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An a-contrario approach for sub-pixel change

detection in satellite imagery
Amandine Robin, Lionel Moisan, and Sylvie Le Hégarat-Mascle

Abstract—This paper presents a new method for unsupervised
sub-pixel change detection using image series. The method is
based on the definition of a probabilistic criterion capable of
assessing the level of coherence of an image series relatively to
a reference classification with a finer resolution. In opposition to
approaches based on an a priori model of the data, the model
developed here is based on the rejection of a non-structured model
— called a-contrario model — by the observation of structured

data. This coherence measure is the core of a stochastic algorithm
which selects automatically the image subdomain representing
the most likely changes. A theoretical analysis of this model is led
to predict its performances, in particular regarding the contrast
level of the image as well as the number of change pixels in the
image. Numerical simulations are also presented, that confirm the
high robustness of the method and its capacity to detect changes
impacting more than 25% of a considered pixel under average
conditions. An application to land-cover change detection is then
provided using time series of satellite images.

Index Terms—change detection, a-contrario modeling, signifi-
cance test, sub-pixel, mixture model, image series

I. INTRODUCTION

T
HE detection of change areas using an image series

is an important issue in image processing due to the

large number of impacted applications, including in particular

remote sensing [1]–[3], medical diagnosis [4], [5] and video

surveillance [6], [7]. Even though more and more sensors are

specialized in order to provide fine information dedicated to

a specific range of applications, the intrinsic sensors charac-

teristics generally result in a trade off between fine spatial

resolution and fine spectral resolution or high time frequency.

Therefore when a fine spectrum or a high time frequency is

required to discriminate the target of interest (and prefered

to a fine spatial resolution), this latter may be smaller than

the pixel size. In such cases, providing efficient solutions for

sub-pixel change detection is of crucial interest.

This work has been initially motivated by the detection

of land cover changes using remote sensed images. In this

context and in particular for emergency applications such as

floods or fires, the use of data acquired with a high time

frequency is mandatory but the changes of interest may impact

only a fraction of the observed pixel. Apart from emergency
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applications, changes can typically consist in natural land-

cover transformations (intra or inter-annual variability) or

human-induced changes (e.g. forest cuts, crop rotation). The

approach presented here applies as well to multitemporal

change detection using image time series as to bi-date change

detection using single or multi-spectral images.

In the literature, a wide range of change detection methods

has been proposed to analyze image series (with all images to

the same spatial resolution). Most of them are based either on

classification processes (post-classification comparison, joint

classification [8] or fusion of classifications [9]), on change

vector analysis and thresholding [10]–[12], or on predictive

models [13], [14]. Some methods use Markov Random Fields

in order to take into account the spatial neighborhood in the

difference image [15], [16] and, more recently, a Hopfield-

type neural network was proposed to model spatial correla-

tions [17]. For more details, good overviews are given by

[18], [19]. All these methods generally lead to limited results

due to misregistration errors or illumination variations, which

introduce some alterations of the signal that should not be

detected as true changes (e.g. camera motion, sensor noise,

shadows, atmospheric absorption, etc.). Even if pre-processing

(e.g. geometric or radiometric corrections) are generally per-

formed in order to avoid such limiting factors, they are only

partly weakened and hence need to be taken into account.

Moreover, some typical issues such as the definition of an a

priori model or the choice of a detection threshold remain.

In addition, very few works focused directly on the sub-pixel

change detection problem. An early reference is [20], restricted

to edge detection using zero-crossings of the Laplacian. More

recently, [21] provided a supervised method restricted to

change detection in pairs of images, [22] used an unmixing

model for target detection in hyperspectral images and [23]

estimated alternately class means and proportions in order to

determine changes by comparing a CR time series to a HR

classification.

Here, given the methodological concerns previously pointed

out, we propose a novel, efficient and fully unsupervised

approach to perform sub-pixel change detection by comparing

a coarse resolution (CR) time series to a former high resolution

(HR) reference classification. Such a comparison let us follow

objects which are observable in the HR classification but often

impossible to distinguish at a coarse resolution, meanwhile

avoiding the frequent inter-calibration problems encountered

in the literature. Compared to existing methods, this choice

also highly improves robustness in terms of noise and

lightning conditions, as the comparison refers to a minimal

description of the initial state. Moreover, taking a classification
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for reference rather than an image or an image series enables

us to reduce prior hypotheses on the expected evolution.

The theoretical framework of the approach we propose is the

so-called a-contrario detection, that was first proposed in [24]

for the detection of alignments in images, and then developped

for various tasks such as the analysis of histogram modes [25],

the recovery of stereo point matches [26], motion detec-

tion [27], the detection of spots in textured background [28],

etc. The main principle driving a-contrario detection is a

perception principle due to Helmholtz, first formulated in the

context of image analysis by Lowe [29]. It basically says that

we perceive a structure in a set of objects (say, an alignment

in a set of black dots drawn on a white sheet of paper) when

their configuration is too unlikely to happen by chance. This

principle is formalized in the a-contrario framework using

two ingredients: first, a naive (non-stuctured) model, which

describe the random distribution we expect in case no structure

is present (the classical H0 hypothesis in statistical decision

theory); second, one or several measurements related to the

stucture we want to detect. With these two ingredients, the a-

contrario framework allows to combine all measurements into

a single real-valued function (called NFA, for Number of False

Alarms), that can be thresholded to select saliant structures.

Compared to the classical statistical decision theory, the a-

contrario framework has several advantages:

1) No H1 hypothesis has to be formulated, which make

a-contrario models easier to build and less sensitive to

questionable modeling choices;

2) The NFA function is easy to compute, because it does

not aim at the control of the probability of a false alarm

(which is often impossible to compute in the case of non-

independent tests), but at the control of the expectation

of the number of false alarms, whose computation can

be performed by considering each test independently;

3) It guarantees that the number of (wrongly) detected

structures under H0 by threshloding the NFA function

to ε is, in average, less than ε.

The last property is responsible for the name “NFA”, which

can be defined in a general setting [28]:

Definition 1.1 (Number of false alarms): Let (Xi)1≤i≤N

be a set of random variables. A function F (i, x) is a NFA

(Number of False Alarms) for the random variables (Xi) if

∀ε > 0, E [|{i, F (i,Xi) ≤ ε}|] ≤ ε. (1)

Assume that the Xi random variables represent the measure-

ments that characterize the structures we want to detect (that

is, the measurement xi of Xi will be all the higher than the

i-th structure is saliant). Then, according to [28] (Proposition

2 p. 318), the function

NFA(i, xi) = ni · P(Xi ≥ xi) (2)

is a NFA as soon as
∑

i

1

ni

≤ 1 (3)

(and in particular if ni = N for all i).
One important property of the a-contrario framework is that

it reduces all detection parameters to one unique parameter:

the expectation of the number of false alarms ε. This is a key

point dealing with unsupervised detection as, in practice, fixing

the number of false alarms (e.g. to 1) makes the detection fully

automatic. Moreover, this criterion used jointly with a random

sampling algorithm leads to a very robust change detection

method, in particular with regard to the proportion of change

pixels in the image (which is a common limiting factor in the

literature).

This paper is organized as follows. Section II describes

the residual error on which the change detection is based.

Section III details the a-contrario detection model. Section IV

provides a theoretical analysis of the model performances

when the main image parameters vary. In Section V, we

propose an algorithm based on a random sampling strategy,

in order to provide a robust estimation without considering

all image subdomains. Section VI presents particular issues

occuring in the multitemporal case and the solution adopted.

Section VII provides experimental results and illustrates the

performance of the approach in the case of land-cover change

detection using remote sensing data. We end with concluding

remarks in Section VIII.

II. RESIDUAL ERROR

The first step in building a change detection method is to

define a relevant error measure regarding the application. Here,

we assume that a HR label map is available and describes the

reference state. The label map is considered as an application

that assigns a label l ∈ L to each pixel of the HR image

domain DHR. We aim at localizing the changes as areas where

the HR label map no longer corresponds to the CR image time

series. Hence, the HR label map acts like a mask through

which the spatial coherence of the image time series can

be studied, and the detected changes will consist in parts of

the time series that are not coherent with the reference label

map. Such formulation a priori enables the detection of sub-

pixel changes. Moreover, using a classification as a reference

rather than an image time series is interesting as it puts a

weaker prior on the expected evolution. It also enables to

overcome typical intercalibration problems between dates. In

Section VIII, we also show how a radiometric image, after

quantization, can be considered as a reference in an application

to video surveillance.

Denote DCR the CR image domain, T the set of acquisition

dates and assume that all images of the time series are

well co-registered. The observed CR time series is denoted

v = (v1, · · · , v|T |) where for each date t ∈ T , the grey-level

image vt is a real-valued function defined on DCR. In order

to establish the link between the HR label map and the CR

time series, let us assume that each CR image corresponds

to the block average of a HR image of the same scene.

