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Abstract—Capturing an all-in-focus image with a single camera
is difficult since the depth of field of the camera is usually limited.
An alternative method to obtain the all-in-focus image is to fuse
several images that are focused at different depths. However,
existing multi-focus image fusion methods cannot obtain clear
results for areas near the focused/defocused boundary (FDB).
In this paper, a novel α-matte boundary defocus model is
proposed to generate realistic training data with the defocus
spread effect precisely modeled, especially for areas near the
FDB. Based on this α-matte defocus model and the generated
data, a cascaded boundary-aware convolutional network termed
MMF-Net is proposed and trained, aiming to achieve clearer
fusion results around the FDB. Specifically, the MMF-Net consists
of two cascaded subnets for initial fusion and boundary fusion.
These two subnets are designed to first obtain a guidance map
of FDB and then refine the fusion near the FDB. Experiments
demonstrate that with the help of the new α-matte boundary
defocus model, the proposed MMF-Net outperforms the state-of-
the-art methods both qualitatively and quantitatively.

Index Terms—Image fusion, multi-focus, CNNs, defocus model.

I. INTRODUCTION

WHEN photos are taken with cameras, all-in-focus im-

ages are often desired as the output, in particular for

a large number of computer vision tasks, such as localization,

detection and segmentation [2]. However, it is usually hard to

obtain an all-in-focus image from a single camera since the

depth of field of the camera is limited [3]. Multi-focus image

fusion is the approach to generate an all-in-focus image from

several images taken of the same scene but focused at different

depths, as shown in Fig. 1 via an example of the fused image

obtained from two source images.

Existing multi-focus image fusion (MFIF) methods can be

broadly categorized into three groups, i.e., transform domain

algorithms, spatial domain algorithms, and convolutional neu-

ral network (CNN)-based algorithms [4].
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(a) Source image A (b) Source image B (c) Fused image

Fig. 1. An example of multi-focus image fusion with two source images; the
fused image was obtained by our proposed MMF-Net.

The transform domain MFIF algorithms first decompose

the source images and then fuse the results according to

some handcrafted features. Typical transform domain MFIF

algorithms include the nonsubsampled contourlet transform

(NSCT) method [5], the sparse representation (SR) method

[6], [7] and the combined NSCT-SR method [8]. Due to

the imperfection of transformations and handcrafted features,

these algorithms often produce nonrealistic results, even in the

areas far away from the focused/defocused boundary (FDB).

The spatial domain MFIF algorithms include region-based

methods and pixel-based methods. Region-based MFIF al-

gorithms suffer from the blocking effect [9], [10]. Pixel-

based MFIF algorithms first obtain a 0/1 discrete decision

map for fusion [11] and then fuse the source images. The

guided filtering (GF) method [12] and the dense SIFT (DSIFT)

method [11] are typical pixel-based algorithms. Compared

with the transform domain algorithms, the fusion results from

the pixel-based algorithms are usually better. However, due to

the defocus effect, none of the source images are clear in the

areas near the FDB, and consequently, the fusion results of

these methods are often unclear in these areas.

The CNN was first explored to extract defocus descriptors

in a data-driven way in [13]. Existing neural network-based

MFIF algorithms can be divided into two groups: decision

map-based algorithms and end-to-end algorithms. Decision

map-based algorithms [14]–[16] produce the decision map first

as done in the pixel-based algorithms; consequently, similar to

the pixel-based algorithms, they lead to the unclear FDB. End-

to-end algorithms [17]–[19] directly obtain the fusion results,

but the results are unfortunately not realistic, as in the transfer

domain algorithms. Moreover, since it is hard to acquire a large

number of all-in-focus ground truth images for training, data

generation methods need to be adopted in these CNN-based

algorithms [14]–[19]; however, these methods do not imitate

the complex situation of the defocus spread near the FDB [8],
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and thus some unnatural and unrealistic training data limit the

performance of these networks.

In this paper, to address the issue of unsatisfactory fusion

results near the FDB, we first present a discussion regarding

the difficulties around the FDB. Then, an α-matte boundary

defocus model is proposed to simulate the defocus spread

effect near the FDB. Based on the α-matte defocus model and

the generated training data, we develop a cascaded network for

MFIF, which is called the Matte Model Fusion Net (MMF-

Net). The technical underpinnings and contributions of our

work are two-fold:

First, a novel α-matte boundary defocus spread model

is proposed. Compared with existing defocus models, the

proposed α-matte model is the first one to specifically model

the difference in the defocus spread when the defocus occurs

in the foreground or the background. Therefore, the α-matte

model can generate simulated defocus images with the valid

defocus spread near the FDB, which can be then used as

training data to train deep neural networks.

Second, based on the proposed α-matte defocus model and

the generated training data, a cascaded boundary-aware con-

volutional network termed MMF-Net is designed and trained

to obtain clear fusion results in areas both far away from and

near the FDB. Compared with the existing end-to-end CNN

algorithms, the proposed MMF-Net generates a guidance map

first, acquiring clear and realistic fusion results in areas far

away from the FDB. Compared with the decision map-based

CNN algorithms, the MMF-Net generates the areas near the

FDB directly from the source images, similar to the end-to-

end CNN algorithms, and thus achieves more reasonable and

clearer fusion results than that achieved by any source images

near the FDB.

