies that
(0,€) is unitary at p if and only if (o.,ee) is unitary at p. Furthermore, by [24]
Proposition 2.12], (o, ) is orthogonal at p if and only if (o, e€) is orthogonal at p.
Thus, (0,¢) and (o, ce) have the same type. O

For later reference, we record the following easy consequence of Lemma and
the Chinese Remainder Theorem.

Lemma 1.23. Let (A,0) be an Azumaya algebra with involution over a semilocal
ring R. Write A = A/ JacA and let G : A — A be the induced involution. Then
(A,7) = Tlnemax g(A(m),0(m)) as R-algebras with involution, and each factor
(A(m),o(m)) is a central simple k(m)-algebra with involution.

1E. Azumaya Algebras Over Semilocal Rings. We now specialize to the case
where R is semilocal and establish several results about Azumaya algebras and
Azumaya algebras with involution.

Lemma 1.24. Let A be an Azumaya algebra over a semilocal ring R and let P, Q €
P(A). Then P = Q if and only if rrka P = rrka Q. Furthermore, P is isomorphic
to a summand of Q if and only if rrka P < rrka Q.

Proof. The “only if” part of both statements is clear.

We first prove the “if” part of the second statement. Since rrka P < rrka Q,
we have dimy,y,) P(m) < dimym) Q(m) for all m € Max R. Since A(m) is a central
simple k(m)-algebra, this means that P(m) is isomorphic to an A(m)-summand of
Qm).

Write S = R/ Jac R. Since R is semilocal, we have S = [ cvax g K(M), As =
[Twevax g AM), Ps = [[uemaxr P(m) and Qs = [ cyax g @(m); the products
are all finite. By the previous paragraph there exists an A-module epimorphism
¢ : Qs — Psg. Since P is projective, ¢ lifts to an A-module homomorphism
1 Q — P. Since im ¢ = Pg, we have im 1 + Pm = P for all m € Max R. Thus, as
in the proof of Lemma [[L7, im¢y = P. Since P is projective, this means that P is
isomorphic to a summand of Q.

To prove the “if” part of the first statement, argue as above and note that
kervy = 0, because rrksy P = rrk4 Q. O

Theorem 1.25. Let A be an Azumaya algebra over a semilocal ring R. Then there
exists an idempotent e € A such that eAe € [A] and rrky eA = degeAe = ind A.

Proof. We first claim that there exists P € P(A) with rrky P = ind A. Write R =
Hle R;, where each R; is connected. By working over each factor separately, we
may assume that R is connected. As a result, rrka P is constant for all P € P(A).

Since every B € [A] is isomorphic to End 4(P) for some P € P(A) with rrks P >
0 and deg B = rrks P (Proposition [[LTI[iii)), we have ind A = ged{rrks P| P €
P(A),rrkqa P > 0}. Thus, in order to establish the existence of P € P(A) with
rtka P = ind 4, it is enough to show that for any P,Q € P(A) with rrk, Q <
rrka P, there exists S € P(A) with 1tk S = rrkg P — 11k 4 Q. This follows readily
from Lemma [[L24]

Let P € P(A) be a module with rrky P = ind A. By Lemma [[24] P is isomor-
phic to a summand of Ay, because rrky P < deg A = rrky A4. Therefore, there
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exists an idempotent e € A such that P = e¢A. The theorem now follows from
Corollary [[L.12] O

We now turn to consider Azumaya R-algebras with involution.

Lemma 1.26. Let (A,0) be an Azumaya algebra with involution over a semilocal
ring R and let € € Z(A) be an element with e = 1. If for every m € Max R, the
type of (o,€) at m is not symplectic, or deg A(m) is even, then S:(A,0) N AX £ ().

Proof. Suppose first that R is a field and let S = Z(A). Then either S is a field, or
S=RxR. If §is a field, then the map s — ¢s? : S — S is an involution and its
nonzero fixed points are contained in S:(A4,0) N A*. If there are no such points,
then s = —es? for all s € S, which implies ¢ = —1 (take s = 1) and o|g = ids.
In this case, S:(A4,0) N AX # @ by [40, Corollary 2.8]. If S = R x R, then o|g
is the exchange involution (z,y) + (y,z) and ¢ = (a,a™!) for some a € R*, so
(o, 1) € Sc(A,0) N A®.

For general R, let my,..., m; denote the maximal ideals of R. By the previous
paragraph, for each i € {1,...,t}, there exists a; € S:(A(m;),o(m;)) N A(m;)*. By
the Chinese Remainder Theorem, there exists a € A with a(m;) = a;, for all 4.
Replacing a with %(a + £a?), we may assume that a € S.(A,0). By Lemma [0
a € A*, so we are done. O

We finish with showing that idempotent e of Theorem [[.25] can sometimes be
chosen to be invariant under a given involution of A.

Proposition 1.27. Let (A,0) be a central simple algebra with involution over a
field F' and let n be a natural number divisible by ind A and not exceeding deg A. If
o is symplectic, we further require that n is even. Then there exists an idempotent
e € A such that e = e and degeAe =rrkaeA =n

Proof. If A contains no o-invariant idempotents other than 0 and 1, then [22]
Theorem 8.2] (for instance) implies that e = 1 is the required idempotent. Suppose
now that u € A is a nontrivial g-invariant idempotent and let v = 1 —u. Since AuA
is a nonzero two-sided ideal of A invariant under o, and since (4, o) is a simple
ring with involution, AuA = A, and likewise AvA = A. Now, by Corollary [L12]
deg uAu+degvAv = rrks(uADVA) = 11k4 A = deg A, ind A = ind uAu = ind vAv,
by Corollary [22(ii), o|,au and ol|,a, have the same type as o. Express n as
n1 + ne with n; < deguAu, ne < degvAv and such that ni, ny are divisible by
ind A, or lem{2,ind A} if o is symplectic. Applying induction to (vAu,o|y,a,) and
(vAv, 0lyav), We get o-invariant idempotents e; € uAu, es € vAv with dege; Ae; =
n; (i =1,2). Take e = e1 + es. O

Lemma 1.28. Let (A, o) be an R-algebra with involution, let A = A/ Jac A and let
G : A — A denote the induced involution. Let n € A be a o-invariant idempotent.
If n is the image of an idempotent in A, then n is the image of a o-invariant
idempotent in A.

Proof. Denote the image of a € A in A as @. Let e € A be an idempotent with
e =rn. Sincen =17, we have eA+ (1—e)? A+ JacA = A, so eA+(1—e)°A = Aby
Nakayama’s Lemma. On the other hand, if a € eAN(1—e)? A, then (1—e)a = ea =
0, hence (1—e+e%)a=0. Since 1 —e +¢e° =1, we have 1 —e+¢e° € A%, s0 a = 0.
Thus, A=eA S (1 —e)?A. Write 1 =e; + f1 with ey € €A, f1 € (1 —e)?A. Tt is
well-known that e; and f; are idempotents satisfying e A = eA and f; = (1—¢)? A.
Now, e1 —efer = (1 —e1)%e1 = f{er = ((1 — )7 f1)7eer = f{(1 — e)eer = 0, so
e1 = efer. It follows that ¢ = (eJe1)? = efe; = €. Finally, since €7 € nA
and T—e; € (1 —n)A, we must have &7 = 7, because A = nA & (1 — n)A and
1=n+(1-n). O
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Lemma 1.29. Let A be a semilocal R-algebra, let A :== A/ JacA and let n € A
be an idempotent. Then there exists an idempotent e € A with € := e+ JacA =1
if and only if there exists P € P(A) such that P := P/PJacA = nA as right
A-modules.

Proof. For the “only if” part, take P = eA. We turn to prove the “if” part.

Note that P — P = nA is a projective covering; denote this map by f. Consider
the surjective homomorphism g : Ay — nA given by g(a) = na. Since f : P — nAis
a projective covering, there exists a factorization A4 = P; & Q and an isomorphism
P — P; such that the composition P — P, % nA is f. In particular, P, =
nA. Choose an idempotent e; € A such that P, = e;A. Then A = nA and

(1—e)A= AJetA= A/nA = (1—n)A. Now, by [4I, Exercise 21.16], there exists
z €A with ze/z~! = n. Choose y € A with 7 = 2 and take e = ye;y~'. O

Theorem 1.30. Let (A, 0) be an Azumaya algebra with involution over a semilocal
ring R. Write S := Z(A) and let n € T'(Spec S,N). Suppose that n is invariant
under o|g and satisfies ind A | n and n < deg A. If o is symplectic at p € Spec R,
we also require that n(p) is even. Then there exists an idempotent e € A such that
e? = e and degeAe = rrky eA = n.

We remark that ind A is a o|g-invariant function from Spec .S to N.

Proof. Let my,..., m; denote the maximal ideals of R. We use Lemma[[.23] to iden-
tify A := A/ Jac A with H§:1 A(m;). Since ind A(m;) | (ind A)(m;), we may apply
Proposition to (A(m;),o(m;)) and n(m;) and get a o-invariant idempotent
n; € A(m;) with rrka(m,) 7 A(m;) = n(m;). Let n = (n;)!_; € A. Then 57 = 1.

By Theorem [[L25 there exists P € P(A) such that rtky P = n. Comparing
reduced ranks, one sees that P = P/P Jac A~ P ®, A is isomorphic to nA. Thus,
by Lemmas and [[L29 there exists a o-invariant idempotent e € A projecting
onto 7. Since rrky(m,) eA(m;) = 11k g(m,) i A(M;) = n(m;) for all 1 <4 < ¢, and
since rrk 4 eA is locally constant, we must have rrk4 eA = n. O

2. HERMITIAN FORMS

This section concerns with hermitian forms, mainly over Azumaya algebras with
involution, and related objects. See [39, Chapter I] for an extensive discussion of
hermitian forms in general.

Throughout this section, (A, o) denotes an R-algebra with involution and € is an
element of Z(A) satisfying e = 1. Recall our standing assumption that 2 € R*.

2A. Hermitian Forms. We define e-hermitian spaces over (A4,0) in the usual
way, i.e., as pairs (P, f) where P € P(A) and f: P x P — A is a biadditive map
satisfying f(za,yb) = a” f(x,y)b and f(x,y) = ef(y,z)° (x,y € P, a,b € A). We
also say that f is an e-hermitian form on P.

Given e-hermitian spaces (P, f), (P’,f’) over (4,0), an isometry (P,f) —
(P, f) is an A-module isomorphism ¢ : P — P’ such that f'(vz,¢y) = f(z,y)
(z,y € P). If such an isometry exists, we write (P, f) = (P, f') or f = f’. The
group of isometries from (P, f) into itself is denoted U(f). Orthogonal sums of
hermitian spaces or hermitian forms are defined in the usual way and are written
using the symbol @. The n-fold orthogonal sum (P, f) @ --- & (P, f) is denoted

Example 2.1. Let a,...,a, € S:(A,0). Then the map f : A" x A™ — A given by
f((%i), (y5)) = >, ®7 azy; is an e-hermitian form over (A, o). We call f a diagonal
form and denote it by (a1,...,an)(4,0). A hermitian form which is isomorphic to
a diagonal form is called diagonalizable.
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Given P € P(A), let P* denote Hom 4 (P, A) endowed with the right A-module
structure given by (¢a)x = a”(¢x) (¢ € P*, a € A, x € P). If f is an e-hermitian
form on P, then the map x — f(xz,—): P — P* is an A-module homomorphism.
When it is an isomorphism, we say that (P, f), or f, is unimodularl. The category
of unimodular e-hermitian spaces over (A, o) with isometries as its morphisms is
denoted

HE(A, o).

We shall need the following versions of Witt’s Cancellation Theorem and Witt’s
Extension Theorem. The cancellation is derived from cancellation results of Reiter
[59, Theorem 6.2] and Keller [37, Theorem 3.4.2].

Theorem 2.2. Suppose that (A, o) is an Azumaya R-algebra with involution and
R is semilocal, and let (P1, f1), (P2, f2),(Q,9) € H (A, 0). If fi®&g= faD g, then
1= fa.

Proof. Write R = [[, R; with each R; a connected semilocal ring. Working over
each factor separately, we may assume that R is connected. Under this assumption,
we may further assume that rkr P, > 0, because otherwise rkg P| = rkr P» = 0,
which implies P; = P, =0 and f; & fy. At this point, we claim that we may apply
Keller’s cancellation result [37, Theorem 3.4.2(iii)] and conclude that f1 & fs.
Indeed, in order to apply Keller’s theorem, we need to check that the number r
defined in op. cit. is 0 for the hermitian space (P, f1). By Lemma [[23] this is
equivalent to having P;(m) # 0 for all m € Max R, and this holds by our assumption
that rkp P, > 0. Alternatively, one can use Reiter’s version of Witt’s Extension
Theorem [59, Theorem 6.2], which applies under similar conditions, to conclude the
proof. O

Theorem 2.3. Suppose that R is a henselian local ring and (A, o) is a finite R-
algebra with involution. Let (P, f) € H(A,T) and let U,V be summands of P.
Then any isometry fluxu — flvxv extends to an isometry of f.

Proof. By a theorem of Azumaya [4, Theorem 24], A is a semiperfect ring. The
theorem therefore follows from [24] Corollary 4.9]. O

2B. The Witt Group. As usual, a Lagrangian of a unimodular hermitian space
(P, f) € H°(A, o) isasummand L of P such that L = L+ :={x € P : f(z,L) = 0}.
If (P, f) admits a Lagrangian, it is called metabolic. A convenient way to verify
that an A-submodule L < P with f(L, L) = 0 is a Lagrangian is to exhibit another
submodule M < P such that f(M,M) =0 and L ® M = P. If such L and M
exist, (P, f) is called hyperbolic. In this case, the map © — f(z,—): M — L* is
an isomorphism of A-modules, and the induced map P = L& M — L & L* is an
isometry from (P, f) to (L @ L*, 15 ), where hj is the e-hermitian form given by

hi(z® ¢,2" @ ¢') = ¢’ +e(¢'z)”
(z,2' € P, ¢,¢' € P*). Since we assume that 2 € A, any Lagrangian L admits a

Lagrangian M with L & M = P [39, Proposition 1.3.7.1], so metabolic spaces are
hyperbolic. Therefore, we shall only consider hyperbolic spaces in the sequel.

Recall that the Witt group of e-hermitian forms over (A4, o), denoted
W.(A, o),

is the Grothendieck group of H¢(A, o), relative to orthogonal sum, divided by the
subgroup spanned by the (representatives of) hyperbolic spaces. The class repre-
sented by (P, f) in W.(A, o) is denoted [P, f] or [f]. Two forms f, f’ representing
the same element in W, (A, o) will be called Witt-equivalent; this happens if and

4Some texts use “regular” or “nondegenerate”.
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only if there exist hyperbolic forms h,h’ such that f & h = f’ ® h’. Note that
—[f] = [ f] because f @& (—f) is hyperbolic.

Example 2.4. We say that 0 : A — A is an exchange involution if there exists
an idempotent n € Z(A) such that n° = 1 — . For example, this is the case if
(A,0) is an Azumaya R-algebra with involution and Z(A) = R x R, because |z ()
is the involution (r,s) — (s,7) (see Proposition [[2T]). In this situation, there
exists an R-algebra B such that (A4,0) = (B x B°P, (z,4°P?) — (y,2°P)), hence
the name “exchange involution”. Indeed, take B = nA; the required isomorphism
A — B x B°P is given by a — (na, (na®)°P).

It easy to see that for any P € P(A), we have P = Pn® Pn°. Furthermore, if f is
a unimodular e-hermitian form on P, then f(Pn, Pn) = f(Pn”, Pn°) = 0 (because
n°n = 0), so f is hyperbolic and f & h,. From this we see that every (P, f) €
H=(A, o) is hyperbolic and is determined up to isomorphism by the isomorphism
class of P. In particular, W.(4,0) = 0.

Recall that an e-hermitian space (P, f) € H®(A, o) is called isotropic if P admits
a nonzero summand M such that f(M, M) = 0. When no such M exists, (P, f) is
called anisotropic. We alert the reader that at this level of generality, the existence
of 0 # x € P such that f(x,2) = 0 does not imply that (P, f) is isotropic. However,
when A is semisimple artinian, xA is a summand of P, so f is isotropic if and only
if f(x,x) =0 for some nonzero = € P.

Proposition 2.5 ([39, Proposition 1.3.7.9]). Every (P, f) € H®(A, o) can be written
as an orthogonal sum of an anisotropic space and a hyperbolic space. In particular,
(P, f) is Witt equivalent to an anisotropic e-hermitian space.

We proceed with showing that if (A,o) is an Azumaya R-algebra with invo-
lution and R is semilocal, then every hermitian form representing 0 in W.(A, o)
is hyperbolic. Furthermore, two hermitian spaces in the same Witt class having
the same reduced rank are isomorphic. These statements may already fail for
(A,0) = (R,idR) if R is not semilocal; see [7, Example 1.2.6], for instance.

Lemma 2.6. Suppose that (A, o) is an Azumaya R-algebra with involution and let
P € P(A). Then tkg P = rkg P* and rtky P* = orrky P, i.e., (rtky P*)(p) =
(rtka P)(p?) for all p € SpecZ(A). In particular, if there exists a unimodular
e-hemritian form on P, then rrky P is o-invariant.

Proof. Write S = Z(A). It is enough to prove lemma after specializing to the
residue fields of R, so assume R is a field.

If S is connected, then o rrky P = rrky P and A is a simple artinian ring. Length
considerations force P = P*, hence tkg P = rkg P* and rrky P* = rtka P =
orrky P.

If S is not connected, then S = R x R and o] is the exchange involution. Thus,
as in Example 2.4 there exists a central simple R-algebra B such that (A,o0) =
(B x B°P, ) where (z,y°P)” = (y,2°P). Identifying A with B x B°P, we can write
P = P, x P, where P, € P(B) and P, € P(B°P). Regarding P; and P; as A-
modules, one readily checks that (15,0%) annihilates Py and (0p,1%) annihilates
Py, so P} € P(B°) and Py € P(B). Since * : P(A) — P(A) is a duality and
P(A) is abelian semisimple, P; and P;" have the same A-length, so lengthy P, =
lengthpop Py, Likewise, lengthpop, Po = lengthp Py, Since B and B°P are central
simple R-algebras of equal degree, this means that rky P = rkg P* and rrky P* =
rtka(Py x Pf) = orrky P.

Finally, if P carries a unimodular hermitian form, then P = P*, so rrtky P =
rrka P* = orrky P. O
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Lemma 2.7. Suppose that (A,o) is an Azumaya algebra with involution over a
semilocal ring R, and let (Py, f1),(Pa, fa) € HE(A, o) be hyperbolic. If rrky Py <
rrky P, then there is V € P(A) such that f1 ®h, = fo. In particular, if rrka Py =
I‘I‘kA PQ, then fl = fg.

Proof. Write S = Z(A). As in the proof of Theorem 22] we may assume that R is
connected.

Suppose first that S is not connected. By Lemma [[T0 S = R x R. Put
n=(1r,0r) € S. Then by Example24] f; = h% , and fo =2 hg), . The assumption
rrkg Py < rrky Po means that rrky Pin < rrkg Pon, so by Lemma [[.24] there is
V € P(A) such that Py @ V = Pyy. Then fi @ b 2 hi,, © S, 2 1, = fo

Now assume that S is connected and write f; & ]h%,1 and fo &2 ]h‘EU2 with Uy, Uy €
P(A). Lemma and the connectivity of S imply that 2rrks U; = mrky Py <
rrkg Py = 21rky Us. By Lemma [[24] there is V' € P(A) such that Uy & V 22 Us.
Then fl &) ]h%/ = f2. O

Theorem 2.8. Suppose that (A, o) is an Azumaya algebra with involution over a
semilocal ring R, and let (P, f), (P, f") € H*(A, o).
(i) If rrtkg P <rtrka P’, then there exists V € P(A) such that f ® I, = f'.
(ii) If [f] =0, then f is hyperbolic.
(ii1) If [f] = [f'] and rrkg P =11ky P, then f = f'.

Proof. (i) There are U,W € P(A) such that f & hf, = f’ ¢ h§,. Then ks (U &
U*) —1rka(W & W*) = 11kg P’ —11k4a P > 0, 80 by Lemma 27 there is V € P(A)
such that hf, = hj, ®hj,. (Caution: U = W@V is a priori not guaranteed.) Then
(fehf)ehy, = fehf = f'@hj,. By Theorem[Z2] this means that f®h§, = f'.
(ii) Apply (i) with (P, f) being the zero hermitian space.
(iii) By (i), f @ h} = f’ for some V € P(A), and V = 0 because rtks V =
rtkg P —1rka P = 0. O

We also record the following useful corollary to Lemma

Corollary 2.9. Suppose that (A, o) is an Azumaya R-algebra with involution and
let (P, f) € HE(A, o).
(i) If R is connected, then rrka P is constant.
(i) If S = 7Z(A) is connected and f is hyperbolic, then there exists V € P(A)
with rtka P = 211k V.

Proof. (i) If S = R, then this is clear. If S # R, then S is a quadratic étale R-
algebra and o|g is the standard R-involution of S (see[IC]). Thus, o acts transitively
on every fiber of SpecS — Spec R. By Lemma [2.6, this means that rrk, P is
constant on the fibers of SpecS — Spec R. Thus, by ([@3), we have ttkgr P =
ttkp S -tkg P = 2rkg P, where ¢ : R — S is the inclusion. Since the left hand side
is constant (R is connected), rrk4 P is also constant.

(ii) There exists V' € P(A) such that P =V @& V*. By Lemma 26 rrks P =
rtkaV +orrky V, and orrkg V = rrk4 V because S is connected. O

2C. Base Change. Let R — S be a ring homomorphism. Given an e-hermitian
space (P, f) over (A, o), define its base change along R — S to be the e-hermitian
space (Ps, fs) over (Ag,os), where Ps = P ® S and fg is determined by fs(z ®
s,y®t) = flz,y) @ st (x,y € P, s,t € S). It is well-known that if (P, f) is
unimodular, resp. hyperbolic, then so is (Ps, fs). When S = k(p) for p € Spec R,
we shall write f(p) instead of fip).

Let p: (B,7) — (4, 0) be a homomorphism of R-algebras with involution and
let 6 € Z(B) be an element such that §76 = 1 and € := p(d) € Z(A). We view
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A as a left B-module via p. For every §-hermitian space (@, g) over (B, 1), define
p(Q, g) to be (Q®p A, pg), where pg : (Q®@p A) X (Q ®p A) — A is the biadditive
pairing determined by pg(z ® a, 2’ ® o) = a” - p(f(z,2)) - d' (z,2’ € P, a,d’ € A).
Tt is routine to check that p(Q, g) is an e-hermitian space over (4, o). Furthermore,
it is unimodular, resp. hyperbolic, when (@, g) is. The assignment p extends to a
functor p: HO(B,7) — HE(A, o) by setting pp = ¢ @p idAﬁ

2D. Adjoint Involutions. Let (P, f) € H®(A,0). It is well-known that there
exists a unique R-linear involution 6 : End4(P) — End 4 (P) satisfying f(pz,y) =
f(z, %) for all p € End(P), see [39, 1.§9.2]. It is called the adjoint involution of
f. Notice that U(f) coincides with the group U(End4(P),0) := {¢ € Enda(P) :
o =pp? =1}.

If R — S is a ring homomorphism, then P € P(A) implies that the natural map
Enda(P)® S — Endag(Ps) is an isomorphism. Under this isomorphism, fg is the
adjoint involution of fg.

Example 2.10. Let o, 8 € S.(A4,0) N A* and consider the diagonal binary e-
hermitian form (o, 3)(4,,) on A? (notation as in Example2.T]). Direct computation
shows that, upon realizing End 4 (A% ) as M2 (A), the adjoint involution of (a, B)(a,0)
is given by [2 Y] [g:;:g ;‘:11:;’(;] (z,y,z,w € A). When a,3 € Z(A), this

simplifies into [7 ¥ ] — [V,Ifyc, 'Ij: ], where v = ™13 lives in S1(Z(A), o).

Proposition 2.11. Suppose that (A, o) is an Azumaya R-algebra with involution.
Let (P, f) € H°(A,0) and let 0 : Enda(P) — Enda(P) be the adjoint involution of
f. Ifrtka P > 0, then (Enda(P),0) is an Azumaya R-algebra with involution and
0 and (o,¢) have the same type.

Proof. Write S = Z(A). By Proposition [[T1[(i), End4(P) is Azumaya over S. It
is easy to check that 0|s = o|g, hence (End4(P), ) is an Azumaya R-algebra with
involution. To see that the types of 6 and (o,¢) coincide, we need to check that
they coincide at every p € Spec R, so we may assume R is a field. In this case,
it is clear that 6 is unitary if and only if (o,¢) is unitary. For the orthogonal and
symplectic cases, see [40, Theorem 4.2(1)]. O

The converse of Proposition 211 namely, that every involution of End4(P) is
adjoint to some hermitian form, holds when R is a field; see [40, Theorem 4.2]. In
fact, it holds in general if one allows hermitian forms to take values in (A°P, A)-
progenerators; see [22] and |23, §3-4]. We shall need a special case of the latter
observation.

Proposition 2.12. Suppose that (A, o) is an Azumaya R-algebra with involution,
S = Z(A) is semilocal and A = Endg(Q) for some Q € P(S). Then there exists
§ € S with 676 = 1 and a unimodular §-hermitian form g : Q x Q — S over (S,o|s)
such that o is adjoint to g. One has 6 = 1 when o is orthogonal and § = —1 when
o is symplectic.

Proof. By [62, Theorem 4.2] (or, alternatively, |23, Proposition 4.6]), there exist
51 € S with 6767 = 1, a rank-1 projective S-module L, a o|g-linear involutive
automorphism 7 : L — L, and a unimodular L-valued o|g-sesquilinear form g :
Q@ x Q — L satistying g(z,y) = d19(y,z)” and having o as its adjoint involution.
(Here, unimodularity means that « — g(x,—) : P — Homg(P, L) is bijective.)
Since S is semilocal, L & Sg, so we may assume L = S. Put d; = (1g)”. Then
oot € Endg(S) =S maps 1g to §7, and so it coincides with the S-endomorphism

5We do not write p(Q,9) as (Pa, fa) because we reserve the subscript notation for base change
relative to the base ring R.
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s+ 68s: S — S. As a result, s77 = 09s, or rather s = 257, for all s € S.
Taking s = d2 and noting that §7 = 1 (because 1™ = d2), we get 6209 = 1. Thus,
g: Px P — S is a unimodular 6;d2-hermitian form over (S, o|s) with adjoint
involution o. Write § = §102.

By Proposition 2Tl the type of o is the same as the type of (o|s,d). Thus,
0 =1 if o is orthogonal and § = —1 if ¢ is symplectic. O

The following proposition can be proved directly, but we use Theorem [L.30] to-
gether with adjoint involutions to give a short proof.

Proposition 2.13. Suppose that (A, o) is an Azumaya R-algebra with involution
and R is semilocal. Let (P, f) € HE(A, o) and suppose that P is a free A-module. If
(0,¢) is symplectic at p € Spec R, we also assume that 2 | (deg A)(p). Then (P, f)
is diagonalizable (see Example [21)).

Proof. If P = 0, there is nothing to prove, so assume P ## 0. Since P is free, we
have rrtka P > 0. Let B = Enda(P) and let § : B — B be the adjoint involu-
tion of f. By Proposition [[TI[i), ind B = ind A | deg A and deg A < rrky P =
deg B. Furthermore, if (o,¢), equivalently 6, is symplectic at p € Spec R, then
2 | (deg A)(p). Thus, by Theorem [[30, there exists an idempotent e € B such
that e = e and rtkgeB = deg A. Write ¢/ = 1g — e. It is easy to check that
(P, f) = (eP, flepxer) ® (¢/P, flerpxerp). Furthermore, by Proposition [LTTI(ii),
rtkgeP = rrkgeB ®@p P = rtkpeB = deg A, so eP = A, (Lemma [[L24). Thus,
flepxep = (a) for some a € S:(A, o). Proceed by induction on (¢'P, fle pxerp). O

2E. The Isometry Group Scheme. Suppose that A is finite projective over R
and let (P, f) € H%(A, o). By [1I, Appendix], the functor S — U(fs) from R-rings
to groups is represented by a smooth affine group R-scheme, denoted U(f). Since
U(f) — Spec R is smooth, by [32] Corollaire 15.6.5], U(f) admits a unique open
subgroup, U°%(f), such that U°(f) — Spec R is connected, i.e., the fiber UY(f) x g
k(p) over Spec k(p) is connected for all p € Spec R. Moreover, UY(f) — Spec R is
geometrically connected [68, Tag 04KV]. We call U°(f) the neutral component of
U(f) and write UY(f) = U°(f)(R).

Remark 2.14. In case the base ring R is not clear from the context, we shall
write Ug(f), U%(f), UX(f) instead of U(f), U°(f), U°(f). However, somewhat
conveniently, if A is projective over Ry := S1(Z(A),0), e.g., when A is separable
projective over R (Example [L20), then U%(f) is independent of the base ring R.

Indeed, by [27, Proposition 2.4.6(1)], Ry is an R;-summand of A, and therefore
Ry is finite projective over R. Note that Ur(f) = Rg,/rUr, (f), where Ry, /g is
the Weil restriction; see [I4] §7.6], for instance. By [14, Proposition 7.6.2(i)], the
R1/R-Weil restriction of an open immersion is an open immersion, so Rp, RU%{1 (f)
is open in Ug(f). In addition, since U% (f) — SpecR; is geometrically con-
nected, affine and smooth, the fibers of Rg,, RU%,J( f) — Spec R are connected
([19, Proposition A.5.9]). As a result, U%(f) conincides with Rp,,rgU% (f) and
UR(f) = (Rr,/rRUY, )(R) = Up, (f). In particular, UR(f) is determined by (4, o)
and is independent of R.

Remark 2.15. Keeping the previous assumptions, write E = End4(P) and let 6
denote the adjoint involution of f. Then U(f) coincides with U(F, 0), the group
R-scheme representing the functor S — U(Eg,0s) := {z € Es : 2%z =1}. In-
deed, for any R-ring S, we have U(f)(S) = U(fs) = U(FEg,0s) upon identify-
ing Enda,(Ps) with Enda(P)s. As a result, UY(f) is the neutral component of
U(FE,0) — Spec R, denoted U°(E, 0).
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We describe UY(f) explicitly when (A, o) is an Azumaya R-algebra with invo-
lution and rrks P > 0. Since we can factor R as Hle R; such that rrkagr, Pr, is
constant for all ¢, it is enough to consider the case where rrky P is constant. By
Proposition [[L2T(v), (o,¢€) is now either orthogonal, symplectic or unitary.