Let N = |DHR|/|DCR| be the number of HR pixels that

are contained in a CR pixel and, for any pixel y ∈ DCR,

Nl(y) be the number of HR pixels with label l represented

within pixel y. The proportion of label l within pixel y is then

αl(y) = Nl(y)/N and by definition,
∑

l∈L αl(y) = 1. For

sake of simplicity, the model will be from now on considered

in the monotemporal case, and the multitemporal case will be
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discussed in section VI. If µ = (µ(l))l∈L stands for the mean

intensity characterizing labels l, then the intensity of a pixel

y ∈ DCR is estimated by

v̂(y, µ) =
∑

l∈L

αl(y)µ(l). (4)

Practically, this block-average hypothesis may be only roughly

satisfied. In general, CR values are obtained by a modulation

transfer function which is not an indicator function as sup-

posed by the block-average hypothesis. However, Equation 4

boils down to the linear mixture model [30] which is com-

monly used in the remote sensing community since numbers

of applications showed its relevance even when the hypothesis

of block-average is not valid (see [31], [32]).

Then, knowing the label proportions, an optimal HR re-

construction v̂D may be obtained by using the label map and

choosing label means (µ(l))l∈L that minimize the reconstruc-

tion error, equal to

δ(vD) =
√

min
µ∈RL

||vD − v̂D||22, (5)

where vD is the CR time series restricted to the subdomain D
of DCR.

At this stage, the main detection issue is the definition of

an a priori threshold on the residual error δD, in order to

decide between changes and no-changes. This threshold should

be an appropriate combination of the residual error δD and

the size of the subdomain D. Indeed, even without changes,

larger subdomains are expected to yield larger residual errors

since they involve more pixels. The method we present here

estimates jointly the label means and the change pixels using

a random sampling strategy (see [33]), thus ensuring a high

robustness to the amount of change pixels or outliers in the

image.

In section III, we build an a-contrario detection model that

enables to combine these parameters into a single proba-

bilistic criterion allowing the detection of the most coherent

subdomain with a given classification (namely a given high-

resolution label map) meanwhile controlling the expected

number of false alarms. The complementary of this subdomain

is then considered as the set of pixels presenting some changes.

III. A-CONTRARIO CHANGE DETECTION MODEL

A. Definition of a coherence measure

In the framework of a-contrario modeling, the idea is to

detect an image subdomain as a large deviation from a naive

model. To that aim, we introduce a measurement of the

coherence between the HR label map describing the state of

reference at a given date t0 and the observed CR image at

date t based on the degree of contradiction which it implies

refering to a non-structured model (the naive model).

Definition 3.1 (A-contrario (naive) model for CR): The a-

contrario model (H0(m)) for the CR image is a random

Gaussian vector V ∼ N (m,σ2I|DCR|), where m ∈ R
|DCR| and

σ > 0 are fixed, and I|DCR| is the identity matrix in dimension

|DCR|.
The choice of the parameters of the naive model is discussed

in Section III-B.

Following Helmholtz principle, we focus on image sub-

domains for which the quadratic error measured between

the image and its estimation is too small to be reasonnably

explained by randomness. Actually, we consider the level of

surprise of observing an intensity map vD on a subdomain D
of DCR which, for a given choice of µ, is particularly close

to the intensity estimated from µ and label proportions within

pixels. A detection threshold δD on the error δ(VD) could then

be chosen such as ensuring that

P(∃D, δ(VD) ≤ δD) ≤ ε, (6)

where ε is a fixed parameter (e.g. 10−3) and δ(VD) is the

quadratic error obtained considering the random field V de-

scribed by the a-contrario model (Gaussian white noise image).

The parameter ε enables us to supervise the test reliability.

Indeed, the smaller ε is, the more demanding and reliable

the test. Now, dependences between the random variables

(δ(VD))D∈DCR
are very difficult to estimate, which makes the

explicit calculation of P(∃D, δ(VD) ≤ δD) impossible.

Following the framework introduced in [24], we suggest

to measure the expectation of the number of false detections

rather than controlling the probability of having at least one

false detection. This measure is defined in order to guarantee a

number of false detections on random data as low as desired,

using a quantization of the number of tested subdomains

(through a weighting coefficient called “number of tests”).

Proposition 3.1 (Number of Falses Alarms): Consider a

function η : N → (0,+∞) and, for any subdomain D ⊂ DCR,

the quantity

NFA(D, δ(vD), σ,m) = η(|D|) · PH0
[δ(VD) ≤ δ(vD)], (7)

where PH0
[δ(VD) ≤ δ(vD)] stands for the probability of

observing a minimal error δ(VD) less than δ(vD) under

Hypothesis H0(m). Then, the NFA function is a number of

falses alarms provided that

∑

D∈DCR

1

η(|D|) ≤ 1. (8)

For any ε > 0, we shall say that a subdomain D of DCR is

ε-meaningful if NFA(D, δ(vD), σ,m) ≤ ε.

Proof — Let us set N = 2|DCR| and define, for i ∈ {1, ..N},

Xi = −δ(VDi
), where (Di)1≤i≤N represents all subsets of

DCR. Taking ni = η(|Di|), we then have

NFA(Di, δ(vDi
), σ,m) = NFA(i, xi)

(the right term being defined in Equation (2)), hence we know

thanks to [28] (Proposition 2 p. 318) that (7) defines a Number

of False Alarms as soon as Equation (3) — or equivalently,

Equation (8) — holds. ¤

Choosing a function η that satisfies (8) is then sufficient to

guarantee a number of false alarms less than ε. In this study,

the first natural choice for the η function is a uniform weight

on all subdomains of DCR, i.e. η(|D|) = |{D,D ⊂ DCR}| =
2|DCR|. This choice ensures less than ε false detections (on

the average) as
∑

D⊂DCR

1
2|DCR| = 1. It distributes the risk

uniformaly upon all subdomains of DCR (whatever their size
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and even if they overlap) as, for all subdomain D ∈ DCR, the

probability of mistakenly detecting D is

PH0
(δ(VD) ≤ δ(vD)) =

ε

2|DCR|
, (9)

where the right term does not depend on D. With such a

choice, a subdomain with medium size is more likely to be

detected by chance, as such subdomains are more numerous.

Now, notice that choosing η is an opportunity to introduce

some a priori for the detection. In practice, changes generally

affect a minor part of the image (≤ 50%) but in order to

maintain the genericity of the method, we suggest an alternate

function η that equally considers subdomains with any given

size.

More precisely, we suggest to distribute the risk uniformly

with respect to the subdomain size, by taking for any D ⊂
DCR,

η(|D|) = |DCR|
(|DCR|

|D|

)

. (10)

This is a valid choice for the weight function η, since it

satisfies Equation (8) :

∑

D∈DCR

1

η(|D|) =
∑

D∈DCR

1

|DCR|
(

|DCR|
|D|

)

=

|DCR|
∑

k=1

∑

|D|=k

1

|DCR|
(

|DCR|
|D|

)

=

|DCR|
∑

k=1

(|DCR|
k

)

1

|DCR|
(

|DCR|
k

)

= |DCR|
1

|DCR|
= 1.

In the following sections, this choice of η will be considered

and we will set ε = 1 in order to ensure less than one false

detection on average while making the method fully automatic.

Using the a-contrario hypothesis given by Definition 3.1,

the NFA can be computed explicitly.

Theorem 3.1: Using the a-contrario hypothesis denoted by

H0(m), for all m ∈ R
|DCR|, the number of false alarms

associated to a subdomain D of an image v is determined

by

NFA(D, δ(vD), σ,m) = η(|D|) · f(q, δ(vD), σ,m), (11)

where η(|D|) = |DCR|
(

|DCR|
|D|

)

, q = |D| − |L| (|L| being the

number of labels) and, for all q ∈ N
+

f(q, δ, σ,m) =
1

σq(2π)
q

2

∫

Bq(δ)

e−
1
2

∑

q

i=1
(

xi−mi
σ

)2dx1...dxq,

Bq(δ) being the ball of R
q with center 0 and radius δ.

Proof — The proof is detailed in Appendix A, it is a conse-

quence of Proposition 3.1 and the explicit computation of the

NFA function for the chosen hypotheses. ¤

B. Discussion on the parameters

The naive model H0 (see begining of Section III) used for

the definition of this criterion depends on two parameters:

the mean m and the variance σ2. In this section, the choice

of these parameters is discussed. It is mainly guided by the

condition of no detection in a noise image (i.e. following the

naive model) but also by the fact that the NFA needs to be

minimized.

First, we consider the naive model according to which the

mean CR image is a constant image.

Hypothesis Ha
0 : The mean vector m of the naive model

H0(m) is (θ, θ, · · · , θ)T (for a given θ ∈ R) and the standard

deviation σ is a priori fixed.