Experiments demonstrate that on the benchmark dataset, the

proposed MMF-Net outperforms the state-of-the-art methods,

both qualitatively and quantitatively.

The rest of this paper is organized as follows. In section II,

we present the issue to be addressed in this paper, introduce

the proposed α-matte boundary defocus model, and conduct

comparisons with the existing defocus models on a simulated

scene. In section III, we present the proposed MMF-Net

and discuss the corresponding loss functions. Experimental

studies, including the method comparisons, are conducted in

section IV, and conclusions and future work are drawn in

section V.

II. α-MATTE BOUNDARY DEFOCUS MODEL

In this section, we first discuss the defocus spread effect

around the focused/defocused boundary (FDB), and why it

is difficult to contend with. Then, we briefly introduce and

analyze two existing defocus models: the one-parameter de-

focus model [20] and our previous two-parameter defocus

model [8]. Finally, a novel α-matte boundary defocus spread

model is proposed based on the above discussion and analysis.

Simulation experiments on a well-designed scene show that the

proposed α-matte model can generate a defocus effect near the

FDB much more realistically than the existing defocus models.

(a) Foreground focus (b) Background focus

Fig. 2. Different defocus spread effects when the foreground or the back-
ground is out of focus, shown in enlarged real-world images. The in-focus
boundary of the foreground object is labeled red.

A. The Focused/Defocused Boundary (FDB)

Existing CNN methods cannot obtain realistic and clear

fusion results, particularly for the areas near the FDB. There

are three main reasons for this issue.

First, the situations are quite different between patches far

away from and near the FDB, and it is unwise to address an

area near the FDB and an area far away from the FDB together,

as stated in our previous work [21]. For the patches far away

from the FDB, the patches are totally focused or defocused.

Consequently, the defocus of the patch is homogeneous. In

contrast, for patches near the FDB, both the focused area

and defocused area exist. Therefore, it is hard to separate the

focused area and the defocused area at the pixel level.

Second, there is a blurry area along the FDB, which is

unclear in both source images A and B, because the defocus

effect will spread out [8]. When the foreground object is in

focus, but the background is defocused, the foreground object

will not be influenced by the defocus of the background.

As shown in Fig. 2(a), the foreground and the background

are divided clearly by the yellow line. In contrast, when the

foreground object is defocused, the defocus spread effect will

lead to a blurry object larger than the original focused object,

as shown in Fig. 2(b), in which we highlight the boundary

of foreground objects in yellow to show the difference in the

defocus spread. In the area between the two red lines, the

defocus can be seen outside the yellow line, and the area inside

the yellow line is influenced by the background as well. As a

result, there is an area that is blurry in both source images A

and B along the outside of the foreground objects; one is due

to the defocus of the background, and the other is due to the

defocus spread from the defocused foreground objects.

Third, when the foreground object is out of focus (as shown

in Fig. 2(b)), it will be influenced slightly by the background

on the inside of the original boundary as well, compared with

Fig. 2(a). That is because the moving of the camera lens when

changing the focal length will lead to a small change of the

scene. As a result, although the scene varies very slightly, there

will be a mismatch for areas around the FDB when a fusion

is conducted on the source images.

The defocus spread effect of foreground objects makes it

hard to obtain a clear result near the FDB. Some of the existing
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methods [11], [14], [15] choose the pixel directly from one

of the source images, and thus the fusion results near the

FDB will be blurry and have artifacts. Some post processing

methods [15], such as the guided filter [22], are implemented

to derive smooth FDB but still remain unclear. Even using a

weighted average of the source images as the fusion result [8],

[12], [19], the blur will still remain. To address this issue, we

need to carefully model the defocus spread for the areas near

the FDB to generate a large number of realistic training images

to train the neural networks for the MFIF. The performance of

these data-driven methods is highly dependent on the training

datasets; therefore, determining how closely the model can

simulate the reality of this scenario is of vital importance.

There are several defocus spread models based on which

the training datasets for CNN-based MFIF methods are gen-

erated. Existing models include the one-parameter defocus

model [20] and the two-parameter defocus model [8]. Usually,

these models are employed to generate a training dataset for

MFIF methods. However, these models are not always valid,

especially for the areas near the FDB.

B. One-parameter Defocus Model

The typical one-parameter 2D linear space-invariant defocus

model [20] can be characterized with a space-invariant point

spread function (PSF) [23]:

I(x, y) = h(x, y)⊗ f(x, y) + n(x, y), (1)

where I(x, y) is the defocused image at pixel (x, y), f(x, y)
is the original image without the defocus effect, n(x, y) is the

additive noise, h(x, y) is the defocus kernel, and ⊗ denotes the

convolution operator. In practice, the defocus kernel h(x, y) is

usually approximated with a 2D isotropic Gaussian kernel:

h(x, y) = G(x, y;σ) =
1

2πσ2
exp(−

x2 + y2

2σ2
), (2)

where σ is the standard deviation, which describes the defocus

amount and is related to the distance between the object and

the camera.

Several CNN-based MFIF methods such as [14], [15]

employed this model to generate training data. In [15], the

original images from the ImageNet dataset [24] are directly

reblurred with a random Gaussian kernel for the defocus

effect. This is a simple way to generate data, but the relation

between the defocus amount and the depth is not considered.