When (o,2) is symplectic or unitary, the fibers of U(f) — Spec R are well-
known to be outer forms of Sp,,, or GL,, respectively; see [40, §23A]. Thus, they
are connected and U°(f) = U(f).

Suppose now that (o, ¢) is orthogonal, let F = End4(P) and let 6 : E — E be the
adjoint involution of f. Then (E,6) is an Azumaya R-algebra with an orthogonal
involution (Proposition[ZTT]). Let Mo p — Spec R denote the affine group R-scheme
representing the functor S + u2(S) := {s € S : s?> = 1}. For every R-ring S, the
reduced norm map, Nrdg,,s : Es — S (see [27, p. 410]), is compatible with base
change and restricts to a group homomorphism U(fs) = U(Es,0s) — ug(S)E
Thus, it determines a morphism of affine group R-schemes

Nrd : U(f) = po p-

The scheme-theoretic kernel of this morphism — call it K — is UY(f). Indeed, K
is open in U(f) because the trivial group R-scheme 1 is open in p,  (recall that
2 € R*), and the fiber of K over p € Spec R is U(E(p),0(p)), which is a form of
SO,, for n = deg A(p) [40, §23B], hence connected.

We conclude the previous discussion with:

Proposition 2.16. Let (A,0) be an Azumaya R-algebra with involution and let
(P, f) € H*(A,0). Assume that rtka P > 0. If (0,¢) is symplectic or unitary, then
U°(f) =U(f). If (0,¢) is orthogonal, then U°(f) = ker(Nrd : U(f) — po r)-

The following lemma is convenient for verifying equalities in o (R).

Lemma 2.17. Let o, € pa(R). Then o = S if and only if a(m) = S(m) for all
m € Max R.

Proof. Write v = a~13. It is enough to prove that if v(m) = 1 for all m € Max R,
then v = 1. Note that (1 — 7) is an idempotent. If y(m) =1 for all m € Max R,
then 1 — v € Jac R, so the idempotent %(1 —~) must be 0 and v = 1. O

Following are two theorems that will play a major role in the sequel.

Theorem 2.18. Suppose that (A, o) is an Azumaya R-algebra with involution and
R is semilocal, and let (P, f) € H*(A,0). Then the specialization map U°(f) —

[Tenax g UC(f(m)) is surjective.

Proof. Write R = H§:1 R; with each R; connected. Working over each factor
separately, we may assume R is connected. We may further assume that rrk4 P > 0.

Let E and 6 be as in Remark BT5 and write U°(E, ) = U°(E,0)(R) = U°(f).
Then (F, 0) is Azumaya over R (Proposition 2TT]), 6 is either orthogonal, symplec-
tic, or unitary (Propositions[ZI(v)), and the theorem is equivalent to U°(E,6) —
[Tmerax g U (E(m), 0(m)) being surjective. This holds by [25, Theorem 2] (and
Proposition [Z16) when 6 is orthogonal and by [25] Theorem 6] when 6 is not or-
thogonal. O

60ne can show that Nrdg, g maps U(FE,0) to u2(R), and similarly after base-changing to S,
as follows: By [39] II1.§8.5] or [26, Theorems 5.17 & 5.37, Examples 7.3 & 7.4], there exists a
faithfully flat R-ring R’ such that (Egs,0g/) = (My(R’),t), where t is the transpose involution.
Now, for all 2 € U(M,(R'),t), we have Nrd(z)? = det(z)? = det(z*z) = 1, so Nrd(z) € u2(R').
As a result, Nrdg, g maps U(E,0) to RN p2(R’) = p2(R).
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Remark 2.19. Under the assumptions of Theorem I8 the specialization map
U(f) = [memax g U(f(m)) may fail to be surjective in general. For example, take
R to be a connected semilocal ring with two maximal ideals, let (A, o) = (R,idg)
and consider the 1-hermitian form f(z,y) = 2y on R.

Theorem 2.20. Suppose that (A,o) is an Azumaya R-algebra with involution,
(0,¢€) is orthogonal and R is semilocal. Let (P, f) € H®(A, o) be hermitian space
with rrtka P > 0. Then Nrd : U(f) — u2(R) is surjective if and only if [A] = 0.

Proof. As in the proof of Theorem 218 we may assume that R is connected, and
hence, pa(R) = {£1}. Now, the theorem follows by applying [25] Theorem 1] to the
adjoint involution of f. Note that End 4 (P) is Azumaya over R because rtkq P > 0
(Proposition [LTII(i)). O

We finish with the following well-known theorem.

Theorem 2.21. Suppose that R is a field and A is finite dimensional over R, and
and let (P, f) € H*(A,0). Then U°(f) — Spec R is a rational variety.

Proof (sketch). We already know that U°(f) — Spec R is irreducible. Let 6 be the
adjoint involution of f and let V denote the affine R-variety representing the functor
S = S_1(Endag(Ps),0s); it is isomorphic to A% for n = dimg S—1(Enda(P),6).
A birational equivalence between V and UY(f) is given by the Cayley transform,
y= (1+y)(1—y)~t:V -—s Uf), and its inverse, x — —(1 + )" 11 —x) :
U’(f) --» V. O

2F. More on Lagrangians. Throughout this subsection, (A, o) denotes an Azu-
maya R-algebra with involution. Given (P, f) € H®(A, o), let

Lag(f) ={L C P : L is a Lagrangian of f and rrks L = 1 rrk4 P}.

Recall from BB that if L is a Lagrangian of f, then P = L & L*, hence rrtky P =
kg L + o rrka L by Lemma 2.6 Thus, if o|z4) = idg(a), or if Z(A) is connected,
then Lag(f) consists of all Lagrangians of f.

In this subsection, we collect several facts about the action of U°(f) on Lag(f).
Some of the results will require the use of sheaves, and we refer the reader to [39]
Chapter 111.§2] for a scheme-free introduction, or [47] for an extensive treatment.

The map S — Lag(fs) naturally extends to a functor, Lag(f), from R-rings
to sets. It is routine to check that Lagrangians descend along along faithfully
flat ring homomorphisms. That is, if S — T is a faithfully flat map of R-rings,
i1,i0 : T — T ®g T are the maps t — t® 1 and t — 1 ® ¢, and L € Lag(fr)
satsfies Lag(i1)(L) = Lag(i2)(L), then there exists a unique Ly € Lag(fs) with
(Lo) ®s T = L; consult [39, II1.§§1-2]. Thus, Lag(f) is sheaf relative to the fppf
topology on the category of affine R-schemes, denoted (Aff/ R)fppfﬂ (In fact, it
can be shown that Lag(f) is represented by a non-affine R-scheme, but this fact
will not be needed in this work.) The group U(f) acts on Lag(f) in a way which
is compatible with base change, thus giving rise to an action of U(f) on Lag(f).

For the next results, given P,Q € P(A) and f € Homa(P,Q), recall that the
dual homomorphism f* € Homyu (Q*, P*) is defined by f*¢ = ¢o f (¢ € Q*).

Lemma 2.22. Suppose that (A,0) is an Azumaya R-algebra with involution and
R is semilocal. Let (P, f) € H®(A,o0). Then U(f) acts transitively on Lag(f),
provided it is nonempty.

TWith the appropriate definitions, this functor also extends to a sheaf on the site of all R-
schemes with the fpqc topology.



AN EXACT SEQUENCE OF WITT GROUPS 23

Proof. Let Ly, Ly € Lag(f). As explained in PBl we can find isometries ¢; : hy —
f (i =1,2) such that ¢; restricts to the identity on L;. Since rrks L1 = % rrky P =
rrka Lo, there is an A-module isomorphism ¢ : Ly = Ly (Lemma [[24)). Then
bi=Y & (=)7L hg  — hf, is an isometry taking L; to La. Now, @21/330171 is an
element of U(f) taking Ly to Lo. O

Proposition 2.23. Suppose that (A, o) is an Azumaya R-algebra with involution,
and let (P, f) € H(A,0). When viewed as sheaves on (Aff/R)z. — the category
of affine R-schemes with the Zariski topology — the group U(f) acts transitively
on Lag(f), provided Lag(f) # 0.

Proof. The statement means that for every R-ring S and L, M € Lag(fs), there
exist a,...,00 € S and ¢; € U(fs, ) (i = 1,...,t) such that S = ), ;S and
¢i(Ls,,) = Ms,, for all i. Here, S, denotes the localization of S with respect to
{1,a;,02,... }.

Fix some p € SpecS. By Lemma 222 there exists an isometry ¢ € U(fs,)
with ¢(Lg,) = Ms,. It is easy to see that there exists a = a® € S\ p and
¢ = ) € U(fs,)such that i) = pg, and ¢(Ls,) = Ms,. Now, since 2papS =S5,
there exist pi,...,p: € S such that 22:1 aP)§ = §. The elements a; := o(P) and
the isometries @; = ¥+ fulfill all the requirements. (]

Given P € P(A) and b € Hom 4 (P, P*), write b* for the element of Hom 4 (P, P*)
determined by (b*z)y = ((by)z)? (z,y € P). It is straightforward to check that
b'" = b and (bo )" = ¢* o b" for all » € Endu(P). We set S.(P) = {b €
Homyu (P, P*) : b=ceb'}.

Lemma 2.24. Let L € P(A) and let B denote the subgroup of U(h3) consisting of
isometries ¢ satisfying p(0dL*) = 0dL*. Then, writing elements of Enda (L @& L*)
as 2 X 2 matrices, we have

B= { [Z (af;_l} :a € Auta(L), b € Homu (L, L*),a* ob € SE(L)} .
Proof. That elements of B live in U(Ih5 ) and preserve 0@ L* is routine. Conversely,
every element ¢ € U(f) satisfying (0 L*) = 0®L* can be written as [¢ 2] with a €
Auta(L), b € Homa(L,L*), ¢ € Auts(L*). Let z,2’ € L and ¢ € L*. Unfolding
the equality 1 (9], [ ]) = 15 (o[ ), ¢ ) gives 62’ = (c6)(aa’) = (a*(c6))a’, so
a*c =1idg-, or rather, ¢ = (a*)~!. Unfolding hi ([§],[%]) = h3(¢[§],¢[%]) gives
0 = (b2')(ax) + e((bx)(az’))? = (a*(ba'))x + e(b*(azx’))z, so a* o b+ eb* 0 a = 0,
which means that a* ob € S_.(L). O

The following proposition provides information about the U°( f)-orbits in Lag(f)
when (A, o) is an Azumaya R-algebra with involution and (o, ¢) is orthogonal. Tt
will feature a number of times in the sequel.

Proposition 2.25. Suppose that (A,0) is an Azumaya R-algebra with involution
and (o,¢€) is orthogonal. Let (P, f) € H®(A, o), let L € Lag(f) and suppose that
rrtka P > 0. Then there exists a unique U(f)-equivariant natural transformation of
functors from R-rings to sets,

QL = ‘I)(Lf) : Lag(f) — Ko R
such that ®1,(L) = 1; here, U(f) acts on py g via Nrd : U(f) — py r. The map
D, has the following additional properties:
(i) @ (M)Pp(K) = PL(K) and (M) = @p(L) for all L, M, K € Lag(f).
(it) Given (P',f") € H*(A,0) and L' € Lag(f’), we have ®rer (M & M') =
O (M)®r (M) for all M € Lag(f), M’ € Lag(f’).
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Proof. We may assume without loss of generality that (P, f) = (L @© L*,h%) and
identify L with its copy in P = L & L*. A sheaf means a sheaf on the site
(-Aff/R)fppf-

Given an R-ring S, let B = B(L) be as in Lemma Let B denote the
subfunctor of U(f) determined by B(S) = B(Lg). It is routine to check that
B is a group subsheaf of U(f). We let U(f)/B denote the quotient sheaf (note
that (U(f)/B)(S) is in general larger than U(fs)/B(Ls)). By definition, B is the
stabilizer of the global section 0 @ L* of Lag(f) under the action of U(f). Thus,
we have an induced morphism ¥ : U(f)/B — Lag(f), which is an isomorphism by
Proposition

For every a € End (L), we have Nrd(a*) = Nrd(a). Indeed, a — a* : Enda(L) —
End4(L*)°P is an isomorphism of Azumaya R-algebras, and thus respects the re-
duced norm. This implies readily that B C ker(Nrd : U(f) — py z). As a result,
there is an induced U(f)-equivariant map Nrd : U(f)/B — py . Let @ denote
the composition NrdoW ™" : Lag(f) — py z. Then ®q is U( f)-equivariant. Writing
& =Py(L) € p2(R) and defining &1, = & - g, we see that @z, is U(f)-equivariant
and satisfies @, (L) = 1.

Suppose that @ : Lag(f) — py g is another U(f)-equivariant natural trans-
formation satisfying ®'(L) = 1. Let R’ be an R-ring and let M € Lag(fr/). By
Proposition [Z23] there exists a faithfully flat R'-algebra R” and ¢ € U(fr~) such
that o(Lpr) = M ®p R". Thus, ® (M ®x R") = Nrd()®' (L) = Nrd(¢)®p (L) =
O (M ®@r R") in p2(R”). Since R' — R’ is faithfully flat, this means that
(M) =1 (M) in puz(R'), and we have shown that &' = &y,

We turn to prove (i) and (ii):

(i) We apply Proposition[2:23] to assert the existence of a faithfully flat R-algebra
R’ and ¢,¢ € U(fr) such that ¢(Lr/) = Mg and (Mp/) = Kgr. Note that
O (M) = Nrd(¢)®L(L) = Nrd(yp) in ua(R'), and similarly, ®5;(K) = Nrd(v),
& (K) = Nrd(hp) and ®p(L) = Nrd(p)~!. The identities in (i) follow readily
from these equalities and the fact that us(R) is 2-torsion.

(i) By Proposition[Z23] there exists a faithfully flat R-algebra S and ¢ € U(fs),
¢ € U(fg)suchthat oL = M and 'L’ = M'. Then ®rqr (MO&M') = Prer ((¢®
&)L @ L) = Nrd(¢ @ ') = Nrd(ip) Ned(') = (M) - B (M) O

2G. Conjugation and Transfer. We now recall two special instances of hermit-
ian Morita equivalence that will be used repeatedly in the sequel. We address them
simply as “u-conjugation” and “e-transfer”.

Recall that ¢ € Z(A) satisfies e7¢e = 1. Let 6 € Z(A) be another element
satisfying 670 = 1 and let u € S5(A,0) N A*. One readily checks that Int(u) o o
is also an R-involution and (Jg)™(#)°7 (§¢) = 1. Given (P, f) € H®(A, o), define
uf: Px P — Aby (uf)(xz,y) = p- f(z,y). Then pf is an ed-hermitian form over
(A, Int(u) o o) and

(P, f) = (P,uf) : HE (A, 0) — H(A, Int(p) o 0)

is an equivalence of categories; morphisms are mapped to themselves. We call this
equivalence p-conjugation. It has the following properties:

(c1) For every R-ring S, we have u(fs) = (uf)s.

(c2) U(f) = U(uf). If A is finite projective over R, then U(f) = U(uf),
US(f) = U0(uf) and U(f) = U°(uf).

(¢3) The forms f and pf have the same Lagrangians. In particular, f is hyper-
bolic if and only if uf is hyperbolic.
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Suppose further that (A, o) is an Azumaya R-algebra with involution. Then, by
Corollary [[22(i), (A, Int(u) o o) is also an Azumaya R-algebra with involution, and
the types of (0, ¢) and (Int(u) oo, §e) are equal. When (o, €) is orthogonal, we have:

(c4) Lag(f) = Lag(uf) and Lag(f) = Lag(uf).
(cb) For every L € Lag(f) = Lag(unf), the maps @(Lf) : Lag(f) — py g and

oY) Lag(uf) — My of Proposition 2228 coincide.

(Ttem follows from the uniqueness part in Proposition 2:25])

Ttems|(cl) allow us to rephrase certain claims about e-hermitian forms over
(A,0) as claims about de-hermitian forms over (A, Int(u) o o). We shall address
this process as p-conjugation in the sequel.

Next, let e € A be an idempotent such that e = e and eA 4 is a progenerator, or
equivalently, AeA = A. When A is Azumaya over its center, this is also equivalent
to having rrky eA > 0 (Proposition [[I0). By Morita theory, the functor P(A) —
P(eAe) sending a module P to Pe and a morphism ¢ : P — Q to ¢, := ¢|p. is an
equivalence; see [42, Example 18.30].

Write o, := 0|cae and note that (ec)?¢(ec) = 1. Given (P, f) € H®(A, o), let
fe = flpexpe. It is well-known, see [24, Proposition 2.5, Remark 2.1] for instance,
that

(P, )~ (Pe, fe) € H°(A,0) — H*(eAe, 0.)
defines an equivalence of categories; isometries ¢ are mapped to .. We call this
equivalence e-transfer. It has the following additional properties:

(t1) For every R-ring S, there is a natural isomorphism (fg). = (fe)s.

(t2) The map ¢ +— ¢, defines an isomorphism U(f) — U(f.). If A is fi-
nite projective over R, then it also defines isomorphisms U(f) — U(f.),
U°(f) = U°(fe) and U°(f) — U°(fe).

(t3) The map L +— Le defines a bijection between the Lagrangians of f and
the Lagrangians of f.. In particular, f is hyperbolic if and only if f. is
hyperbolic.

Suppose further that (A, o) is an Azumaya R-algebra with involution. By Corol-
lary [L22(ii), (eAe,0.) is also an Azumaya R-algebra with involution and the types
of (0,¢) and (o, eg) are the same. When (o, €) is orthogonal, we have:

(t4) The isomorphism ¢ — ¢, : U(f) — U(f.) respects the reduced norm.

(t5) The map L — Le defines isomorphisms Lag(f) — Lag(f.) and Lag(f) —

Lag(f.); its inverse is L' — L'A.

(t6) The composition Lag(f) — Lag(f.) Dre, Mo p coincides with @7, (see
Proposition 2.23]).

(Ttem follows from the fact that ¢ — ¢, : Enda(P) — Endea.(Pe) is an
isomorphism of Azumaya algebras and so preserves the reduced norm. Item [(t5)|
follows from Corollary Item follows from and the uniqueness
part of Proposition 22281) Note also that e-transfer preserves reduced rank by
Corollary T2

Ttems (t6)| allow us to rephrase certain claims about e-hermitian forms over
(A,0) as claims about ee-hermitian forms over (eAe,o.). We shall address this
process as e-transfer in the sequel.

As a first example of using conjugation and transfer, we prove the following
result, which provides an alternative way to evaluate ®y,.

Proposition 2.26. With the notation of Proposition[2.23, let L, M € Lag(f). For
every p € Spec R, let I, denote the intersection of L(p) and M(p) in P(p). Then

(I)L(M)(p) _ (71)rrkA(p) L(p)—rrkA(p) I,
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in pa(k(p)). In particular, if P = L@® M, then ®5(M) = (—1)" L in us(R).
We alert the reader that I, is in general not the image of L N M in P(p).

Proof. Tt is enough to prove the proposition when R is a field and p = 0 (the last
assertion will follow by virtue of Lemma [ZI7T). Note further that base-changing
from the field R to an algebraic closure does not affect the R-dimension of A, L,
M and Iy = LN M, and thus rtkyg M, rrky L and rrky Iy remain unchanged. This
allows us to further restrict to the case where R is an algebraically closed field. In
particular, [A] = 0 in Br R.

If o is symplectic, then e = —1 (because (o, ¢) is orthogonal) and deg A is even.
By Lemma [[226] there exists 4 € S_1(A,0) N A*. Applying p-conjugation, we may
replace o, &, f with Int(u) o o, —&, pf and assume that o is orthogonal and ¢ = 1.

Now, by Proposition [[27, there exists an idempotent e € A with ¢ = e and
degeAe = 1. Applying e-transfer, we may replace A, o, P, f, L, M with eAe, o,
Pe, f., Le, Me and assume that A = R and ¢ = idg henceforth.

Write I = Iy = LNM and fix R-subspaces W C L, W/ C M such that L = IeW
and M =T & W’'. Let N = (W @ W')t and fix a basis {z1,...,2,} to W. The
kernel of y — f(y,—): M — L*is MNL* = MNL =1 s0oy+— f(y,—) :
W' — L* is injective. Since any element in the image of this map vanishes on
I, it follows that y — f(y,—) : W/ — W* is also injective, and thus bijective
by conisdering R-dimensions. This means that there exists a basis {y1,...,yn}
to W’ satisfying f(z;,y;) = 0;;. Consequently, flwew  is unimodular, and thus
P=NoWaW'. Let ¢ € Endg(P) denote the endomorphism exchanging x; and
y; and fixing N. Then ¢ € U(f) and Nrd(p) = (—1)4meW = (_1)rrka L-rrkalo,
Since L = (W +1) = W' + 1 = M, we have &, (M) = Nrd(p), so we are
done. O

2H. The Discriminant. Classically, the discriminant of a nondegenerate sym-
metric bilinear space (V,b) over a field F is the coset in F'* /(F*)? represented
by (—1)z dmV(dimV=1) timeg the determinant of some Gram matrix of b, see [0,
p. 80]. If F' carries a nontrivial involution ¢ : F — F with a fixed subfield Fy, then
the discriminant of a unimodular 1-hermitian space (V, h) over (F, o) is defined sim-
ilarly, but this time it is regarded as an element of Fy*/ Nrp/p (F*) [40, p. 114].
These definitions do not generalize naively to hermitian forms over R-algebras with
involution (A, o) because projective A-modules need not be free. However, in [40]
§7, §8, §10], a discriminant invariant was defined for 1-hermitian forms over cen-
tral simple algebras with an orthogonal or unitary involution. It agrees with the
classical discriminant and is compatible with extending the base field. Moreover, it
is invariant under conjugation and e-transfer (see Gl), because it is defined as an
invariant of the adjoint involution of the hermitian space, which is unaffected by
these operations.

Suppose henceforth that (A, o) is an Azumaya R-algebra with involution. We
will need a generalization of the discriminant defined in [40, §7, §8, §10] to e-
hermitian forms over (A, o) when (o,¢) is orthogonal or unitary. Unfortunately,
such a definition seems missing in the literature, and introducing one is out of the
scope of this work. We therefore give an ad hoc generalization of the definition in
op. cit. to some specific R, A, o that will be needed in this work, and prove that
it has desired properties such as being invariant under conjugation and e-transfer.
Specifically, we shall restrict to rings R which are connected semilocal and consider
only the cases where (1) (o,¢) is orthogonal, or (2) ¢ is unitary and [A] = 0 in
BrZ(A).

Suppose first that (o, ¢) is orthogonal and R is connected semilocal. Let (P, f) €
H®(A, o) be a hermitian space such that n := rrky P is even and positive. Write
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E = End4(P) and let 6 denote the adjoint involution of f. By Lemma [[.20] there
exists p € S_1(F,0) N E*. Following [40] §7], we define the discriminant of f to be

dise(f) = (—=1)"/* Nrd(e) - (R*)* € R* /(R*)*.

This is well-defined by the following proposition. The discriminant of the zero form
is defined to be the trivial class (R*)2.

Proposition 2.27. Under the previous assumptions:
(i) disc(f) is well-defined, i.e., it is independent of the choice of .
(i) Isomorphic forms have equal discriminants. The discriminant is unchanged
under pi-conjugation and e-transfer (see[2G).
(iii) If (P', f') € HE(A,0) andrrka P’ is even, then disc(f@f') = disc(f) disc(f’).
(iv) If (A,0) = (R,idRr), ¢ = 1 and f = {(ou,...,0Q2,)(R,idg), then disc(f) =
(=1)"T1; a; mod (R*)?.
(v) If d := deg A is even, u € S_.(A,0) N A* and ay,...,a, € S:(4A,0), then
disc({a1, ..., an)(a,0)) = (=1)"¥2Nrd(u)" [T/, Nrd(a;) mod (R*)2.

Proof. (i) See [40, Proposition 7.1] for the case R is a field. The same proof works
when R is general; for the definition of the Pfaffian over general rings and a proof
that its square is the reduced characteristic polynomial, see [38 p. 3].

(ii) The definition of disc(f) depends only on the isomorphism class of (F,0)
and this remains unchanged if we replace f with an isomorphic form or perform
p-conjugation or e-transfer.

(iil) Write n’ = rrka P’, let 6’ be the adjoint involution of f’ and let ¢’ €
S_1(End4(P’),0"). One readily checks that

fofvo)zar)yoy)=-(fofeor,(poy)(yay))

for all z,y € P and z’,3 € P’. Thus, the adjoint involution of f & f’ takes
©® ¢ to —(p®¢'), and, by definition, disc(f ® f/) = (=1)"*t")/2Nrd(p & ¢') =
(=1)"2Nrd(¢)(—1)" /2 Nrd(¢) = disc(f) disc(f') modulo (R*)2.

(iv) The proof of [40, Proposition 7.3(3)] applies verbatim.

(v) By (iii), it is enough to prove the case n = 1. Writing a = a1, and identifying
End(A,) with A via ¢ + ¢(14), the adjoint involution of (a) is § := Int(a=!) o 0.
Thus, ua € S_1(A,0) N A% and disc(a) = (—1)%? Nrd(ua) modulo (R*)2. O

Given a quadratic étale R-algebra S with standard involution 6 (see M), we
define the norm form ng,r : S x S — R by ng/r(v,y) = L@y + yf2); it is a
1-hermitian form over (R,idr). When R is semilocal, there is A € S such that
{1,\} is an R-basis of S, A2 € R* and A’ = —\ (Lemma[[I9). Using this basis to
identify S with R?, one finds that ns/r = (1, _)\2>(R,id)- In this case, we define

disc(S/R) := disc(ng, ) = A*(R¥)*.

Keeping our assumption that R is connected semilocal, we now proceed with
defining a discriminant for e-hermitian spaces over (A, o) when o is unitary and
[A] = 0in BrZ(A). Note that the reduced rank of any (P, f) € H*(A, o) is constant
by Corollary R.9(i). Write S = Z(A) and let Nrg/r : S — R denote the norm map;
it is given by Nrg/p(z) = 272 because o|g is the standard R-involution of S.

Suppose first that deg A = 1 and let (P, f) € H°(A,0). Then A = S and
P is free. Let {z;}!', be an S-basis of P and let ¢ = (f(x;,2;));; denote
the corresponding Gram matrix. Since g is (o, )-hermitian, detg = ™ (det g)°.
When n = rrky P is even, this means that (—¢)~"/2det g = ((—¢)~"/?det g)7, so
(—e)~™/?det g € R*. In this case, the discriminant of f is defined to be

disc(f) = (—e) ™2 det g - Nrg/p(S™) € R*/Nrg/r(S™).
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It is easy to see that this is independent of the basis {x;} ;. Moreover, isomorphic
forms have the same discriminant.

We extend this to any A with [A] = 0 as follows: Use Theorem [[330 to choose an
idempotent e € A with e’ = e and rrky4 eA = 1. Noting that ede = S, we define

disc(f) := disc(fe) € R*/Nrg/r(5™)

for every (P, f) € H*(A, o) with rtky P even. Here, f, : Pe X Pe — eAe is the
e-transfer of f, see Gl This is well-defined by the following proposition.

Proposition 2.28. Under the previous assumptions:
(i) disc(f) is well-defined, i.e., it is independent of the choice of e.
(i) Isomorphic forms have equal discriminants. The discriminant is unchanged
under p-conjugation and e’ -transfer (see[2G]).
(iii) If (P', f') € HE(A,0) andrrka P’ is even, then disc(f@® f') = disc(f) disc(f’).

Proof. (i) Let ¢ € A be another idempotent with ¢’ = ¢’ and rrky ¢’A = 1. Then
eA = ¢’ A (Lemma [[24)). Every A-module homomorphism eA — ¢’A is given by
multiplication on the left with a unique element in e’ Ae, so there exist u € e’ Ae
and v € eAe’ such that uv = ¢’ and vu = e. We also see that v7v is invertible in
e’Ae’ = Enda(e’A). Since dege’ Ae’ = 1, we have e’ Ae/ = Se’. Write v7v = «ae’
with « € §*. Then a € R* because v7v is fixed under o. Identifying eAe and e’ Ae’
with S = Z(A), it is routine to check that z — xv : Pe — Pe’ defines an isometry
from af. to fe (its inverse is y — yu : Pe’ — Pe). Since rrk.s. Pe = rrkg P is
even, disc(af.) = disc(fe) and it follows that disc(f.) = disc(fe).

(i) If (P, f) = (P', f), then f. = f! so disc(f) = disc(f.) = dise(f.) = disc(f”).

Let p € S5(A,0), where 0 € Z(A) satisfies 679 = 1, and write 7 = Int(u) o o.
Then 7 is also unitary, and so there exists an idempotent ¢/ € A with rrky e’A =1
and €'” = ¢’. Asin the proof of (i), choose u € ¢’ Ae, v € eAe’ such that uv = ¢’ and

vu = e. We have pvv,uu®p~! € e’ Ae/ because ¢/ pv’v = pu~te' pwov = pe’ vov =

p(ve’)7v = pvv and similarly wu®p=te’ = vup~t. Furthermore, pv°v-uu’p=1t =
pv?eu’ =t = p(uev)TuTt = pe’uTt = €' = €', hence v € (e’ Ae’)* = e'S*.
Write pv7v = ae’ with @ € S*. As in the proof of (i), identifying eAe and e’ Ae’
with S, we see that x + zv : Pe — Pe’ is an isometry from afe to (pf)e. Thus,

disc((pf)er) = a6~ disc(fe),
where 11ky P = 2n. Straightforward computation shows that d(puv7v)™ = pvv.
Since 7|s = olg, this means that 6a® = «, or rather, o® = dNrg/p(a). Thus,
disc(uf) = disc((iuf)er) = a®5~ " disc(f.) = disc(f.) = disc(f).

Next, let ¢/ € A be an idempotent with ¢’ = ¢’ and rrkye’A > 0. Then,
using Theorem [[.30, we can choose an idempotent e € e’ Ae’ with ¢ = e and
rrker 4 eAe’ = 1. By Corollary [LT2, rrkg eA = rrke s eAe’ = 1, so dise(f) =
disc(f.) = disc(fer).

(iii) We may replace f and f’ with f. and f! and assume that A = S. The
statement is now straightforward. (]

We continue to assume that [A] = 0 and (o,¢) is unitary. Let S = Z(A) and
0 = o|s. Recall that with every a € R*, we can associate a crossed produced
R-algebra

(S/R, ).