Corollary 3.1: Under hypothesis Ha
0 , the number of false

alarms is

NFAa(D, δ(vD), σ) = |DCR|
(|DCR|

|D|

)

· f(q, δ(vD), σ, 0),

(12)

with q = |D| − |L|.
Proof — Let AD = (αl(y))y∈D,l∈L be the matrix of label

proportions restricted to the subdomain D. The proof comes

from Theorem 3.1, remarking that as the sum per line of AD is

1, the vector space R(1, 1, · · · , 1)T is included in the image

space of AD, denoted ImAD. In particular, since the mean

vector m belongs to this set, it satisfies ADm = m. Hence, if

the matrix P denotes the orthogonal projection onto the space

(ImAD)⊥, the mean vector projected by P boils down to the

null vector (Pm = 0) and

PHa
0
[δ(VD) ≤ δ(vD)] = f(|D| − |L|, δ(vD), σ, 0)

thanks to (27) (see Appendix A, proof of Theorem 3.1). ¤

An alternate hypothesis for the parameters of the H0 model

is to assume any mean CR image and a fixed variance for each

pixel.

Hypothesis Hb
0 : The mean vector m of the naive model

H0(m) is any unknown vector of R
|DCR| and the standard-

deviation σ is a priori fixed.

As m is an unknown parameter of the NFA model, we

are looking for the model which best enables to control the

number of false alarms for all H0(m) models, where m ∈
R

|D|. Hence, we need to consider the most pessimistic NFA

given by

arg max
m∈R|D|

NFA(D, δ(vD), σ,m).

This maximum happens to be reached when the mean of

the H0 model is null, which leads to the following result.

Proposition 3.2: Under Ha
0 or Hb

0 hypotheses,

NFA(|D|, δ(vD), σ) = |DCR|
(|DCR|

|D|

)

f̄(q, δ(vD), σ), (13)

where,

f̄(q, δ, σ) ≡ f(q, δ, σ, 0)

=
1

σq(2π)
q

2

∫

x1,q∈Bq(δ)

e−
1
2

∑

q

i=1
(

xi
σ

)2dx1...dxq,

and q = |D| − |L|.
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Proof — The proof relies on the Lemma B.1 (see appendix B)

as its application to f implies directly

NFAb(|D|, δ(vD), σ)

= max
m

|DCR|
(|DCR|

|D|

)

· f(|D| − |L|, δ(vD), σ,m)

= |DCR|
(|DCR|

|D|

)

· f(|D| − |L|, δ(vD), σ, 0)

= NFAa(|D|, δ(vD), σ). (14)

Hypotheses Ha
0 and Hb

0 lead to the same number of false

alarms, denoted NFA, which proves Proposition 3.2. ¤

According to this result, the naive model H0(0) is the most

contrary model in the family of models H0(m), where m ∈
R

|DCR|. Then, considering the mean vector m = 0, rejecting

H0(0) implies the reject of all the naive models of the family

H0(m) and it enables to free from the mean parameter.

Finally, note that numerically speaking the number of false

alarms is easier to compute from the following form.

Corollary 3.2: Under Ha
0 or Hb

0 hypotheses,

NFA(|D|, δ(vD), σ) = |DCR|
(|DCR|

|D|

)

Γinc

(

q

2
,
δ(vD)2

2σ2

)

,

(15)

where q = |D| − |L| and, for all x ≥ 0 and a > 0,

Γinc(a, x) =
1

Γ(a)

∫ x

0

e−tta−1dt.

The obtained criterion hence depends only on the size of the

subdomain, on the error which is computed on this subdomain

and on the standard deviation of the naive model H0. As these

first two parameters are directly determined from the studied

images for a given sub-domain, the standard deviation of the

naive model σ is the only parameter to set a priori. Here,

we suggest to set it to the empirical variance of the observed

image. Such choice is motivated by the fact that it ensures the

absence of any detection in a white noise image on average.

C. Comparison with Multiple testing procedures

The calculation of the number of false alarms is related

to the statistical problem of multiple testing [34] as it takes

the number of performed tests into account in its definition.

Multiple testing procedures have been developped in order

to process large amounts of data without increasing the av-

erage number of erroneous detections. A classical statistical

approach for testing N random variables while controlling the

number of false alarms (also called false positives) would be

to threshold the N p-values individually to a level α, thus

ensuring an average number of false positives less than αN ,

i.e. non-decreasing according to the number of tests. Assuming

that the N tests are independent, the probability of occurence

of one error of the first order is then 1 − (1 − α)N , which is

e.g. 40% for 10 tests with a level 5%.

As far as the change detection issue is concerned, it could be

considered as an adequacy test, assuming a theoretical model

for the CR image. For instance, a model such as those where

the random variables corresponding to each pixel are assumed

to be Gaussian, with parameters related to the occupation

rate of each class represented within the pixel and to class

characteristics, can be considered as an a priori model. The

2|DCR| tests of all subdomains of DCR are then considered with

the following hypotheses:

• H0(D): “the CR image restricted to the subdomain D is

not structured according to the reference classification.”

• H1(D): “the CR image restricted to the subdomain D is

structured according to the reference classification.”

Hence, pixels that are detected as changes are those which

satisfy the null hypothesis H0(D). This test can be performed,

for instance, with a χ2 statistic [35]. Using previous notations,

the decision rule consists in rejecting H0(D) when δ(VD) ≤
δ(vD). If each test of H0(D) against H1(D) is to the level

αD, then by definition the thresholds δ(vD) ensure that the

probability of mistakenly rejecting H0(D) satisfies

P(δ(VD) ≤ δ(vD) |H0(D)) ≤ αD. (16)

After performing N tests of hypothesis H0 = ∪D⊂DCR
H0(D)

against H1 = Hc
0 (so as to consider all sub-domains D), it

seems natural to reject H0 for H1 if there exist a subdomain

D ∈ DCR such as the hypothesis H0(D) is rejected for H1(D),
i.e. such as δ(VD) ≤ δ(vD). Let us remark that the probability

of mistakenly rejecting H0 then satisfies

P(∃D ∈ DCR ; δ(VD) ≤ δ(vD) |H0)

≤
∑

D∈DCR

P(δ(VD) ≤ δ(vD) |HD
0 )

≤
∑

D∈DCR

αD. (17)

The naive approach previously mentionned would be to con-

sider that each test is performed to the level αD = α,

independently from the tested subdomain and, consequently,

that the probability of mistakenly rejecting H0 is less than Nα
(e.g. 210 000 × 0.05 for a 100 × 100 image and a significance

level α = 0.05). To avoid such an increase of first type

errors, the Bonferroni procedure [36] aims at maintaining the

probability of false alarms less than α > 0 while testing, for

instance, all subdomains to a level αD ≤ α
N

. the H0 hypothesis

is then rejected if αD ≤ α
N

for all D ∈ DCR. This strategy is

very restrictive as each individual test is then maintained to a

demanding threshold so as to control the rate of false alarms,

even though errors of type 2 then increase. Hence, some

detections tend to be missed by such procedure. Formally,

the calculation of the number of false alarms (defined for

N = 2|DCR| tests) is equivalent to Bonferroni procedure as it

simply boils down to test if NαD ≤ α. However, their concept

is different and, in particular, the NFA enables to directly

control the number of false alarms (false positives). Indeed, in

opposition to Bonferroni procedure, it has an intrinsic meaning

allowing, for instance, to decide the acceptation of exactly

10 errors out of 1 million tests on average (while a “test of

level 10” has no meaning). The NFA definition that we use

in practice is a variant of this procedure as the number of

tests (N = |DCR|
(

|DCR|
|D|

)

) considered for the NFA penalizes

the tested subdomain according to their size, favouring those

with large and with small size. Formally, it means testing all

subdomains D with the level αD such as αD ≤ α

|DCR|(|DCR|

|D| )
.
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This choice enables to ensure an error of type 1 less than α
as

∑

D∈DCR

αD ≤
∑

D∈DCR

α

|DCR|
(

|DCR|
|D|

)
≤ α. (18)

Numerous procedures have been proposed in the literature

as alternatives to Bonferroni procedure [37], [38]. They are

based on controlling the different error types such as, for in-

stance, the FWER (Family Wise Error Rate) which controls the

probability of obtaining at least one false positive, the PCER

(Per Comparision Error Rate) which controls the expectation

of the proportion of false positives among all tests or the FDR

(False Discovery Rate) to control the expected proportion of

mistakenly rejected hypotheses. In particular, the widely used

Benjamini-Hochberg procedure [38] enables to controlling the

FDR meanwhile considering all tests. Then, decision is taken

by considering a significant test set instead of using each test

individually. More precisely, as a first step, this procedure

consist of sorting the p-values

p(1) ≤ · · · ≤ p(i) ≤ · · · ≤ p(N)

then, if k = max{i : p(i) ≤ i
N

α} exists, of rejecting

H0(i) for i = 1 . . . k and thus ensuring a false discovery

rate FDR ≤ α. This procedure is less conservative than

Bonferroni’s as it accepts all subdomains which p-values are

less than pk whereas Bonferroni correction does not allow

the acceptation of subdomains which p-value is less than the

threshold α/N . Finally, the Benjamini-Hochberg procedure

globally detects a set of subdomains that do not contain any

change meanwhile accepting some percentage of errors, but no

subdomain is detected individually. In our context, considering

the union of significant subdomains seems difficult as the

detection of a collection of significant subdomains is hard to

interpret. Hence, such procedure does not really seem to fit

the considered problem. Moreover, the NFA values correspond

typically to very weak probabilities (about 10−1000). Hence,

a threshold such as α/N on the NFA value would not be

restrictive.