[14] noticed that usually the defocus did not occur over

the whole image, and thus they reblurred the input image

only in a predetermined area. However, the boundary of the

predetermined area usually did not coincide with the real

boundary of the object in the image.

C. Two-parameter Defocus Model

Since the defocus level is related to the depth between the

objects and the camera, different objects can have different

defocus levels. In our previous work on defocus map esti-

mation [8], a two-parameter defocus model was proposed to

describe the defocus spread effect for the area near the object

boundaries, using a PSF with two parameters to describe the

different defocus levels on the two sides of a boundary. For

an ideal 2D boundary,

f(x, y) =fA(x, y)u(ax+ by + c)+

fB(x, y)u(−ax− by − c),
(3)

and the defocused boundary will be

I(x, y) =fA(x, y)u(ax+ by + c)⊗ hA(x, y)+

fB(x, y)u(−ax− by − c)⊗ hB(x, y),
(4)

where u(·) is the step function, ax + by + c = 0 is the line

corresponding to the boundary, and fA(x, y) and fB(x, y) are

the original image areas at the different sides of the boundary,

respectively. In [8], the defocus kernels hA(x, y) and hB(x, y)
are approximated with two different 2D isotropic Gaussian

kernels:

hA(x, y) = GA(x, y;σA) =
1

2πσ2
A

exp(−
x2 + y2

2σ2
A

), (5)

hB(x, y) = GB(x, y;σB) =
1

2πσ2
B

exp(−
x2 + y2

2σ2
B

). (6)

Taking advantage of this model, we generate the training

data for MFIF in our previous work [21], in which the

foreground objects or the background are first blurred with

the Gaussian function and then spliced together. Consequently,

the defocus level only changes alongside object boundaries,

which is closer to reality than [14], [15]. However, this two-

parameter model cannot describe the different FDB between

an out-of-focus foreground (with an in-focus background) and

an out-of-focus background (with an in-focus foreground).

D. An α-Matte Boundary Defocus Spread Model

As we have discussed above, existing defocus models focus

on the intensity at each pixel rather than the defocus spread

along the boundary of the foreground objects. To simulate the

defocus effect, a new model should focus on several specific

issues: the defocus spread across the FDB, the blurry area

along the FDB, and the different spread situations of the FDB

when defocus occurs in the foreground or the background. To

address these issues, we first propose a novel α-matte bound-

ary defocus spread model to simulate the defocus process.

The proposed defocus model not only can be used to explain

why the previous MFIF methods fail in the fusion of area near

FDB, but also can be used readily to generate training data for

MFIF, and the generated data will be not only similar to real

scenes but also easy to be obtained than manual annotation.

In the proposed α-matte model, we assume that there is a

transmission matte αn for every surface Sn parallel to the focal

plane, where n(= 1, . . . , N) is the order of the surface. First,

we assume that when a surface is in focus, for the surface

without an object on it, the matte value is zero, and for the

surface with objects that no light can pass through, the matte

on the object pixel is one. Second, the defocus kernel hn(x, y)
for a defocused surface Sn(x, y) is a 2D isotropic Gaussian

kernel G(x, y;σn):

hn(x, y) = G(x, y;σn) =
1

2πσ2
n

exp(−
x2 + y2

2σ2
n

). (7)
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Third, the defocus effects are the same for the RGB surface

Sn and the matte αn:

α0
n(x, y) = hn(x, y)⊗ αc

n(x, y)

= G(x, y;σn)⊗ αc
n(x, y),

(8)

Sn(x, y) = hn(x, y)⊗ Sc
n(x, y)

= G(x, y;σn)⊗ Sc
n(x, y),

(9)

where αc
n is the clear matte on the in-focus clear surface

Sc
n, and α0

n denotes the matte before considering any defocus

spread effects from the objects in front of Sn).

As have been shown in Fig. 2, the out-of-focus objects in

the front can affect objects in the back, but the out-of-focus

objects in the back cannot affect objects in the front. Therefore,

we make the clear RGB surface Sc
n and the clear matte αc

n

out of focus one by one from near to far. The final matte

αn will be an aggregation of all effects from those mattes in

the front, that is, the intersection between its own α0
n and the

complementary set for the summation of all the mattes in the

front:

αn = α0
n(1−

n−1
∑

t=0

αt), with α0 = 0, n = 1, . . . , N. (10)

This means that the defocus of the matte would only influence

the mattes behind it, as occurs in reality. Therefore, the cap-

tured image I at each pixel in the photo will be a summation

of the pixel values on all surfaces Sn:

I =

N
∑

n=1

In =

N
∑

n=1

[(1−

n−1
∑

t=0

αt)Sn]. (11)

Particularly, image I with only two valid surfaces (foreground

surface SFG and background surface SBG) is

I = SFG + (1− αFG)SBG, (12)

where αFG is the matte of the foreground, and this is the

model we used for data generation.

E. Comparison of Defocus Models

To show the difference between the proposed α-matte

defocus spread model and the existing defocus models, we

stimulate it with a simple scene. In the stimulated scene, there

are three objects, as shown in Fig. 3(a). Object 1 is close to

the camera, object 3 is far away from the camera, and object

2 is set between object 1 and object 3. The all-in-focus image

is as shown Fig. 3(b), which cannot be taken by the camera

with limited focal length directly. We focus the camera on the

object 2, so the defocus spread effect near the FDB varies. For

the boundary between object 1 and object 2, the foreground is

out of focus and the background is in focus. In contrast, for

the boundary between object 2 and object 3, the foreground

is in focus and the background is out of focus.