Its underlying R-module is the free right S-module with basis {1, u} and its multi-
plication is determined by the product in S and the rules u? = o and su = us? for
all s € S. It is well-known that (S/R,«) is a quaternion (i.e. degree-2) Azumaya
R-algebra. Moreover, the map

a— [(S/R,a)]
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determines a group homomorphism from R*/Nrg,(5*) to Br R; see [64, Theo-
rem 7.1a] or [39, Lemma II1.5.4.1, Corollary IIL.5.4.6].
Following [40} §10], given (P, f) € H°(A, o) of even reduced rank, we write

D(f) = (S/R,disc f)

and define the discriminant Brauer class of f to be [D(f )]E We remark that since R
is semilocal, using the discriminant Brauer class instead of the discriminant causes
no loss of information:

Proposition 2.29. Assume R is semilocal, let S be a quadratic étale R-algebra and
let a, B € R*. Then [(S/R, )] = [(S/R, B)] if and only if o = 3 mod Nrg,(5>).

Proof. We only need to check the “only if” part. Write A = (S/R,«), B = (S/R, 5)
and let 0 denote the standard R-involution of S. We have A = S @ uS with u? = «
and B = S @ vS with v2 = 3. Since R is semilocal and deg A = deg B, there exists
an R-algebra isomorphism ¢ : A — B, see [61], Corollary 3.3].

We claim that there is an isomorphism v : A — B which restricts to the identity
on S. To see this, view A as a right Ag-module via z - (¢ ® s) = sza and B
as a right Ag-module via y- (a ® s) = sy-wa (x € A,y € B, a € A, s € 5).
Since tks(4A) = 2 = rkg(pB), we have rrkyy A = rrka, B. By Lemma [[L24]
there exists an Ag-module isomorphism & : A — B. It induces an isomorphism
Int(§) : Enda(A4) — Endp(Bp). Identifying End(A4) with A and Endg(Bg)
with B via ¢ +— (1), we get an isomorphism ¢ : A — B. Now, for all s € S, we
have Y(s) = (€ 0 [¢ - s2] 0 £ 1)(1p) = £(s- £ (15)) = 5- € 1€(1p) = 5

Let Ea ={ac A : sa=as’ for all s € S} and define Ep similarly. One readily
checks that F4 = S and Ep = vS. Since ¢ fixes S, we have ¥)(F4) C Ep. Thus,
Y(u) = vs for some s € S*. Now, a = u? = ¢(u?) = (vs)> = Nrg/p(s)v? =
Nrs,r(s)B. O

3. AN OcTAGON OF WITT GROUPS

In this section, we introduce an 8-periodic chain complex — an octagon, for
short — of Witt groups of Azumaya algebras with involution, generalizing a similar
octagon defined by Grenier-Boley and Mahmoudi for central simple algebras with
involution [30]. By the end of Section [7] we will show that this octagon is exact
when the base ring R is semilocal.

3A. The Octagon. Recall that R denotes a ring with 2 € R*. Suppose we are
given the following data:

(G1) (4,0) is an Azumaya R-algebra with involution (see D),

(G2) e € Z(A) satisfies €%¢ = 1,

(G3) A\, pu € A satisfy A7 = =\, u® = —p, A\p = —pX and \? € Z(A).
Define the following:

(N1) S = 7(4),
(N2) B is the commutant of A in A,
(N3) T = 2(B),
(N4) 11 :=olp,

(N5) 79 :=1Int(u= ') oo|p, ie 2™ =ptapu

Note that R C S C T C B C A and 71,72 are R-linear involutions on B. Also,
A? € R because (A\?)? = (—A\)? = \? and R = S1(Z(A), o).
Lemma 3.1. In the previous notation, the following hold:

8When R is a field, our definition of D(f) does not agree with the definition given in [40] §10].
However, both definitions give the same Brauer class by [40, Corollary 10.35].
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(i) T is a quadratic étale S-algebra, {1, A} is an S-basis of T and rkp(A4) is
constant along the fibers of SpecT — SpecS.
(it) B is an Azumaya T-algebra, [B] = [A®gT] in BrT and deg B = 1 deg A,
where v : S — T is the inclusion map.
(iii) A= B ® pB, uB = By and p® € B.

Proof. Write T" = S[)\]. Since A2 € S, we have T' = S+ \S. If a € SN AS, then a
commutes and anti-commutes with p, so 2ap = 0 and a = 0. Since anng A = 0, this
means that 7’ 2 S[z]/(z* — A\?). Thus, T’ is a quadratic étale S-algebra (see [[CJ).

We claim that rkys A4 is constant along the fibers of Spec T’ — SpecS. To
see this, note that pAu~! = —\, hence Int(u)|7 coincides with the standard
S-involution of T, call it #. This involution acts transitively on every fiber of
Spec T’ — Spec S, so it is enough to show that rkyw A4 = Ok A 4. However, this
follows from the fact that Int(u) : A — A defines 6-linear isomorphism from A,
viewed as a right T"-module, to itself.

Now, by Proposition [T, B = Z4(T”) is an Azumaya T"-algebra, [B] = [A ®g
T’], and 2deg B = deg B-11kg T’ = 1deg A, where ¢ : S — T is the inclusion map.
Since T'= Z(B) = T', we have established |(1)| and

To prove let E denote the set of elements of A which anti-commute with
A. One readily checks that uB C F and p~'E C B, hence E = uB. Likewise,
E = Bpu, so uB = Bpu. Furthermore, B N uB = B N E consists of elements which
commute and anti-commutes with A, so BN uB = 0 (because 2\ € A*). Finally,
every a € A can be written as 1(a + A7'a)) + 2(a — A7ta)). It is easy to check,
using A2 € Z(A), that a+A"tal € Band a—\"ta\ € E,s0 A= B+E = B+ uB.
We conclude that A = B @ uB. Finally, u? € B because u?\ = —pip = A\p?. O

Before proceeding, let us present some examples where |(G1)H(G3)| hold.

Example 3.2. (i) Let a, € R*. Take A to be the quaternion Azumaya R-algebra
RO\ | A= —pX, A2 = a, u? = B) and o to be the R-involution of A determined
by A7 = =X and pu% = —pu. Then A,0,\, p and any £ € us(R) satisfy [(G1)H(G3)
In this case, {1, \, u, A\u} is an R-basis of A, and it is routine to check that S = R,
B =R+ AR = R[)], 1 is the standard R-involution of T'= B, and 175 = idp.

(ii) Write Ag, 00, Ao, po for A, o, A, 1 defined in (i) and let (A1,01) be another
Azumaya R-algebra with involution. Then (A,0) := (Ag ® A1,00 ® 01) is also
Azumaya over R because Z(A) = Z(Ap) ® Z(A1) = R ® Z(A;) (see [60, Proposi-
tio 5.3.10(ii)] for the first equality), which means that R = {a € Z(A4) : a” = a}.
Then A, 0, :== A ® 1, := po ® 1 and any € € ps(R) satisfy (G3)l Writ-
ing S1 = Z(A;) and letting 6 denote the standard R-involution of R[\g], we have
S = R@Sl, B = R[)\()] ®A1, T = R[/\()] ®S1 (Lemma DE), T = 9@0’1, and
To = idR[)\o] ®Ro1.

Using Lemma we can define the following maps:

(N6) 71,72 : A — B are defined by m;(by + pb2) = b; (b1,b2 € B, i € {1,2}).
(For a definition of 1 not involving p, see Lemma [L2(i) below.) We now introduce
four functors:

(N7) Fori=1,2,let 7\%: H5(A,0) — HD""'<(B, 7,) be defined by 7\ (P, f) =

(P, m;f), where m; f = m; o f; morphisms are mapped to themselves.
(N8) For i = 1,2, let p\* : H5(B,7;) — H (A, 0) be defined by p\(Q,g) =
(Q®p A, pig), where p;g: (Q®p A) X (Q®p A) — A is determined by
(rg)(z®@a,a’ ®a') = a’Ag(x,2)d’,
(029)(5 ® a,7' ® ') = a* (1)g (2, 3}

(x,2' € Q, a,a’ € A); for a morphism ¢, set pgg)cp = p®pida.
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When there is no risk of confusion, we will drop the superscript “(¢)”. The functors
w1, T2, p1, p2 are well-defined by the following lemma.

Lemma 3.3. The assignments wf), ﬂ'és), pf), pgs) are functors. Moreover, they

take hyperbolic hermitian forms to hyperbolic hermitian forms.

Proof. Everything is straightforward except the fact that my,ms, p1, p2 take uni-
modular hermitian forms to unimodular hermitian forms. We verify this fact case-
by-case.

The inclusion B — A induces a homomorphisms of R-algebras with involution
(B,m1) = (A,0), which we denote by p. Given (Q,g) € H®(B, 1), the hermitian
space p1(Q, g) is just p(Q, Ag), where \g is the A-conjugation of g, see 2Gl and p is
base change in the sense of Since both A-conjugation and base change preserve
unimodularity, p1(Q, g) is unimodular.

Similarly, to see that pa(Q, g) is unimodular, let o2 := Int((Ax)~!) o o and note
that the inclusion B — A also defines a morphism p’' : (B,72) — (4,02). It is
straightforward to check that pag = (Au)(p'g), so pag is unimodular.

We proceed with checking that 7 f is unimodular for all (P, f) € H®(A,0). Ifz €
P satisfies m1 f (z, P) = 0, then f(z, P) is a right ideal of A contained in ker 7 = Bp.
Thus, f(z,P) C BuN (Bu)u~' =0, and = 0 because f is unimodular. Suppose
now that ¢ € Hompg (P, B). Define ¢:P— Aby ¢z = ¢x+¢(xp)p~t. It is routine
to check that ¢ € Homy (P,A) and m o ¢ = ¢. Since f is unimodular, there exists
x € Pwith ¢ = f(z,—), so ¢ = m f(z,—).

That 7o f is unimodular is shown similarly; define ¢ by ¢z = p- d(zp) - p=* +
Hox. O

Lemma implies that 7T§E), wéa), pgg), pgs) induce maps between the relevant
Witt groups. These maps can be arranged in an octagon-shaped diagram:

o) () (O
(3.1) W.(A,0) ——= W.(B, 1) ——= W_.(A,0) ——> W.(B, )

5 T lﬂéf)

W_E(B,TQ) ? WE(A,O') ﬁ W_E(B,Tl) ﬁ W_E(A,O')
T2 P1 L}

We will see in Proposition 3.5 below that the octagon is a chain complex of abelian
groups.

The octagon is known to be exact when R is a field [30]; see the Introduction
for the history of this result. The purpose of this paper is to extend the exactness
of the octagon to semilocal rings. Specifically, we prove:

Theorem 3.4. Suppose that R is semilocal. Then the octagon B is exact.

The proof will occupy the following four sections and be concluded in Section [Tt
its highlights are given in[BCl In the course of the proof, we will also determine the
images of the functors 71, 7o, p1, p2 when T is connected semilocal (the exactness
of the octagon answers this only up to Witt equivalence), see Theorem [J] This
finer version will be required for some of the applications.

The remainder of this section is dedicated to proving that the octagon is a
complex, providing equivalent conditions for its exactness, and surveying how these
conditions will be proved under the assumption that R is semilocal.

3B. Equivalent Conditions for Exactness. Keep the assumptions of BAl In
this subsection, we show that the exactness of the octagon ([BI]) is equivalent to a
certain list of conditions involving R, A, o,e, A\, i. The proof generally follow the
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same lines as the corresponding arguments given in [30, §3] and [10, Appendix],
both addressing the case S is a field.

Given a right B-module Q and a € A, we write Q®a for the subset {¢®a|q € Q}
of Q ®p A; it is a B-submodule of Q ®p A if aB C Ba. If M is a subset of a right
A-module P, we write M A for the A-submodule generated by M.

We begin by showing that the octagon is a chain complex for any ring R.
Proposition 3.5. In the notation of[34], B1)) is a chain complex of abelian groups.

Proof. By symmetry, we only need to consider the top row of B.II).

BI) is a complex at W.(A,0). Let (Q,g) € H™ (B, 72). Then m1p2(Q,9) = (Q®~B
A, m1p2g). Straightforward calculation shows that the B-sumodules M; := Q ® 1
and M2 = Q (024 12 satisfy Flpgg(Ml,Ml) = Flpgg(Mg,Mg) = 0 and M1 + M2 =
Q ®p A. Thus, m1p2(Q, g) is hyperbolic.

BI) is a complex at W__(A, o). The proof for W.(A, o) applies verbatim.

BI) is a complex at Wo(B,71). Let (P, f) € H*(A, o). Then p1mi (P, f) = (P ®p
A, p1m1 f). Define
Li={zp@l+zep|xe P},
Ly={zp®1—x®pu|x € P}.
It is easy to check that L; and Lo are B-submodules of P® 4 B and that L+ Lo =

P XA B (recall that 2 € RX> We claim that P17T1f(L17L1) = p17T1f(L2,L2) = 0.
Indeed, let x,y € P and write f(x,y) = o + pf with «, 8 € B. Then

prifrp@l+a@pyp®@l+yp)

=pmflep@lyp®1) + prmflap @1y @ p) + prm f(z @ p,yp @ 1)
+ o f(z @ p,y ® p)

= Ay (p (o + pB)p) + A (p” (o + pB))p + p” Ay (e + pB) )
+ AT (o + pB)p

= Ao+ A7 pBp + p ApBp + p’ dap

= —Apap — M2 B+ M B+ Apap = 0,

hence pymy f(L1, L1) = 0. Likewise, pym1 f(La2, La) = 0, so pym1 f is hyperbolic.

@) is a complex at W (B, 12). This is similar to the proof of the case W.(B, 1);
define L and L, in the same manner. O

We now give equivalent conditions for the exactness of the octagon ([B.1I).

Theorem 3.6. With the notation of[34], consider the following conditions:

(E1) For every (P, f) € H®(A,0) such that [m (P, )] = 0 in W.(B,11), there
exists (P', f') in the Witt class of (P, f) and a Lagrangian M of w1 (P', f’)
with M - A = P’.

(E2) For every (Q,g) € H*(B,11) such that [p1(Q,g)] =0 in W_.(A,0), there
exists (Q',g") in the Witt class of (Q,g) and a Lagrangian L of p1(Q’,q")
with L® (Q'®1) = Q' ®p A as B-modules.

(E3) For every (P, f) € H™°(A,0) such that [m2(P, f)] = 0 in Wo(B,2), there
exists (P’, f') in the Witt class of (P, f) and a Lagrangian M of wa(P’, f’)
with M - A= P’.

(E4) For every (Q,g) € HE(B,12) such that [p2(Q,g)] = 0 in W_.(A,0), there
exists (Q',g") in the Witt class of (Q,g) and a Lagrangian L of p2(Q’,g")
with L® (Q'®1) = Q' ®p A as B-modules.
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Then the exactness of BJ) at the terms W.(A,0), W(B, 1), W_c(A,0), We(B, 12)
on the top row is equivalent to the conditions[(ET), [(E2), [(E3), [(E4), respectively.

Remark 3.7. Conditions [(E1)H(E4)| are not difficult to verify when R is a field.
We illustrate this for and |[(E1

In the context of using Proposition 28] choose (@', ¢') to be anisotropic.
Since B is semisimple artinian, this means that ¢'(x, ) # 0 whenever z # 0. Now,
if L is a Lagrangian of p;g¢’, then every z € L N (Q' ® 1) satisfies ¢'(z,z) = 0,
hence LN (Q' ® 1) = 0. On the other hand, by Lemma 2.6 we have 2dimp L =
dimp L 4+ dimp L* = dimg(Q’ ®p A), and since Q' @ A = (Q' ® 1) & (Q' ® u),
we have dimp(Q' ® 1) = 1 dimp(Q’ ®p A), so R-dimension considerations force
Le(Q ®1)=Q @5 A.

Similarly, in the context of we may choose (P', f’) so that f/'(z,x) # 0
whenever © # 0. If M is a Lagrangian of 7 f/, then every x € M N My satisfies
mf(z,2) = 1 f(ep~t, 2) = 0, which means that f(z,2) = 0. Thus, M N My = 0.
Since P = M @ M* (the dual is taken relative to B), kg, P = rky, M + rkqy M*,
where Ty = §1(T, 7). By Lemma 28 2rkp, M = rkp, P, so 2dimp M = dimp P
and R-dimension considerations force M + Myu = P. In particular, M A = P.

This argument relies critically on the fact that R is a field, and thus cannot be
naively generalized to more general rings.

Before proving Theorem B.6] we first prove the following lemma.

Lemma 3.8. With notation as in[34] let (P, f) € H(A,0) and let M be a La-
grangian of w1 f, resp. mof. Then M A = P if and only if M & My = P.

Proof. 1t is clear that M & M pu = P implies M A = P, so we prove the converse. As
both M and My are R-summands of P, the lemma will follow from Lemma [[.7] if
we show that M (m)@® M p(m) = P(m) for all m € Max R. We may therefore assume
that R is a field (the setting of BAlis preserved under base-change by Lemma [[.4).
Since MA = P and A = B+ Bpu, we have M+ Mp = P. We observed in Remark [3.1]
that 2dimgr M = dimpg P, so this means that M & My = P. [l

Proof of Theorem[7.8. We showed that the octagon is a chain complex in Propo-
sition Moreover, the proof of that proposition shows that if (Q,g) = w1 (P, f)
for (P, f) € H%(A,0), then p1(Q, f) admits a Lagrangian L — L; or Ly in the
notation of that proof — with L® (Q ®1) = Q ® g A. Thus, condition follows
from the exactness of the octagon at W_(B,71), and, in a similar manner, the ex-
actness of the octagon at W.(A, o), W_.(4,0), W.(B, 72) implies [E1)} [(E3)] [E4)]
respectively. It remains to show the converse.

implies exactness at W.(A,o) (top row). Suppose that (P, f) € H°(A, o)
satisfies [ (P, f)] = 0in W.(B, ). Byand Lemma[3.8 we may replace (P, f)
with a Witt equivalent hermitian space to assume that m; f admits a Lagrangian
M with P = M @ Mpu. Let g = (Aw) " f|arxar. Since w1 f (M, M) = 0, we have
g(M, M) C (M)~ tkerm = -\~ 'uB = B. We claim that g : M x M — B is
a (—¢&)-hermitian form over (B, 72). Indeed, the sesquilinearily is straightforward,
and for all z,y € M, we have

—eg(y,2)™ = —ep” f(y,2)7 (M) ™) 7p
= fl@yN T =TT f (3 y) = g(3,y)

(note that f(z,y) € kerm; = uB and A anti-commutes with elements from pB).
Next, we claim that (M, g) is unimodular. Suppose that g(z, M) = 0. Then

f(x, M) =0, hence f(x,P)= f(x,M + Mp) =0, and = 0 by the unimodularity

of f. Now, let ¢ € Homp(M,B). Using P = M & My, define vp : P — A by
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V(e +yu) = M- ox + M- ¢y - p for all x,y € M. Tt is routine to check that
1 € Homa (P, A). Thus, there exists € P such that ¢y = f(z,y) for all y € P.
Furthermore, we have m f(z, M) = m (A - $(M)) = 0, hence z € M+m/) = M.
Since g(z,y) = M) "L f(x,y) = (M) "1y = ¢y for all y € M, we have shown that
x+— g(x,—): M — Homp(M, B) is bijective.

Finally, we show that p(fs) (M,g) = (M ®p A, p2g) is isomorphic to (P, f). Let
¢ denote the A-module homomorphism z ® a — za : M ®p A — P; it is clearly
surjective, and it is straightforward to check that f(pz,py) = pag(x,y) for all
x,y € M ®@p A. The latter means that if « € ker ¢, then pag(z, M @5 A) = 0, and
thus z = 0 because pog is unimodular. As a result, ¢ is injective, and therefore an

isometry from péfg)(M, g) to (P, f).

(E3)| implies exactness at W_.(A, o) (top row). This similar to the exactness at
We(A, o) with the difference that one defines g = A=1 f|arx -

(E2)| implies exactness at We(B,11). Let (Q,g) € H*(B,11) be a hermitian space

such that [p1(@,¢9)] = 0 in W_.(A,0). By |(E2), we may replace (Q,g) with a
Witt-equivalent space and assume that p;¢g admits a Lagrangian L such that such

that L® (Q ® 1) = Q ®p A. Multiplying both sides with p yields L & (Q ® u) =
Q ®p A. This means that every x € ) admits a unique element Jx € @ such that
t@1+Jr@pe L.
The map J : Q — @ is easily seen to satisfy:
(3.2) J?r =ap?
J(xb) = (Ja)(pbp")
for all x € Q, b € B. We make @ into an A-module by setting
ZL'(b1+,LLb2) :ZL'b1+(J£L'>/L2b2 (ZL'EQ, bl,bg EB)

Using (3.2)), it is easy to see that this indeed defines an A-module structure (one
has to verify the identities (zu)u = z(u?) and (xb)u = (wp)(u=bu) for b € B).

Since p1g(L,L) = 0, we have p1g(za @ 1 + Jr @ p,y @ 1 + Jy ® p) = 0 for all
x,y € Q. Since A = B ® uB, this means that

(3.3) g(x,y) + pg(Jx, Jy)u =0,
g(x, Jy)p + pg(Jx,y) =0

for all x,y € Q. Define f: Q x Q — A by

flx,y) =g(x,y) — pg(Jz,y) .

We claim that f is an e-hermitian form over (4,c). After unfolding the defini-
tions, this comes down to checking that f(xb,y) = b° f(x,y), f(x,yb) = f(z,y)b,

flap,y) = wo f(z,y), flz,yp) = f(z,y)p and f(z,y) = f(y,z)7 for all z,y € Q,
b € B. The first three identities follow easily from (B2). For the fourth and fifth

identities we also use ([B.3):

f(@,yp) = g(z,yp) — pg(Jz, yu)
= g(z, (Jy)u®) — pg(Jz, (Jy)p?)
= g(z, Jy)p* — pg(Jz, Jy)u?
= —pg(Jz,y)u+ gz, y)p
= (9(z,y) — pg(Jz,y))u = f(z,y)p ,



AN EXACT SEQUENCE OF WITT GROUPS 35

g

ef(y,r)” =eg(y,v)” —eg(Jy,z)"
=g(z,y) + g(x, Jy)u
= g(x,y) — pg(Jx,y) = f(z,y) .

We claim that (Qa4, f) is unimodular. Indeed, suppose f(z,Q) = 0. Then, the
definition of f implies that g(x, Q) = 0, so 2 = 0 by the unimodularity of g. Now let
¢ € Homa(Q, A). Then 71 0 ¢ € Homp(Q, B), hence there exists x € @ such that
moy = g(z,y) for all y € Q. Define 1y := ¢y — f(x,y). Then ¢ € Homu(Q, A)
satisfies im C kerm; = pB. Since im is a right ideal in A and bu ¢ uB for all
0# b€ uB, it follows that ¢ =0 and ¢y = f(x,y) for all y € Q.

Finally, it is clear that m1(Q, f) = (Q,g), so we have verified the exactness at
Wwe (B, Tl).

implies exactness at W.(B,12). Let (Q,g) € W¢(B, 12) be a hermitian space
such that [p2(Q,¢)] = 0 in W.(A4,0). By we can replace (@, g) with a Witt
equivalent space and assume that pog admits a Lagrangian L such that such that
Lo(Q®1)=QapA.

Define 05 = Int(u~!) o 0. Then p~'-conjugation (see 2G) induces a group
isomorphism (P, f) + (P,u=tf) : W_.(A,0) — W.(A,03). Furthermore, one
readily checks that w2 (P, f) = 71 (P, =1 f). Thus, it is enough to show that there
exists (P, f) € W.(A,o02) with m (P, f) = (Q,g). This can be shown exactly as in
the proof that implies exactness at W (B, 11). O

1

Remark 3.9. In the course of proving Theorem 3.6, we also showed:
(i) Given (P, f) € H®(A, o), there exists (Q,g) € H (B, 2) with pag = f if
and only if 71 f admits a Lagrangian M for which M - A = P.
(ii) Given (Q,g) € H(B, 1), there exists (P, f) € H*(A,0) with m f = g if
and only if p; f admits a Lagrangian L for which L& (Q ® 1) = Q ®p A.
(i) Given (P, f) € H (A, 0), there exists (Q,g) € H®(B, 1) with p1g = f if
and only if 7o f admits a Lagrangian M for which M - A = P.
(iv) Given (Q,g) € H°(B,T2), there exists (P, f) € H (A, o) with mof = g if
and only if pof admits a Lagrangian L for which L& (Q ® 1) = Q ®p A.

3C. Overview of The Proof of Theorem [3.4l Keep the notation of BA] and
suppose that R is semilocal. Thanks to Theorem and the antipodal symmetry
of BI), in order to prove Theorem [34] it is enough to establish the conditions
(E1)H(E4)l The proof is somewhat involved, so we outline the argument first.

Let us consider condition We are given (Q,g) € H(B,m1) such that
[p19] = 0in H°(A, o) and need to find a Lagrangian L of p; g such that (Q®1)®L =
Q®p A, possibly after replacing (Q, g) with a Witt equivalent hermitian space. We
abbreviate Q ® g A to QA and identify @ with its copy Q ® 1 in QA.

Fix a Lagrangian L’ of pig; it exists by Theorem [28(ii). We assume that
rrky L' = 1rrka P for simplicity, so that L' € Lag(p1g) (see 2E). Let my,...,my
denote the maximal ideals of R. Suppose that we can find, for every 1 < i < ¢,
an isometry o; € U%(p1g(m;)) such that Q(m;) @ o;(L'(m;)) = QA(m;). Then,
by Theorem B8, there exists ¢ € U%(p1g) with ¢o(m;) = ¢;, and by Lemma 7]
Q@ (L") = QA. We may therefore take L = (L) and the proof of [(E2)| reduces
into proving the existence of ¢1,..., ¢;.

Write k1 = k(my), g1 = g(my), Q1 = Q(my), L) = L'(my) and so on. In ideal
circumstances, e.g., when o7 is unitary, we have U%(p1g1) = U(p1g1) (Proposi-
tion [Z16)), and the existence of ;1 can be shown by proving the existence of some
Ly € Lag(p1g1) with @1 & L1 = Q1A; and then using Lemma to assert the
existence of p1 € U(p1g1) with ¢1(L}) = L.
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To prove the existence of L1, we write g1 as a sum of an anisotropic form and
a hyperbolic form (Proposition [Z3]) and treat each case separately. In fact, the
anisotropic case has already been addressed in Remark [B7 so only the hyperbolic
case should be treated. In addition, when k7 is infinite, one can use the rationality
of the the kj-variety U°(f;) (see Theorem Z21)) to reduce to the case where k;
is algebraically closed (Proposition L14). Assuming k; is algebraically closed or
finite, we have [A;] = 0 in Br S; and [B;] = 0 in BrT7, in which case we can further
use p-conjugation and e-transfer (see RGl) to reduce to the case where deg By = 1
and deg A; = 2 (Reduction [I0). After these reductions, establishing the existence
of Ly € Lag(p1g1) with Q1 ® L1 = Q141 becomes a technical check.

Unfortunately, it can happen that ¢, does not exist. Specifically, in the context
of this can happen when (o,¢) is orthogonal, [B] = 0 and [A] # 0. In
order to understand what goes wrong, it is instructive to view Lag(pig) as an
R-scheme on which U%(p;g) acts. Suppose that R is connected for simplicity.
Then Propositions and imply that Lag(p1g) is the disjoint union of two
components, both being homogeneous U°(p;g)-spaces. When rrkp @ is even, it
turns out that o exists when L’ lives in one of these two components, but not when
it lives in the other (Corollary [5.14]). Moreover, the former component may have no
R-points. To overcome this, we put considerable work into effectively identifying
the “good” component of Lag(p1g) and understanding when does it have R-points
— if it is does not, then (@, ¢) must be replaced with a Witt equivalent hermitian
space. When rrkp @ is odd, ¢ never exists, but then one can prove that g must
be hyperbolic (Proposition E.I0) and thus Witt equivalent to the zero form.

The proofs of conditions [[E1)] [[E3)] and [[E4)] follow a similar strategy and share
similar complications, notably when (o, €) or (72, ¢) are orthogonal. The cases where
©1,-..,pt exist are precisely the ones featuring in parts (i)—(iv) of Theorem [Tl
below.

The argument we outlined is carried in Sections EHZE Section H collects some
preliminary results, Section [{] establishes conditions and Section [ es-
tablishes conditions and and the proof of Theorem B.4] is concluded in
Section [7} which also brings some of its by-products.

In order to address and resp. and simultaneously, we
replace the setting of [34] with the more robust Notation [{-1] below, and use the
latter throughout Sections[JHOL We return to the setting of [34l in Section[7

4. PREPARATION FOR THE PROOF OF THEOREM [3.4]

This section collects preliminary results that will be used in proving conditions
[(ED)|(E2)L [(E3)l [(E4)| of Theorem B8] when R is semilocal.

We begin with replacing the setting of BAl with a new one — Notation LI —
that will be in use until the end of Section[6l The reason for the change of notation
is two-fold: first, it will ultimately allow us to treat and resp. and
simultaneously, and second, the new notation is amenable to p-conjugation
and e-transfer in the sense of 2G] (see for a precise statement). We will explain
how Notation [£1] specializes to that of BAl (in a few possible ways) in Section [7]
where we prove Theorem [3.4]

Notation 4.1. Let (A, o) be an Azumaya R-algebra with involution and let € €
Z(A) be an element satisfying €7 = ¢. Write S = Z(A) and let T be a quadratic
étale S-subalgebra of A such that 77 =T and rky A4 is constant along the fibers
of SpecT — SpecS (we have A € P(T) by Lemma [[2). Write B = Z4(T) and
7 = o|p. The inclusion S — T is denoted ¢, and we let To = {t € T : t7 = t}.
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We let p denote the inclusion map B — A, viewed as a homomorphism of R-
algebras with involution (B,7) — (A, o). Given Q € P(B), we abbreviate Q ®p A
to QA and identify @ as a B-submodule of QA via 2 — x® 1 (this map is injective
because @Qp is flat). If (Q,g) € H®(B, 1), we define p(Q, g) = (QA, pg) as in R

We let 7 : A — B denote a homomorphism of (B, B)-bimodules such that
m|p =idp. Given (P, f) € H®(A, o), we write w(P, f) = (P,nf), where 7f = 7o f.
We shall see below (Lemma[L2]) that 7 exists, is unique, and satisfies Too = To .
Moreover, 7(P, ) € H*(B, ).