The relevance of the NFA definition relies on the fact that

the expected number of false alarms of ε-meaningful events

is less than ε. This property enables to automatically set the

decision thresholds in order to ensure an a priori fixed number

of false alarms (e.g. ε = 1). Generally, the most meaningful

domain is retained, that is the one which minimizes the NFA

(as the most coherent subdomain with the label map).

IV. THEORETICAL PERFORMANCES

A. Image model

The simple image model described here is used in order to

consider separately the main detection parameters and, then, to

study the sensitivity of the theoretical model according to each

parameter. As a first step, let us consider an image u of the

same size and resolution than the label map. Assume that any

image u can be written as u = I + b, where I is a piecewise

constant image and b a Gaussian noise image. Given a label

map with |L| labels, the image I is assumed to be perfectly

superimposable to the label map, with the corresponding label

characteristic value mapped to each pixel (i.e. typically, a mean

label value image). The empiric image variance σ2 of u can

then be obtained directly from σ2 = σ2
I + σ2

b . Moreover, the

estimation of the label characteristics familly µ is assumed to

be accurate in order to analyse the sensitivity of the number of

false alarms. The quadratic residual error measured on average

for each pixel is then σ2
b , which implies an average cumulative

quadratic error on a subdomain D of

E
[

δ2
D

]

= |D| × σ2
b .

Let us consider that the mean square error obtained on

a subdomain of size |D| is δ2
|D| = |D| σ2

b . Refering to

Equation (15), the number of false alarms associated to a

subdomain of cardinal |D| which is part of a domain of

cardinal |DCR| can be written as

NFA(|D|, δ|D|, σ)

= |DCR|
(|DCR|

|D|

)

Γinc

(

|D| − |L|
2

,
|D|

2((σI

σb
)2 + 1)

)

.(19)

This expression highlights the fact that the number of false

alarms mainly depends on the following parameters : the

considered subdomain size, the number of labels represented

in the label map and the variances ratio σI/σb. As this ratio

can be interpreted as an image contrast measure, let us denote

the image contrast by c = σI

σb
(with c ≥ 0) and introduce

the parameter γ = 1
c2+1 , γ ∈ (0, 1]. Moreover, the considered

subdomain cardinal can be expressed as a proportion p ∈ [0, 1]
of the whole domain cardinal: p = |D|/|DCR|. The number

of false alarms of an image with contrast c, associated to a

subdomain concerning a proportion p of the image, can then

be expressed as

F(p, |DCR|, γ)

= |DCR|
( |DCR|

p|DCR|

)

Γinc

(

p|DCR| − |L|
2

, γ
p|DCR|

2

)

(20)

for p ∈ ( |L|
|DCR|

, 1] and γ = 1
c2+1 ∈ (0, 1]. This new expression

is used for the performance and sensitivity analysis which is

developped in the three next sections.

B. Sensitivity to the contrast level

In general, image comparison is improved when images

have the same dynamic. As satellite image intensity values

vary a lot with luminance conditions, the robustness to the

contrast level is an important criterion for a change detection

method relevancy.

First, let us focus on the particular case of an image with

a null contrast (c = 0, i.e. σI/σb = 0). Such a case would

occur if the image is so noisy that its geometrical structure

is swallowed up in the noise (i.e. any σI and σb = +∞)

or with any level of noise, if the image is not geometrically

structured (σI = 0). As mentionned in Section III-B, the a-

contrario model has been chosen so as to ensure the absence of

any detection in such images. Proposition 4.1 formally verifies

this property as, when the image contrast is null, γ = 1.

Proposition 4.1: If γ = 1, for any fixed |DCR| > 1 and for

all p ∈ ( L
|DCR|

, 1], F(p, |DCR|, 1) ≥ 1.

The proof is given in Appendix C.
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More generally, let us focus on the evolution of the number

of false alarms when the image contrast varies (Proposi-

tion 4.2) or when it reaches limit values (Proposition 4.3).

Proposition 4.2: For all fixed |DCR| ∈ N
∗ and p ∈

( |L|
|DCR|

, 1], the function γ 7→ F(p, |DCR|, γ) is non-decreasing.

Proof — For all fixed |DCR| > 0 and p ∈ ( |L|
|DCR|

, 1], the

derivative of F with respect to γ is

∂F
∂γ

(p, |DCR|, γ)

=
|DCR|2p

(

|DCR|
p|DCR|

)

2Γ(p|DCR|−|L|
2 )

e−γ
p|DCR|

2

(

γp|DCR|
2

)

p|DCR|−|L|

2 −1

,

which is non-negative. ¤

As the parameter γ = 1
c2+1 is inversely proportional to the

image contrast, this result can be interpreted for the NFA
by the fact that any subdomain representing a proportion p of

the image domain is all the more meaningful that the image

is contrasted. An image subdomain is hence all the better

validated by the NFA that its contrast level is high.

Conversely, let us study the behavior of the NFA when

the image noise is very low or when the geometrical structure

of the image widely prevail upon its noise. In such case, the

image constrast c tends to infinity and γ tends to 0.

Proposition 4.3: For all fixed |DCR| > 0 and p ∈ ( |L|
|DCR|

, 1],

lim
γ→0

F(p, |DCR|, γ) = 0.

Proof — As the function γ 7→ F(p, |DCR|, γ) is C∞,

lim
γ→0

F(p, |DCR|, γ) = F(p, |DCR|, 0) = 0. ¤

From the point of view of the NFA, this property points

out that any subdomain is detectable as soon as the image

constrast is high enough. Even though intuitive, this result

proves in particular that images containing a large proportion

of changes can be analyzed as soon as their contrast is high

enough.

C. Impact of the image size

Here, the image constrast level is assumed fixed and the

behavior of the NFA is analysed with respect to the image

size.

Proposition 4.4: For all fixed γ within the interval (0, 1),
there exist p∗(γ) such that, for all p ∈ [p∗(γ), 1),

lim
|DCR|→+∞

F(p, |DCR|, γ) = 0.

The proof is given in Appendix D.

This result can be interpreted as follows: for a given contrast

level (any fixed γ), the a-contrario method enables to detect all

change pixels when they represent a proportion of the image

domain which is smaller than 1 − p∗(γ), provided that the

image is large enough. Figure 1 shows how this value p∗

evolves when γ is increasing (that is, when the contrast level is

decreasing). Even though this result is asymptotic, practically

it suggests to use as much data as possible when dealing with

weak contrast images, rather than restricting to an extract of

the area of interest.

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

γ

p
∗

Fig. 1. Plot of the p∗ values obtained numerically for various values of
γ ∈ (0, 1[.

V. ALGORITHM

From the definition of the NFA (Equation (11)), a subdo-

main is detected as coherent with a given label map if it has

a small NFA (and the smaller the NFA, the more coherent

the subdomain). This latter depends on the size of the CR

image domain, the number of labels, the size of the considered

subdomain D, the standard-deviation of the naive model and

the quadratic residue cumulated on this subdomain. Note that

all NFA parameters are obtained directly from the data except

the cumulated quadratic residue δ2(vD) which depends on

the class means (a priori unknown). It is hence necessary to

estimate the mean of each class before being able to compute

the quadratic residues considered subdomain and then the

corresponding NFA. The mean estimation and the detection

itself are two linked problems as the quality of the estimation

has a strong impact on the performance of the detection.

In general, the goal of usual estimation methods such as

the mean square method is to maximize, for a given measure,

the adequacy between a defined model and the data. Such

methods are very sensitive to outliers as they aim at getting

as close as possible to the whole sample. While dealing

with change detection, change pixels play the role of outliers

and, when numerous, they may dramatically bias the mean

estimation. Robust methods such as M-estimators, LMedS or

RANSAC have been introduced in order to face this problem.

For instance, the M-estimators [39] enable a good estimation

even when 50% of the pixels are outliers, by weighting

the considered distance. However, the choice of the weight

function is delicate.

The RANSAC (Random Sampling Consensus) method, pro-

posed by [33], is based on the idea of using a sub-sample

as small as possible and to fill it out with consistent data

when possible, rather than using as many data as possible.

More precisely, let us assume that a subsample of data is

selected randomly and that parameters are estimated from

this subsample. By chance, the considered subsample might

happen not to contain any outlier, the parameter estimation is

then correct and classifies the whole sample between correct

and incorrect pixels. The RANSAC strategy is based on the

idea that repeating this random sampling process a large

amount of times must lead to a satisfactory solution. This

approach, introduced in image analysis by [33], enables a
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good parameter estimation even when outliers are numerous

(about 50%). However, it is limited by the arbitrary choice

of a threshold from which deciding that a subsample is in

adequacy with the considered model.

