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AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT

METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS

WITH CONTROL CONSTRAINTS
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Abstract. We present an a posteriori error analysis of adaptive finite element approximations of

distributed control problems for second order elliptic boundary value problems under bound constraints

on the control. The error analysis is based on a residual-type a posteriori error estimator that consists

of edge and element residuals. Since we do not assume any regularity of the data of the problem, the

error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator

and provide a bulk criterion for mesh refinement that also takes into account data oscillations and is

realized by a greedy algorithm. A detailed documentation of numerical results for selected test problems

illustrates the convergence of the adaptive finite element method.
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1. Introduction

Adaptive finite element methods have been widely and successfully used for the efficient numerical solution
of boundary and initial-boundary value problems for partial differential equations and systems thereof (cf., e.g.,
the monographs [1,3,4,14,26,27] and the references therein).

Several error concepts have been developed over the past three decades including residual-type estima-
tors [2,3,27] that rely on the appropriate evaluation of the residual in a dual norm, hierarchical type estima-
tors [5,18,19] where the error equation is solved locally using higher order elements, error estimators that are
based on local averaging [9,28], the so-called goal oriented dual weighted approach [4,14] where information
about the error is extracted from the solution of the dual problem, and functional type error majorants [26]
that provide guaranteed sharp upper bounds for the error.

As far as the a posteriori error analysis of adaptive finite element schemes for optimal control problems is
concerned, there is not much work available. The unconstrained case has been addressed in [4,6], whereas
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residual-type a posteriori error estimators in the control constrained case have been derived and analyzed
in [20,23,24]. In contrast to the approach used in [20,23,24], the error analysis in this paper pertains to the
error in the state, the adjoint state, the control, and the adjoint control and incorporates oscillations in terms
of the data of the problem. The data oscillations may significantly contribute to the error and thus have to be
considered in the adaptive refinement process. The paper is organized as follows:

In Section 2, as a model problem we consider a distributed optimal control problem for a two-dimensional,
second order elliptic PDE with a quadratic objective functional and unilateral constraints on the control variable.
The optimality conditions are stated in terms of the state, the adjoint state, the control, and the Lagrangian
multiplier for the control which will be referred to as the adjoint control.

In Section 3, the control problem is discretized with respect to a shape regular simplicial triangulation of the
computational domain using continuous, piecewise linear finite elements for the state and the adjoint state and
elementwise constant approximations of the control and the adjoint control.

The residual-type a posteriori error estimator for the global discretization errors in the state, the adjoint
state, the control, and the adjoint control consists of edge and element residuals. In contrast to [20], we include
the error in the adjoint control. Moreover, we do not assume any regularity of the data. Consequently, the
a posteriori error analysis also has to take into account data oscillations. Both the a posteriori error estimator
and the data oscillations are presented in Section 4.

In Section 5, we prove reliability of the error estimator, i.e., up to data oscillations, it provides an upper
bound for the global discretization errors. Section 6 is devoted to the efficiency of the estimator. Here, it is
shown that, modulo data oscillations, the error estimator also gives rise to a lower bound for the discretization
errors.

In Section 7, we address the issue of adaptive mesh refinement on the basis of the local components of the
error estimator and the data oscillations. This is done by means of a bulk criterion where edges and elements
of the triangulation are selected for refinement in such a way that the sum of the associated error terms/data
oscillations exceeds the total sum by a certain margin. The bulk criterion is realized by a greedy algorithm.

Finally, Section 8 contains a detailed documentation of numerical results for selected test examples in terms
of the convergence history of the adaptive finite element method including visualizations of the adaptively
generated simplicial triangulations.

2. The distributed elliptic control problem

We consider the following optimal control problem for a linear second order elliptic boundary value problem
with constrained distributed controls

minimize J(y, u) :=
1

2
‖y − yd‖2

0,Ω +
α

2
‖u − ud‖2

0,Ω (2.1a)

over (y, u) ∈ H1
0 (Ω) × L2(Ω),

subject to − ∆y = f + u, (2.1b)

u ∈ K := {v ∈ L2(Ω) | v ≤ ψ a.e. in Ω}. (2.1c)

Here, Ω ⊂ R
2 is a bounded, polygonal domain with boundary Γ := ∂Ω. Moreover, we suppose that

ud, yd ∈ L2(Ω), f ∈ L2(Ω), ψ ∈ L∞(Ω), α ∈ R+. (2.2)

It is well-known that under the assumption (2.2) the distributed optimal control problem (2.1a)–(2.1c) admits
a unique solution (y, u) ∈ H1

0 (Ω) × L2(Ω) (cf., e.g., [15,21–23]) which is characterized by the existence of a
co-state (adjoint state) p ∈ H1