By Proposition [ T4 B is Azumaya over T, [B] = [A®gT] in BrT and deg B =
%Ldeg A. This means that B is separable projective over R, so by Example [[20]
(B, 1) is Azumaya over Ty. Proposition [[LT4 also tells us that

vrtkg P =1tk P and trrka QA = 211k Q

for all P € P(A) and Q € P(B) such that rrkp @ is constant on the fibers of
SpecT — Spec S. In addition, Ag € P(B) by Lemma[[.2l These facts will be used
freely and without comment.

We further note that the assumptions of Notation ] continue to hold if we base
change along a ring homomorphism R — S, thanks to Lemma [[L4

4A. Existence and Uniqueness of .

Lemma 4.2. With Notation [{-1}, the following hold:

(i) There exists a unique (B, B)-bimodule homomorphism m = ntap: A — B
such that w|p = idp.

(ii) If there exists A\ € T such that \*> € S* and T = S @ \S, then ma =
S(a+A"ta)) for all a € A.

(i1i)) moo =Tom.

(iv) E :=kern satisfies A=B®FE, E-E =B, FEA= A and rtkg Eg = deg B.

(v) When R is semilocal, there exists A as in (ii) and p € A* such that E =
uB = Bp, Ap = —pX and w(by+pbe) = by for all by, be € BA Ifdeg A = 2,
then we also have p? € S*.

(vi) For all (P, f) € H*(A,0), we have (P,xf) € H*(B, ), where tf :=mo f.

Proof. (i) Write T® = T°? ¢ T and B® = B°? ®g B. We view A and B as right
Be¢-modules using their evident (B, B)-bimodule structure.

Since T is a separable S-algebra, the map p : T¢ — T sending z°? ® y to xy is
split as a morphism of T°-modules. Let £ : T' — T denote such a splitting, and let
e = &(17). Tt is well-known that €2 = ¢ and e(1 ®t) = e(t°? ® 1) for all t € T, see
[39, Lemma II1.5.1.2] and its proof.

Note that e is a central idempotent in B¢. Thus, A = Ae @ A(1 — e), and both
summands are B®-modules. Writing e = iufp ® v; with {u;,v;}; C T, we see
that for all b € B, we have

be:Zuibvi :quivi :b'lT :b,

because Y, u;v; = p(e) = 17. On the other hand, if a € Ae, then for all t € T, we
have

ta=a(tP®1)=ae(t* ®1)=ae(1®1t) =a(l®1t) = at,
hence a € B. We conclude that B = eA. This in turn means that 7 : a — ae is
a B¢-module homomorphism, or equivalently, a (B, B)-bimodule homomorphism,
which splits the inclusion B — A.

INote that in contrast with [BA] we do no require A° = —\ and u° = —pu. Indeed, this cannot
be guaranteed in general. The situations considered in cases (i) and (ii) of Lemma [£3] below are
such examples, the reason being that o|p = idpg or o|g = idg.
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If 7' : A — B is another (B, B)-module homomorphism splitting B — A, then
B = Ae C ker(m — /). On the other hand, since multiplying on the right by e
annihilates A(1—e) while fixing B, we have A(1—e) C kern’. Since kerm = A(1—e),
this means that ker(m — ') D Ae+ A(1—e) = A, som =7'.

(ii) Using A2 € S and B = Za(T) = Za(N), it is routine to check that a
L(a+A"ta)) is a (B, B)-bimodule homomorphism from A to B which restricts to
the identity on B. This map must be 7 by (i).

(iil) The uniqueness of 7 implies that 7o 7 o o =, or rather, roo = 7 o 7.

(iv) That A = B @ E follows from the fact that = : A — B splits the inclusion
A — B. Since rtkp Ap = 1deg A = 2deg B, this means that rrkp F = deg B.

We proceed with checking that E'- E C B. It is enough to prove that this holds
after localizing at p for all p € Spec R, so we may assume that R is local. In this
case, by Lemma [[LT9] there exists A € T such that \> € $* and T = S ® \S. By
(ii), E consists of the elements which anti-commute with A while B = Z 4(\). Thus,
E-ECB.

Now, since A = B® E and BEB C E, the set E? + F is a two sided ideal of A.
Since A is Azumaya over S, there exists [ <1.S such that E?+FE = [A = IB+IFE |20,
Lemma I1.3.5]. Tt follows that E = IE and E? = IB. If I # S, then anng E # 0
by Nakayama’s Lemma, which is impossible because rrkp ' = deg B > 0. Thus,
I =S5 and E? = IB = B. This also means that EA D F?A = BA = A.

(v) The existence of A follows from Lemma By (iv), rrkp Ep = deg B,
so Ep = Bp by Lemma [[241 Let u be a generator of Ep. By (ii), 0 = m(u) =
L+ A7), so A = —pA. By (iv), B = E? = uBuB C pA, so p is invertible on
the right. This means that Nrd,,g(x) € S, hence u € A*. Now, since B = Z ()
and E is the set of elements in A which anti-commute with A (by (ii)), we have
E = puB = Bp. This means that the map A = B ® uB — B sending by + ubs to
b1 (by,b2 € B) is a (B, B)-bimodule homomorphism which restricts to the identity
on B. Therefore, it must coincide with 7. Finally, if deg A = 2, then deg B = 1, so
B =T and A is generated as an S-algebra by A and u. Since p? commutes with
both A and y, we have p? € Z(A)* = S§*.

(vi) Tt is straightforward to check that 7f is an e-hermitian form. We need
to show that 7f is unimodular. Using (iv), choose {u;,v;}!_; C E such that
S, uiv; = 1. Given ¢ € Hompg (P, B), define ¢ : P — A by ¢z = ¢z + 3, p(au)v;.
We claim that ¢ € Hom (P, A). Indeed, ¢ is additive, and for allb € B, V/ € E
and z € P, we have ¢(xb) = ¢(zb) + 32, ¢(zbu;)v; = ¢z - b+ > Plavjuibu)v; =
dx b+, 5 dlwv;)ujbuv; = g - b+ 7, davs)ub = dx - b and (ab') = ¢(ab) +
Yo d(abu)vy =3, dlxuvd’) + 57, ¢ - Vuvy = Y, d(aus)vd + o - b = qAﬁac b
A similar computation shows that ¢ — ¢ : Homp(P, B) — Homyu (P, A) defines
an inverse to § — mo § : Homy (P, A) — Homp(P, B). The composition of the
latter map with « — f(x,—) : P — Homyu (P, A) is precisely  — 7w f(z,—) : P —
Hompg (P, B), so this map is bijective and 7 f is unimodular. O

4B. Some Structural Results.

Lemma 4.3. With Notation[{.1] suppose that R is semilocal, S = R and deg B = 1.
Then there exist A\, € A such that N2, u?> € R*, \u = —pX, {1,\} is an R-basis
of B, {1, A\, u, uA} is an R-basis of A, and:
(i) N2 =X and p® = —p if T = idp;
(i) A7 = =X and p° = p if T is unitary and o is orthogonal;
(iii) N7 = =X and p® = —p if o is symplectic.

Furthermore, m(by + ube) = by for all by,bs € B.
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Proof. Let A and p be as in Lemma[£2|v). Then all the requirements are fulfilled
except, maybe, (i)—(iii). Note also that we may replace p with any element of uB*.

Let E = kern. Since E° = E, B° = B and A = B @ E, we have §1(4,0) =
S1(B,0) @ S1(E,0) and S_1(A,0) =8_1(B,0) ® S_1(F,0).

Suppose that 7 = idp. Then A7 = X and S_1(A,0) = S_1(B,0) & S_1(F,0) =
S_1(E,0). By Lemma [[20] there exists p’ € S_1(A,0) N A*. Since u/ € E = uB,
we have p/ = put for some ¢t € T, so we may replace p with p/ and finish.

Suppose that 7 is unitary and o is orthogonal. Then 7 is the standard R-
involution of T, so A = —\. By Proposition [[2T] we have 1 = rkpS_1(4,0) =
tkp S_1(B,0) + tkrS_1(F,0) = 1 + 1krS_1(F,0), hence S_1(F,0) = 0. Since
E=8(F,0)®S_1(F,0), this means that £ = §;(F,0) and p = p.

Finally, when o symplectic, using Proposition [L2]] and the fact that R is a
summand of B, one finds that 1 = rkr S1(A4,0) > rtkp S1(R,0) + kg S1(E,0) =
1+4+1kr S1(E,0), hence S (F,0) = 0. This means that £ =S8_1(F,0),so u” = —u
and (A\u)? = —Au. Now, A= —pdp=t = (u\)7pu=t = X\opuopu=t = —\7. O

Lemma 4.4. With Notation [[.1], suppose that T = S x S as S-algebras, and let
e, e’ €T correspond to (15,0s), (0s,1s) under this isomorphism. Then:
(i) B=eAe+ e Ae’.
(i1) rrkaeA > 0 and AeA = A.
(iii) eB is an Azumaya S-algebra of degree 1 deg A and [eB] = [A] in Br S.
(iv) For every Q € P(B), we have rrka QA = 11k Qe + 11ke g Q€.
(v) m: A — B is given by ma = eae + €'ae’.

Proof. (i) Since T' = S[e], we have B = Z 4(e). Using the Peirce decomposition of
A relative to e (i.e. A =cAed@ede’ Pe’Ae® e’ Ae’ as abelian groups), it routine to
check that Z4(e) = ede + ' Ae'.

(ii) Since pB is a summand of pA (Lemma [2(iv)) and T is a T-summand of
B [27), Proposition 2.4.6(1)], eT' = S is an S-summand of eA, hence rrkg eA > 0.
That AeA = A follows from Corollary [L12

(iii) By (i), eB = e(eAe + ¢’ Ae’) = eAe, and by Corollary [L12 and (ii), eAe is
Azumaya over S and [eAe] = [A]. That degeB = 1 deg A follows from deg B =
%L deg A.

(iv) Since Q = Qe®Qe’ as B-modules, QA = QeA®Qe’ A, so it is enough to check
that rrk.p Qe = 11k QeA. By Corollary [LT2land (ii), rrka QeA = r1kea. QeAe =
rrkep Qe.

(v) Using (i), it is easy to check that a — eae + ¢’ae’ is a homomorphism of
(B, B)-bimodules which splits B — A. Thus, it must coincide with 7. O

4C. The Types of (0,2) and (1,¢).
Lemma 4.5. With Notation[{]), if o is unitary, then so is T.

Proof. Tt is enough to prove this when R is a field. Recall that Ty = S1(T,0) and
let Ty = S_1(T,0). Since 2 € R*, we have T' = Ty & Ty. Since o is unitary, S is
quadratic étale over R and o|g is the standard R-involution of S. By Lemma [[T9]
there exists A € S such that A\ = —\. One readily checks that t — At : Ty — T}
is a Tp-module isomorphism, so rky, T = 2. We observed in the comment after
Notation[LIlthat (B, 7) is Azumaya over Ty. Since rkp, T' = 2, Proposition [[.21](iii)
implies that 7 is unitary. (]

Lemma 4.6. With Notation[[.1}, if R is connected, then the type of (1, ¢) is constant
on SpecTy (see[ID).

Proof. By Proposition[[L2INv), (o, ¢€) is either orthogonal, symplectic or unitary. If
(0,¢€) is unitary, then the lemma follows from Lemma Suppose that (o,¢) is
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orthogonal or symplectic. Then S = R. If T is connected, then the type of (7,¢)
is constant (Proposition [[L2T[(v)), so assume that 7' is not connected. Now, by
Lemmas and[[LT7 T = R x R and 7|7 is either the standard R-involution of T,
or idy. In the former case, (7,¢) is unitary, so assume 7|7 = idy. Let e = (1, 0R)
and ¢’ = (Og,1gr). By Lemma A1), (B,7) = (ede,0leac) X (¢/Ae’, 0| aer), and
by Corollary [[L22(ii), (0|cae, e€) and (ole e, €’e) have the same type as (o,€), so
the type of (7,¢) is constant. O

4D. Simultaneous Conjugation and Transfer. We check that the setting of
Notation [£1] is compatible with p-conjugation and e-transfer (see RGl).

Proposition 4.7. With Notation[{.1} let (P, f) € H°(A,0) and (Q,g) € H°(B, ).
Let 6 € S satisfy 670 = 1 and let p € Ss(B,7) N B*. Then:

(i) The assumptions of Notation[{-1| continue to hold upon replacing o, T, with
Int(p) o o, Int(u) o 7, dc.
(ii) p(ug) = 1(pg) and w(uf) = p(rf) (notation as in 0.

Proof. (i) We need to check that Int(u)oo is an involution of A which restricts to an
involution of T', and (6)™*(1)°7 (5e) = 1. Noting that u € B = ZA(T), u° = 6 'p
and T7 = T, this follows by straightforward computation.

(ii) Let 4,4’ € Q and a,a’ € A. Then p(ug)(y®@a,y' ®@a’) = a™ 17 g (y, 4 )a' =
pa” gy, y')a’ = plpg)(y © a,y’ @ '), so p(ug) = p(pg). Now let z,a2’ € P.
Then m(pf)(x,2') = m(p - f(z,2") = p-7(f(x,2")) = p(nf)(z,2’), where the
second equality holds because 7 is a left B-module homomorphism and p € B. [

Lemma 4.8. With Notation[].1] let e € B be an idempotent with rrkg eB > 0 and
let Q € P(B). Then the map & = &g : Qe Repe eAe — Q @p Ae determined by
((x®a)=x®a (v € Qe, a € eAe) is an isomorphism of eAe-modules.

Proof. By Proposition [[LT2, BeB = B. Choose elements {u;,v;}!_; C B such that
>, uiev; = 1, and consider the map ¢ : Q ®p Ae = Qe @cp. eAe determined
by ®a — ), zuie ® evia (x € Q, a € Ae). It is well-defined because for
all b € B, we have i(zb® a) = >, zbue ® evia = 3, s vujevibue ® evia =
> ruje ® evibuzevia = )7, ruje @ eviba = ¢(x ® ba). A similar computation
shows that v is an inverse of €. O

Proposition 4.9. With Notation[{1}, let (P, f) € H°(A,0) and (Q,g) € H(B, ).
Let e € B be an idempotent such that e = e and rrkp eB is positive and constant
along the fibers of SpecT — SpecS. Write Te = TleBe, Te = Olede; Pe = PleBe;
Te = 7T|eAe; fe = f|Pe><Pe; e = g|Qe><Qe (566 ) Then:

(i) The assumptions of Notation [[.1] apply upon replacing A,o,e,T,B,T,p, T
with eAe, 0., ee, T, eBe, Te, pe, Te.-

(i1) Upon identifying Q ®cp. eAe with Q ®p Ae as in Lemma [{.8, we have
pege = (pg)e. Furthermore, the map L — Le defines a bijection from the
Lagrangians of pg to the Lagrangians of pege and, for a Lagrangian L of
pg, we have L ® Q = QA (as B-modules) if and only if Le ® Qe = QAe.

(iii) mefe = (7f)e, the map M +— Me is a bijection between the Lagrangians of
wf and the Lagrangians of w.fe and, for a Lagrangian M of wf, we have
MA = P if and only if Me-eAe = Pe.

Proof. By Proposition[L.T2] BeB = B, hence AeA = ABeBA = ABA = A, and so
eA 4 is a progenerator. Thus, we can use[(t1)H(t6)|in RG for both (B, 7) and (A, o).

(i) Everything is straightforward except the fact that rky(eAeca.) is constant
along the fibers of SpecT — SpecS. To see this, we use Corollary to get
rky(eAecac) = degeBerrkepe(eAecp.) = degeBerrkg eAp = kg eB-urrky e A =
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rrkp eB - 2rrkg eB = 2(rtkp eB)%. Since rrkp eB is constant along the fibers of
SpecT — Spec S, so is rky(eAecac).

(ii) This is straightforward; use facts in 2Gl and Morita theory.

(iii) That (7 f)e = e fe is straightforward. The second assertion is[(t5)]in 2Gl For
the third assertion, note that M A = P implies Me-eAe = M (AeA)e = M Ae = Pe,
and conversely, Me-eAe = Pe implies MA = M(AeAeA) = Me-eAe-eA = Pe-eA =
P(AeA) = PA = P. O

4E. Two Important Reductions.

Reduction 4.10. With Notation 1] suppose that R is connected semilocal and
[B] = 0 in BrT (note that [A] = 0 in Br S implies [B] = [A ®s T] = 0). We
claim that verifying statements about hermitian forms over (A, o) and (B, 7) which
are amenable to conjugation and transfer (in the sense of 2Q)), e.g., the statements
L®Q = QA and MA = P from parts (ii) and (iii) of Proposition 9, can be
reduced into verifying them in the following setting, and without affecting the the
types of (o,¢) and (7,¢):

e degB=1,ie. B=T,

e 7 is orthogonal or unitary,

e o is orthogonal or unitary.

This is done as follows: Applying Proposition[[2T[v) and LemmaLGlwith e = 1,
we see that the types of ¢ and 7 are constant. If 7 is not orthogonal or unitary,
then it is symplectic. In this case, by Lemma[[:226 there exists u € S_1(B,7)NB*.
By Proposition 7] we may apply p-conjugation and replace o, 7,e with Int(u) o
o,Int(u), —e, thus changing 7 into an orthogonal involution.

Next, by Theorem [[L30], there exists an idempotent e € B such that e = e and
rtkpeB = degeBe = ind B = 1. By Proposition 9] we may apply e-transfer
and replace A,0,¢e,T, B, T, p, ™ with ede, 0., ec, el eBe, T, pe, Te and get deg B =
ind B=1.

Finally, if o is not orthogonal or unitary, then it is symplectic. In this case,
by Lemma [£3] there exists A € T with A\ = —\. By Proposition .7 we can
apply A-conjugation and replace o,& with Int(\) o o,Int()\), —e, turning o into an
orthogonal involution and leaving 7 unchanged.

Reduction 4.11. Assume that R is connected semilocal and [4] = 0 in BrS.
After performing Reduction EET0, Proposition implies that o is adjoint to a
unimodular binary d-hermitian form over (S,0|s), with § = 1 if ¢ is orthogonal.
This form can be diagonalized by Proposition 213 so, by Example 210 we may
assume that A = M(S) and o is given by [2 0] — [affb,, C;f,o] for some o €
S1(S,0) N S* = R*.

4F. Miscellaneous Results.
Lemma 4.12. With Notation[[.1], if (7,¢) is orthogonal, then (o,¢) is orthogonal.

Proof. 1t is enough to prove the lemma after specializing R to the algebraic closure
of each of its residue fields, so assume R is an algebraically closed field. Then
[B] = 0. We apply Reduction to assume that deg A = 2 and 7 is orthogonal.
Since (7,¢) is orthogonal, ¢ = 1. By Lemma [3(i), dimp S1(A,0) = 3, so (o,¢) is
orthogonal by Proposition [[211 O

Lemma 4.13. With Notation[].1] let P € P(A).
(i) The map Ends(P)®sT — Endg(P) given by sending ¥ @t to [x +— Yz - t]

s an isomorphism of T-algebras.

(ii) For all ¢ € Enda(P), we have Nrdgna,(p)/s(¥) = Nrdgnaypy/r(¥) in T.
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Proof. We may assume that rrky P > 0, otherwise write R = Rg X anng P (use
[27, Proposition 1.1.15]) and work over Rj.

(i) By Proposition [[.TI}i), End4(P) is Azumaya over S, Endg(P) is Azumaya
over T and deg Endg(P) = rrkg P = trtkg P = tdeg End 4 (P) = deg End s (P) ®s
T. Thus, the map End4(P) ®¢ T — Endp(P) is a homomorphism of Azumaya
T-algebras of equal degrees. By [39, Corollary I11.5.1.18], such a homomorphism is
always an isomorphism.

(ii) This follows from (i) and the fact that reduced norm is preserved under
base-change. O

Proposition 4.14. With Notation[].1] suppose that R is an infinite field, and let
R be an algebraic closure of R. Let (Q,g) € HE(B,7) and let L be a Lagrangian of
pg. Let (P, f) € H(A,0) and let M be a Lagrangian of wf. Then:
(i) If there exists ¢ € U°(pgg) such that Qi ® ¢(Lg) = QAg, then there exists
1 € U%pg) such that Q ® YL = QA.
(ii) If there exists ¢ € U°(wfg) such that oM - Ay = Pg, then there eists
Y € U%(nf) such that M - A = P.
(See 2 for the definition of U°(—).)

Proof. (i) Consider U%(pg) as a functor from R-rings to groups and define a sub-
functor Ry — X(R1) of U%(pg) by

X(Rl) = {1/} € Uo(pgR1) : QRI @7/’(LR1) = QA}
We claim that X is represented by open affine subscheme of U%(pg), also denoted
X.
To see this, fix R-bases {z;}7_;, {vi}i_;, {vi}/27 to Q, L, QA, respectively.

These will also be viewed as Ri-bases of Qr,, Lr,, QAg,. The group U%(pgr,)

is the zero locus of certain polynomial functions on Endg, (QAR,) & REHS)Q with
coefficients in R. Thus, it is enough to show that there exists a polynomial ¢ €
Rlz11, %12, . . ., (o ps)(r+s)] such that X(Ry) = {¢ € U(pgr,) : £(¥) € R}
To that end, given y € QAg,, let [y] denote the vector (ay,...,qm1s) € RT*
for which y = ", ;. Then the function sending a € RIZ > Endg, (Qr,) to the
determinant of the (r+s) X (r4s) matrix with columns [v1],. .., [vs], [az1], ..., [az,]
is a polynomial { € R[x11, %12, ..., T(r4s)(r+s)] having the desired property.

By Theorem 221} the irreducible R-variety U°(pg) is rational. By the previous
paragraph, X is an open subvariety of U°(pg) and it is nonempty because ¢ € X(R).
Thus, X is also rational. Since rational varieties have points over any infinite field,
X(R) # 0 and the existence of ¢ follows.

(ii) This is similar to (i), but one uses an open subscheme of U%(7 f) defined as
follows: Write r = dimp P. Since ¢ M- Az = Pg, there exist pairs {(m;, a;)}j_, C
M x A such that {¢m; -a;}]_; forms an R-basis to Pz. Given an R-ring Ry, define
X(R1) to be the set of ¢ € U%(wfr,) such that {)m; - a;};_, is an R;-basis to
Pg,. O

5. VERIFICATION OF (E2) AND (E4)
Keep the assumptions of Notation 2]l The purpose of this section is to prove:

Theorem 5.1. With Notation [{-1], suppose that R is semilocal and let (Q,g) €
HE(B, 7). Assume that [pg) =0 in WE(A, o). Then:
(i) When T is connected, there exists a Lagrangian L of pg such that L & Q =
QA if and only if:
(1) (o,€) is not orthogonal, or
(2) (t,€) is not unitary, or
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(3) [A] =0 in BrS, or
(4) [B] #0 in BrT, or
(5) (1,¢) is unitary, [B] =0, rrkp Q is even and [D(g)] = %[A]; here,
D(g) is the discriminant algebra of g, see[2H

When none of (1)-(5) hold, rrkp Q is even, [D(g)] = (% +1)-[A] and
g 18 isotropic.

(i1) There exists (Q',g") € H*(B,7) with [g] = [¢'] and a Lagrangian L of pg’
such that L ® Q' = Q' A.

In Section [7l we will use Theorem [5.1] to establish conditions |(E2)| and |(E4)| of
Theorem B.0l when R is semilocal. The reader can skip to the next section without
loss of continuity.

It is enough to prove Theorem 5] when R is connected. Indeed, we can write R
as a finite product of connected semilocal rings and work over each factor separately.
In this case, by Proposition [[2I(v) and Lemma [0 exactly one of the following
hold:

(1) (o,€) is unitary or symplectic,

(2) (o,€) is orthogonal and (7,¢) is orthogonal or symplectic,

(3) (o,€) is orthogonal and (7,¢) is unitary.
The first two cases will be handled in Theorem 5.9 and the third case will be treated
in Theorem (.21

5A. Cases (1) and (2). We begin by establishing some special cases of Theo-
rem [5.Jlin the context of case

Proposition 5.2. With Notation [{-1], suppose that R is a field, S = R x R and
[A] = 0. Let (Q,g) € HE(B,T) be a hermitian space such that rrkp Q is constant.
Then pg admits a Lagrangian L satisfying Q & L = QA.

Proof. We may apply Reduction .10l to assume that B =T and deg A = 2.

Let 1 denote a nontrivial idempotent of S. Then 7 = 1—17. By Example[24] we
may assume that T' = T1 XTl, B = Bl XB;)p and A = Al XAtl)p, with T1 g Bl Q Al,
and under these identifications, o is the exchange involution (z,y°P) — (y,z°P).
Furthermore, all hermitian forms over (B, T) are hyperbolic, and every hermitian
space is determined up to isomorphism by its underlying module.

Write € as (o, @™!) € R x R and consider the e-hermitian form ¢; : B x B — B
given by g1((z1,75), (y1,95")) = (w2y1, (y221)°P). Tt is easy to see that (B,g1) €
H=(B, 7). Since rrkg B = 1 and rrkg @ is constant, we have Q & B for n = rrkp Q
(Lemma [[L24). As we noted above, this means that (Q,g9) = n - (B,g1). It is
therefore enough to prove the proposition for (Q,g) = (B,g1). In this case, the
isomorphism b ® a — ba : B®p A — A is an isometry from (QA, pg) to (A, f1),
where f; is given by the same formula as g;.

Fix an identification A7 = Ma(R). Since By = T1 is a quadratic étale R-algebra,
there exists ¢ € Ty such that r :=t2 € R* and Ty = R@® tR (Lemma [LT9). Thus,
t is conjugate to [{ 7] in A;. Using this, we choose the identification A; = My (R)
to satisfy t = [{§]. Now, By =11 = [ Y]R + [ 5]R and one readily checks that
L =[}9]A1 x (A1[§9])°P is a Lagrangian of fi = pg; satisfying B&L=A. O

Proposition 5.3. With Notation [[.1], suppose that S is a field, [A] =0 and (o, ¢)
is symplectic or unitary. Let (Q,g) € HE (B, T) be a hyperbolic hermitian space such
that rrkp Q is constant. Then pg admits a Lagrangian L satisfying Q & L = QA.

Proof. By Reduction [£10] we may assume that both o and 7 are orthogonal or
unitary and deg B = 1. Thus, B =T and deg A = 2. We now split into cases.
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Case I. rtkp Q is even. We apply Reduction IT] to assume that A = Mo (S) and
o is given by [2 4] [ %, ¢ ] for some a € R,

Consider the e-hermitian form g; : B? x B?> — B given by g1((x1,72), (y1,92)) =
x9ys + ex$y1. Then (B?,g;) is a hyperbolic. Since deg B = 1 and n := rrkp Q is
constant and even, we have, by Lemma 7 (Q,g) = % - (B?,g1). It is therefore
enough to prove the proposition for (Q,g) = (B?,g1). In this case, (QA, pg) can
be identified with (A2, f1), where f; : A2 x A2 — A is given by the same formula
as gi.

Given an R-subspace E of A, let S.(F) = {a € E : ea”° = a}. Suppose that
there exists s € S_.(A) \ S_-(B) such that s € A*. It is routine to check that
L = {(a,sa)|a € A} is a Lagrangian of A satisfying L N B?> = 0, which, by R-
dimension considerations, implies L @ B? = A2. It is therefore enough to establish
the existence of s. To that end, we split into subcases.

Subcase 1.1. (o,¢) is symplectic. This means that S = R, o is orthogonal and
e=—1. Let By = {[¢?]|a € S} and E; = {[2%]|c € S}. Then E; and E» are
1-dimensional S-subspaces of S;(A). If E; NS1(B) = 0 for some ¢ € {1, 2}, then we
can take any 0 # s € F;. Otherwise, since dimg B = 2, we have B = Ej + Es, so
take s = [1 ¢].

Subcase 1.2. (o0,¢) is unitary. Then S is quadratic étale over R and 7 is unitary
(Lemma [5). By Hilbert’s Theorem 90, there exists § € S* such that 67167 = .
Since S_c(A) = 67 15_1(A), we reduce into verifying the existence of s’ € S_1(A)\
S_1(B) with s’ € A*.

Since ¢ and 7 are unitary involutions, we have dimp S_1(A4) = (deg 4)? = 4
and dimgr S_1(B) = (deg B)? - tkg S = 2 (Proposition [L2T)). Let By = {[&%]]a €
S_1(9)} and By = {[° ~%"]|c € S}. Then Ey and Es are R-subspaces of S_1(A)
of dimensions 1 and 2, respectively, and Es \ {0} consists of invertible elements. If
S_l(B) 7é Fs, then take any = EQ\S_l(B) IfS_l(B) = F», then 8_1(B)ﬂE1 =
E> N E; =0 and we can choose any nonzero s’ € Ej.

Cuase II. rrkp Q is odd. Writing (Q, g) = (U & U*,hf;) with U € P(B), Lemma [2.6]
implies that rrkp @ = 11k U + o(rrkp U). Since rrkp Q is odd, rrkp U cannot be
o-invariant. In particular, rrkp U is non-constant, forcing T'= 5 x S.

Let e denote a nontrivial idempotent of 7. We identify A with M2 (S) in such a
way that the idempotent e corresponds to [} §]. Under this identification, B is the
subalgebra of diagonal matrices.

We have e? € {e,1 — e}. Since e? = e implies that rrkp U is fixed by o, we
must have e = 1 —e. We conclude that B =T = S x S and 7 is the exchange
involution. Now, by Example 24 every unimodular e-hermitian form over (B, 1)
is hyperbolic and determined up to isomorphism by its underlying module.

At this point, we claim that we may assume that e = 1. Indeed, if o is unitary,
then S is a quadratic étale R-algebra and o|g is its standard involution. Thus,
by Hibert’s Theorem 90, there exists u € S* with pu(u=1)° = 71, or rather,
u € S.-1(S,0ls) N S*. Applying u-conjugation, see RG] and Proposition BT, we
may assume that ¢ = 1. If ¢ is not unitary, then R = S, o is orthogonal and
e = —1, so we can repeat the previous argument with = (1g,—1g) € S x S =T}
this will turn ¢ into a symplectic involution.

Define g1 : B x B — B by g1(z,y) = 27y. Then ¢ is a hyperbolic 1-hermitian
form. Since rtkp B = deg B = 1, we have (Q,g9) & n - (B,¢1) for n = kg Q,
and so it enough to prove the proposition when (@,g) = (Q,g1). In this case,
b®a v+ ba: BA — A, is an isomorphism under which f; := pg; is given by
fi(z,y) = 2%y. Again, we split into subcases.
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Subcase II.1. (o,¢) is symplectic. Since e = 1, the involution o is the unique
symplectic involution of Ma(S), given by [¢4]7 = [ 4 ~*] [0, Proposition 2.21].