In addition, minimizing the NFA ideally requires a combi-

natory exploration of all image subdomains. However, such a

thorough research is not conceivable in practice as, even for a

very small image of 256 pixels, 2256 ≃ 1.15 ·1077 subdomains

should be analyzed. By noting that the best subdomains for

the mean estimation are those minimizing the residues, we

suggest to limit the exploration to the subdomains selected

using a RANSAC-like strategy.

Hence, the detection algorithm we propose is based both

on the random sampling strategy (cf. [33]) and on the NFA

probabilistic criterion defined in Section III in order to free

from the choice of an arbitrary decision threshold during the

parameter estimation step meanwhile reducing the number

of test subdomains. Such a collaboration has already been

performed in [26] for rigidity detection and estimation of the

fundamental matrix in stereoscopic vision.

The research of the minimum NFA can be accelerated

using the following result.

Proposition 5.1: Given a fixed vector µ ∈ R
L, define for

any D ⊂ DCR the square error δ2
µ(vD) =

∑

y∈D r(y), with

r(y) =
(

v(y) − ∑

l∈L αl(y)µ(l)
)2

. If DCR = {yi}i=1...|DCR|

and the function i 7→ r(yi) is nondecreasing, then

arg min
D⊂DCR

|D|=q

NFA(|D|, δµ(vD), σ) = {y1, · · · , yq}. (21)

Proof — Since r is sorted, for all D ∈ DCR such that |D| = q
we have δ2

µ(vD) ≥ δ2
µ(v{y1,y2,··· ,yq}). As the NFA function

is non-decreasing with respect to δ, its minimum value is

obtained for the subdomain {y1, · · · , yq}. ¤

Hence, if the quadratic residues are sorted with a non-

decreasing order, considering each subdomain following the

order of its residues is sufficient to minimize the NFA over

all subdomains, for a given vector µ of label means.

Finally, in the case where a single CR image v is used, the

algorithm is:

• Compute σ2, the CR image variance.

• Initialize δ2
min[], NFA[] and NFAmin to +∞.

• Repeat N times

1) draw randomly |L| CR pixels,

denoted by I = (x1, · · · , x|L|) ;

2) estimate the label mean vector µ from equations

v(x) =
∑

l

αl(x)µl,

defined for x ∈ I;

3) compute r(x) = (v(x) − ∑

l αl(y)µl)
2, for x ∈

DCR;

4) sort DCR into a vector (xi)1≤i≤|DCR| by increasing

error r(xi);

5) initialize δ2 =
∑|L|

i=0 r(xi);
6) for each index i ∈ {|L| + 1, . . . , |DCR|},

– set δ2 = δ2 + r(xi);

– if δ2 < δ2
min[i] then

∗ set δ2
min[i] = δ2;

∗ compute the corresponding NFA[i] value;

∗ if NFA[i] ≤ NFAmin, then

· set NFAmin = NFA[i];
· set D = {xk}k=1..i;

∗ end if

– end if

7) end for

• end repeat

This algorithm uses a HR label map and a CR image as

inputs and returns the subdomain minimizing the NFA and

the corresponding class means. The only parameter of the

algorithm is the number of iterations (N ). Due to RANSAC

strategy, convergence requires a very high number of iterations

(N = 100 000 in our experiments). However, this is not really

a limiting factor as the computation time of each iteration is

very fast (for instance, 100 000 iterations for change detection

considering a HR classification of size 256 × 256 and a CR

image of size 16 × 16 takes about 10s on a laptop).

VI. THE MULTITEMPORAL CASE

In the multitemporal case, different approaches may be cho-

sen depending whether the application requires the detection

of a spatio-temporal subdomain or a spatial subdomain. For

instance, a sequential approach can be considered, comparing

the minimum NFA values obtained for each image separately.

Such an approach can be used in order to find the image of a

time series which is the most coherent with the classification

but it does not permit to detect a spatio-temporal subdomain.

In practice, time series are rather used to analyse the temporal

evolution of intensities and to enable the detection of spatio-

temporal domains, which may be useful for applications where

changes can occur at some dates without impacting other ones.

Here, a vectorial approach is considered for the detection

of a spatio-temporal subdomain of changes, assuming that all

images of the time series are accurately registered. Denote T
the set of acquisition dates of a time series. The a-contrario

detection model presented Section III can be easily extended

to time series, considering a spatio-temporal subdomain ω ∈
DCR × T . As a naive model, the CR time series is assumed

to be a random field of |DCR| × |T | independent Gaussian

random variables of zero-mean and variance σ2. From there,

the NFA is defined as in the monotemporal case by

NFA(|ω|, δ(vω), σ) = η(|ω|) · Γinc

(

q

2
,
δ(vω)2

2σ2

)

, (22)

where η(|ω|) = |DCR| · |T |·
(

|DCR|×|T |
|ω|

)

and q = |ω|−|L|×|T |
Concerning the choice of the variance of the naive model,

let us recall that, in the monotemporal case, taking the CR

image variance as the variance of the naive model was justified

by the fact that nothing should be detected in a white noise

image. In the multitemporal case, setting the variance of the

naive model to the variance of the CR time series does not

ensure this property anymore as, in the case of high variance

differences between dates within the time series, such a naive
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model could detect noisy pixels as coherent. To avoid the

detection of irrelevant subdomains, the intensity values are

normalized by the image variance within each image and the

variance of the naive model is set to 1. The multitemporal

algorithm is very close to the monotemporal one but the fact

that time series may contain missing data at different locations

for each date must be taken into account in the research of the

subdomain of changes. A simple possibility is to restrict the

study to the set of pixels that are validated for all dates but

this might considerably reduce the analysed domain. Instead,

we propose to consider a restriction of DCR ×T to the set of

valid pixels. More precisely, each pixel of the spatial domain is

considered as a vector whose coordinates correspond to each

of its valid dates. If a pixel is impacted by some changes at

a given date, it will then be rejected for the whole series. In

order to allow the comparison of subdomains of different size

for each date, the cumulated residues are normalized by the

number of valid dates, leading to a mean cumulated residue.

Notice that with such an exploration, for a given pixel, the

mean residue value is duplicated as many times as there are

valid dates for this pixel thus enabling the detection of a

spatial subdomain for which all valid dates are meaningfully

coherent with the reference classification. From there, the same

algorithm as in Section V can be used.

VII. RESULTS

In this section, the unique parameter of the a-contrario

change detection method, ε, was set to 1 for all experiments

so as to ensure less than 1 false alarms on average.

A. Experimental performances

Some experiments have been conducted in order to evaluate

the performance and the limits of the method when the amount

of change pixels varies in the image and when the objects of

interest are small relative to the CR pixel size (i.e. when the

resolution ratio is important). Simulated data have been used

in order to enable a quantitative estimation of the performance

while controling various impacting parameters.

First, let us focus on the robustness of the method when

the amount of change pixels (or outliers) varies in the CR

image. To that aim, a fixed resolution ratio of 16 × 16 has

been considered and CR images containing 256 pixels have

been simulated with an average contrast level. Change pixels

have been introduced by corrupting the CR images with an

impulse noise (random intensity values assigned to random

pixels) impacting 0 to 100% of the image. The method has

then been run for each image of the data set (500 tests) and

the different types or detection error have been counted:

• the set of true positives is the set of all pixels which are

rightly detected as coherent with the reference classifica-

tion. Conversely, the set of false positives is the set of all

pixels which are wrongly detected as coherent with the

reference classification (errors of type 1).

• the set of true negatives is the set of all pixels which

are rightly not detected as coherent with the reference

classification (i.e. considered as changes). Conversely, the

set of false negatives is the set of all pixels which are not

detected as coherent but should have been (errors of type

2).

Figure 2 shows the different types of errors obtained versus the

number of change pixels. On both plots, each dot represents

a test. Figure 2(a) represents the number of true positives

(in green), the number of false negatives (in blue) and the

number of pixels that effectively correspond to no change (in

red, plotted just to increase the readibility) versus the actual

number of change pixels in the image (the line y = 1 − x).

Thus, the closer the true positives dots are to the no-change

pixels dots, the more competitive is the detection.
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Fig. 2. Evolution of the performances versus the number of change pixels in
an image with 256 pixels. On the left, the red dots on the diagonal stand for
the actual no-change pixels in the test image, the number of pixels detected
erroneously as changes (false negatives) is represented in blue, and the number
of pixels accurately detected as no-change (true positives) is represented in
green. On the right, the red dots on the diagonal stand for the change pixels,
the number of pixels erroneously detected as no-change is represented in blue
cross and, in green, the number of pixels detected as changes. The quality of
the detection is thus shown as the closer the set of true positives gets to the
set of no change pixels, the better is the detection performance.