0 (Ω) and a Lagrange multiplier for the inequality constraint (adjoint control)
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σ ∈ L2(Ω) such that

a(y, v) = (f + u, v)0,Ω, v ∈ H1
0 (Ω), (2.3a)

a(p, v) = − (y − yd, v)0,Ω, v ∈ H1
0 (Ω), (2.3b)

u = ud +
1

α
(p − σ), (2.3c)

σ ∈ ∂IK(u). (2.3d)

Here, a(·, ·) stands for the bilinear form

a(w, z) :=

∫

Ω

∇w · ∇z dx, w, z ∈ H1
0 (Ω),

and ∂IK : L2(Ω) → 2L2(Ω) denotes the subdifferential of the indicator function IK of the constraint set K (cf.,
e.g., [17]).

We note that (2.3d) can be equivalently written as the variational inequality

(σ, u − v)0,Ω ≥ 0, v ∈ K, (2.4)

and the complementarity problem

σ ∈ L2
+(Ω), ψ − u ∈ L2

+(Ω), (2.5)

(σ, ψ − u)0,Ω = 0,

where (·, ·)0,Ω stands for the L2-inner product and L2
+(Ω) refers to the nonnegative cone in L2(Ω).

We define the active control set A(u) as the maximal open set A ⊂ Ω such that u(x) = ψ(x) f.a.a. x ∈ A and
the inactive control set I(u) according to I(u) :=

⋃

ε>0 Bε, where Bε is the maximal open set B ⊂ Ω such that
u(x) ≤ ψ(x) − ε for almost all x ∈ B. Then, the complementarity conditions (2.5) can be equivalently stated
as:

σ(x) ≥ 0 f.a.a. x ∈ Ω, (2.6a)

σ(x) = 0 f.a.a. x ∈ I(u), (2.6b)

σ(x) = α(ud(x) − ψ(x)) + p(x) f.a.a. x ∈ A(u). (2.6c)

3. Finite element approximation

We assume that {Th(Ω)} is a family of shape-regular simplicial triangulations of Ω. We refer to Nh(D) and
Eh(D), D ⊆ Ω, as the sets of vertices and edges of Th(Ω) in D ⊆ Ω. We denote by hT and |T | the diameter and
area of an element T ∈ Th(Ω) and by hE the length of an edge E ∈ Eh(D).

The distributed optimal control problem (2.1a)–(2.1c) is discretized by continuous piecewise linear finite
elements with respect to the triangulation Th(Ω). In particular, we refer to

Vh := {vh ∈ C0(Ω) |vh|T ∈ P1(T ), T ∈ Th(Ω)},

as the finite element space spanned by the canonical nodal basis functions ϕa
h, a ∈ Nh(Ω), associated with the

nodal points in Ω. Moreover, we denote by

Wh := {wh ∈ L2(Ω) |wh|T ∈ P0(T ), T ∈ Th(Ω)}
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the linear space of elementwise constant functions on Ω. We refer to yh ∈ Vh and uh ∈ Wh as finite element
approximations of the state y and the control u, respectively. We approximate the upper obstacle ψ by ψh ∈ Wh

with ψh|T := |T |−1
∫

T ψ dx, T ∈ Th(Ω).
The finite element approximation of the distributed optimal control problem (2.1a)–(2.1c) reads as follows:

minimize Jh(yh, uh) :=
1

2
‖yh − yd‖2

0,Ω +
α

2
‖uh − ud‖2

0,Ω, (3.1a)

over (yh, uh) ∈ Vh × Wh, (3.1b)

subject to a(yh, vh) = (f + uh, vh)0,Ω, vh ∈ Vh, (3.1c)

uh ∈ Kh := {wh ∈ Wh |wh|T ≤ ψh|T , T ∈ Th(Ω)}. (3.1d)

As in the continuous regime, the necessary and sufficient optimality conditions for (3.1a)–(3.1d) involve the
existence of an adjoint state ph ∈ Vh and an adjoint control σh ∈ Wh such that

a(yh, vh) = (f + uh, vh)0,Ω, vh ∈ Vh, (3.2a)

a(ph, vh) = −(yh − yd, vh)0,Ω, vh ∈ Vh, (3.2b)

uh = ud
h +

1

α
(Mhph − σh), (3.2c)

σh ∈ ∂IKh
(uh), (3.2d)

where ud
h ∈ Wh with ud

h|T := |T |−1
∫

T
ud dx, T ∈ Th(Ω), and Mh : Vh → Wh is the operator given by

(Mhvh)T := |T |−1

∫

T

vh(x) dx, T ∈ Th(Ω). (3.3)

Again, (3.2d) can be stated as the complementarity problem

σh ≥ 0, ψh − uh ≥ 0, (3.4)

(σh, ψh − uh)0,Ω = 0.