Now, it is routine to check that L = {[% g] |a, 5 € S} is a Lagrangian of pf
satisfying B® L = A.

Subcase I1.2. (o,¢) is unitary. Since e” = 1—e, there are o|g-linear automorphisms
02,03 : S — S such that o : A — A is given by [25]7 = [:; ‘;%,b]. Furthermore,
09 009 = 03 003 = idg.

Since S is a quadratic field extension of R and 2 € S*, there exists § € S™ with
67 = —4. Choose some ¢ € S*. Then ¢ = 1(c — o3¢) + 26716(c + o3¢), hence at
least one of (¢ —o3c), §(c+ o3c) is nonzero. Replacing ¢ with (¢ —osc) or §(c+ o3c),

we may assume that osc = —c and ¢ # 0. Now, it is straightforward to check that
L=[101A={[2 cﬂB] |a, B € S} is a Lagrangian of pf satisfying B @ L = A. This
completes the proof. O

Lemma 5.4. With Notation [{-1], suppose that S is field. Let (Q,g) € H°(B, 1) be
an anisotropic hermitian space such that pg is hyperbolic. Then rrkp Q is constant.

Proof. This is clear if T' is a field, so assume T' = S x S and let e denote a nontrivial
idempotent in 7. Then e” € {e,1 — ¢}. By Lemma 2.0 rrkp @ is 7-invariant, so
it constant when e” = 1 —e. It remains to consider the case e” = e. Writing
e’ := 1 — e, we need to show that rrk.g Qe = rrk. g Qe’.

By Lemma 4] eB = eAe, ¢'B = e¢’Ae’ and AeA = A. Moreover, (B,T) =
(eB,T|ep) X (¢/B, 7| B), because e™ = e. Thus, we may consider hermitian forms
over (eB,7|.p), resp. (¢/B, 7| ), as hermitian forms over (B, 7). Given (V,h) €
He(eB,7|en) (resp. (V,h) € HE(e'B,T|er)), we write (V A, ph) € HE(A, o) for the
hermitian space obtained by regarding (V, h) as a hermitian space over (B, 7) and
then base-changing along the inclusion morphism p: (B,7) — (4, 0).

For the sake of contradiction, suppose that rrk.p Qe # rrke. g Qe’. By ap-
plying Lemma E4iv) to Qep and Qe’z, we see that rrka QeAd # rrky Qe’A.
Viewing g. and g. (notation as in RG] as hermitian forms over (B,7), we have
(Q,9) = (Qe,ge) ® (Q€',ger). Thus, g and g are anisotropic. Furthermore,
[p(ge)] + [p(ger)] = [pg]l = 0 in We(A,0), so p(ge) and —p(ger) are Witt equiv-
alent. Since the underlying modules of p(g.) and —p(g.), namely, QeA and
Qe' A, are not isomorphic, either p(g.) or p(ges) is isotropic [56, §3.4(2)] (for in-
stance). Without loss of generality, suppose that V is a nonzero A-summand
of QeA such that p(g.)(V,V) = 0. Then Ve is a nonzero B-module (because
VeA=VAeA=VA=V)and summand of QeAe = Qe such that g(Ve,Ve) = 0,
contradicting our assumption that g is anisotropic. O

Lemma 5.5. With Notation [{-1], let (Q,g) € H*(B,7), and let L be a Lagragian
of pg satisfying Q & L = QA. Suppose that kg Q is constant. Then rrka QA is
even and rrkq L = % kg4 QA.

Proof. We have rtkp QA = 1rrky QA = 2rrkp @, hence rtkp L = rrkp QA —
rrkp Q = % rrkp QA. The lemma follows because rrtkp L = trrka L and rrkg QA =
trrka QA. O

Proposition 5.6. With Notation[{.1] suppose that R is a field and (o,€) is sym-
plectic or unitary. Let (Q,g) € HE(B,T) and assume that rrkp Q is constant and

pg admits a Lagrangian L with rrky L = %rrkA QA. Then there exists o € U%(pg)
such that Q ® oL = QA.

Proof. By Proposition lET4{(i), when R is infinite, it is enough to prove the propo-
sition after base-changing to an algebraic closure of R, in which case [A] = 0. On
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the other hand, if R is finite, then [A] = 0 by Wedderburn’s theorem. We may
therefore assume that [A] = 0.

Suppose first that S is a field. Using Proposition [Z8] write (Q, g) = (Q1,91) @
(Q2,g2) with g1 anisotropic and go hyperbolic. Then [pg1] = [pg] = 0 in W.(4, o),
so pg1 is hyperbolic by Theorem 28]ii). Let Ly be a Lagrangian of pg;. By arguing
as in Remark B.17 we see that Q1 & L1 = Q1A. Now, by Lemma 54l rrkp Q1 is
constant, and thus, so is rrkg Q2. With this at hand, Proposition 53] says that pgs
admits a Lagrangian Lo such that Q2 @& Lo = Q2 A.

Let L' = Ly ® Ly. Then Q & L' = QA. By Lemmas and 222 there exists
¢ € Ul(pg) such that pL = L'. Since (o,¢) is symplectic or unitary, we have
U(pg) = U%pg) (Proposition ZI6), so we are done.

If S is not a field, Proposition implies that there exists L' € Lag(pg) with
Q ® L' = QA and we can finish the proof as in the previous paragraph. O

We proceed with showing that Proposition also holds in the context of
Case namely, when (o,¢) is orthogonal and (7,¢) is orthogonal or symplec-
tic. This is similar to the proof of Proposition [5.0] but a few modifications are
required in order to account for the possibility that U%(pg) is smaller than U(pg).

Proposition 5.7. With Notation [[.1], suppose S is a field, [A] = 0, (o,¢) is
orthogonal, and T|p = idy. Let (Q,g9) € HE(B,7) be a hyperbolic hermitian
space such that rrkp Q is constant and positive, and let L be a Lagrangian of pg.
Then there exist v1,p—1 € U(pg) such that Nrd(¢1) = 1, Nrd(p_1) = —1 and

Qe L=Qdp_1L=QA.

Proof. As noted in[2H since (o, ¢) is orthogonal, all Lagrangians of pg have reduced
rank %rrkAP and are thus isomorphic as A-modules (Lemma [[24]). Thus, by
Lemma 222 U(pg) acts transitively on Lag(pg). It is therefore enough to prove
the proposition for a single Lagrangian Ly of our choice.

By Reductions and LTIl we may assume that B = T, A = Ma(S), e =1
and o is orthogonal and given by [ 4]7 = [ %, 7] for some o € S*.

As noted in Case II of the proof of Proposition[(.3] since o|r = idp, the reduced
rank of @ is even. Thus, arguing as in Case I of that proof, we may assume that
(Q,9) = (B?, 1) with g1 given by g1((z1,22), (y1,92)) = 27y2 + 25y1. We identify
QA with A% and Enda(QA) with My(A) in the obvious way. The form f; := pg;
is defined by same formula as g1 and we take Lo := A x 0 as our fixed Lagrangian.
Egzistence of ¢1. Let s = [ 7] € My(S) = A. Then s7 = —s, s € A* and
s ¢ B =T because o|r = idp. It is routine to check that @1 := [1 9] € Ma(A) is
an isometry of pg and ¢1Lo = {(a, sa)|a € A}. Now, as in Case I of the proof of
Proposition 53] we have Q & v1 Lo = QA.

Exzxistence of ¢_1. Since B = T is a quadratic étale S-algebra, we can write B =
S @ AS with A\? € S¥. The assumption o|r = idr allows us to write A = [5} %52]
with x1,x9, 23 € S. Let

Y= [1 !
It is routine to check that ¢ € U(pg), Nrd(¢)) = —1, and

Lo ={([2al:[§ 8] a,b,c,d € S},

Now, if x5 # 0, then B? @ )Ly = A? and we can take ¢_; = 1. On the other
hand, if z, = 0, then B = [5 %], and hence ¥(B%) = B? This means that
B? +9pp1Lo = (B? + p1Lg) = 1(A?%) = A2, so we can take p_1 = 1. O

' J € My(S) = My (A)
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Proposition 5.8. With Notation[{.1], suppose that S is a field, (o, ¢) is orthogonal,
and 7| = idr. Let (Q,g) € H*(B,7) and assume that rrkp Q is constant and pg
admits a Lagrangian L. Then there exists ¢ € U%(pg) such that Q ® oL = QA.

Proof. As in the proof of Proposition [(.6] we can reduce to the case where [A] =
0 and write (Q,g9) = (Q1,91) ® (Q2,92) with g1 anisotropic and g2 hyperbolic.
Furthermore, rrkp @2 is constant, pg; is hyperbolic and any Lagrangian U of pg;
satisfies Q1 & U = Q1 A.

If Q2 =0, then L is a Lagrangian of (P, f1) = (P, f) and we can take ¢ = idp.

Assume @2 # 0, let U be a Lagrangian of pg; and let V' be a Lagrangian of pgs.
By Proposition 5.7 there exist ¢1,p—1 € U(pgz) such that Q2 ® ¢,V = Q24 and
Nrd(p;) =ifori € {£1}. Then L; :== Ud®p;V (i = £1) is a Lagrangian of pg having
the same reduced rank as L (see RE]) and satisfying Q ® L; = QA. By Lemma 222
there exists ¥ € U(pg) such that v L = L;. If Nrd(v) = 1, take ¢ = 9. On the
other hand, if Nrd(y)) = —1, then we can take ¢ := (idp, Sp_1¢; "), because
WL =U® p_107 (p1V) = L_; and Nrd(p) = Nrd(¢_1¢1) " Nrd(¢) = 1. O

We can now establish Theorem [5.1]in cases and

Theorem 5.9. Assuming R is connected, Theorem [51] holds when (o,&) is sym-
plectic or unitary, or (7,€) is orthogonal or symplectic.

Proof. We only prove part (ii). It will be clear from the proof that we can take
(@Q',9) = (Q,g) when T is connected, which is exactly what we need to show in
order to prove (i).

Recall that we are given (Q, g) € H®(B,7) such that [pg] = 0 in W.(A, o). We
need to show that pg admits a Lagrangian L such that Q & L = QA, possibly after
replacing g with a Witt equivalent form. By Theorem 2.8[(ii), pg is hyperbolic.

We may assume that S is connected. If not, then S = R x R (Lemma [[T6), and
by Example Z4] ¢ is hyperbolic. We may therefore replace g with the zero form
and take L = 0.

We may also assume that rrkp @) is constant. Indeed, if rrkp @ is not constant,
then T is not connected. Now, by Lemma and our assumption that S is
connected, T'= Sx S, so T has exactly two primitive idempotents, denoted e and €’.
If o swaps e and €', then rrkp @ is constant because it is o-invariant (Lemma 2.6]),
so it must be the case that o fixes e and ¢/. By Lemma 44, B = ede @ e’ Ae’ and
[eB] = [A]. Thus, ind eB = ind A, and similarly, inde’B = ind A. Let U be a finite
projective e B-module of reduced rank ind eB and let V' be a finite projective ¢’ B-
module of reduced rank ind ¢’ B; they exist by Theorem By Lemma and
Corollary [LT3] there are r,s € Z such that Q@ =2 U” @ V?, and by Lemma [L4{iv),
rtka QA = rtkep U + 11k p VT = (r + s)ind A.  Applying Corollary [Z9(ii) to
(QA, pg), we see that there exists W € P(A) with rrkqa QA = 2rrkqa W. Since
ind A | rtka W (Corollary [LT3]), rrka QA is an even multiple of ind 4, and so
r = smod 2. Now, if r > s, we can replace g with g ® (*5%) - h§, and if r < s,
we can replace g with g @ (55%) - hf;. After this modification, we get r = s, which
means that rrkp @ is constant.

Fix a Lagrangian L of pg. Since S is connected, rrks4 L = % rrk 4 QA (seeL). Let
my, ..., m; denote the maximal ideals of R. By Propositions and 0.8 for every
1 < i < t, there exists p; € U%(pg(m;)) such that Q(m;) ® ;(L(m;)) = QA(m;).
By Theorem I8, there exists ¢ € U’(pg) such that p(m;) = ¢;. This means that
Q(m;) ® (¢L)(m;) = QA(m;) for all i, so by Lemma [[7, we have Q @ (¢L) = QA.
Since ¢L is a Lagrangian of QA, we are done. O

5B. Case (3). We now turn to prove Theorem [B.1]in Case namely, when R is
connected, (o, ¢) is orthogonal and (7,¢) is unitary. Note that S = R.
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This case is more subtle than Cases and because the key Propositions (.0l
and no longer hold. The proof will therefore consist of characterizing when
these propositions fail, and bypassing the failure when they do.

We begin with treating the case where rrkp @ is odd; this case is degenerate.

Proposition 5.10. With Notation[{.1] suppose that R is connected semilocal, (o, ¢€)
is orthogonal and T is unitary. Let (Q,g) € H(B,7) and assume that pg is hy-
perbolic and rrkp Q is not constant or not even. Then T is not connected and g is
hyperbolic.

Proof. 1f T is not connected, then T R x R by Lemma [[.T6, and ¢ is hyperbolic
by Example 24 (applied to (B, 7)). It is therefore enough to show that T' is not
connected.

For the sake of contradiction, suppose that T is connected. Then rrkp @) is con-
stant and odd. Furthermore, by Corollary 2.9(ii), there exists V' € P(A) such that
201tk AV = trtky QA = 21tk Q. Thus, n := rrks V is odd. By Corollary [[LI3]
ind A | n, so by Theorem [[.8 n[A] = 0 in Br R. On the other hand, since A has an
R-involution, 2[A] = 0, so [4] = 0.

We now apply Reductions and [LTT] to assume that B = T, A = Ma(S5),
e=1ando: A — Aisorthogonal and given by [ }]7 = [n—(llb 7] for some 1 € S

By Lemma [[LT9 there exists A € T such that A2 = —\ and T = R $ AR.
Then A = [ ° ] for some ¢ € S*, and consequently T = R[} 9] @ R[ % U]
Furthermore, by Proposition Z13] ¢ is diagonalizable, so there exist ay,...,a, €
Si1(T,7) NT* = R* such that g = (a1,...,an) (1) (notation as in Example 2.T).
Note that n = rrkp @ is odd.

Let e := [}9]. Then e is an idempotent satisfying e? = e, ede = eR and
AeA = A, hence e-transfer (see Q) induces an group isomorphism [f] — [fe] :
Wi(A,0) — Wi(R,idgr). Tt is routine to check that upon identifying Ae with
R? via [23] — (a,c), the bilinear form (pg). : A"e x A"e — eR = R is just
(1,man, ..., 0, MO (Rjidg)- By assumption, this form is hyperbolic, so it is iso-
morphic to n(l, —1) (g ia,) (Lemma 7). Comparing discriminants (using Propo-
sition Z27(iv)), we find that (—n)™ is a square in R*. Since n is odd, this means
that —n is a square in R*, say —n = r2. Then 2[ L, 7] = 1[§9] - L[ % 0] is a
nontrivial idemptonent in 7', contradicting our assumption that 7" is connected. [J

o

Recall from2E that Lag(f) denotes the set of Lagrangians L of (P, f) € H(4,0)
with rtky L = S1tks P. When (0,¢) is orthogonal, Lag(f) consists of all the
Lagrangians of f, and when R is semilocal, any two Lagrangians in Lag(f) are
isomorphic (Lemma [[24]). These facts will be used without comment in the sequel.

Proposition 5.11. With Notation [[.1] suppose that (o,€) is orthogonal and T
is unitary. Let (Q,g) € HE(B,7) and assume that pg is hyperbolic and rrkp Q
is even. Then there exists a unique U(pg)-equivariant natural transformation of
functors from R-rings to sets,

P, : Lag(pg) — po g
such that for any R-ring R1 and any idempotent e; € Tr, with e1 +ef =1, one
has ®4(Pr,e1Ar,) = 1. The map ®4 has the following additional properties:
(i) If there exists an idempotent e € T such that e” +e =1, then ®; = ®pea
(notation as in Proposition [Z.27).
(i) If n :=1rkp Q is constant and M € Lag(g), then ®,(MA) = (-1)%.
(iii) If (Q',g") € HE(B, ) is another hermitian space such that pg' is hyperbolic
and rrkp Q" is even, then ®yoqy (L & L) = ®4(L) - Oy (L) for all L €
Lag(pg), L' € Lag(pg’).
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(iv) If e € B is an idempotent such that e = e and rrkp eB is positive and
constant on the fibers of SpecT — Spec R, then ®,(L) = ®,, (Le) for all
L € Lag(pg) (notation as in[2G).

Note that Qg, 1 is a Lagrangian of gg, (see Example[Z4]), and therefore Q g, e1 AR,
is a Lagrangian of pgr,. We alert the reader that ®, is not defined when rrkp @ is
not even.

Proof. Fix a Lagrangian Lg of pg and let ®y := @, be as in Proposition 225

Let R; be an R-ring and let e,e’ € Tx, be two idempotents satisfying e +
e? = e +e7 = 1. We claim that ®o(Qr,eAr,) = Po(Qr, e’ Ag,), or rather,
PQr, ean, (Qr,€’Ar,) = 1 (Proposition 225]i)). Base changing along R — Ry,
we may assume that R = R. Now, by Lemma 217 it is enough to show that
Dgea(Qe’A)(m) = 1 in k(m) for all m € Max R, so assume that R is a field.
Since e € T is an idempotent satisfying e’ + e = 1, it is nontrivial and hence
T = R x R. Similarly, €’ is nontrivial, so e = ¢/ or e = 1 — ¢’. In the first case,
we have QeAd = Qe¢’A and Pgea(Qe’A) = 1. In the second case, QA = QeA @
Qe’'A, 50 Poea(Qe’A) = (—1)ka@ed — (_1)rkes Q¢ = 1 by Proposition 2.26]
Lemma [ 4iv), and the fact rrkp @ is even. This proves the claim.

Write Ry = T. Then Tg, = Ry x Ro by Lemma [Tl Let ey € Tg, correspond
to (1r,,0p,) under this isomorphism. Since 7| is the standard R-involution of T
we have eg +¢ef = 1.

Write 0 := ®o(Prye0Ar,) € pe(Rp). We claim that 6 is in fact in pa(R).
Let 41,19 : Ry — Ro ® Ry denote the maps r — r® 1 and r — 1 ® r re-
spectively. By what we have shown above, i10 = ®o(Pryonr,(1€0)ARc0R,) =
@0 (PRryoR, (12€0) ARy R,) = i20. Since py g is a sheaf on (Aff/R)spqc, and since
R — Ry is faithfully flat, this means that 6 € ps(R).

Define @, := 0~! - . It is clear that ®, is U(pg)-equivariant. Let Ry and ey €
Tr, be as in the proposition. Then, in pus(Ro®@R1), we have ®4(Qroor, €14R 2R, ) =
(pg(QRo@RleOARo@Rl) = q)g(QRoeoARo) = 9719 = 1. Since R1 — Ro ®R1 is faith-
fully flat, this means that ®,(Qgr,e14r,) =1 in pz(Ry).

Suppose that @' : Lag(pg) — s g also satisfies the conditions of the Proposi-
tion. Then, by Proposition 2225, both ®" and ® must coincide with ®qp coa,, on
the subcategory of Ry-rings. Since p, and Lag(pg) are sheaves over (Aff/R)pqc
and since R — Ry is faithfully flat, this forces &' = ®,.

We finish with verifying (i)—(iv). Since R — Ry is faithfully it is enough to
prove these statements after base-changing to Ryg. We may therefore assume that
T = R x R and there exists an idempotent eg € T" with e§ + eg = 1.

(i) This is immediate from the uniqueness part of Proposition 228

(ii) We have Mey = M N Qep. Since pA is flat, this means that MegA =
MAN QegA. By (i) and Proposition Z28, ®,(MA) = (—1)rka QeoA-rrka MeoA
and rrka QegA —1rkg MegA = rrke, B Qeg — 11ke g Meg = 4§ by Lemma E4iv).

(iii) This follows from (i) and Proposition 225(ii).

(iv) This follows readily from (i), item in and Proposition 9[1). O

Proposition 5.12. With Notation[{.1], suppose that R is a field, [A] =0, (o,¢) is
orthogonal and T is unitary. Let (Q,g) € H(B,T) be a hyperbolic hermitian space
such that rrkg QQ is constant and even. Then:

(z) There gm’sts L € Lag(pg) such that Q ® L = QA and ®,(L) = 1.
(i1) There is no L € Lag(pg) such that Q & L = QA and ®4(L) = —1.

Proof. By Reduction and Proposition BIT|iv), we may assume that B = T,
A =Mz(R), e =1 and o is orthogonal.
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(i) By Reduction LTIl we may assume that o is given by [2 4] = [ %, %] for
some o € R*. Arguing as in Case I of the proof of Proposition[5.3] we may assume

that (Q, g) = (B2, g1), where g1((z1,22), (y1,y2)) = 2{y2 + x3y1. By Lemma [LT9
there exists A € T such that T' = R ® AR and \™ = —\. This forces B =T =
[§9]R+ [ §]R. Now, it is routine to check that L = {([©9],[2§])|a,b,c,d € S}
is a Lagrangian of pg satisfying B? & L = A%. That ®,(L) = 1 will follow once we
prove (ii).

(ii) Step 1. Tt is enough to prove the statement after base-changing to an algebraic
closure of R, so assume that R is an algebraically closed field. In this case, B =
T = R x R and 7 is the exchange involution. By Example 2.4l this means that
g = n{l)(p 7y, where n = rrkp Q and (1)(p ;) is the hermitian form (z,y) — 27y
on B. We may therefore assume that (Q, g) = (B",n(1)s,-))-

Arguing as in Subcase I1.2 of the proof of Proposition .3l we may identify A
with My (R) in such a way that B is the algebra of diagonal matrices and o is given
by [25]7 = [,4, 7217, where o2, 03 are R-linear automorphisms of R of order 2.
Since 09,03 € {£idr} and dimr S_1(4,0) = 1 (Proposition [[2])), we must have

09 = 03 = idg, hence o is given by [¢5]7 = [4?].

Step 2. Let A =M, (A) and let 5 : A — A be given by (a;;) = (ag;). Define B and
7 similarly and let p : B — A denote the inclusion map. Let e € B =M, (B ) denote
the matrix with 1 in the (1, 1)-entry and 0 elsewhere, and let § : B x B — B denote
the diagonal hermitian form (1) 5 - (see Examplelﬂ]) It is easy to check that the
assumptions of Notation @I apply to A, &, T (embedded diagonally in A =M, (A))
and B. Furthermore, under the evident isomorphisms eBe & B, Be 2 B", one finds
that, the e-transfer g. (seeRQ) is just g. Thus, by Propositions EL9(ii) and BE.11liv),
it is enough to prove that pg admits no Lagrangians L with B® L = A and
®4(L) = 1.

Note that (A4,5) = (Ma(R),0) @ (M,(R),t), where t denotes the transpose in-
volution. Thus, we may identify A with My, (R) in such a way that & is given

by i
{a b]g{dt bt}
c d| | a |’
where a,b,¢,d € M,,(R). Under this identification, B = {[* ;]| a,d € M,,(R)} and
T ={[*" 51, ], B € R}, where 1, is the n x n identity matrix.

Overriding previous notation, let e = [15 8]. Then eA = BeA is a Lagrangian of
pg, and Pg (e;l) = 1 by the defining property of ®;. Since U(pg) acts transitively
on Lag(pg) (Lemma 2.22), it is enough to prove that for every ¢ € U(pg) with
Nrd(¢) = —1, we have B + gpeA # A. Identifying End ;(A;) with A (acting
on the left on itself) and writing ¢ = [; z:] with z,2',y,y" € M,(R), we get

gpe/i = {[;g ;g] |a,b € M, (R)}, from which it follows readily that
B+peAd=A — x,y € GL,(R).

Step 3. Recall that R is assumed to be algebraically closed. We shall view all finite
dimensional R-vector spaces and the group U(A,&) = U(pg) as varieties over R
in the obvious way. Recall from Proposition that U(A, ) has two (Zariski)
connected components — U%(A, &) := U%(pg) and UY(A,5) := U(A,5) \ U%A, 5).

Consider the morphism 1 : U(A, &) — M, (R) x M,,(R) given by (5 ;:] = (z,9).
By Step 2, we need to show that (U (A, )) does not meet GL,(R) x GL,(R).
Since GL,(R) x GL,(R) is Zariski open in M, (R) x M, (R), it is enough to verify
this after replacing U'(A4, &) with a Zariski dense subset.
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Step 4. In what follows, we shall write matrices a € M, (R) in 2 x 2 block form
[aat G22], where a1p is a 1 x 1 matrix. With this notation, let

azi1 a22
0 0
Y [ [0 1.1 ] (6]
1

661 [61.] ]
and note that u € U(A, &) and Nrd(u) = —1.
For all a,b € S_1(M,(R), ),CEGL( ), define

O I | R S I T R o

It is easy to check that & is aNmorphisms of R-varieties from S_l(Mn(RN),t) X
S_1(Mn(R),t)x GL,(R) to Ul(A,5) that is injective on R-points. Since Ul(A,5) =
UY(A,5) as R-varieties, and since U(A,5) is just SOgn(R), it follows that the

source and target of £ have the same dimension (i.e. £(2n)(2n —1) = in(n — 1) +

in(n — 1) +n?). Thus, by Chevalley’s Theorem, im(¢) is dense in UY(A,6).
Writing a = [, 212] € S_1(M,(S5),t) and ¢ = [} £12] € GL,(R), one readily
checks that

[ @12€21 A12C22 ]
C21 C22
* *

*

5(01, ba C) =

Since [“27* “2%22] is never invertible (multiply by [} ~3'2] on the left), we see

that ¢ (im(€)) does not meet GL, (R) x GL, (R). Since im(¢) is dense in U'(A, ),
this completes the proof. O

Remark 5.13. In Proposition [5.12] one can similarly show that if rrkg @ is con-
stant and odd, then there is no L 6 Lag(pf) such that @ ® L = QA: Replace &
with the maps & (a,b,c) = [ 9][§ (ct ) 1] [§ %] and & (a, b, ¢) = [1On 1n1¢0(a, b, c) and
note that a cannot be invertible when n is odd.

Corollary 5.14. With Notation[{.1] suppose that (o,¢) is orthogonal and T is uni-
tary. Let (Q,q) € H®(B,T) and assume that pg hyperbolic and rrkp Q is constant
and even. If L € Lag(pg) satisfies Q & L = QA, then ®4(L) = 1.

Proof. Let K be an algebraically closed R-field. Then Tx = K x K. Thus, by
Example 2.4 gx is hyperbolic. Now, by Proposition 512 ®,(Lk) = 1. Thanks to
Lemma 217 ®,(L) = 1 follows by letting K range over the algebraic closures of
the residue fields of R. O

Now we can prove an analogue to Propositions and in Case

Proposition 5.15. With Notation[{.1] suppose that R is a field, (o, €) is orthogonal
and T is unitary. Let (Q,g) € H®(B, ), let L € Lag(pg) and assume that rrkp Q
is constant and even. Then there exists p € U°(pg) such that Q ® oL = QA if and
only if ®4(L) = 1.

Proof. 1f Q @ oL = QA for ¢ € U%(pg), then ®,(L) = Nrd(¢)®,(L) = ®,(¢pL) =1
by Corollary .14 We turn to prove the converse.

As in the proof of Proposition BG we can reduce to the case where [A] =
0 and write (Q,g9) = (Q1,91) ® (Q2, g2) with g1 anisotropic and go hyperbolic.
Furthermore, there exists a Lagrangian L of pg; such that Q1 ® L1 = Q1A

By Proposition B.I10, rrkg Q1 is constant and even, and hence so is rrkp Qs.
Thus, by Proposition BI2(i), there exists Lo € Lag(pga) with Q2 @ Ly = Q24

Let L' := Ly ® Ly. Then L’ € Lag(pg) and Q & L' = QA. By Lemma [2Z22]
there exists ¢ € U(pg) such that L' = ¢L. By Corollary BI4 1 = ®4(L') =
Nrd(¢)®4(L) = Nrd(y), so Nrd(¢) = 1 and the proposition follows. O
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From Proposition .13, we see that in order to apply the proof of Theorem
to our situation, we have to find L € Lag(pg) satisfying ®,(L) = 1. The purpose
of the following propositions is to characterize precisely when such L exists.

We begin by noting that, in many cases, ®, is constant on the set Lag(pg).

Proposition 5.16. With Notation[{.1] suppose that R is connected semilocal, (o, ¢)
is orthogonal and T is unitary. Let (Q,g) € HE(B,T) be an e-hermitian space such
that pg is hyperbolic and rrkp @Q is even. Then ®, : Lag(pg) — p2(R) = {£1} is
onto if and only if [A] =0 and Q # 0.

Proof. The proposition is clear when @ = 0, so assume ) # 0.

Suppose that ®, is onto. Then there are Lo, L1 € Lag(pg) such that ®,(Lo) =1
and ®,(L1) = —1. By Lemma [222] there exists ¢ € U(pg) such that ¢Ly = Ly,
hence Nrd(p) = Nrd(¢)®4(Lo) = ®4(L1) = —1. By Theorem 220, this means that
[A] = 0.

Conversely, if [A] = 0, then Theorem implies the existence of ¢ € U(pg)
with Nrd(¢) = —1. Choose some L € Lag(pg). Then ®,(¢L) = —®,4(L), hence @,
is onto. O

Proposition 5.17. Under the assumptions of Proposition [5.10, if T is connected
and [B] # 0, then ®4(L) =1 for all L € Lag(pg).