Figure 2(b) represents the number of true negatives (in

green), of false positives (in blue) and of actual change pixels

(in red) versus the number of actual change pixels. It appears

that the closer the true negatives dots are to the x = y line,

the better are the detection performances. Besides, these two

plots show the absence of detection only when the number of

change pixels in the image represents more than about 80% of

the CR image. Such performance is particularly high compared

to the usual limitation threshold of 25% or 30% of change

pixels found in the literature (cf. [23]). This result confirms the

asymptotic theoretical result mentioned Section IV. Besides,

the fact that the method is based on the control of the average

number of false alarms (false positives) appears comparing
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Figures 2(a) and 2(b) (plots in blue). Indeed, the number

of false positives (Figure 2(b)) barely increases when the

number of change pixels increases, whereas the number of

false negatives (Figure 2(a)) increases more clearly with the

number of change pixels.

Finally, the performance of the method has been studied

when the change areas only partially impact a CR pixel. Such

case occurs whenever the change object of interest is smaller

than the CR pixel. It is one of the main challenge addressed

by the method. To that aim, a fixed average contrast level and

a fixed global amount of change pixels of 20% are considered

for the data set, and changes are simulated with a size varying

from 0 to 100% of the CR pixel. Figure 3 presents the global

error percentage obtained as a function of the percentage of

changes within the CR pixel. It appears that the method is

capable of detecting changes with less than 5% errors (median)

as soon as their impacted surface represents less than 13% of

the CR pixel, and with less than 3% errors when changes

represents more than 25% of the CR pixel. The performance

of the detection is barely increasing after this threshold.

0 25 50 75 100
0

5

10

15

20

Occupation rate (%)

E
rr

o
rs

(%
)

Fig. 3. Errors of detection (% of the number of pixels in the image) obtained
versus the occupation rate of changes within a CR pixel : 25, 50 and 75
percentiles (respectively in green, red and blue). Performances obtained for
images simulated with 20% of change pixels and a resolution ratio of 16×16,
showing that changes impacting more than 13% of a CR pixel are detected
with less than 5% of error (in median).

B. Application to land cover change detection

In this section, a case of application to remotely sensed

imagery is presented. Using Earth observation data, changes

of interest are, typically, natural phenomena such as vegetation

growth, flooding or fires and phenomena related to human ac-

tivities such as urbanism, forest cuts, crop rotation or pollution.

Here, a real time series of HR (SPOT 4) images of an area of

intensive agricultural practice in the Danubian plain (Rumania,

ADAM database1) has been considered. As no groundtruth on

changes was available, a HR classification has been derived

from the HR time series and changes have been simulated

either on the HR classification or on the CR image (obtained

by averaging the real HR time series by blocks 16 × 16).

Figure 4 (a) shows the HR classification derived from

the 8 HR real images (Fig. 4 (b)) and containing 10 labels

1The ADAM database (http://kalideos.cnes.fr) has been constituted in the
context of the ADAM project in order to assess the potential of spatial data
assimilation techniques with agronomic models.

(using [40]). The change detection method applied to this

classification and the corresponding CR time series with 8
dates enabled to validate the whole domain except the pixel

in red Figure 4 (c). However this latter pixel shall not be

considered as a false detection as it involves the quality of

the classification rather than the change detection method in

itself. We then artificially introduced different changes in the

HR classification. First, in Figure 4, changes were introduced

in the reference classification by replacing a random selection

of segments label with another existing label. Figure 4(d)

to (f) present several cases of such simulated changes and

pixels detected as changes are presented in red in the CR

domain. On the same image, the boundary of each segment

is plotted in black, pixels corresponding to simulated changes

are represented in green and those that were already detected

in (c) are in pink. The small number of segments enables to

visualize the impact area of segments of interest within CR

pixels. Changes are well detected by the method, even when

they impact a very small area of a CR pixel (Figure 4(d) and

(f)).

We now aim at evaluating the interest of our approach

relatively to state of the art methods. In the literature, most

change detection methods apply to images having the same

spatial resolution (see [18], [19]). In general, they assume a

Markov Random Field model for the change detection image

(as in [15], [16]), which is adapted only to the detection of ob-

jects with a size greater than the pixel size (typically the field

surface in our remote sensing application), or they boil down to

an automatic thresholding of the difference image (e.g. [41]–

[43]). As the spatial resolution we consider in this paper is

generally too coarse relatively to the objects of interest, we

focused on the sub-pixel change detection problem which

cannot be compared directly to the previously mentionned

methods. Alternately, few works are dedicated to the sub-

pixel problem. We choose to compare our method to the IE

method described in [23] as it considers a very similar problem

(comparison of a CR series with a HR reference label map).

In [23], change detection is performed through an alternate

estimation of class means (pixel disaggregation problem) and

pixel composition (supervised subpixel classification problem)

removing pixels causing largest errors (assumed to correspond

to changes). The weak points of such an approach are as

follows. First, during the pixel disaggregation step, the number

of considered pixels should be greater than the number of

classes (in a ratio greater than two in order to get good

estimations). Then, during the pixel composition estimation,

the number of considered bands (e.g. the number of dates

times the number of spectral bands) should be greater than

the number of classes (also in a ratio greater than two if

possible). Lastly, the number of change pixels should not be

too important since they are present at the beginning of the

iterative process (practically no more than 30% of the total

number of pixels). Figure 5 shows the obtained results in the

case of changes introduced the reference classification 5(a),

as for Fig. 4. More precisely, our aim is to detect changes

occuring in the CR 8-dates time series 4(c) referring to the

HR 5-classes classification Fig. 5(a). Indeed, as the iterative

estimation (IE) method needs more dates in the time series
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(a) classification (b) CR time series

(c) Detected changes (d) 2 changes

(e) 3 changes (f) 4 changes

Fig. 4. Results obtained for changes introduced in the classification by a
random choice of 3, 4 or 5 segments, to which are assigned random labels
between 1 and L. Changes that have been simulated in the classification
are represented in yellow when they are detected, green otherwise. Detected
pixels that do not correspond to changes are represented in pink if they were
already detected before the simulation of changes (cf. (c)) and in red otherwise.
Globally, remark that simulated changes are well detected even when they
impact a weak proportion of a CR pixel. On Figure (e), missed detections
can be observed (to the right, in green).

than the number of classes in the classification, we had to

reduce the number of classes to 5 so that the IE method

performs well. The colour code for change and/or detected

pixels is the same as in Fig. 4. This time, no pixel has

been detected running our method (refered as NFA) for the

CR time series Fig. 4(b) and the corresponding classification

Fig. 5(a) before introducing some changes, showing that all

CR pixels are coherent with the reference classification. Con-

versely, Fig. 5(b) shows in red the pixels which are detected

using IE for the same experiment. Hence, these four pixels

(a) classification (b) Detected changes

(c) 2 changes (NFA) (d) 2 changes (IE)

(e) 3 changes (NFA) (f) 3 changes (IE)

Fig. 5. Comparison of NFA and IE methods for changes introduced in
the classification by a random choice of 2 and 3 segments, and a new label
between 1 and L assigned to each chosen segment. Almost all changes are
detected and almost no false alarm is obtained using the NFA whereas missed
detections and false alarms are obtained with IE, thus confirming the high
performance of the NFA.

are considered as not valid for the next change detection

experiments using IE. Figures 5(c) and (d) present the results

obtained respectively using the NFA and the IE methods when

2 changes have been introduced in the classification (in green) :

using the NFA method, we obtain 7 true alarms (in yellow), 0
false alarm and 8 missed alarms (only one of which impacts

the whole pixel) ; using the IE method, 3 true detections, 12
missed alarms have been obtained. Note that the two pixels in

pink are not considered as false alarms as they were already

detected in Fig.5(b). Figures 5(e) and (f) show the results of

the NFA and IE for 3 other changes: 10 true detections, 1
false alarm and 3 missed detections can be observed using the

NFA whereas only 3 true detections can be observed using the

IE (and 6 false alarms, 10 missed detections). Through these
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results, the better performance of the NFA compared to the

IE appears clearly. In addition, as mentioned before, the case

of application of the IE is much more limited than the NFA.

Besides, the good control of the number of false alarms using

the NFA is again proven.

Next, changes are simulated on the CR image, standing for

wide area changes, whereas the previous experiments validated

sub-pixel land cover change detection. To that aim, the HR

classification Figure 6 (a) is considered as a reference and

changes are simulated on the CR image Figure 6 (b) replacing

the pixel values within two rectangular areas (see in the white

areas Figure 6(c)) by the pixel values obtained on another part

of the image, for another date. The method applied to Fig. 6 (a)

and (b) enabled us to detect all red pixels Figure (c). The pixels

in pink correspond to pixels that were already detected before

the simulation of changes in Fig. 6 (b).