According to the one-parameter defocus model [20], the

simulated image will appear as in Fig. 3(c). The model can

simulate the defocus effect in object 1 and object 3, which

are out of focus. However, the one-parameter defocus model

cannot show the defocus spread effect at all: in the area

near the FDB boundary in object 2, there is no influence of

(a) The stimulated scene

(b) All-in-focus image (c) One-parameter defocus model [20]

(d) Two-parameter defocus model [8] (e) α-matte defocus model

Fig. 3. Comparison of the defocus models in the stimulated scene with the
camera focusing on object 2. The boundary between object 1 and object 2 is
different from that between object 2 and object 3. The proposed α-matte model
precisely simulates the defocus spread effect across the boundary between
object 1 and object 2 (foreground out of focus), as well as the clear boundary
between object 2 and object 3 (foreground in focus). The black lines are added
to show the original boundary of clear objects.

defocus at all. Moreover, this model does not reflect whether

the defocus object is in the front of or behind an in-focus

object, with the FDB all the same, as shown in Fig. 3(c).

According to the two-parameter defocus model [8], the

simulated image is as shown in Fig. 3(d). The defocus spread

effect can be simulated on both sides of the FDB, but this

defocus model suffers from the anti-gradient effect. Especially

for the situation shown in this simulated scene, object 2 is in

focus and shows no influence on object 1; and the defocus

spread of object 1 is unclear since object 2 is in focus.
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(a) Sc
n (b) αc

n (c) Sn (d) α0
n (e) αn (f) In

Fig. 4. Imaging process of the proposed α-matte defocus model in a stimulated scene with three surfaces from the top down. The captured image I (Fig. 3(e))
is the summation of the last column In.

Moreover, the two-parameter defocus model also does not

reflect whether the defocus object is in the front of or behind

an in-focus object, with the FDB all the same, as shown in

Fig. 3(d).

The defocus simulated image of the proposed α-matte

defocus spread model is shown in Fig. 3(e), from which we

can observe two patterns.

First, for the FDB between object 1 and object 2, the defocus

spread effect is on both sides: the effect in object 1 is due to

the defocused object 1 and the moving camera lens, and the

effect in object 2 is due to the spread effect of the defocused

object 1. That is, because object 1 (foreground object) is out

of focus and object 2 (background object) is in focus, the

defocus will spread to the area of object 2 near the FDB, and

the yellow color of object 2 will also have a slight influence

on object 1. In other words, if object 2 has texture, we will

notice that the defocus spread to object 1 is in fact the texture

behind object 1 compared with the all-in-focus image, and the

proposed α-matte model can also simulate the scene change

when the focal length changes.

Second, for the FDB between the in-focus object 2 and the

defocused object 3, the defocus spread has no effect on either

side. Object 2 (foreground object) is in focus and object 3

(background object) is out of focus. Consequently, the defocus

will not spread to the area of object 3 near the FDB since

object 2 is in focus, and object 3 cannot influence object 2 as

well, given that object 3, although out of focus, is behind the

in-focus object 2.

In short, the proposed defocus model simulates very well

the difference of the defocus spread when the defocus occurs

in the foreground or the background.

Using the same simulated scene, we also show in Fig. 4 the

image composition process with the proposed α-matte defocus

spread model. For every surface Sn parallel to the focal plane,

the before-defocus object surfaces Sc
n is shown in Fig. 4(a),

and the before-defocus matte αc
n is shown in Fig. 4(b).

Then, the camera is set to focus on object 2, and object 1

and object 3 are out of focus. As we have mentioned above,

a 2D isotropic Gaussian kernel G(x, y;σn) is applied to the

clear surface Sc
n and the clear matte αc

n at the same time. The

defocus exists when n = 1 or n = 3, and object 2 is in focus.

The surfaces are shown in Fig. 4(c), and the mattes are shown

in Fig. 4(d).

To compose the final image taken by the simulated camera,

we first obtain the αn (4(e)), which is the intersection between

α0
n and the complementary set for the summation of all the

mattes in the front. The calculation is done in a one-by-one

manner from the surface in the front. After that, the images are

generated using Equation (Fig. 11). The compositions of each

surface are shown in Fig. 4(f). The final defocus image is the

summation of I1, I2 and I3, as we have shown in Fig. 3(e).

III. MMF-NET: THE MATTE MODEL BASED CASCADED

FUSION NET

Based on the proposed defocus model and its generated

training data, the cascaded convolutional fusion net (MMF-

Net) is developed and trained. In this section, the structure

of the proposed MMF-Net is first introduced, and then the

loss functions used to train the MMF-Net are discussed. Our

MMF-Net aims to achieve realistic and clear results in both

the areas that are near and far away from the FDB.

A. The Network Structure

The structure of the proposed MMF-Net is shown in Fig. 5.
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Fig. 5. The block diagram of the proposed cascaded boundary-aware multi-focus fusion network MMF-Net. The initial fusion subnet is implemented to derive
the guidance map Gmap, and then the boundary fusion subnet is employed to help refine the fusion result near the FDB.