Proof. For the sake of contradiction, suppose that there exists L € Lag(pg) with
®,(L) = —1. By Lemmal[I8 T = T x T' as T-algebras. Since 77 is unitary, there
exists e € T such that e”+e = 1. By the definition of ®4, we have &4 (QreAr) =1,
so @, is not constant on Lag(pgr). Now, applying Proposition .16 to g7 (here we
need T' to be connected), we get [B] = [Ar] = 0, a contradiction. O

The next lemmas and proposition concern with the case [B] = 0. They will only
be needed in proving part (i) of Theorem[5.Jl We shall make use of the discriminant
algebra D(g) defined in 2HI

Lemma 5.18. With Notation [{_1] suppose that R is semilocal, deg B = 1, o s
orthogonal, T is unitary and € = 1. Define A\, i as in Lemma [{-3(7i) (so A7 = —A
and p° = p). Let (Q,g) € HY(B,7) and assume that pg is hyperbolic and rrkp Q
is constant and even. Let x1,x9 € Q and write x = x1 + xop € QA.
(i) If pg(x,x2) =0 and g(x1,21) € B*, then Q1 := 1 B+x2B is a summand of
Q with B-basis {x1,x2}. Writing g1 = g|Q,xq., the form g1 is unimodular,
zA € Lag(pgr), Q1 @ xA = Q14 and [D(g1)] = [A] in Br R.
(i) If rrkp Q > 4, then there exist x1,x2,2 as in (i).

Proof. (i) Write a := g(x1,21) € B*. Since g is 1-hermitian and pb = b7y for all
b€ B, we have 0 = pg(x,z) = g(x1,21)+2ug(x2, 1)+ p?g(22, 12), s0 g(w1,22) =0
and g(z2,22) = —p2g(x1,71). By examining the Gram matrix of g relative to
{x1, 22}, we see that {x1,z2} is a g-orthogonal basis to 1 and g; is unimodular
and isomorphic to (o, —p?a)(p ). Thus, D(g9) = (B/R,p*a?) = (B/R,p?) = A
(see2H). Let 2’ = x1 — pao. One readily checks that pg(z/,2') = 0 and zA@ 2’ A =
@14, hence zA € Lag(pg1).

We finish by checking that Q1 ®zA = Q1 A. If y € Q1 Nz A, then thereisa € A
such that y = za = x1a + xapa. Since {x1, 22} is a B-basis of Q1, {z1,22} is an
A-basis of Q14, so y € Q implies that a,ua € B. As aresult a € BNy 'B =
Bnu(p=2B) € BNuB =0 (because =2 € Za(\) = B), and y = za = 0. This
means that @1 NzA = 0. On the other hand, Q1 + *A D 1B + x2B + (z1 +
zop) B+ (14 22p?)B D 11 B+ 29 B + 1B + 2o21B = Q1 A, s0 Q1 ® zA = Q1 A.

(ii) Step 1. We first prove the claim when R is a field. Using Proposition 25]
write (@,9) = (Q1,91) ® (Q2,92) with g1 anisotropic and go hyperbolic. Since
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[pg1] = [pg] = 0, the form pg; is hyperbolic (Theorem 2.§(ii)). Since rrkp @ > 4,
either Q1 # 0 or rrkp Q2 > 4.

Assume Q1 # 0. Since pg; is hyperbolic, there exists 0 # = € Q1A such that
pg1(z,2) = 0. Write & = 21 + xop with 21,29 € Q1. If 21 = 0, replace z with zp.
Since g is an anisotropic and T is semisimple artinian, g1 (z1, 1) € S1(B,7)\{0} =
R*, so x1,xo satisfy the requirements.

Assume rrkp Q2 > 4. Since go is hyperbolic, it has an orthogonal summand
isomorphic to the hyperbolic form (1, —1, %, —p?) (5 ) (Lemma Z7T). Now take x1
and x2 to be the elements corresponding to (0,0,0,1) and (1,0,0,0) in Q.

Step 2. We continue to assume that R is field. Let z,y € QA be two elements
such that pg(x,x) = pg(y,y) = 0 and r7k4 A = rrk4 yA = 2. We claim that there
exists ¢ € U%(pg) such that pz = y.
By Theorem 23] there exists ¢ € U(pg) such that va = y. If Nrd(¢)) = 1, then
we can take ¢ = 1), so assume Nrd(¢) = —1. In this case, [A] = 0 by Theorem 2201
Since pg is unimodular and zA is a free summand of QA, there exists ' € QA
such that pg(x,a’) = 1. Write V. = zA + 2/ A. Since pg(z, ) = 0, the restriction of

pg to V is unimodular (the matrix | /f gg((;;z)) ;’ 5((;”,’9;,/))] =[9 1] is invertible), so QA =

Va Vi Let h = pglyryyr. Since trtka QA = 21tk Q > 8 and 11ka V = 4, we
have V+ # 0. Thus, by Theorem 220, there exists 1, € U(h) with Nrd(y;) = —1.
Take Y = ’lp o (ldv @1/11)

Step 8. We finally establish the existence of z1,x2 in general. Let L € Lag(pg).
Then kg L = %erkA QA =1tk Q > 4, so L admits a summand isomorphic to
Ay (Lemma[[L24). Let y be a generator of such a summand.

Let my,...,m; denote the maximal ideals of R. By Step 1, for all 1 < i < ¢,
there exists x; = 1, + xa;p, with 21,, x2; € Q(m;), such that pg(m;)(x;, z;) = 0 and
g(m;) (w14, 21;) € B(m;)*. We observed in the proof of (i) that rrkm,) z;A(m;) =
2, so by Step 2, there exists ¢; € U%pg(m;)) such that ¢;(y(m;)) = z;. By
Theorem I8, there exists ¢ € U°(pg) such that ¢(m;) = ¢; for all i. Let x = @y
and write @ = x1 + zap with 21,22 € Q. Since QA = Q @ Qu (because A =
B @ Bp), we have x1(m;) = xy; for all ¢, hence g(x1,21) € B* (Lemmal[L8]). Since
pg(z,x) = pg(y,y) = 0, we are done. O

Lemma 5.19. With Notation [{.1], suppose that R is semilocal, deg A = 2, o is
orthogonal and ¢ = 1. Let o, € R*. If f := (a, B)(a,0) is hyperbolic, then there
exists x € AX such that x°x = —af~!

Proof. The claim is equivalent to the existence of x = (21, 22) € A* X A* such that
f(z,z) = axi29 + Preag = 0. Note that if the equality holds, then x; is invertible
if and only if xo is invertible. Since f is hyperbolic, there exists an A-basis {u,v}
to A? such that f(u,u)=0. Write u = (uy,u2) € A2

Step 1. Suppose R is a field. We claim that there exists ¢ € U°(f) such that
pu € A x A*. Ifup € A* or ug € A*, then we can take ¢ = id42, so assume
that both u; and ws are not invertible. In particular, A cannot be a division
algebra, hence A = My(R) and 11k Auy and rrkg Aus cannot exceed 1. Since u
can be completed to an A-basis of A2, we must have Au; + Aus = A. Length
consideration now force u; and us to be rank-1 matrices with Au; N Aus = 0. Since
aufuy = —puug, this means that ufu; = 0.

Arguing as in Reduction ETT] we may identify A with M2(R) in such a way that

o is given by [2¢4]7 = [,Y—alb 7] for some y € R*. The condition ufu; = 0 is easily
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seen to imply that —v is a square. Write —y = 62 with § € R* and let ¢ := —a87!,

c+1  d(c—1)
T = 1A5 T2 = |:021 c-?—l :| )

25 2
and x = (21,72) € A%. Tt is routine to check that detxy = ¢ and f(x,z) = 0. Since
zA is a summand of A%, there exists ¢ € U(f) such that pu = z (Theorem Z3).
If Nrdp = 1, we are done. If not, replace zo with [§ % ]Jz2 and ¢ with ¢ where

Y e U(f) is given by ¥(z1,22) = (21, [ % ]22).

Step 2. We now prove the general case. Let my, ..., m; denote the maximal ideals of
R. By Step 1, for all 1 < i < t, there exists ¢; € U%(f(m;)) such that ¢;(u(m;)) €
A(m;)* x A(m;)*. By Theorem I8, there exists ¢ € UY(f) with p(m;) = ; for
all i. Now, by Lemma [0 © = (21, 22) := pu € A* x A* and f(x,2) = f(u,u) =
0. O

Proposition 5.20. With Notation[{.1] suppose that R is semilocal, T is connected,
[A] # 0, [B] = 0, (0,¢) is orthogonal and T is unitary. Let (Q,g) € H*(B, )
be a hermitian space such that pg is hyperbolic and n := rrkp Q is even. Then
®,(L) =1 for some L € Lag(pg) if and only if [D(g)] = & - [A]. When this fails,
[D(9)] = (5 + 1) - [A] and g is isotropic.

Proof. By Reduction.T0land Proposition 5.IT(iv), we may assume that deg B = 1,
deg A = 2, o is orthogonal and € = 1. Let A, € A* be as in Lemma [L3(ii) (so
A7 = —X and p° = p). By Proposition 516, @, is constant on Lag(pg); we shall
denote the value that it attains by ®, € {1}. The proposition clear if n = 0, so
assume n > 0.

Suppose n > 4. Then by Lemma [5.18] we can write (Q, g) = (Q1,91) ® (Q2, g2),
where rrkp Q1 = 2, [D(g1)] = [A] and there exists L € Lag(pg1) with Q1 & L =
Q1A. By Corollary EI4, &, = 1. Since &, = &, P/, (Proposition EII(iii)),
[D(g)] = [D(g91)] + [D(g2)] (Proposition 2.28(iii)) and [p2g] = [pg] = 0 in W(A,0)
(so pag is hyperbolic by Theorem [2Z8(ii)), the proposition will hold for (Q,g) if it
holds for (Q2,g2). Repeating this process, we reduce to the case n = 2.

Suppose henceforth that n = 2. By Proposition 213 we may assume that
g = {(a, B)(B,r) for some o, 3 € B* NS (B,7) = R*, and by Lemma .19, there
exists * € AX such that 22 = —af~!. Note that disc(g) = —af = —aB~! mod
Nrp/r(T*), hence [D(g)] = [(B/R, —a™1)] (see 2H).

Write © = by + uby with by,by € B. Since u% = p and ub = b7y for all b € B,
we have

—af™! =27z = (b5by + p2bGbs) + 2ubiby.
Thus, biby = 0 and b7by + p2b3bs = a1, Arguing as in [58, Example 9.4] (for
instance), we see that Nrdy p(x) = b7by — u?bbs. Since Nrds p(z) € R*, this
means that b1 B + bs B = B.

We claim that by = 0 or by = 0. Indeed, b1B = b1 (b1B + b2B) = b2B, so
there exists ¢ € B with by = bic. In particular, bic is an idempotent. Since T is
connected, byc = 0 or byc = 1. In the first case, by = b?c = 0, whereas in the second
case, by € B>, so by = 0 because by1by = 0.

Assume by = 0. Then x = pby € A* and —af~! = u2b3by, hence [D(g)] =
[(B/R,;i?)] = [A]l. Let L = [,},]4 and L' = [@12]14 One readily checks that
pg(L,L) = pg(L',L') = 0 and L & L' = A% hence L € Lag(pg). Furthermore,
B2NL =0and [9],[3],[,2g],[% ] € B2+ L, s0 B> @ L = A* and &, = 1 by
Corollary .14

Assume by = 0. Then x = by and —aB~ = bJby, hence [D(g)] = [(B/R,1)] = 0.
Now, Theorem and and our assumption that [A] # 0 imply that [D(g)] =
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(2 + 1)[A] # [4]. Furthermore, it is routine to check that M = [,\ |B is a La-

grangian of g, so g is hyperbolic (and in particular isotropic) and ®, = —1 by
Proposition [TTii).

Since we cannot have both b; = 0 and by = 0 (because € A*), the proposition
follows. (|

We finally complete the proof Theorem [5.1] by establishing case

Theorem 5.21. Theorem [51] holds when R is connected, (o,€) is orthogonal and
T 18 unitary.

Proof. Recall that we are given (Q,g) € H®(B, 1) such that [pg] = 0 in W.(4, o).
By Theorem [Z[(ii), pg is hyperbolic.

(i) Since T is connected, n := rrkp @ is even by Proposition .10

Suppose that there exists L € Lag(pg) with Q & L = QA. By Corollary B.14]
®,(L) = 1. Now, if [A] # 0 and [B] = 0, then we must have [D(g)] = 5 - [A] by
Proposition (.20 as required.

Conversely, suppose that [A] = 0, or [B] # 0, or [D(g)] = % - [A]. If there exists
L € Lag(pg) with ®,(L) = 1, then we can argue as in the last paragraph of the
proof of Theorem B9, using Proposition instead of Propositions and (.8
to prove the existence of L' € Lag(pg) with Q ® L’ = QA. The existence of L
follows from Proposition if [A] = 0, from Proposition B.17 if [B] # 0, and
from Proposition 5201 if [A] # 0 and [B] = 0. Proposition [(.20] also tells us that
[D(9)] = (5 + 1)[A] and g is isotropic when [A] # 0, [B] =0 and [D(g)] # & - [A].

(ii) We need to prove the existence of L € Lag(pg) with Q@ @ L = QA, possibly
after replacing (@, g) with a Witt-equivalent hermitian space.

If T is not connected, then, as explained in the proof of Proposition B.10 ¢ is
hyperoblic and can thus be replaced with zero form.

Suppose that T is connected. As in the proof of (i), rrkp @ is even and it is
enough to find L € Lag(pg) with ®,(L) = 1. Moreover, we showed that L exists
if [B] # 0 in BrT, so we only need to consider the case where [B] = 0. Let L €
Lag(pg). It ®,(L) = 1, we are done, so assume ®,(L) = —1. Since [B] = 0 = [T,
there exists N € P(B) with rtkg N = degT = 1 (Proposition [[.T1(iii)). Consider
(Q,¢") = (Q,9) (N & N*, i), which is Witt-equivalent to (Q,g). By parts
(ii) and (iii) of Proposition E.ITl we have ®, (L & NA) = ®y4(L) - dpe (NA) =
(=1) - (=1) = 1. We may therefore replace (Q,g), L with (Q',¢'), L & N and
finish. 0

6. VERIFICATION OF (E1) AND (E3)
Keep the assumptions of Notation Il The purpose of this section is to prove:

Theorem 6.1. With Notation [.1], suppose that R is semilocal and let (P, f) €
HE(A, ) be a hermitian spaces such that [wf] =0 in W (B, T).
(i) Assume that T is connected and (,€) is not orthogonal. Then there exists a
Lagrangian M of wf such that M A = P if and only if (1,€) not unitary, or
(0,€) is not symplectic, or 4 | rrky P. When these conditions fail, [A] = 0
in BrS and f is hyperbolic.
(ii) Assume that T is connected and (T,€) is orthogonal. Then (o,¢) is orthogo-
nal. Moreover, there exists a Lagrangian M of wf such that MA = P if and
only if [B] # 0 in BrT, or rrky P is even and disc(f) = disc(T/R)z kA P
(see [2H). When these conditions fail, [A] = 0 in BrS, rrka P is even,
disc(f) = dise(T/R)z %4 P+ and f is isotropic.
(iii) There exists (P', f') € HE(A, o) with [f] = [f'] and a Lagrangian M of = f’
such that MA = P’.
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In Section [7l we will use this theorem to establish conditions |(E1)| and |(E3)| of
Theorem B.0l when R is semilocal. The reader can skip to the next section without
loss of continuity.

As with Theorem [B.]], it is enough to prove the theorem when R is connected.
In this case, by Lemma [0l exactly one of the following hold:
(1) (r,¢e) is symplectic or unitary,
(2) (7€) is orthogonal.
These cases are treated in Theorems and [6:20] respectively.

6A. Non-Connected Cases. We begin by addressing the simpler case where T’
is not connected. Some of the observations made here will be used later.

First, we consider the case where S is not connected.

Proposition 6.2. Theorem [61l(%i) holds when R is connected and S is not con-
nected.

Proof. In this case, S = R x R (Lemma [[LTA) and 7|g is the exchange involution.
As observed in Example 2:4] this means that every (P, f) € H®(A, o) is hyperbolic.
Replacing (P, f) with zero form, Theorem [6.{iii) holds trivially. O

If S is connected and T is not connected, then 7' = S x S (Lemma [[LT6]), hence
T admits two nontrivial idempotents, call them e and ¢’ := 1 —e. We have e¢? = ¢
or 7 = ¢’. We devote some attention to the case ¢? = e, working in slightly greater
generality for later reference.

With Notation ] suppose that T = S x S (but not that S is connected),
let e := (1g,05) and assume e = e. By Lemma (L4 we have A = AeA, B =
eB®e'B = ede ® e’Ae¢’ and m : A — B is given by a — eae + €’ae¢’. Since
e’ = e, we may view (B, 1) as (eB, 7.) X (¢/B, Te/ ), where 7. = 7|.p and 7o = 7| 5.
Thus, every hermitian space (Q, g) € H®(B, 7) factors as (Qe, g.) X (Q€’, ge/ ), where
ge = GlQexqe and ger = glgerxQer are e-hermitian forms over (eB, 7.) and (¢/B, 7./),
respectively. The following simple observation will be important in the sequel.

Proposition 6.3. Under the previous assumptions and identifications, for every
(P, f) € H%(A,0), the hermitian space (P,mf) is (Pe, f.) x (Pé€', fo), where f.
denotes the e-transfer of f (see2Gl), and likewise for fer.

Proof. This is straightforward. O

Proposition 6.4. Theorem [61l(iii) holds when S is connected and T is not con-
nected.

Proof. Write T =S x S and let e = (1g,0g). By Lemma (i), rrk4 eA > 0 and
AeA = A. Since S is connected, e? =e or e’ =1 —e.

If €7 = e, then f. is hyperbolic by Proposition and the fact that «f is
hyperbolic (Theorem ZJ(ii)). By item [(t3)]in RG] this means that f is hyperbolic,
so we may replace (P, f) with zero form and finish.

Suppose that e =1 —e. Then M := Pe is a Lagrangian of 7 f (Example 27]).
Since MA = PeA = PAeA = PA = P, we are done. O

6B. Case (1). We now prove Theorem[6.I]in case|(1)} namely, when R is connected
and (B, ) is unitary or symplectic. As with Theorem [B.I], we first establish some
special cases.

Proposition 6.5. With Notation [{-1], suppose that R is a field, S = R x R and
[A] = 0. Let (P, f) € H°(A, o) be a hermitian space such that rrka P is even. Then
there exists M € Lag(nf) such that MA = P and rrkg M = $ kg P.
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Proof. By Reduction 10, we may assume that B = T and deg A = 2. Note that
rrka P is constant by Corollary 229(i).

By assumption, there exists a nontrivial idempotent e € S such that e +e? = 1.
By Example 24, we may assume that A = A; x AJP for a central simple R-algebra
A; and that o is the exchange involution (x,y°P) +— (y,2°P). It is easy to see that
there are R-subalgebras Ty C By C A such that T =Ty x ", B = By x B{® and
By = Z7,(A;). Furthermore, € = (1,7 ") for some g, € RX.

Consider the e-hermitian form f; : A x A — A given by f1((z1,257), (y1,v5°)) =
(€121, (y221)°P). Since rrky P is even and constant, and since deg A = 2, there
exists n € N such that P = A". By Example[Z4] this means that (P, f) = n-(A, f1).
It is therefore enough to prove the proposition for (P, f) = (A, f1).

Let m := ma,,B, : A1 — Bi be as in Lemma 2] The uniqueness of 7 forces
7(z,y°P) = (mz, (m1y)°P) for all z,y € Ay. Let Ey = kerm;. Then M := E; x B{¥
and M’ := By x E{® are submodules of Ap satisfying f1(M, M) = fi(M',M') =0
and M @ M’ = A. Thus, M is a Lagrangian of 7 f;. In addition, Lemma E2)(iv)
tells us that By A; = Ay, so MA = E1A; x APBJY = A, as required. O

The following proposition holds without restrictions on the type of (7, ¢).

Proposition 6.6. With Notation [{.1] suppose that S is a field and [A] = 0. Let
(P, f) € H(A, o) be a hyperbolic hermitian space. If 4 | 1tk P, then wf admits a
Lagrangian M such that MA = P and rrkg M = %rrkB P.

Proof. By Reduction [£10] we may assume that B = T and deg A = 2. Consider
the hyperbolic e-hermitian form f; : A%2 x A% — A given by fi((z1,v1), (22,y2)) =
xJy2 + exJyr. Writing n = irrkA P, we have n - (A2, f1) = (P, f) by Lemma Z7
It is therefore enough to prove the proposition for (4%, f1). Write E = ker 7 and
let M := Bx E and M’ := E x B; both M and M’ are right B-submodules of
A2. One readily checks that 7f;(M,M) = wfi(M',M’) = 0 and A4 = M & M'.
Thus, M is a Lagrangian of 7f. By Lemma E2(iv), we have MA = A? and
rrkBM:2rrkBB:2:%rrkBAQB. O

Proposition 6.7. With Notation[[.1] suppose that S is a field, [A] =0 and (7,¢)
is symplectic or unitary. If T is unitary, we also assume that (o,€) is not sym-
plectic. Let (P, f) € H(A, o) be a hyperbolic hermitian space. Then there exists a
Lagrangian M of wf such that MA = P and rtkg M = %rrkB P.

Proof. By Reductions and 11l we may assume that B = T, A = My(S),
7 is orthogonal or unitary, and ¢ is orthogonal or unitary and given by [¢ g] —
[affbc, 0:15:] for some o € R*. By Corollary Z9(ii), rrk4 P is even.

Let (P1, f1) be a hyperbolic hermitian space such that rtk4 P; = 2. Then, by
Lemma 27 (P, f) 2 n- (P, f1) for some n € N. It is therefore enough to prove
the proposition for (Pp, f1). We now split into cases, making different choices of

(Py, f1) in each case.

Case I. 7|1 is not the standard S-involution of T. We may assume that ¢ = —1.
This already holds when o|s = idg, because then 7 is orthogonal while (7,¢) is
symplectic. When o|s # idg, by Hilbert’s Theorem 90, there exists n € S with
n°n~t = —e and we can apply 7-conjugation (see Gl Proposition 1) to replace
f,ewithnf, —1.

Consider the hyperbolic (—1)-hermitian form f; : Ax A — A given by fi1(z,y) =
279 7 ]y; note that rrkqg A = 2 and [§ 5] is a Lagrangian of f;.

We claim that there exists A € T such that A2 € $*, T = S @ AS and A7 = A\
If o|s = idg, then o|r = idy and the existence of A follows from Lemma

If o|s # idg, then 7 is unitary (Lemma [AF]), so T is quadratic étale over Ty :=
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S1(T, 7), which is in turn quadratic étale over R and satisfies ToNS = S1(5,0) = R.
Applying Lemma to Ty, we see that there exists A € Ty \ R and A\? € R*.
Thus, A2 = A\, and T'= S ® AS because A ¢ S and dimg T = 2.

The conditions A = A% and A\? € S force A = [¢ *°] for some a, b € S such that
a’ = a and a? + ab® € S*. Using Lemma F2(ii), it is routine to check that

([ D =31 w1+ 3lE el g el =o0.
Thus, for all z,y € B, we have
mhi(z,y) = (@[} ly) =277 ([§ )y = 0.

It follows that B is a Lagrangian of 7 f;. Since rtkp Bp = 1 = %rrkBA and
BA = A= P, we are done.

Case II. 7| is the standard S-involution of T'. Since T is unitary, (o, €) is necessarily
orthogonal. Thus, o is orthogonal and € = 1.

By Proposition [L2T] dimgS—1(T,0) = 1 = dimgS_1(A,0), so we must have
T=S+8_1(A,0) =S ®AS with X\ := [ §]. Using Lemma EE2(ii), it is routine
to check that m: A — B is given by 7[% Y] = 1(z + w)[§ {] + s(a "y — 2)[ 4 §1.

Consider the 1-hermitian hyperbolic form f; : A x A — A given by f(x,y) =
z7[9 4]y (the space [§ 5] is a Lagrangian). As in Case I, one readily checks that

7[9 %] =0 and hence B is the required Lagrangian of  f;. O

The case where 7 is unitary and (o, ¢) is symplectic is addressed in the following
proposition. Note that we allow R to be semilocal.

Proposition 6.8. With Notation [{_1], suppose that R is connected semilocal and
(0,¢) is symplectic. Let (P, f) € HE(A, o). Then:
(i) If T is unitary, T is connected, [A] # 0 and 7 f is hyperbolic, then 4 | rrk4 P.
(i) If [A] = 0, then f is hyperbolic.
(i11) If T is unitary, T is connected, [A] = 0 and wf admits a Lagrangian M
with M A = P, then 4 | rrky P.

Proof. Note that S = R, and thus T quadratic étale over R. By Lemma [[.T7] and
the connectivity of R, the involution 7|r : T — T is either idy or the standard R-
involution of 7. Thus, when 7 : B — B is unitary, 7|7 is the standard R-involution
of T.

(i) Since 7 is unitary, 7|7 is the standard involution of T. For the sake of
contradiction, suppose that rrk4 P is not divisible by 4. By Corollary 2Z9(ii), there
exists V' € P(B) such that rrkg P = 2rrkp V. Since rtkp Pp = t11ky P, we have
rtka P = 2n, where n := rrkg V. Thus, rrtkg V is odd. By Corollary and
Theorem [[8 n[B] = 0. On the other hand, 2[B] = 2[Ar] = 0, because A has an
involution of the first kind, so [B] = 0. We now apply Reduction to assume
that B =T, deg A = 2, o is orthogonal and ¢ = —1.

By Lemma [[26] there exists ¢ € S_1(T,7) N T*. We apply c-conjugation, see
and Proposition 7] to replace o, f, € by Int(c) o o, cf, —e. Now, e =1 and o
is symplectic. Let A\, u € A* be as in Lemma [L3(iii) (so A7 = —X and pu7 = —pu)
and note that S1(A,0) = R.

Since rrkq P = 2n, the A-module P is free (Lemma [[L24]). Thus, by Proposi-
tion T3] we may assume that f = (a1,...,an)4,0) With aq,...,an € S1(A4,0) N
AX = R*. Now, it is routine to check that, upon identifying B% with Ap via
(b1,b2) = b1 + pba, the form 7f is just (o, —nai,az, —nag, ..., an, —Nan) (1),
where p* = 7. Since mf is hyperbolic, n"* = disc(nf) = disc(n - (1, —1)(1.,)) =
1 mod Nrg/r(T*) (see 2H). Since n is odd, this means that there exists t € T
with t°t = n = p?. As pb = b7y for all b € B, the element e := 1(1 + p~'t) is
an idempotent. Furthermore, e ¢ {0, 1}, otherwise u € B. Thus, eA4 is a proper
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nonzero summand of A4, so rrkg eA = 1. But this means that [A] = [ede] = 0
(Corollary [LT2), a contradiction.

(ii) By Reduction ET0, we may assume that o is orthogonal, hence e = —1. By
Theorem [[30, there exists e € A such that rtkaeA = 1 and €? = e. Applying
e-transfer (see BG)), we may replace A, o, f with eAe, 0|cae, fe and assume that
A=Rand f: P x P — R is an anti-symmetric unimodular bilinear form. Every
such f is hyperbolic, e.g., apply the argument in [65, Lemma 7.7.2] to a basis
element of P.

(iil) Arguing as in (i), we may assume that B = T, deg A = 2, ¢ is symplectic
and e = 1. Let A\, u € A* be as in Lemma [3|iii). Then, writing 7 := 7, 72 = idp
and 71 := 7, we are in the situation of (Al Thus, by Remark B.9(i), there exists
(Q,g9) € H™Y(T,idr) such that p2(Q,g) = (P, f). Since g : Q@ x Q — T is an
anti-symmetric unimodular bilinear form, rrkp Q must be even, and since rrkp @
is constant (T is connected), we have t11ky P = kg QA = 21rrkp Q. Tt follows
that 4 | rrk4 P. O

Proposition 6.9. With Notation[].1] suppose that R is a field and (,¢) is unitary
or symplectic. Let (P, f) € H(A, o) be a hermitian space such that rrks P is even
and wf is hyperbolic. If T is unitary and (o,¢) is symplectic, we also assume that
4| rrka P. Let M be a Lagrangian of wf such that rrkg M = %rrkB P. Then there
exists o € U(w f) such that oM - A= P.

Proof. Thanks to Proposition lET4] when R is infinite, it is enough to prove the
proposition after base-changing to an algebraic closure of R, in which case [A] = 0.
On the other hand, if R is finite, then [A] = 0 by Wedderburn’s theorem. We may
therefore assume that [A] = 0.

We claim that 7f admits a Lagrangian M’ such that M’A = P and rrkg M’ =
%rrkB P. To that end, we split into three cases.

Case 1. S is not a field. Then M’ exists by Proposition [6.5]

Case II. S is a field, T is unitary and (o,¢) is symplectic. Then f is hyperbolic by
Proposition [6.8(ii) and 4 | rrkp P by assumption, so M’ exists by Proposition 6.6

Case III. S is a field, and T is not unitary or (o,€) is not symplectic. Using Propo-
sition 2 write (P, f) = (P1, f1) ® (P2, f2) with f; anisotropic and f> hyperbolic.
Then [rfi] = [7f] =0 in W.(B, ), so [rf1] is hyperbolic by Theorem 2.gii).

By virtue of Remark B.7, any Lagrangian M, of «f; satisfies M1 A = P;. We
claim that one can choose M7 such that rrkg M7 = %rrkB P. Indeed, by Corol-
lary 2Z9(ii), rrk4 P is even, so rrks Py is also even. Thus, rrkp Py is even. Since
[B] = [A®s T] = [T, there exists V' € P(B) such that rrkp V' = degT = 1 (Propo-
sition [[LT1)iii)). By Lemmas 27 and 2.6] there is an isometry h{,.. — 7 f1, where
n= %rrkB T. Take M; to be the image of V™ in P;.

Next, by Proposition [6.7] there exists a Lagrangian My of 7 fe with MyA = Py
and rrkg My = %rrkg P,. Take M' = M, © M.

Now, since rrkp M’ = %rrkB P = rrkp M, Lemma [2.22] and Proposition 2.10]
imply that there exists ¢ € U%(7f) such that oM = M’  so oM - A = P. O

Theorem 6.10. Theorem [61] holds when R is connected and (T,¢) is symplectic
or unitary.

Proof. Recall that we are given (P, f) € H®(A, o) such that [7f] = 0. By Theo-
rem [Z8ii), 7 f is hyperbolic.

(i) Suppose that that 7f admits a Lagrangian M such that MA = P. If 7 is
unitary and (o,¢) is symplectic, then parts (i) and (iii) of Proposition .8 imply
that 4 | rrk4 P. Moreover, part (i) of this proposition implies that [A] = 0 when 7 is



60 AN EXACT SEQUENCE OF WITT GROUPS

unitary, (o, ) is symplectic and 4 { rrk4 P. In this case, part (ii) of that proposition
says that f is hyperbolic.