(a) classification

(b) Modified CR im-
age

(c) Detected changes

Fig. 6. Detection of changes introduced in the CR image (b) corresponding
to the HR classification (a) : detected changes are represented in red Figure (c)
and the boundary of introduced changes is represented in white in the same
image. Changes concern 5.46% of the CR pixels and 96.2% of the image had
been validated before introducing changes. Detected pixels concerns 89.3%
of the pixels, which is close to the expected 90.7%.

An important aspect of this method is the resolution ratio

between HR and CR. The comparison of the results presented

Figure 7 shows the robustness of the method with respect to

the resolution ratio. Indeed, in a monotemporal context, the

change detection method has been applied to the classification

shown on Figure 6 (a) and a corresponding HR image averaged

by blocks of size 5 × 5 (Figure 7(b)), 15 × 15 (Figure 7(c)),

30× 30 (Figure 7(d)) and 50× 50 (Figure 7(e)). Even though

we cannot discuss the accuracy of the detected changes (as no

groundtruth were available), notice that in these four cases,

about 4.5% of the pixels are detected and that the spatial lo-

cation of the detected pixels as non-coherent (in red) is stable,

showing the good robustness of the method with respect to the

resolution ratio. Moreover, as most methods in the literature

are based on the analysis of the difference image, Figure 7(a)

presents the difference image between the radiometric images

acquired at the two dates which are considered for change

detection Figure 7(b) to (e) thus illustrating the interest of

using a classification instead of a radiometric image as a

reference : the difference grey levels are very spread (difficult

choice of a threshold) and many areas are characterized by

large difference values but do not necessarily correspond to

changes of interest.

(a) N = 5 (b) N = 5

(c) N = 15 (d) N = 30 (e) N = 50

Fig. 7. Change detection using the HR classification of Figure 6 (a) and a
CR image with a resolution ratio (N ) of 5×5, 15×15, 30×30 and 50×50.
Detected pixels are presented in red, superimposed on the CR image used :
the same areas are detected when the resolution ratio increases.

VIII. CONCLUSION

In this paper, a fully unsupervised method has been provided

for sub-pixel change detection. The change detection problem

has been considered comparing a CR time series to a HR clas-

sification at a reference date. This formulation minimizes the

required prior on the expected evolution, taking into account

a reference classification rather than an image. Moreover, it

allows the detection of sub-pixel changes.

The method we proposed is based on the definition of a

coherence measure between a CR time series and the HR

classification, using an a-contrario framework which does not

require any a priori information. Indeed, rather than providing

an a priori model for the data, the method is based on the
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reject of a naive model (non-structured) by the observation of

structured data. A theoretical analysis of this model underlined

properties announcing its performances as functions of the

image contrast level or of the amount of change pixels in the

image.

In practice, utilizing this model requires the estimation of

class means and the research of the spatio-temporal subdomain

minimizing the NFA. To that aim, a stochastic algorithm

using a RANSAC strategy has been used. It enables a robust

estimation even when numerous pixels are outliers. Indeed,

whereas existing methods are generally limited to less than

20% outliers in the image, this approach enables to override

these limits showing good performances with up to 70% out-

liers. Besides, simulations enabled an experimental assessment

of the performances. In particular, it appeared that for an

average contrast level, changes impacting more than 25% of

a CR pixel are accurately detected as soon as less than 65%
of the image is impacted.

The multitemporal case has been discussed in particular

as it implies to deal with the chronic issue of missing data.

An adapted extension of the algorihm has been proposed,

taking into account the fact that a time series often shows

high variabilities between two dates. However, recall that this

approach theoretically applies to any type of image series.

Further studies and experiments will concern other cases of

application using hyperspectral images or video sequences. As

an instance, Fig. 8 shows some results obtained by testing our

approach on an Infra-Red sequence acquired in the framework

of video surveillance application (Safearound project). In this

application, the CR image is the background image both for

memory save and low-pass filtering of noise, and the HR

image is the radiometric image just acquired. First, this latter

HR image is quantized (in 10 grey levels Fig. 8(b)). Then

the proposed algorithm can be applied directly. In Fig. 8(c),

the intruder clambering up the wire fence is well detected

(no missed alarm, no false detection) even if he impacts only

partly two CR pixels. As a comparison, Fig. 8(d) corresponds

to the result finding the best threshold on the difference image

(between HR images) : the intruder is correctly detected but

several false alarms (cars and hut roof) can also be observed,

thus illustrating the interest of our method.

Lastly, the results obtained using pseudo-real data showed

very good performance and robustness to the resolution ratio

used. However, further validation on real time series with

known changes are still to be performed, in order to analyse

in particular the sensitivity of the model to other departures

from the block average hypothesis. Moreover, this approach is

based on the assumption of perfect image registration. Further

work should focus on a registration sensitivity analysis as, in

reality, registration is not perfect and the use of misregistred

time series would lead to cumulated errors.

APPENDIX A

THEOREM 3.1

Using the a-contrario hypothesis denoted by H0(m), for

all m ∈ R
|DCR|, the number of false alarms associated to a

(a) Background CR
image (t = 0)

(b) Quantized image
(t = 1)

(c) NFA detection (d) HR threshold de-
tection

Fig. 8. Video surveillance using Infra-Red images. The background CR
image (a) is an image of the sequence without any event of interest. In
image (b), an intruder appears (quantized into 10 grey levels). The result
of the NFA method (Image (c)) using (a) and (b) shows in (c) in red the CR
detected pixels and in blue the track of the intruder (no false alarm, no missed
detection). Image (d) presents in red the detected pixels using a thresholding
method with HR images : the intruder is well detected but several false alarms
can also be observed.

subdomain D of an image v is determined by

NFA(D, δ(vD), σ,m) = η(|D|) · f(q, δ(vD), σ,m), (23)

where η(|D|) = |DCR|
(

|DCR|
|D|

)

, q = |D| − |L| (|L| being the

number of labels) and, for all q ∈ N
+

f(q, δ, σ,m) =
1

σq(2π)
q

2

∫

Bq(δ)

e−
1
2

∑

q

i=1
(

xi−mi
σ

)2dx1...dxq,

Bq(δ) being the ball of R
q with center 0 and radius δ.

Proof — From Proposition 3.1, specifying explicitly the NFA
requires the calculation, for a given δ(vD), of the probability

PH0
[δ(VD) ≤ δ(vD)]. (24)

Let AD = (αl(y))y∈D,l∈L be the matrix of label proportion

restricted to the subdomain D (matrix of size |D| × |L|). The

residual error

δ(VD) = min
µ∈RL

√

√

√

√

∑

y∈D

(

V (y) −
∑

l∈L

αl(y)µ(l)

)2

(25)

can be interpreted as a distance from the vector VD to the

matrix AD image space denoted by ImAD. The minimal

distance is hence the orthogonal projection of VD on the space

(ImAD)⊥, i.e.

δ(VD) = min
µ∈RL

‖VD − ADµ‖ = ‖p(ImAD)⊥(VD)‖. (26)

According to Hypothesis H0, the vector VD follows a Gaus-

sian law N (mD, σ2I|D|), where mD is the mean vector m
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restricted to the subdomain D and ID is the identity matrix

in dimension |D|. Let P be the orthogonal projection matrix

of p(ImAD)⊥ , then

P[δ(VD) ≤ δ(vD)] = P[‖PVD‖ ≤ δ(vD)]. (27)

As R
|D| = ImAD

⊥
⊕ (ImAD)⊥, there is a basis e =

(e1, ..., e|D|) in which the projection matrix P is such as

Mate(p(ImAD)⊥) =

(

Iq 0
0 0|D|−q

)

where q = dim(ImAD) et |D| − q = dim(ImAD)⊥. As

P(PVD ∈ Bq(δ)) = P(VD ∈ P−1(Bq(δ))) (28)

and knowing that P−1(Bq(δ)) = Bq(δ) × R
|D|−q , we get

P(VD ∈ P−1(Bq(δ)))

=
1

(2π)
|D|
2

√

det(σ2I|D|)

×
∫

x
q

1∈Bq(δ)

∫

x
|D|
q+1

∈R|D|−q

e−
1
2

∑|D|

i=1
(

xi−mi
σ

)2dx1...dx|D|

=
1

σ|D|(2π)
|D|
2

∫

x
q

1∈Bq(δ)

e−
1
2

∑

q

i=1
(

xi−mi
σ

)2dx1...dxq

×
∫

x
|D|
q+1

∈R|D|−q

e
− 1

2

∑|D|

i=q+1
(

xi−mi
σ

)2

dxq+1...dx|D|,

with xq
1 = (x1, ..., xq) and x

|D|
q+1 = (xq+1, ..., x|D|). Remark-

ing that

1

σ|D|(2π)
|D|
2

=
1

σq(2π)
q

2

× 1

σ|D|−q(2π)
|D|−q

2

(29)

and that
∫

x
|D|
q+1

∈R|D|−q

e
− 1

2

∑|D|

i=q+1
(

xi−mi
σ

)2

dxq+1...dx|D|

= σ|D|−q(2π)
|D|−q

2 , (30)

finally the random vector PVD is a Gaussian vector with mean

(m1, ...,mq) and covariance σ2Iq on the space ImP and the

probability PH0
[δ(VD) ≤ δ(vD)] is determined by the function

f(q, δ, σ,m) =
1

σq(2π)
q

2

∫

Bq(δ)

e−
1
2

∑

q

i=1
(

xi−mi
σ

)2dx1...dxq.