Two source images are first input into an initial fusion

subnet aiming to generate a guidance map Gmap. In the

guidance map, the pixel-wised value would be 1 if source

image A is focused and source image B is defocused, whereas

it would be 0 if source image A is defocused and source image

B is focused, and the area near the FDB is given an α values

of 0.5. Then, we use this guidance map to generate an initial

fusion result:

FusionIni = Gmap× I1 + (1−Gmap)× I2, (13)

where I1 and I2 are the two source images.

Then, the two source images are concatenated with the

guidance map as the input of the boundary fusion subnet.

The output of the boundary fusion subnet is masked and

weighted by the boundary map Bmap and then added to the

initial fusion result. The boundary map is calculated with the

guidance map as

Bmap = 1− |2×Gmap− 1|. (14)

In this way, regardless of which source image is focused, the

value will be 0 for the areas far away from the FDB. Hence,

only the pixels of boundary areas in the initial fusion result

will be revised by the output of the boundary fusion subnet.

That is, for the areas far away from the FDB, the final fusion

results FusionFin of MMF-Net will be completely decided by

the focused part of the source images. In the meantime, for

the areas near the FDB, the final fusion results FusionFin

are obtained through enhancing the initial fusion results by

the output of the boundary fusion subnet, which is a hard task

for existing methods as they do not specifically treat the FDB.

In our implementation, typical residual blocks [25] are

employed. The initial fusion subnet contains 1 convolutional

layer, 4 residual blocks, and 2 convolutional layers; the bound-

ary fusion subnet contains 1 convolutional layer, 12 residual

blocks, and 2 convolutional layers. The kernel size of every

residual block is 64.

B. Loss Functions

The loss function that we use in the training process contains

three components: the matte loss Lossmatte, the initial fusion

loss LossIni, and the weighted final fusion loss LossW :

Loss = λ1 × Lossmatte + λ2 × LossIni + LossW , (15)

where λ1 and λ2 are trade-off parameters.

First, for the initial fusion subnet, matte loss Lossmatte and

initial fusion loss LossIni are used:

Lossmatte = mean(|matteIni −matteGT |), (16)

LossIni = mean((FusionIni − FusionGT )
2).(17)

We choose the L1 norm for matte as it is a discrete value in

the ground truth and choose the L2 norm for the fusion results

as usual.

Second, in order to supervise the final fusion result more

precisely, we use a weighted fusion loss LossW . The area

near the FDB is much more difficult to be fused than the

other areas, so its weight W should be larger than those for

the areas far away from the FDB:

LossW = W ×mean((FusionFin − FusionGT )
2), (18)

where the weight W is simply calculated as follows:

W =
1 + (k − 1)× (1− |2×matteIni − 1|)

k
, (19)

where k is the weight contrast parameter of the FDB area.

The max weight for the area near the FDB will be close to 1,

as the matte values will be close to 0.5; and for the area far

away from the FDB, the weight will be close to 1/k, as the

matte values will be close to either 1 or 0.

When training the fusion model, we use λ1 = λ2 = 0.2
and k = 5; that is, more attention is given to the FDB area

because it is difficult to obtain.

IV. EXPERIMENTAL STUDIES

This section will present the dataset generation, implemen-

tation settings, comparison settings and experimental results.
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A. Dataset Generation

A good training dataset should represent comprehensive

situations of the task. The best choice for training data is using

real photos. However, there are few multi-focus source images

for fusion, and the ground truth needs to be labeled manually,

which is very costly. Therefore, a feasible way is to generate

artificial training images that are similar to reality yet easy to

obtain. In our case, a dataset of foreground images with ground

truth is used, and some images without an obvious defocus are

chosen as the background dataset. Both the original foreground

(FGC) and the background (BGC) images are first processed

by Gaussian filters with kernel G(x, y;σ) for the blurred

images:

FGB(x, y) = G(x, y;σ)⊗ FGC(x, y), (20)

BGB(x, y) = G(x, y;σ)⊗BGC(x, y). (21)

When the foreground is in focus, the ground truth is the

same as the matte αC , and when the background is in focus,

the matte αB is the blurred ground truth with the Gaussian

kernel G(x, y;σ):

αB(x, y) = G(x, y;σ)⊗ αC(x, y). (22)

Then, the source images are generated using Equation (12)

according to the matte (αC or αB) pixel by pixel. Here, we use

source images 1 and 2 to denote the image pairs generated by

the proposed model and source images A and B as the input

of the network. Source image 1 (ImgS1) has the in-focus

foreground and the out-of-focus background, and source image

2 (ImgS2) has the out-of-focus foreground and the in-focus

background :

ImgS1 = FGC + (1− αC)BGB , (23)

ImgS2 = FGB + (1− αB)BGC . (24)

Examples of the source image pairs from the generated train-

ing dataset are also shown in Fig. 6(a) and Fig. 6(c). The

defocus spread effect when the foreground is out of focus can

be seen in the enlarged images in Fig. 6(d), and the comparison

with the one when the foreground is in focus is shown in

Fig. 6(b). Fusion of ground truth (Fig. 6(g)) is generated with

the matte αC :

GT = FGC + (1− αC)BGC . (25)