Conversely, suppose that (7,¢) is symplectic, or (o,¢) is not symplectic, or 4 |
kg P. Let M be a Lagrangian of wf and let my,..., m; denote the maximal
ideals of R. By Proposition [£3, for all 1 < i < ¢, there exists ¢; € U°(7f(m;))
such that ¢;(M(m;)) - A(m;) = P(m;). By Theorem I8 there exists p € U%(rf)
such that ¢(m;) = ¢; for all i. Thus, M’ := pM is a Lagrangian of 7 f such that
M’'A+ Pm; = P for all i. By Nakayama’s Lemma anng(P/M’A) is not contained
in any maximal ideal of R, so it must be R and M'A = P.

(ii) This statement is vacuous under our assumptions.

(iii) By Proposition [6.2] Proposition and (i), we only need to consider the
case where T' is connected, 7 is unitary, (o,¢) is symplectic and [A] = 0. In this
case, f is hyperbolic by Proposition [6.8[(ii), so we may take f’ to be the zero form
and let M = 0. O

6C. Case (2). We now prove Theorem in Case namely, when R is con-
nected and (7,¢) is orthogonal. The main difference with Case [(I)]is the failure of
Proposition[6.9l Thus, the majority of the argument will be dedicated to effectively
characterizing the Lagrangians M of 7 f for which Proposition [6.9] fails.

Throughout this subsection, we assume, on top of Notation Bl that (7,¢) is
orthogonal, hence 7|7 = idyr and S = R. This also means that (o, ) is orthogonal
(Lemma [T2]).

Following Remark 214l given (Q, g) € H*(B,7), we write Up(g) for the group
T-scheme of isometries of g, and U(g) = Ug(g) for the R-scheme of isometries of g.
The corresponding neutral components are denoted U%(g) and U%(g) = U%(g). It
was observed in Remark 214 that Ry, g Ur(g) = U(g) and Ry, rU%(g9) = U%(g),
where Ry /g is the Weil restriction. Combining this with Proposition TG we see
that U%(g) is the scheme-theoretic kernel of

Ry r(Nrd) : U(g) = Rr/rUr(9) = Rr/rita 1

We abbreviate Ry g(Nrd) to Nrd. The norm map Nrp,p : T — R induces a
morphism of affine group R-schemes,

Nrr/r : Rr/ritor = Mo R
and its kernel is pty g, viewed as a subgroup R-scheme of Rz g 1 via the inclusion
R — T. We write
N :=Nrp/poNrd : U(g) — py g
Given (P, f) € H°(A, o), Lemma L T3|(ii) implies that the diagram

U(f)——=U(xf)

lNrd lNrd

p2(R) = p2(T’)

commutes. Thus, given ¢ € U(f), we may speak about the reduced norm of ¢
without specifying if we view ¢ as an isometry of f or 7 f.

Finally, recall from RE] that Lag(r f) denotes the set of Lagrangians M of 7 f with
kg M = % rrkp P, and these are all the Lagrangians of 7 f because 7|7 = idy. In
particular, if 7 f is hyperbolic, then ¢ rrk 4 P = rrkp P must be even. Recall also the
sheaf Lag(mf) over (Aff/T)sppr; we write Ry pLag(nf) for its Weil restriction,
which is the sheaf on (Aff/R)gppr mapping an R-ring S to Lag(mfs).

Lemma 6.11. With Notation [[.1], suppose that (7,€) is orthogonal. Let (P, f) €
HE(A, o) and assume that wf is hyperbolic. Then (Pr, fr) is hyperbolic.
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Proof. By Lemma [[I8 we have Tr = T x T. Let e := (17,0r) € Tr. By
assumption, 7 fr is hyperbolic, so by Proposition [6.3] the e-transfer of fr (see 2l
is also hyperbolic. Thus, fr is hyperbolic. 0

Proposition 6.12. With Notation [{.1, suppose that (7,€) is orthogonal. Let
(P, f) € H*(A,7) and assume that 7f is hyperbolic. Let U(rf) act on py g via N.
Then there exists a unique U(r f)-equivariant natural transformation,

Uy RyrLag(nf) — pa g,

such that for any R-ring Ry and any L1 € Lag(fr,), one has Uy(L1) =1 in pa(Ry).
The map V¢ has the following additional properties:

(i) If f is hyperbolic and L € Lag(f), then ¥y = Nrp/p ORT/RQ)(LMC) (notation
as in Proposition [Z27).
(it) If (P, f') € H°(A,0) and wf' is hyperbolic, then U s ¢ (MBM') = U p(M)-
U (M) for all M € Lag(nf), M' € Lag(rf').
(i1i) Let e € B be a o-invariant idempotent such that rrkp eB is positive and
constant on the fibers of SpecT — Spec R. Then (M) = U (Me) for
all M € Lag(rwf) (notation as in[2G).

Note that L; is a Lagrangian of 7 fg, because we can find L) € Lag(fr,) such
that Ly & L} = P as A-modules (see RB) and 7f(Ly, L) = nf(L}, L)) = 0.

Proof. Fix some My € Lag(rnf), write &y = RT/R<I>§\Z({) : Rr/rLag(nf) = Ry/rity
(see Proposition for the definition of ®,,), and let Wy := Nrp g odg. It is
clear that Wy : Ry rLag(mf) — py g is U(rf)-equivariant.

We claim that for any R-ring Ry and V, W € Lag(fr,), we have Uy(V) = ¥o(W)
in pp(Ry). Since py g is a sheaf on (Aff/R)tpqc, it is enough to check that Wo (V') =
Uy (W) after base-changing along a faithfully flat ring homomorphism Ry — Rs.
By Proposition [223] we can choose Ry such that there exists ¢ € U(fgr,) with
V ®gr, Re = p(W ®pg, Rz2). Since Nrd(p) € pa(R2) and ¥y is U(rf)-equivariant,
we have ‘I’()(V ®R1 RQ) = NI’T/R(NI'd((,D)) . \Ifo(W ®R1 RQ) = \Ifo(W ®R1 Rg) in
u2(R2), as required.

Let Ry :=T. Then fg, is hyperbolic by Lemma [Tl Fix some Ly € Lag(fr,)
and write 6 := Uo(Lg) € p2(Ro). We claim that 6 is in fact in po(R). To that end,
let 41,12 : Ry — Ro ® Ry denote the homomorphisms r — r® 1, r — 1 ® r. By the
previous paragraph, we have i1 Wo(Lo) = Wo(Lo ®4, (Ro ® Ro)) = Yo(Lo ®i, (Ro ®
Ry)) = i2Wo(Lo) in p2(Ro @ Ro). Since py g is a sheaf on (Aff/R)spqe, this means
that 0 € pua(R).

Define Wy = 60~ - ¥, Then ¥y : Ry gLag(nf) — py is U(nf)-equivariant
and ¥y(Lo) = 1 in p2(Rp). Let Ry be an R-ring and let Ly € Lag(fr,). By what
we have shown above, ¥o(L1 ®p, (Ro ® R1)) = Vo(Lo ®p, (Ro ® R1)) = 0 in
t2(Ro ® Ry). Since Ry — Ro ® Ry is faithfully flat, this means that ¥o(Lq) = 6 in
pa(R1), s0 Uy(Ly) = 1. Thus, ¥y satisfies the condition in the proposition.

If W' : Ry/rLag(nf) — py g also satisfies the condition in the proposition,
then ¥/(Lg) = 1 = W(Ly). If Ry is an R-ring and M € Lag(wfr,), then, by
Proposition[Z23] there exists a faithfully flat Ro® Ri-ring Re and ¢ € U(w fg,) such
that ©(Lo ®r, R2) = M ®p, Ry. Thus, W(M) = N(p)¥'(Lo) = N(¢)¥s(Lo) =
U (M) in pa(Re). Since Ry — Ry ® Ry — Ry is faithfully flat, this means that
(M) = U (M) in p2(Ry), s0 ¥ = 0.

We finally verify the additional properties (i)—(iii).

(i) Take My = L and Lo = Lp, in the construction of ¥y; one gets 6 = 1.

(ii) It is enough to prove the equality after base-changing to Ro. It is then a
consequence of (i) (take L = L) and Proposition [2.25(ii).
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(iii) Again, we may base change to Ry first. The claim then follows from (i) and

item in O
It turns out that U is often constant on Lag(n f).

Lemma 6.13. With Notation[].1], suppose that R is connected semilocal and (T,¢)
is orthogonal. Let (P, f) € H®(A,7) and assume that wf is hyperbolic. Then
U, : Lag(nf) — pa(R) = {£1} is onto if and only if T =2 R x R, [A] = 0 and
P +£0.

Proof. The lemma is clear if P = 0, so assume P # 0.

Let M,M' € Lag(nf). By Lemma 222 there exists ¢ € U(nf) such that
oM = M', hence Nrp/r(Nrd(p))W (M) = Wy(M'). From this we see that the
condition that Uy : Lag(nf) — pe(R) is onto is equivalent to the existence of
p € U(nf) with Nrp, g Nrd(¢) = =1 in p2(R).

Suppose that [A] =0and T = Rx R, and let e = (1r,0r) and ¢’ = (Og, 1g). By
Proposition[6.3] we may identify U(wf) with U(f.) x U(fe/), and under this identi-
fication, Nrd : U(wf) — ua(T) is just Nrd x Nrd : U(f.) X U(fer) = pa(R) X pa(R).
Since [Be] = [Be'] = [A] = 0 (Lemma [£4)iii)), this map is onto by Theorem [Z201
One readily checks that Nrp/p : p2(T) — p2(R) is also onto, so we conclude that
there exists ¢ € U(nf) with Nry/p Nrd(p) = —1.

Conversely, suppose that ¢ € U(rf) satisfies Nry g Nrd(p) = —1. If T were
connected, then we would have Nrp/p(u2(T)) = Nrp/r({£1}) = 1, so we must
have T' = R x R (Lemma [[.T6) and Nrd(¢) € {(1,-1),(—1,1)}. Let e and ¢’
denote the nontrivial idempotents of 1. Appealing to Proposition as in the
previous paragraph, we see that ¢|p. € U(fe) and ¢|per € U(fer), and either
Nrd(¢|pe) = —1 or Nrd(p|per) = —1. Thus, by Theorem 220) [eAe] = 0 or
[¢’Ae’] = 0. Since [A] = [eAe] = [¢/ Ae'] (Lemma [ 4[(iii)), [4] = 0. O

Proposition 6.14. With Notation [[.1, suppose that R is a field, T = R x R,
[A] = 0 and (7,¢) is orthogonal. Let (P, f) € H*(A, o) be a hyperbolic hermitian
space. Then there exists M € Lag(nf) with MP = A. Ewvery such M satisfies
Wy (M) = (1) ”

Proof. By Reduction[£.10, Corollary [[L T2l and Proposition [B.12(iii), we may assume
that B =T, deg A = 2 and 7 is orthogonal. As a result, ¢ = 1. Recall that o is
also orthogonal in this case (Lemma [{12]).

Let e denote a nontrivial idempotent of T'. We identify A with Mz (R) in such a
way that e = [} §]. Thus, B =T = R+ Re consist of the diagonal matrices, and
m:A— Bisgiven by m[2 %] = [29]. Since e” = e, there exist « € R* such that o
is given by o : [2 5] — [ %1, T

Let f1 : A x A — A be the hyperbolic 1-hermitian form given by fi(z,y) =
z7[9 4]y ([B £] is a Lagrangian). Since rrkq A = 2 and rrka P is even (because 7 f
is hyperbolic), we have (P, f) & 4L . (4 f,) (Lemma 7). Thus, it is enough to
prove the existence of M when (P, f) = (A, f1). To that end, take M := B = [E 9 ];
it is a Lagrangian because A = M & M’ and fi(M',M’) =0 for M’ = [} E].

We proceed with proving the second statement of the proposition. Suppose that
M € Lag(wf) satisfies MA = P. Write ¢ = 1 — e. Using Proposition [6.3] we
shall view 7w f as fo x fer and identify U(nf) and Lag(w f) with U(f) x U(fe) and
Lag(f.) x Lag(fe), respectively.

Since M € Lag(w f), we have Me € Lag(f.), and so MeA € Lag(f) (see item [(t5)]
in[2G)). Similarly, Me'A € Lag(f). Since MA = P, we have MeA+ Me'A = P and
A-length considerations force P = MeA & Me'A.

By Lemma [Z27] there exists ¢ € U(f) such that p(MeA) = Me'A. Write
©Ye = ¢|pe. Then, viewing (p., 1) as an element of U(f.) x U(fer) = U(nf) and
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working in Lag(w f) = Lag(f.) x Lag(fe), we have
(e, 1) - M = (e, 1)(Me, Me') = (p.(Me), Me')
= (p(MeA) e, Mc') = (Me' Ae, Me' Ae') = Me' A.

By Proposition 612, we have N (g, 1) - W;(M) = W;(Me'A) = 1, because Me'A €
Lag(f). Furthermore, by Proposition2.26] MeA®Me’'A = P implies that Nrd(y) =
(=1)27ka P Together, this gives W (M) = N(gp.,1)"' = Nrd(p.) - Nrd(1) =
Nrd(p) = (—=1)2 "4 P a5 required. 0

Corollary 6.15. With Notation[{.1], suppose that (T,¢) is orthogonal. Let (P, f) €
H=(A,0) and let M € Lag(nf). If MA = P, then U (M) = (—1)27ka P,

Proof. By Lemma [Z17 it is enough to prove the corollary after specializing to an
algebraic closure of k(p) for all p € Spec R, so assume that R is an algebraically
closed field. Then [A] =0 and T = R x R. We claim that f is hyperbolic. Indeed,
fr is hyperbolic by Lemma and T~ R x R, so f is also hyperoblic. The
corollary therefore follows from Proposition [6.141 O

Proposition 6.16. With Notation [{.1], suppose that (T,¢) is orthogonal and R is
a field. Let (P, f) € H®(A, o) and let M € Lag(nf). Then there exists ¢ € U%(r f)
such that oM - A = P if and only if Uy(M) = (—1)zrkr 4,

Proof. 1f oM - A = P for ¢ € UY(rf), then Wp(M) = N(p)W (M) = Us(oM) =
(71)% rrkr A by Corollary .15 We turn to prove the converse.

Using Proposition 28] write (P, f) = (P1, f1) @ (Pa, f2) with f; anisotropic and
f2 hyperbolic. Since [rfi] = [7f] = 0 in W.(B, ), the form mf; is hyperoblic
by Theorem [Z8(ii). Let M; € Lag(nfi). Arguing as in Remark 37 we see that
MiA = Py, and Wy, (M) = (=1)27%a P by Corollary We now split into
cases.

Case I. [A] =0 and T = R x R. By Proposition [6.14] there exists My € Lag(m f2)
such that MyA = P,. Write M’ = M; & M. Since M'A = P, we have Uy (M') =
(—=1)z kA P by Corollary G150 By Lemma 222 there exists ¢ € U(rf) such that
YM = M'. Since Wp(M') = (=1)27*aP — ¥ (M), this means that Nrd(¢)) €
ker(Negyp : pa(T) — pia(R)) = pa(R).

If Nrd(y) = 1, take ¢ to be ¢. If Nrd(y)) = —1, then P # 0. Since [4] = 0,
Theorem 2200 implies that there exists £ € U(f) with Nrd({) = —1. Then ¢ is an
A-linear isometry of 7 f, hence £ M is a Lagrangian of 7 f satisfying &Yy M - A =
E(WYM - A) = EP = P, so take ¢ = &1

Case II. [A] = 0 and T is a field. Let Ly € Lag(f2). By definition, we have
W, (Lg) = 1, hence Wy(M; @ Ly) = Wy (M) - Up,(Lg) = (—1)2" 4P (Propo-
sition [6I2(ii)). On the other hand, by Lemma GI3 ¥ ;(M; @& Lo) = ¥y(M) =
(71)%“1“‘ P s0 %rrkA P, = %(rrkA P —rrk4 P1) must be even. Now, by Proposi-
tion [6.6 there exists My € Lag(nfa) such that Mo A = P5. Proceed as in Case L

Case III. [A] # 0. By Wedderburn’s Theorem, R is infinite. Therefore, thanks
to Proposition TI4{ii), we are reduced into proving the proposition when R is
algebraically closed. This is covered by Case I. O

From Proposition [6.1G], we see that in order to apply the proof of Theorem [G.10]
to our situation, we need to find a Lagrangian M € Lag(rf) with Up(M) =
(=1)zka P The following two propositions, which address the cases [B] # 0 and
[B] = 0 respectively, characterize precisely when such M exists.
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Proposition 6.17. With Notation[{.1], suppose that R is semilocal, T is connected
and (T,¢) is orthogonal. Let (P, f) € H°(A, o) and assume that wf is hyperbolic.
If [B] # 0, then U (M) = (—1)2 %74 for all M € Lag(rf).

Proof. For the sake of contradiction, suppose that there exists M € Lag(nf) with
Wi (M) = (—1)2 ke A+l By Lemma [B11] there exists L € Lag(fr), and rrka, L
is constant because it equals %rrkAT Pr.

Suppose that rrka,. L is odd. Then (rtka, L) - [A7] = 0 by Corollary [[T13] and
Theorem [[.§], and 2[Ar] = 0 because Ar has a T-involution. Thus, [B] = [Ar] =0,
a contradiction.

Suppose that rrka, L is even. Then %rrkAP is also even. Now, U (M
V(M) = —1 while ¥¢(L) = 1. By Lemma [6.13] this means that [B] = [Ar] =
so again, we have reached a contradiction.

|

)

O

Lemma 6.18. With Notation[{.1] suppose that R is semilocal, deg B =1, T =idp
and e = 1. Let (P, f) € H(A,o0) and assume that wf is hyperbolic and rrka P is
constant and greater than 2. Then there exists x € P such that f(x,x) € A* and
wf(x,x) =0.

Proof. Define A, v as in Lemma [3[i) (so A7 = A and u% = —p).

Step 1. We first prove the existence of 2 when R is a field. Write (P, f) = (Py, f1)®
(Py, f2) with fi anisotropic and f2 hyperbolic (Proposition 2H). As in the proof
of Proposition 616} 7 f; and 7 fy are hyperbolic, so both rrk4 Py and rrks Py are
even. By assumption, rrka Py > 0 or rtky Py > 4.

If rtka Py > 0, then there exists nonzero x € P; such that nfi(z,2) = 0.
Thus, fi(z,z) € S1(A,0) Nkerm = pAR. Since fi is anisotropic, f1(xz,z) # 0, so
flz,z) = fi(z,z) € uAR* C A*.

If rrka P> > 4, then fy has an orthogonal summand isomorphic to (A, —pA) (a,0)
(Lemma 7). Now take = to be the vector corresponding to (14,04) € A% in P.

Step 2. We continue to assume that R is a field. Let z,y € P be two elements such
that 7f(x,2) = 7wf(y,y) = 0 and rrkg 2B = rtkpyB = 1. We claim that there
exists ¢ € U%(nf) such that gz = y.

Suppose first that 7" is a field. Our assumptions imply that B = yB as B-
modules. Since 7f is unimodular, there exists 2’ € P such that nf(z,2’) = 1.
In particular, the restriction of f to Q = B @ xB’ is unimodular, so P = Q &
Q+. Since rtkg P = trtky P > 4, we have Q- # 0. By Theorem [Z20, there
exists Yo € U(f|grxgr) with Nrd(vp) = —1. Let ¢ = idg®vp € U(nf). By
Theorem 23] there exists ¢ € U(nf) with pz = y. If Nrd(p) = 1, we are done.
If not, Nrd(¢) = —1 (because T is a field) and we can replace ¢ with @i to get
Nrd(p) = 1.

When T is not a field, we have T' = R x R and we can apply the argument of
the previous paragraph separately over each factor of 7.

Step 3. We now prove the proposition for all R. Since rrkg P = vt1rkyq P > 4 and
7 f is hyperbolic, there exists y € P such that 7f(y,y) = 0 and yB is a summand
of Pg of reduced rank 1.

Let my,...,m; denote the maximal ideals of R. By Step 1, for all 1 < i < ¢,
there exists x; € P(m;) such that = f(m;)(z;, ;) = 0 and f(m;)(z, ;) € A(m;)*.
The latter condition implies that annp(m,) z; = 0, 80 1Tk (w,) 2;B(m;) = 1. Thus,
by Step 2, there exists ¢; € U°(nf(m;)) such that p;y = x;.

By Theorem 218 there exists ¢ € U(wf) such that p(m;) = ¢; for all 1 <i <t.
Let © = py. Then f(z,z) = f(y,y) = 0 and f(z,z)(m;) = f(m;)(x, z;) € A(m;)*
for all i. By Lemmal[L8 f(z,z) € A%, as required. O
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The next proposition makes use of the discriminant of hermitian forms over

(A, o), see 2H

Proposition 6.19. With Notation[.1] suppose that R is semilocal, T is connected,
[B] = 0 and (7,¢) is orthogonal. Let (P, f) € H°(A, o) and assume that wf is hyper-
bolic. TherlL V(M) = (=1)27%A P for some M € Lag(nf) if and qnly if disc(f) =
disc(T/R)z %4 P When this fails, [A] = 0, disc(f) = disc(T/R)z k4 P+L and f
18 1S50lropic.

Proof. Recall that rrtk4 P is even because 7 f is hyperbolic. Furthermore, rrky P is
constant because T is connected. By Reduction [0, we may assume that deg B =
1, deg A =2, 7 = idy and € = 1. Define A\, as in Lemma E3(i) (so A = X and
u? = —p). By Lemma 613 Uy is constant on Lag(wf) and we denote the value
that it attains by \Iff. The proposition is clear if P = 0, so assume P # 0.

Suppose first that rtky P > 2. By Lemma [6I8 there exists z € P with
f(z,x) € A and 7f(z,x) = 0. Write P, = 2A, P = P{- and let f; = f|p,xp
(i = 1,2). Since f(z,z) € AX, we have (P, f) = (P1, f1) ® (P2, f2). Moreover,
f(xz,z) € kermr N Si1(A,0) N A = pAR*, so (P1, f1) = (apA)a,s) for some
a € R*. Thus, disc(f1) = — Nrd(u) Nrd(ap)) = o?A? = disc(T/R) mod (R*)?
(Proposition ZZ7(v)). Since wf(x,2) = wf(zp,xp) = 0 and A = 2B @ zuB,
we have B € Lag(rfi). Moreover, 2B - A = zA implies that ¥y, = —1 (Corol-
lary [6.13). Since 7 fq is hyperbolic, [rf2] = [rf] = 0 in W.(B, 1), so 7 fy is hy-
perbolic by Theorem 2.8(ii). Now, disc(f) = disc(f1) disc(f2) = dise(T/R) disc(f2)
and Uy = Wy, Uy, = —U g, (Proposition[GI2(ii)), so the proposition holds for (P, f)
if and only if it holds for (Pa, f2). Replacing (P, f) with (Ps, f2) and repeating this
process, we eventually reduce to the case where rrks P = 2.

Suppose henceforth that rrky P = 2. We may assume that P = A4 and f =
(a)(a,s) for some a € S1(A,0) N A*. Write a = by + pby with by,by € B and
let 6 denote the standard R-involution of T (so A\’ = —)). Note that a” =
implies b§ = —by and, by Proposition Z27(v), disc(f) = — Nrd(p) Nrd(by + ubs)
12 (0701 — p*b3bs) = p?(bb1 + p1b3) mod (R*)?.

Straightforward computation shows that the Gram matrix of 7 f relative to the
B-basis {1, u} is

I =

b1 7M2b2
—pPby —p?b
Thus, disc(rf) = p?b{by + p*b3 = disc(f) mod (T*)2. Since mf is hyperbolic,
disc(mf) = (T)?, so there exists d € T* such that
d? = (2 (b9by 4 1262 = disc(f) mod (R*)?.
Identifying Ap with B? via the basis {1, 4}, let M = [~#702+d]T 1] ;bef_ T
and M’ = [_“i’l’fl_d]T + b |T. Viewing M a subset of A, we have

X = S GLQ(T)

—12bo+d
M = (—pPby 4+ d — pub))T + (268 — 13by — pd)T.
We claim that M + M’ = B2. To see this, observe that [‘Engn] = [_”ill’fl*‘d] +
2 _ 2160 2,60 2,60 . .
[_”_I;)i_d] and [ 21‘;;;1 = 7[_;;’21_(1] 7[_;;’21(1] live in M + M’, and they generate

B?% because they are the columns of the matrix [ % 2]X € GLy(T). Furthermore,
we have M N M’ = 0 because

by —H2b2+d _ by —H2b2—d 1
[_H%z_d mhst| =0 ana g e M=o,

2 2
while L;ﬂszrd ‘ﬁ#’?b;rd] + 7#2bblz+d ‘ﬁ#’?bgd] = 2X € GLo(T). It is routine to check
1 1

that 7f (M, M) =nf(M’',M’) =0, so we conclude that M € Lag(wf).
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We claim that d € R* or d € AR*. Indeed, write d = o + S\ with «, 5 € R.
Then (a? + A\?8?) + 2a8\ = d*> € R*, so a8 = 0 and aR + SR = R (because
d? = a®>+)%% € aR+BR). Multiplying the latter equation by «, we get o’ R = aR,
so there exists ¢ € R with ca? = a. The element ac is an idempotent and R is
connected, hence ac € {0,1}. If ac = 0, then @ = ca? = 0 and d € AR*. On the
other hand, if «e = 1, then 5 = 0, because af =0, and d € R*.

Now, if d = a\ for some a € R*, then disc(f) = A\?(R*)? = disc(T/R), and

20\ = pPby 4+ adp — 268 + 126§ — 13y — ap)
= (=12by + d — pby)pp + (2] — by — pd) € MA

(note that bop = pb$ = —pbs). Thus, MA = A and ¥; = —1 by Corollary G5
On the other hand, if d € R*, then disc(f) = (R*)? = disc(T/R)? and

(—%by + d — pby)p = —(u*b] — by — pd) € M,
(16 = pbs — pd)p = —(—p?ba + d — pbr)p® € M.

Thus, M is an A-module, and it follows that «(f(M,M)u) = wf(M,Mup) =
mf(M,M) = 0, hence f(M,M) = 0. Similarly, M’ is also an A-module with
f(M',M") = 0, so f is hyperbolic and M is a Lagrangian of f. In particular,
f is isotropic. Now, by the characterizing property of W; in Proposition [6.12]
Uy =W;(M)=1,and by Corollary[615, there is no M’ € Lag(n f) with M'A = P.
Moreover, rtky M = i1rkg A = 1, so [A] = [Enda(M)] = [R] = 0 by Proposi-
tion [LTTKi).

The proposition follows because only one of the previous cases can hold. Indeed,
we cannot have Wy = 1 and ¥y = —1 simultaneously. (]

Theorem 6.20. Theorem [G1] holds when (T,¢€) is orthogonal.

Proof. Recall that we are given (P, f) € H®(A, o) such that [7f] = 0 in W.(B, 7).
By Theorem 28(ii), wf is hyperoblic. As explained in the introduction to this
subsection, this means that rrks P is even.

(i) This part is vacuous under our assumptions.

(ii) The pair (o,¢) is orthogonal by Lemma [£.121

Suppose that there exists M € Lag(nf) with MA = P. Then V(M) =
(71)% rka Phy Corollary Now, by Proposition 619 either [B] # 0, or
disc(f) = disc(T/R)z %4 P as required.

Conversely, suppose that [B] # 0, or disc(f) = disc(T/R)z "™ 4 P If there exists
M € Lag(nf) with W;(M) = (—=1)2"%4 P then we can argue as in the second
paragraph of the proof of Theorem [GI0(i), replacing Proposition with Propo-
sition [6.16] to show that there exists M’ € Lag(wf) with M’A = P. The existence
of M follows from Proposition [EI7if [B] # 0 and from Proposition [G19]if [B] = 0.

Proposition B also implies that [A] = 0, disc(f) = disc(T/R)z k4 P+1 and f
is isotropic if [B] = 0 and disc(f) # disc(T/R)z k4 P

(iii) By Propositions and [64] we may assume that 7' is connected. By (ii),
we may further assume that [B] = 0 and disc(f) # disc(T/R)z ™4 P in which case
[A] =0 and ¥ (M) = (—1)27ka P+1 for all M € Lag(rf).

Fix some M € Lag(mf). Since [A] = [R], there exists V € P(A) such that
rrtka V = deg R = 1 (Proposition [[LT1Liii)). Then M @ V is a Lagrangian of 7(f @
hi,) which satisfies ¥ gn: (M © V) = (—1)z rrka Py (V) = (—1)Frka P+l
(=1)2ka(POVEVT) (Proposition BI(ii), Lemma Z6). Replacing (P, f) and M
with (PeV e V*, fehf) and M &V, we may assume that ¥¢(M) = (—1)zrka P
and proceed as in the proof of the “if” part of (ii).
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7. PROOF OF THEOREM [3.4]

We can now prove Theorem 3.4 We use the notation of BAl

Proof of Theorem [37) Assume R is semilocal, and recall from BAlthat (A, o) is an
Azumaya R-algebra with involution, \, u € A* satisfy A\2 € S 1= Z(A), A\ = —p,
A = =\, u? = —p, and we have B = Za()\), T = S|\, 1 = o|p, 2 = Int(u~!) o
o|p. To avoid later ambiguity, we henceforth write o7 in place of o.

By Lemma Bl R, S,T, B, A satisfy the assumptions of Notation 1l Further-
more, 7 coincides with 7 = m4 p of LemmalL2]l We shall consider four possibilities
for the involution o in Notation Bl namely, o1 (i.e. o from BA]), Int(A™!) o o7,
Int(p=t) o oy and Int((Ax) 1) o 0. The involution 7 = | from Notation ET] is
71 in the first two cases and 75 in the last two cases, because A commutes with
elements from B. Recall that p: (B,7) = (A, o) is the inclusion map.

According to Theorem B.6] we need prove conditions |[(E1)| [(E2)| [(E3)} [(E4)}

Proof of [(E1)} Let (P, f) € H*(A,01) and assume [ f] = 0. Then existence of the
required Lagrangian of m f follows by applying Theorem [E.1iii) to (P, f) with o1
in place of o.

Proof of [(E2)} Let (Q,g) € H°(B,71) and assume [p1g] = 0 in W_.(A4,0). Put
o =Int(A"Y) ooy and 7 = 71. Then p1g = Apg, where the right hand side is
A-conjugation (see 2G) of the base-change of g along p (see 2C)). Thus, [pg] = 0 in
W.(A,0o), so by Theorem [BEIIii), there exists (Q’,g’) € H(B, 1) with [g] = [¢']
and a Lagrangian L of pg’ such that L & Q" = Q’A. Since L is also a Lagrangian
of p1g’ = A\pg’, we have established for (Q,9).