(31)

Here, dim(ImAD) = |L| = |D| − q, i.e. q = |D| − |L| ¤

APPENDIX B

LEMMA B.1

Lemma B.1: Let t > 0 be fixed. The function defined for

all vector y ∈ R
q by

g(y) =

∫

‖x‖≤t, x∈Rq

e−‖x−y‖2

dx

is maximal when y = 0.

Proof —Let xi and yi be the ith elements of, respectively, the

vectors x and y.

∂g

∂yi

=

∫

‖x‖<t, x∈Rq

−2(yi − xi)e
−

∑

q

i=1
(yi−xi)

2

dx

If a(x) =
√

t2 − ∑

j 6=i x2
j , then

∫

x2
i
<a(x)2

−2(yi − xi)e
−(yi−xi)

2

dxi

= [e−(yi−xi)
2

]
a(x)
−a(x),

and hence

∂g

∂yi

=

∫

∑

j 6=i
x2

j
<t2

e
−

∑

j 6=i
(yi−xi)

2

×[e−(yi−xi)
2

]
a(x)
−a(x)dx1 · · · dxi−1dxi+1 · · · dxq.

The function g is continuous, non-negative and null at infinity.

Hence, by compactness, it reaches its maximum. Moreover, it

is C1 hence this maximum stands for a critical point. But

∂g

∂yi

= 0

⇒ ∀x, e−(yi−a(x))2 − e−(yi+a(x))2 = 0

⇒ ∀x, (yi − a(x))2 = (yi + a(x))2

⇒ yi = 0,

hence the unique critical point of g is y = 0. Consequently,

the unique global maximum of g on R
q is the unique critical

point y = 0. ¤

APPENDIX C

PROPOSITION 4.1

If γ = 1, for any fixed n > 1 and for all p ∈ (L
n
, 1],

F(p, n, 1) ≥ 1.

Proof — Let us substitute 1 for γ in Equation (20) and set

x = pn
2 and a = L

2 . We have to prove that for all a > 0 and

for all x ≥ a,

F(p, n, 1) ≡ n

(

pn

n

)

1

Γ(x − a)

∫ x

0

e−ttx−a−1dt ≥ 1.

Using repeated integrations by parts, it is not difficult to show

that
∫ x

0

e−ttx−a−1dt

=

[

−
x−a−1
∑

q=1

(x − a − 1) · · · (x − a − q + 1) tx−a−q e−t

]x

0

+(x − a − 1)!

∫ x

0

e−tdt

= (x − a − 1)!

(

e−x

+∞
∑

q=x−a

xq

q!

)

. (32)

Now, noticing that

x−1
∑

q=0

xq

q!
≤

2x−1
∑

q=x

xq

q!
≤

+∞
∑

q=x

xq

q!
(33)

(because xx−k−1

(x−k−1)! ≤ xx+k

(x+k)! for all k such that 0 ≤ k ≤ x−1),

and using the fact that

x−1
∑

q=0

xq

q!
+

+∞
∑

q=x

xq

q!
= ex , (34)
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it follows

e−x

+∞
∑

q=x

xq

q!
≥ 1

2
. (35)

The integral (32) thus satisfies
∫ x

0

e−ttx−a−1dt ≥ Γ(x − a)

2
(36)

and it follows that

F(p, n, 1) ≥ n

2

(

n

pn

)

(37)

and that F(p, n, 1) ≥ 1 as soon as n > 1 and p > L
n

. ¤

APPENDIX D

PROPOSITION 4.4

For all fixed γ within the interval (0, 1), there exist p∗(γ)
such that, for all p ∈ [p∗(γ), 1),

lim
n→+∞

F(p, n, γ) = 0.

Proof — Denoting a = pn−L
2 − 1 and using Stirling formula,

it holds that for all n > 1, p ∈ [p∗(γ), 1) and γ ∈ (0, 1],

F(p, n, γ) ∼
a→∞

(

n

pn

)
∫ γ(a+1)+ L

2

0

e−tta
2(a + 1 + L

2 )

p
√

2πa

( e

a

)a

dt.

Using the variable change u = t
a

, it turns out that

F(p, n, γ) =

(

n

pn

)

2a(a + 1 + L
2 )

p
√

2πa

∫ γ(1+ 1
a
+ L

a
)

0

(e1−uu)adu.

Remarking on the one hand that there exists a rank A such

that for all a > A, a

a+1+ L
2

> γ, and on the other hand that

the function u 7→ e1−uu is non-decreasing on [0, 1), we can

write

F(p, n, γ) ≤
(

n

pn

)

2γ(a + 1 + L
2 )2ea(1−γ+log γ)+(1−γ)(1+ L

2 )+o(1)

p
√

2πa

as log(1 + 1
a

+ L
2a

) = 1
a

+ L
2a

+ o( 1
a
) when a tends to +∞.

• Case p = 1 : From the fact that φ : γ 7→ 1 − γ + log γ
is non-decreasing and strictly negative on (0, 1),

lim
a→∞

2γ(a + 1)2√
2πa

ea(1−γ+log γ)+(1−γ)(1+ L
2 )+o(1) = 0.

Finally as a = pn−L
2 − 1, lim

n→∞
F(p, n, γ) = 0.

• Case p 6= 1 : Using the following logarithm properties:

log

(

n

pn

)

= log(n!) − log((pn)!) − log((n − pn)!),

and

log(n!) = n(log n − 1) + o(n),

remark that

log

(

n

pn

)

= −pn log p − n(1 − p) log(1 − p) + o(n).

Then, returning to initial notations,

F(p, n, γ) ≤ γpn2en(g(λ,p)+o(1))−L+2
2 log γ+o(1)

2
√

π(pn − L − 2)
,

where

g(γ, p) = p

(

1

2
(1 − γ + log γ) − log p

)

−(1−p) log(1−p).

Now the domains of γ and p such as g(γ, p) 6= 0 can

be studied. An analysis of the variations of g shows that

it is non-decreasing according to parameter p and non-

negative for all p ∈ [0, 1

1+e
− 1

2
(1−γ+log γ)

]. Moreover, as for

any fixed γ ∈ (0, 1), lim
p→1

g(γ, p) =
1

2
(1− γ +log γ) < 0

and g is non-increasing on [ 1

1+e
− 1

2
(1−γ+log γ)

, 1], the

function g necessarily vanishes on the interval (0, 1).
Hence, for any fixed γ in (0, 1), there is a value p∗(γ)
such as for all p ∈ [p∗(γ), 1], g(γ, p) < 0 which leads to

the conclusion considering that

lim
n→+∞

γpn2en(g(λ,p)+o(1))−L+2
2 log γ+o(1)

2
√

π(pn − L − 2)
= 0.

¤
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[40] A. Robin, S. Le Hégarat-Mascle, and L. Moisan, “Unsupervised sub-
pixelic classification using coarse resolution time series and structural
inormation,” IEEE Trans. on Geosc. and Rem. Sens., vol. 46, no. 5, pp.
1359–1374, 2008.

[41] G. Moser and S. Serpico, “Generalized minimum-error thresholding
for unsupervised change detection from sar amplitude imagery,” IEEE

Trans. on Geosc. and Remote Sens., vol. 44, no. 10, pp. 2972–2982,
2006.

[42] L. Bruzzone and D. Prieto, “A minimum cost thresholding technique for
unsupervised change detection,” Int. J. of Rem. Sens., vol. 21, no. 18,
pp. 3539–3544, 2000.

[43] T. Fung and E. Le Drew, “The determination of optimal threshold levels
for change detection using various accuracy indices,” Photogrammetric

Eng. & Rem. Sens., vol. 54, no. 10, pp. 1449–1454, 1988.

Amandine Robin received the PhD degree in Ap-
plied Mathematics from Paris Descartes University
(France) in 2007. She is currently a lecturer at the
School of Computational and Applied Mathemat-
ics, University of the Witwatersrand (South Africa).
Her research interests concerns image processing,
a-contrario statistical modeling for image analysis,
data fusion and remote sensing. Her work is mostly
dedicated to change detection and classification us-
ing remote sensed images or video sequences.

Lionel Moisan studied mathematics and computer
science at the Ecole Normale Superieure in Paris.
He received the PhD degree in 1997 from Paris-
Dauphine University and the HDR degree in 2003
from Paris XI University. He was a CNRS researcher
at Ecole Normale Superieure de Cachan from 1998
to 2003, and is currently Professor of Applied Math-
ematics at Paris Descartes University. His research
activities are mainly focused on variational models
for image processing (restoration, smoothing) and
on a-contrario statistical models for image analysis

(gestalt and structure detection).
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