The guidance maps (Fig. 6(e) and Fig. 6(f)) are created

at the same time. In the blurred matte αB , the value in (0,

1) is set to 0.5 as the guidance map. The size of FDB area

would be influenced by the level of defocus effect. Here 0.5

is used to indicate that the FDB area would be influenced by

both foreground and background, which should be dealt with

independently. If the foreground is in focus in source image A

and out of focus in source image B, the guidance map Gmap
will be

Gmap(x, y) =







0, αB(x, y) = 0
0.5, 0 < αB(x, y) < 1
1, αB(x, y) = 1

. (26)

On the other hand, if the foreground is defocused in source

image A and focused in source image B, the guidance map

Gmap′ will be the opposite of Gmap:

Gmap′(x, y) =







1, αB(x, y) = 0
0.5, 0 < αB(x, y) < 1
0, αB(x, y) = 1

. (27)

We collect 200 foreground images from datasets of matting

[1], [26] with corresponding matte maps, choosing 1,200 back-

ground pictures from the COCO dataset [27]. The background

pictures are first resized to 512 × 512. Then, for every fore-

ground image, 20 background images are randomly chosen.

The order of source images is random, with a probability equal

to 0.5; therefore, 4,000 image pairs are obtained in total.

B. Training Settings

For the training process, 4 × 1080Ti GPUs are used, and

the test is carried out on a single GPU. The Adam solver is

used with parameters β1 = 0.9, β2 = 0.999, and ǫ = 10−8.

The batch size is set to 32, with the learning rate set to 0.001.

The model is trained on the generated dataset for 80 epochs.

During the test process, it takes 0.27 seconds on average to

fuse an image pair of size 520 × 520.

C. Comparison Settings

We compare the proposed MMF-Net with 7 other multi-

focus fusion methods: conventional methods including NSCT

[5], SR [6], NSCT-SR [8], GF [12] and DSIFT [11]; network

approaches including DCNN [15]; and our previous work BA-

Fusion [21]. The experiments are conducted on the ‘Lytro’ [28]

and ‘Real-MFF’ [29] datasets. ‘Lytro’ is commonly used for

MFIF, and ‘Real-MFF’ is a new large MFIF dataset.

Four widely used objective metrics to assess fused image

quality are used to evaluate the results [19]: average gradient

(AG) [30], linear index of fuzziness (LIF ) [31], mean square

deviation (MSD) and gray level difference (GLD). Their

formulations are described as follows.

1) LIF : LIF is an evaluation metric that can evaluate the

enhancement of fused images:

LIF =
2

MN

M
∑

m=1

N
∑

n=1

min{pmn, (1− pmn)}, (28)

pmn = sin[
π

2
(1−

I(m,n)

Imax

)], (29)

where I(m,n) is the intensity of pixel (m,n) in image I ,

and Imax is the maximum intensity of image I . A small LIF
indicates that the enhancement of the fused image is good.

2) AG: AG is a metric that uses gradient information to

measure the quality of fused images:

AG =
1

(M − 1)(N − 1)
×

M−1
∑

m=1

N−1
∑

n=1

1

4

√

(
∂I(m,n)

∂m
)2 + (

∂I(m,n)

∂n
)2,

(30)

where
∂I(m,n)

∂m
and

∂I(m,n)
∂n

are the gradients of the image in

horizontal and vertical directions, respectively. A larger AG
means that the boundaries of the fused image are clearer.
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(a) ImgS1 (b) Enlarged ImgS1 (c) ImgS2 (d) Enlarged ImgS2 (e) Gmap (f) Gmap′ (g) Fusion GT

Fig. 6. Examples from the generated training dataset. The defocus spread effect is slight but can be seen in the enlarged images.

3) MSD: MSD measures image detail richness by calcu-

lating the difference between the intensity of each pixel and

the mean intensity Ī of the fused image:

MSD =
1

(M − 1)(N − 1)

√

√

√

√

M−1
∑

m=1

N−1
∑

n=1

(I(m,n)− Ī)2.

(31)

A larger MSD corresponds to a clearer fused image.

4) GLD: GLD uses the L1 norm to calculate the gradient

information of the fused image:

GLD =
1

(M − 1)(N − 1)
×

M−1
∑

m=1

N−1
∑

n=1

(|I(m,n)− I(m+ 1, n)|+ |I(m,n)− I(m,n+ 1)|).

(32)

A larger GLD indicates a fused image with clearer boundary.

D. Experimental Results and Analysis

Fig. 7 shows the visual comparisons on the ‘Lytro’ dataset

[28]. We select three image pairs to show the advantages of

the proposed MMF-Net in three situations of different com-

plexities: with small defocus areas, normal FDB and complex

FDB. The top row (‘Lytro-01’) shows the ability of MMF-Net

to handle small defocus areas. In source image A (Fig. 7(a)),

the enlarged square is an out-of-focus area surrounded by the

focused object. The proposed method (Fig. 7(j)) obtains a

clearer grassland that is similar to the focused background

in source B (Fig. 7(b)), especially compared with the spatial

domain methods (Figs. 7(d), 7(f), 7(g), 7(h) and 7(i)).

The middle row (‘Lytro-11’) demonstrates the ability of

MMF-Net to address normal FDB. In source image A

(Fig. 7(a)), the enlarged square is focused on the finger

and out-of-focus in the background. The transform domain

methods (Figs. 7(c) and 7(e)) fail in this situation, and the

ghost effect exists around the boundary of the finger. In

contrast, the proposed MMF-Net (Fig. 7(j)) obtains a clearer

foreground similar to that in the source image B (Fig. 7(b)).