Proof of [(E3)} Let (P, f) € H™°(A,01) and assume [r2f] = 0. Put o = Int(u~') o
o1, T = 75 and let fo = pu~'f € H°(A,0). Then mof = wfs. By applying
Theorem [BI(iii) to (P, f2), we see that there exists (P’, f}) € H(A,o) with
[f2] = [f4] and a Lagrangian M of maf} such that MA = P'. Put f' = pufl.
Then (P', f') € H™=(A,01), [f'] = [f] and M is a Lagrangian of mo f’ = 7 f} with
MA=P.

Proof of[(E4)} Let (Q,g) € H*(B,72) and assume [pag] = 0. Put o = Int((Au)~!)o
o1 and 7 = 7o. Then pag = (Au)pg, and the proof proceeds as in the case of

This completes the proof of Theorem [3.41 O

In fact, Theorems E.1] and allow us to describe the image of the functors
w1, T2, p1, p2 when T is connected. This description is given in the following theo-
rem, which can be regarded as a refinement of Theorem B4 it will be needed for
some of the applications.

Theorem 7.1. With notation as in [34] suppose that R is semilocal and T is
connected.
(i) Let (P, f) € H°(A, o). Then there exists (Q,g) € H (B, ) with pag = f
if and only if [m1f] = 0 and one of the following hold:
(1) (o,¢) is not symplectic;
(2) 4| rrks P.
If [r1f] = 0 and conditions (1)—(2) fail, then [A] =0 and f is hyperbolic.
(i) Let (Q,g) € H*(B,71). Then there exists (P, f) € H(A,0) with mf =g
if and only if [p1g] = 0 and one of the the following hold:

(1) (o,—¢) is not orthogonal;
(2) [A] = 0;
(3) [B] #0;

(4) (o,—¢) is orthogonal, [B] = 0, rrkp Q is even and [D(g)] = %[A]
(see 2 1 is unitary).
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If [p1g] = 0 and conditions (1)-(4) fail, then rrkp @ is even, [D(g)] =
(HkTQB + 1)[4] and g is isotropic.

(i11) Let (P, f) € H (A, 0). Then there exists (Q,g) € H° (B, 1) with p1g = f
if and only if [ma f] = 0 and one of the following hold:
(1) (12,¢€) is not orthogonal;
(2) [B] #0;
(8) (7,¢) is orthogonal, rrka P is even, and disc(f) = disc(T/R)z ka P

(see[2H}; (o, —¢) is orthogonal in this case).

If [m2f] = 0 and conditions (1)—(3) fail, then [A] = 0, rrky P is even,
disc(f) = disc(T/R)2 ™A P+ qnd f is isotropic.

(iv) Let (Q,q) € HE(B,12). Then there exists (P, f) € H°(A, o) with maf = g
if and only if [p2g] = 0.

Proof. We will use the notation and observations from the first two paragraphs of
the proof of Theorem [34l In particular, we write oy for o of BAl

(i) By Remarkm (Q, g) exists if and only if 7 f admits a Lagrangian M with
MA = P. Put 0 = 01 and 7 = 7, and observe that 7 : B — B is unitary because
T1|7 # idy and T is connected (see Proposition [[21)). Applying Theorem [6.1(i) to
f with o1 in place of o now gives the required statement.

(ii) By Remark (P, f) exists if and only if p;g admits a Lagrangian L
with Q ® L = QA. Put o0 = Int(A\"1) ooy and 7 = 71. Then p1g = A\pg (notation
as in 2Cl RG)), so pg € HE(A, o) has the same Lagrangians as p1g. The statement
therefore follows by applying Theorem B.I[(i) to (Q, g); note that (o, ¢) and (o7, —¢)
have the same type by Corollary [.22(i).

(iii) By Remark BJ(iii)| (Q, g) exists if and only if 7> f admits a Lagrangian M
with MA = P. Put 0 = Int(u"Y) ooy, 7 = 7 and let fo = p~1f € HE(A, 02).
Then 7o f = mfs and both forms have the same Lagrangians. In addition, f is
isotropic if and only if fs is isotropic, and disc(f) = disc(f2) (Proposition 2Z.27(ii)).
The statement therefore follows by applying parts (i) and (ii) of Theorem to
(P, f2). Note that (0,¢) and (o1, —¢) have the same type by Corollary [22(i), and
(7,€) cannot be unitary if (o,¢) is symplectic, because 73| = idy when oy |g = ids.

(iv) By Remark (P, f) exists if and only if pog admits a Lagrangian
L with Q® L = QA. Put 0 = Int((Au)™!) ooy and 7 = 7. Then, as in (ii),
p2g = (A)pg, and the statement follows by applying Theorem BIIi) to (Q,9).
Note that (7,¢) is not unitary when (o,¢) is orthogonal, again because 7|7 = idy
when o|g = ids. O

Corollary 7.2. With the notation of [34l, suppose that R is a semilocal and T
is connected. Let (P, f) € H®(A,0) be anisotropic and assume that [m1f] = 0 in
We(B, 7). Then there exists (Q,g) € H™°(B,12) with pag = f.

Similar statements hold for the image of w1, p1, ma.

Corollary 7.3. With the notation of [34] suppose that R is a reqular semilocal
domain with fraction field K and T is connected. Let (P, ) € H*(A, o) and assume
that [m1 f] = 0 in We(B, 7). Then there exists (Q,g) € H™ (B, 12) with pag = f if
and only if there exists (Q',g") € H™*(Bk, T2,ix) with p2g’ = fK.

Similar statements hold for the image of w1, p1, T2.

Proof. Since R is a regular domain and 7' is connected and finite étale over R, the
ring T is also a regular domain [68] [Tag 03PC]. In particular, Tk is a field. By
the Auslander—Goldman theorem [3, Theorem 7.2], the natural maps Br R — Br K
and BrT — BrTx are injective. Thus, [A] = 0 if and only if [Ax] = 0 and
[B] = 0 if and only if [Bx] = 0. Furthermore, since R is integrally closed, the map
R*J(R*)? — K*/(K*)? is injective. Finally, since T is connected, the type of
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(72,€) is the same as the type of (72,x, ) and the type of (o, £¢) is the same as the
type of (o0k,+e). The corollary now follows readily from Theorem [T O

8. APPLICATIONS

8A. Quadratic Etale and Quaternion Azumaya Algebras. When R is a field,
Grenier-Boley and Mahmoudi [30] noted that the octagon [BI]) recovers two exact
sequences of Lewis [43] involving Witt groups associated to separable quadratic
field extensions and quaternion division algebras. We generalize these sequences
to quadratic étale algebras and quaternion (i.e. degree-2) Azumaya algebras over
semilocal rings.

Before we begin, recall from Lemma [[[T9that when R is semilocal (and 2 € R*),
every quadratic étale R-algebra is of the form R[A|A\? = a] for some o € R, and in
this case, the standard R-involution sends A\ to —\. Quaternion R-algebras admit
a similar description, which is well-known when R is a field.

Lemma 8.1. Let A be a quaterion Azumaya algebra over a semilocal ring R. Then
there exist A\, ;i € A such that N2, u?> € R*, A\ = —p) and {1, \, i, p\} is an R
basis of A. Furthermore, A admits a unique symplectic involution, o, which satisfies
A= —=Xand p® = —p.

Proof. 1t is enough to consider the case where R is connected. Otherwise, write R
as a product of connected rings and work over each factor separately.

The map o : a — Trds/gr(a) — a is a symplectic involution of A, see [62, The-
orem 4.1]. It is unique by [39, Proposition 1.1.3.4]. By Lemma [[L20] there exists
A€ S_1(A,o) N A%, Then —A = A7 = Trd(A) — A, hence Trd(A) = 0. Thus,
A2 = Trd(A)A—Nrd(\) = — Nrd(\) € R*. Since RNAR C S1(A4,0)NS_1(A,0) =0,
it follows that T := R[)] is a quadratic étale R-algebra with R-basis {1,\}. By
Corollary [[L.TH rrkr A4 = 2, so we are in the setting of Notation . Iland the lemma
follows from Lemma[d3l (Of course, there are more direct proofs.) O

Corollary 8.2. Let R be a semilocal ring, let A be a quaternion Azumaya R-
algebra and let A\, u, o be as in Lemma[81. Write B = R[N and 7 = o|g. Then
the sequence

0— Wi(4,0) 2 Wi(B,7) £ W_1(A,0) 2 Wi(B,idg) £ W_,(4,0)
L Woi(B,7) 25 Wi(4,0) = 0
in which the maps are defined as in[34] (with 71 = 7 and 7 = idp) is exact.

Proof. By Proposition [6.8(ii), W_1(B,idg) = 0. The corollary therefore follows
from Theorem B.41 O

Corollary 8.3. Let R be a semilocal ring and let T' be a quadratic étale R-algebra
with standard involution 6. Let p : R — T denote the inclusion map, viewed as a
morphism from (R,idg) to (T,0) or (T,idr), and let A € T be an element such that
AN eR* and T =R® AR (\ always exists by Lemma[LId). Then the sequence

0= Wi(T,0) = Wi (R,idg) 2% Wi (T,idr) =5 Wi(R,idg) 25 W_1(T,0) — 0
with maps given by Tr(g) = Trr g og, A\p(f) = X - pf (notation as in 20, 18
exact.

Baeza [0, Korollar 2.9] and Mandelberg [46l Proposition 2.1] established the
exactness at the left-to-middle and middle terms, respectively. Baeza [6l Theo-
rem V.5.8] later proved the exactness at these terms without assuming that 2 € R*
and gave an alternative ending to the exact sequence.
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Proof. Let A = My(R) and let o : A — A be the symplectic involution [¢ 4]
[ 4 7P]. Write a := A2, We embed (T,6) in (A,0o) by identifying A\ with [9 ¢].
Let p:= [§%]. Then A,o,\ u,B := T and 7 := 0 satisfy the assumptions of
Corollary By Proposition [E8(ii), W1(A,0) = 0, so the exact sequence of

Corollary B2 reduces to:
(8.1)
0 — Wi(T,0) 2% W_1(A,0) =2 Wy (T,idr) 22 W_1(A,0) = W_1(T,0) — 0

Let u=2[ % {], e =[} 3], and let t denote the transpose involution on A. Then
u-conjugation induces an isomorphism W_;(A, o) — W1(M2(R),t) and e-transfer
induces an isomorphism Wy (Mz(R),t) — Wi(R,idRg); see RGl We claim that under
the resulting isomorphism W_1 (A4, o) — Wi (R,idg), the maps p1, 72, p2, 71 in (1)
become Tr, (—\)p, Tr, A\p, respectively. This will imply that the sequence in the
corollary is exact (the sign change in the second map does not matter).

To see that p; and py correspond to Tr, note that for every @ € P(B), the map
r — xe : Q — QAe is a natural isomorphism of R-modules. Indeed, it is routine
to check this for ) = Bp and the general case follows from the naturality and the
fact that every @ € P(B) is a summand of BY for some n. One readily checks
that e"u(Axr)e = e"u(Apx)e = e Trp/p(x) for all € T'. Using this, it is routine to
check that, upon identifying eAe with R, the isomorphism z — ze : Q — QAe is
an isometry from Tr g to (u(p19))e, resp. (u(p2g))e, which is what we want.

We now show that w1 and 7o correspond to Ap and (—\)p, respectively. Given
V € P(R), we view V2 as a right A-module by considering pairs in V2 as 1 x 2 ma-
trices and letting A = Ma(R) act by matrix multiplication. If (V, f) € H!(R,idR),
let f': V2 x V2 — Abe given by f'((x,y), (z,w)) = [}22) 10) Then (V2, f) is
a 1-hermitian space over (A, t) and f! =2 f. It is enough to show that 71 (u=1f’) =
Apf and mo(u=lf’) = (=N)pf. The A-module V? inherits a T-module struc-
ture, and the map = ® (a + \b) — (2za,2zab) : Vo — V2 (x € V, a,b € R)
is an isomorphism of T-modules. (As in the previous paragraph, it is enough to
check this for V = Rp.) Note also that m[?4] = 2(a +d) + 3(a" b+ c)A and
m[2b] =1(a—d)+ i(a™'b— ¢) (e.g. use Lemma ELZ(ii)). It is now routine to
check that the isomorphism Vr — V2 is an isometry from Apf to 71 (u=1(f')), resp.
from (=\)pf to ma(u=t(f)), which is what we want. O

Corollary 8.4. Let A be a quaternion Azumaya algebra over a semilocal ring R
and let o : A — A be the unique symplectic involution of A. Then the map

[f] = [Trda/gof]: Wi(A,0) = Wi(R,idR)
s injective.
Proof. Let A\, u, 0 be as in Lemma 8] and let B, 7 be as in Corollary 22l Corol-
laries and imply that the maps 71 : Wi(4,0) — Wi(B,7) and Trp/g :
Wi(B, 1) — Wi (R,idg) are injective. Their composition is the map in the corol-
lary. O

We now generalize a theorem of Jacobson [30] (see [65] Theorems 10.1.1, 10.1.7]
for a modern restatement) from fields to semilocal rings. Here we need Corollary[7.21

Theorem 8.5. Let A be a quadratic étale (resp. quaternion Azumaya) algebra
over a semilocal ring R and let o : A — A be the standard involution (resp.
unique symplectic involution) of A. Write Tr = Try g (resp. Tr = Trda,r) and let
(P, f),(P', f) € H' (A, o). Then:

(i) (P, f) is isotropic if and only if (P, Trof) € H'(R,idR) is isotropic.

(ii) (P, f) = (P, f") if and only if (P, Trof) = (P',Trof’) in H(R,idRr).
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Proof. (i) By writing R as a product of connected rings and working over each
factor separately, we may assume that R is connected.

We begin with the case where A is quadratic étale over R and Tr = Try g. If A
is not connected, then A = R X R and o is the exchange involution (z,y) — (y,x)
(Lemma [[T6). In this case, (P, f) is always hyperbolic (Example 2Z4]) and thus so
is (P, Tr f). A hyperbolic space is isotropic if and only if its underlying module is
nonzero, so the equivalence holds.

Suppose now that A is connected. It is clear that if (P, f) is isotropic, then so is
(P, Tr f). Conversely, assume that (P, Tr f) is isotropic. By Proposition [Z3] there
is anisotropic (@, g) € H'(R,idg) and a nonzero U € P(R) such that Tr f = g hy,.
By Corollary [[2] and the isomorphism between (BI) and the exact sequence in the
Corollary B3] there is (P”, f"”) € H'(A, o) such that Tr f” = g. Corollary B3
also tells us that Tr : Wi (A,0) — Wi(R,idR) is injective, so [f] = [f]. Since
Tr f = Tr f” @ h};, we have rtkq P” < rrks P. Thus, Theorem 2Z3](i) implies that
there is a nonzero V € P(A) such that f = f” @ hi,, so f is isotropic.

We now consider with the case where A is quaternion Azumaya. Define B, 7
and 7 as in Corollary Since we proved part (i) for quadratic étale algebras,
and since Trdy,r = Trp/g o7y, it is enough to show that (P, f) is isotropic if and
only if (P, f) is isotropic. The “only if” part is clear so we turn to the “if”
part. Suppose that (P, f) is isotropic. Using Proposition 28] choose anisotropic
(Q,9) € H°(B,71) and nonzero U € P(B) such that 7 f = g ® hj,. If B is
connected, then arguing as in the previous paragraph shows that f is isotropic. If
B is not connected, then B = R X R by Lemma [[T6 Let e = (1,0) € B. By
Lemma [L4iii), we have [A] = [eB] = [R] = 0 in Br R, so by Lemma B.8[ii), f is
hyperbolic and therefore isotropic (P # 0 because 7 f is isotropic).

(ii) The map Tr : W1 (A,0) — Wi(R,idg) is injective by Corollary in the
quadratic étale case and by Corollary in the quaternion Azumaya case. The
statement now follows from Theorem [Z.8)iii). O

Remark 8.6. When R is a field, Theorem B5(i) is straightforward. Indeed, if there
is some nonzero x € P with Tr f(z,z) = 0, then f(x,2) = 0 because f(x,x) €
S1(A,0) = R. Since R is a field, A is an A-summand of P, so the form f
is isotropic. However, this argument does not work when R is a semilocal ring,
because £ A may not be an A-summand of P even when xR is an R-summand of
P. For example, take R = Zs), A = Z3)[i] where i = /=1, let 0 : A — A act by
complex conjugation and consider f = (1, 71>(A,0). Put x = (1 +2i,1+ 2i) € A%
Then Tr f(z,z) = 0 and xR is an R-summand of A%, but A/xA has nonzero
5-torsion elements, which means that A cannot be an A-summand of A4%.

8B. The Grothendieck—Serre Conjecture. Let R be a regular local ring with
fraction field K. Recall from the introduction that the Grothendieck—Serre conjec-
ture asserts that for every reductive (connected) group R-scheme G, the restriction
map H}, (R,G) — H} (K, G) has trivial kernel. We now use the corollaries of KAl
and results of Balmer—Walter [9] and Balmer—Preeti [8] to establish the conjecture
for some outer forms of GL,, and Sp,,, when dim R < 4. (Note that in contrast to
many sources discussing the conjecture, R is not assumed to contain a field.)

In order to translate statements about Witt groups to cases of the Grothendieck—
Serre conjecture, we use the following proposition. The case A = R is contained in
[17, Proposition 1.2].

Proposition 8.7. Let R be a semilocal regular domain with fraction field K, let
(A,0) be an Azumaya R-algebra with involution and let € € Z(A) be an element
such that €?e = 1. Then the following conditions are equivalent:



72 AN EXACT SEQUENCE OF WITT GROUPS

(a) The restriction map We(A,o0) — W.(Ak, oK) is injective.

(b) Every two hermitian spaces (P, f),(P', f') € H*(A,0) such that fx = [
are isomorphic.

(¢c) The restriction map H (R, U(f)) — HL (K, U(f)) has trivial kernel for all
(P.f) € He(A,0),

(d) The restriction map H (R, UY(f)) — HL (K, U%(f)) has trivial kernel for
all (P, f) € H*(A,0).

Proof. (a) = (b): By (a), [f] = [f] in W:(4,0). Since Px = Pj, we have
rtka P 2 rrkg P, so f 22 f/ by Theorem [2Z8[(iii).

(b) = (a): Let (P,f) € H®(A,o0) and suppose that [fx] = 0. Then, by
Theorem R.8(ii), fx is hyperbolic, say (Pr, fr) = (Q © Q*,hg) with @ € P(Ak).
Since R is regular, ind A = ind Ax [I Proposition 6.1]. Thus, by Theorem
and Corollary [[T3] there is L € P(A) with rrkq L = rrks, Q. By Lemma [[24]
Q = Lg. This means that fx = h$, = (h)x, so by (b), f = hi and [f] = 0.

(b) <= (c): It is well-known that H}, (R, U(f)) is in correspondence with iso-
morphism classes of hermitian spaces (P’, f') € H®(A, o) that become isomorphic
to (P, f) after base-changing to some faithfully flat finitely presented (i.e. fppf) R-
algebra, see [12, Proposition 5.1], for instance. By [11l Proposition A.1], (P’, f’) is
such a space if and only if rrkg P = rrk4 P/, or equivalently, rrka, Px = rrka, Pj.
The equivalence now follows from the fact that the correspondence is compatible
with base change.

(c) <= (d): If (0,¢) is symplectic or unitary, then U°(f) = U(f) (Proposi-
tion 216) and the statement is trivial.

Assume (o, ¢) is orthogonal. Then 1 — U°(f) — U(f) Nrd, o — 1is a short
exact sequence of sheaves on (Aff/R)s. (To see that the last map is surjective,
pass to the stalks and apply Theorem 2.201) This induces a commutative diagram
of pointed sets,

U(f) 2> (£1} HL (R, U°(f)) —= HL (R, U(f)) —= HL (R, p,)
N | | K
U(fx) —9 {£1} HY (K, U(f)) —= HL (K, U(f)) — H} (K, ps)

in which the rows are cohomology exact sequences and the vertical arrows are
restriction maps. We need to prove that « has trivial kernel if and only if # has
trivial kernel.

The map ~ has trivial kernel by [I8, Proposition 2.2], for instance. Thus, the
Four Lemma implies that 8 has trivial kernel whenever « has trivial kernel.

Next, since R is regular, [A] = 0 if and only if [Ax] = 0 [3, Theorem 7.2]. Thus,
by Theorem 220, Nrd : U(f) — {£1} and Nrd : U(fx) — {£1} have the same
image. Using this, an easy diagram chase shows that if 5 has trivial kernel, then
so does a. (|

Conditions (a)—(d) of Proposition BT are conjectured to hold under the assump-
tions of the proposition. This was affirmed by Gille [29, Theorem 7.7] (see also
section 3.3 of that paper) when R is regular local and contains a field. Further-
more, we have:

Theorem 8.8 (Balmer, Preeti, Walter). Let R be a semilocal regular domain with
dim R < 4 and let K denote the fraction field of R. Then the restriction map
Wi(R,idgr) — W1(K,idk) is injective.
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Proof. Balmer and Walter [9, Corollary 10.4] proved the theorem when R is local,
and Balmer and Preeti [8 p. 3] showed that it is enough to require that R is
semilocal. O

We establish the following additional cases.

Theorem 8.9. Let R be a regular semilocal domain with dim R < 4, let K denote
the fraction field of R and let (A,o) be an Azumaya R-algebra with involution.
Assume that

(1) ind A =1 and o is unitary, or
(2) ind A <2 and o is symplectic.
Then restriction map Wi (A, o) = Wi (Ak, oK) is injective.

Proof. When ind A = 1 and o is symplectic, we have Wi (A,0) = 0 (Proposi-
tion [G8[(ii)). We may therefore assume that ind A = 2 when o is symplectic.

By Theorem[L30] there exists a o-invariant idempotent e € A such that degeAe =
ind A. Applying e-transfer (see 2G)), we may assume that deg A = ind A, namely,
that A is quadratic étale or quaternion Azumaya over R.

Consider the commutative square

Wl(A,O'> Wl(R,ldR)

| |

Wl(AK,O'K) —_— Wl(K, ldK)

in which the vertical arrows are restriction maps and the horizonal arrows are
given by [f] — [Tra/grof] if A is quadratic étale, or [f] — [Trda gof] if A is
quaternion Azumaya. The right vertical arrow is injective by Theorem B.8 and the
top horizontal arrow is injective by Corollary 8.3l when A is quadratic étale, and by
Corollary B4 when A is quaternion Azumaya. Thus, the left vertical arrow is also
injective. O

As a corollary, we verify some cases of the Grothendieck—Serre conjecture.

Corollary 8.10. With notation and assumptions as in Theorem[8.9, the restriction
map H, (R, U(A,0)) — H}, (K, U(A,0)) has trivial kernel.

Proof. We have U(A,0) = U(f), where f : A x A — A is the 1-hermitian form
f(z,y) = 2y, so the corollary follows from Proposition B7 and Theorem B9 O

8C. Purity. Let R be a regular domain with fraction field K and let G be a
reductive (connected) group R-scheme. Recall from the introduction that we say
that purity holds for G if

im (Hét(R, G) — Hg (K, G)) = Nperw (Hét(RPa G) — H (K, G)),

where R(Y) denotes the set of height-1 primes in Spec R. The local purity conjecture
asserts that purity holds for G whenever R is regular semilocal.

The following proposition allows us to prove purity for some group schemes by
establishing certain results about hermitian forms.

Proposition 8.11. Let R, A,0,e and K be as in Proposition [8_7]. Suppose that:

(1) every anisotropic e-hermitian space over (A, o) remains anisotropic after
base changing along R — K, and
(2) 1m( (A 0’) — W (AK,O’K)) = ﬂpER(l) im (W (Ap,O‘p) — W AK,O’K )
Then the equivalent conditions of Proposition [877 hold, and purity holds for U(f)
for every (P, f) € H°(A, o).
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Both (1) and (2) are conjectured to hold when R is a regular semilocal domain.

Proof. We first prove that condition (a) of Proposition 1 holds. Let w be a
Witt class in ker(W.(A4,0) = W.(Ak,0Kk)). By Proposition [Z5], w is represented
by an anisotropic (P, f) € H®(A, o). Since [fx] = 0, the form fx is hyperoblic
(Theorem 228]ii)). If P # 0, then fx is isotropic, and by assumption (1), so is f,
contradicting our choice of f. Thus, P =0 and w = 0.

Next, let (P, f) € H®(A,0). Recall from the proof of Proposition that
H} (R, U(f)) classifies isomorphism classes of hermitian spaces (P’ ') € H*(A, o)
with rrkq P = 1tk P’. Thus, purity for U(f) is the equivalent to saying that if
(Po, fo) € HE(Ak, ox) is such that for every p € R, thereis (P', ') € HE (A, 0p)
with fi = fo, then there is (P”, f") € H®(A, o) such that [} = fo.

Given (Py, fo) € H(Ax,0k), assumption (2) implies that there is (P, f) €
HE=(A, o) such that [fo] = [fK] By Proposition23] we may take f to be anisotropic.
By (1), fK is also anisotropic. By Corollary 2ZX9(i), rrka, Py and rrka, Py are
constant. If rrka, Px > rrka, Py, then by Theorem (i), there is a nonzero
V € P(Ag) such that fx = fo & h§,, contradicting the fact that fx is anisotropic.
Thus, rrka, Px < rrka, Py. Applying Theorem ZR(i) again, we get V € P(Ax)
such that fx ®h$, = fo. As in the proof of Proposition 87 there is L € P(A) with
V 2 L, so fo = (f @hs)k. 0

Condition (1) of Proposition [BITlis known as purity for W.(A, o). Provided R
is regular local and contains a field, it was established by Ojanguren and Panin [49]
when A = R and € = 1, and by Gille [29], Theorem 7.7] for general A, o, ¢.

Condition (2) was proved by Panin and Pimenov [54] Theorem 1.1] for (A,0) =
(R,idg) when R is a regular semilocal domain containing an infinite field k, and
Scully [66, Theorem 5.1] eliminated the assumption that & is infinite.

We use these results together with Theorem to prove purity for some outer
forms of GL,, and Sps,,.

Theorem 8.12. Let R be a regular local ring containing a field and let K denote
the fraction field of R. Let (A,o) be a quadratic étale R-algebra with its standard
inwvolution or a quaternion Azumaya R-algebra with its symplectic involution. Let
(Po, fo) € H' (Ak,0k) be a hermitian space such that for every p € R, there
exists (P®)| f®)) € H'(Ay,0p) such that (P, fo) = (Pl(f), I(f)) Then there exists
(P, f) € HY(A, o) such that (Py, fo) = (Pk, fi). Equivalently, for every (P, f) €
HY(A, o), purity holds for U(f).

Proof. We need to prove conditions (1) and (2) of Proposition8TIl We noted above
that (1) holds in our situation, see Gille [29, Theorem 7.7], so it remains to prove
(2). Suppose that (P, f) € H'(A, o) is anisotropic and let Tr be as in Theorem [BF]
By part (i) of that theorem, (P, Trof) is an anisotropic 1-hermitian space over
(R,idR), and by [66, Theorem 5.1], so is (Px,Trofxk). Applying Theorem [RB35i)
again, shows that (Pg, fx) is anisotropic, which is what we want. 0

8D. The Kernel of The Restriction Map. In our final application we char-
acterize the kernel of the restriction map Wi(R,idr) — Wi(S,ids) when R is a
2-dimensional regular domain (not necessarily semilocal) and S is a quadratic étale
R-algebra. When R is a field, this is a celebrated theorem of Pfister, see [65]
Theorem 1.5.2], for instance.

The proof makes use of Colloit-Thélene and Sansuc’s purity theorem in dimen-
sion 2 [16, Corollary 6.14] and a theorem of Pardon [55, Theorem 5] asserting
that Wi (R,idr) — W1 (K,idk) is injective when R is regular of dimension 2 with
fraction field K.
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Theorem 8.13. Let R be a regular domain of dimension < 2 and let S be a
quadratic €tale R-algebra with standard involution 0. Then the sequence

Wi (R, idr) L2V w5 idg)

[9]—[Trs/ R og]
-

Wl (Sv 9)
is exact in the middle.

Proof. When S is not connected, S = R x R (Lemma [[.T6) and the theorem is
straightforward. Assume that S is a domain henceforth. We abbreviate Trg/r to
Tr and let K denote the fraction field of R.

The sequence is a chain complex in the middle by virtue of Proposition 3.5 and
the proof of Corollary B3} this can also be checked directly.

Let (P, f) € HY(R,idg) and assume that [fs] = 0 in W1(S,ids). Then [fsgx] =
0 in W1 (Sk,ids, ). By virtue of Corollary B3] there exists (Qo, go) € H'(Sk,0x)
such that [Trgo] = [fx]. Adding a hyperbolic space to (Qo,go), we may assume
that dimg Qo > dimg Pk.

Write f} = Tr go. Then there exists a K-vector space V such that f} = fx @ hi,.
Choose U € P(R) with Ux =V and let f' = f & h};. Then f} = f§ = Tr go.

Let p € R, By Corollary and the proof of Corollary B3] there exists
QW) g®)) € HY(S,,0,) such that Tr g¥) = fp- In particular, Tr gg) =~ 1. =Tr go.
Since Tr : W1 (Sk, 0x) — Wi(K,idk) is injective (Corollary B3]), [gg)] = [go], and

since dim g Qg?) = dimg Qp, this means that gg’;) = gp.

Fix some (W,h) € H'(S,0) with ks W = dimg, Q. Recall from the proof of
(b) <= (c) in Proposition BT, that H} (R, U(h)) classifies isomorphism classes of
unimodular 1-hermitian forms (W', ') over (S, 0) with rkg W = rkg W’. Further-
more, U(h) — Spec R is reductive (see[2El). Thus, by Colloit-Théleéne and Sansuc’s
theorem on purity in dimension 2 [I6, Corollary 6.14], there exists (Q, g) € H!(S,0)
such that g = go.

Note that [Trgx] = [Trgo] = [fx]. By [55, Theorem 5] or [9, Corollary 10.2]
(here we need dim R < 3), the map Wi(R,idr) — Wi(K,idk) is injective, so
Trg] = [f] 0

Remark 8.14. Theorem also holds if R — S is replaced with a quadratic
étale covering of regular integral schemes Y — X the proof is exactly the same.
For the definition of the Witt group in this more general setting, consult [7, §1.2.1]

and [28, §1.5, §1.6].
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