The bottom row (‘Lytro-05’) is an example in which MMF-

Net contends with more complex FDB. The proposed method

(Fig. 7(j)) produces clear results even in such a difficult

situation. In the enlarged square, the artifact effect exists in the

grille’s edge of Figs. 7(d), 7(g) and 7(i); unclear regions remain

in Figs. 7(f) and 7(h); and defocus also exists in Figs. 7(c) and

7(e), as pointed out by the blue arrows. In the results of these

methods, the textures in the sock and sole are different from

that in Fig. 7(b), while our MMF-Net successfully preserves

these textures in Fig. 7(j).

Fig. 8 shows the visual comparisons on the ‘Real-RFF’

dataset [29]. Some quite difficult fusion tasks are included in

the dataset. As shown in Figs. 8(a) and 8(b), the foreground

tree at the upper part is in focus in the source image B, and the

background building is in focus in the source image A, while

there are several falling leaves (the left enlarged square), which

makes the situation complex. The proposed MMF-Net obtains

a more satisfactory fusion result (Fig. 8(j)), compared with the

SR, GF, DSIFT and CNN (Figs. 8(d), 8(f), 8(g) and 8(h)).

We also employ the difference map with the source image A

to clearly show the comparison of different methods because

the visual results are not always easy to distinguish. In our

implementation,

DifferenceMap = k|Result− SourceA|, (33)

and here we use k = 15 to illustrate the difference more

clearly. Because the source image A is in focus in the

background buildings and out of focus in the trees and falling

leaves, the difference map with a pleasant fusion result would

be all black in the building area (the right enlarged square)

and with a clear difference on those falling leaves (the left

enlarged square), which is the same as our results shown in
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(a) Source A (b) Source B (c) NSCT [5] (d) SR [6] (e) NSCT-SR [8]

(f) GF [12] (g) DSIFT [11] (h) CNN [15] (i) BA-Fusion [21] (j) MMF-Net

Fig. 7. The fusion results of different methods on the ‘Lytro’ dataset. Compared with other MFIF methods, both the edge of objects and background are
clearer in the results of our MMF-Net, as shown in the enlarged squares.
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(a) Source A (b) Source B (c) NSCT [5] (d) SR [6] (e) NSCT-SR [8]

(f) GF [12] (g) DSIFT [11] (h) CNN [15] (i) BA-Fusion [21] (j) MMF-Net

Fig. 8. The fusion results of different methods on the ‘Real-MFF’ dataset. Middle rows: Compared with other MFIF methods, our MMF-Net divides the
foreground and background more precisely and obtains clearer results, as shown in the enlarged squares. Bottom rows: Difference maps with source image
A are also provided here to show that our MMF-Net effectively preserves the information of in-focus area.

Fig. 8(j). In the buildings area, the MMF-Net keeps the clear

results similar to source A, for which NSCT, SR, NSCT-SR,

DSIFT and BA-Fusion (Figs. 8(c), 8(d), 8(e), 8(g) and 8(i))

fail. The missing of falling leaves in Figs. 8(d), 8(f), 8(g) and

8(h) can be noticed in the difference map as well.

The quantitative comparisons are shown in Table I and

Table II. The larger values of metrics AG, MSD and GLD
mean better fusion results, while the smaller values of LIF
mean better results. The best results of the compared methods

are highlighted in bold. The results in Table I shown the

average values over the 20 pairs of test images in the ‘Lytro’

dataset. Among the 20 pairs, the numbers of image pairs

in which one method surpasses all the other methods are

shown in the parentheses. As seen, the proposed MMF-Net

remarkably outperforms the other fusion methods in terms of

all quality metrics. We also conduct a comparison on the new

‘Real-MFF’ dataset [29], which includes 710 pairs of defocus

images. The results are listed in Table II. All the image pairs

are used for testing and, as the results show, the proposed

MMF-Net outperforms the other fusion methods on all quality

metrics in this dataset as well.

E. Ablation Study

Several ablation studies are also conducted to show the ef-

fectiveness of the proposed defocus model and fusion network

in Table III. All the ablation studies are carried out on the new

Real-MMF dataset because it is much larger than the Lytro

dataset.

To show the effectiveness of the proposed defocus model,

we first establish two datasets based on the one-parameter

(OnePara. Model) and two-parameter (TwoPara. Model) defo-

cus models, respectively. Then, we train the proposed MMF-

Net on these two datasets. To make the comparison convinc-

ing, same settings are used in the generation of data and the

training process, including the size, resolution of the data, the

number of epochs and the learning rate, etc. The results show

that the network trained on the dataset generated with our α-

matte boundary defocus model obtains a much better result on

all the evaluation metrics. The two-parameter defocus model

is no better than the one-parameter defocus model when used
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TABLE I
THE QUANTITATIVE COMPARISON OF DIFFERENT MFIF METHODS ON THE LYTRO DATASET. FOR AG, MSD AND GLD, THE LARGER VALUES MEAN

BETTER RESULTS; FOR LIF , THE SMALLER VALUES MEAN BETTER RESULTS. THE BEST AVERAGE RESULTS ARE IN BOLD, AND THE NUMBERS OF IMAGE

PAIRS (OUT OF A TOTAL OF 20) IN WHICH ONE METHOD SURPASSES ALL THE OTHER METHODS ARE SHOWN IN THE PARENTHESES. OUR PROPOSED

MMF-NET OUTPERFORMS THE OTHER MFIF METHODS ON ALL METRICS.

Metrics NSCT [5] SR [6] NSCT-SR [8] GF [12] DSIFT [11] DCNN [15] BA-Fusion [21] MMF-Net

AG 2.8750 (0) 2.8446 (0) 2.8794 (0) 2.8699 (0) 2.9020 (1) 2.8598 (0) 2.9040 (2) 2.9791 (17)
MSD 0.1108 (2) 0.1108 (0) 0.1108 (1) 0.1110 (1) 0.1111 (0) 0.1109 (0) 0.1112 (0) 0.1120 (16)
GLD 14.2245 (0) 14.0740 (0) 14.2467 (0) 14.1954 (0) 14.3400 (0) 14.1460 (0) 14.3550 (2) 14.7451 (18)
LIF 0.4097 (0) 0.4083 (0) 0.4093 (1) 0.4081 (1) 0.4075 (2) 0.4080 (0) 0.4075 (1) 0.4056 (15)

TABLE II
THE QUANTITATIVE COMPARISON OF DIFFERENT MFIF METHODS ON THE REAL-MFF DATASET. FOR AG, MSD AND GLD, THE LARGER VALUES

MEAN BETTER RESULTS; FOR LIF , THE SMALLER VALUES MEAN BETTER RESULTS. THE BEST AVERAGE RESULTS ARE IN BOLD. OUR PROPOSED

MMF-NET OUTPERFORMS THE OTHER MFIF METHODS ON ALL METRICS.

Metrics NSCT [5] SR [6] NSCT-SR [8] GF [12] DSIFT [11] DCNN [15] BA-Fusion [21] MMF-Net

AG 2.6660 2.5233 2.6670 2.6057 2.6077 2.6050 2.6158 3.5110

MSD 0.1000 0.0989 0.1000 0.0996 0.0997 0.0996 0.0998 0.1037

GLD 13.2039 12.5019 13.2089 12.8972 12.9063 12.8943 12.9471 17.4421

LIF 0.2643 0.2645 0.2640 0.2637 0.2642 0.2641 0.2634 0.2596

TABLE III
ABLATION STUDY. WE USE THE QUANTITATIVE COMPARISONS ON THE REAL-MFF DATASET WITH DIFFERENT TRAINING SETTINGS. FOR AG, MSD
AND GLD, THE LARGER VALUES MEAN BETTER RESULTS; FOR LIF , THE SMALLER VALUES MEAN BETTER RESULTS. THE BEST AVERAGE RESULTS

ARE IN BOLD. THE FULL MMF-NET OUTPERFORMS THE OTHER METHODS ON ALL METRICS WITH A REASONABLE TRAINING DATA GENERATION

METHOD, FUNCTIONAL LOSS FUNCTION AND NETWORK.

Metrics BA-Fusion [21] OnePara. Model TwoPara. Model No LossW No Gmap Complete MMF-Net

AG 2.6158 2.8129 2.9331 2.8723 2.7143 3.5110

MSD 0.0998 0.1004 0.1010 0.1003 0.1001 0.1037

GLD 12.9471 13.9458 14.5308 14.2646 13.4515 17.4421

LIF 0.2634 0.2558 0.2618 0.2625 0.2628 0.2596

for data generation. Because the two-parameter model was first

proposed for defocus estimation [8], it would have the anti-

gradient effect on the boundary area. The results of BA-Fusion

[21] are listed here as well because it is also trained with a one-

parameter defocus model-based dataset; we can observe that

the proposed MMF-Net trained on the one-parameter model

also outperforms BA-Fusion.

Then, we conduct several experiments to show the effec-

tiveness of the proposed MMF-Net. We first train the same

network without the weighted loss (‘No LossW ’), so no at-

tention would be specifically paid to the boundary area. (Here,

λ1 = 0.8 and λ2 = 0.2.) The results are slightly worse than

the complete MMF-Net trained with LossW . Subsequently,

we train the network without the Gmap supervision (‘No

Gmap’) and find that its results are worse than those of the

‘No LossW ’ model, indicating the effectiveness of the applied

guidance map.

V. CONCLUSIONS

In this paper, a cascaded boundary-aware convolutional

network called MMF-Net is proposed for multi-focus image

fusion along with a new α-matte boundary defocus model.

The proposed MMF-Net aims to solve the unclear areas near

the focused/defocused boundary (FDB) in the fusion results by

implementing two subnets that first generate a fusion guidance

map and then refine the fusion results in the areas near the

FDB. In addition, the dataset generated with the α-matte

model simulates the real-world images precisely, especially for

the areas near the FDB. Experiments show that with the help

of MMF-Net and the more realistic training data, the proposed

method outperforms the state-of-the-art ones both qualitatively

and quantitatively.

In this work, we mainly propose the defocus spread model

and then define a network that uses a relatively simple and

direct architecture to illustrate the effectiveness of this model

on multi-focus image fusion. Our future work will focus on the

improvement of the network structure and using the attention

mechanism [32], [33] to improve on the direct boundary

guidance map.
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