We define A(uh) and I(uh) as the discrete active and inactive control sets according to

A(uh) :=
⋃

{T ∈ Th(Ω) |uh|T = ψh|T }, (3.5a)

I(uh) :=
⋃

{T ∈ Th(Ω) |uh|T < ψh|T }. (3.5b)

The complementarity conditions (3.4) readily imply

σh|T ≥ 0, T ∈ Th(Ω), (3.6a)

σh|T = 0, T ∈ I(uh), (3.6b)

σh|T = α(ud
h − ψh)|T + (Mhph)|T , T ∈ A(uh). (3.6c)

We note that the discrete state and co-state yh, ph ∈ Vh may also be considered as finite element approximations
of the coupled elliptic system: given uh ∈ Wh, find y(uh), p(uh) ∈ H1

0 (Ω) such that

a(y(uh), v) = (f + uh, v)0,Ω, v ∈ H1
0 (Ω), (3.7a)

a(p(uh), v) = −(y(uh) − yd, v)0,Ω, v ∈ H1
0 (Ω). (3.7b)
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Obviously, we have

|y(uh) − y|1,Ω ≤ c(Ω) ‖u − uh‖0,Ω, (3.8a)

|p(uh) − p|1,Ω ≤ c(Ω) ‖y − y(uh)‖0,Ω, (3.8b)

where c(Ω) > 0 is the constant in the Poincaré-Friedrichs inequality

‖v‖0,Ω ≤ c(Ω) |v|1,Ω, v ∈ H1
0 (Ω). (3.9)

Moreover, choosing v = p(uh) − p in (3.7a) and v = y(uh) − y in (3.7b), we find

(p − p(uh), u − uh)0,Ω = − ‖y − y(uh)‖2
0,Ω ≤ 0. (3.10)

4. The residual type error estimator

The residual type error estimator consists of easily computable element and edge residuals with respect to
the finite element approximations yh ∈ Vh and ph ∈ Vh of the state y ∈ H1

0 (Ω) and the co-state p ∈ H1
0 (Ω) as

well as of data oscillations.
In particular, we define

ηy :=

⎛

⎝
∑

T∈Th(Ω)

η2
y,T +

∑

E∈Eh(Ω)

η2
y,E

⎞

⎠

1/2

, (4.1a)

ηp :=

⎛

⎝
∑

T∈Th(Ω)

2∑

i=1

(η
(i)
p,T )2 +

∑

E∈Eh(Ω)

η2
p,E

⎞

⎠

1/2

. (4.1b)

Here, the element residuals ηy,T , η
(i)
p,T , 1 ≤ i ≤ 2, and the edge residuals ηy,E , ηp,E are given by

ηy,T := hT ‖f + uh‖0,T , T ∈ Th(Ω), (4.2a)

η
(1)
p,T := hT ‖y

d − yh‖0,T , T ∈ Th(Ω), (4.2b)

η
(2)
p,T := ‖Mhph − ph‖0,T , T ∈ Th(Ω), (4.2c)

ηy,E := h
1/2
E ‖νE · [∇yh]‖0,E, E ∈ Eh(Ω), (4.2d)

ηp,E := h
1/2
E ‖νE · [∇ph]‖0,E , E ∈ Eh(Ω), (4.2e)

where E = T1∩T2, Tν ∈ Th(Ω), 1 ≤ ν ≤ 2, and νE is the exterior unit normal vector on E directed towards T2,
whereas [∇yh] and [∇ph] denote the jumps of ∇yh,∇ph across E.

The residual type error estimator η for the finite element approximation of the distributed control prob-
lem (2.1a)–(2.1c) is then given by

η :=
(

η2
y + η2

p

)1/2

. (4.3)
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Moreover, we define the low order data oscillations

µh(ud) :=

⎛

⎝
∑

T∈Th(Ω)

µT (ud)2

⎞

⎠

1/2

, (4.4a)

µT (ud) := ‖ud − ud
h‖0,T ,

µh(ψ) :=

⎛

⎝
∑

T∈Th(Ω)

µT (ψ)2

⎞

⎠

1/2

, (4.4b)

µT (ψ) := ‖ψ − ψh‖0,T ,

as well as the data oscillations

osch(yd) :=

⎛

⎝
∑

T∈Th(Ω)

oscT (yd)2

⎞

⎠

1/2

, (4.5a)

oscT (yd) := hT ‖yd − yd
h‖0,T ,

osch(f) :=

⎛

⎝
∑

T∈Th(Ω)

oscT (f)2

⎞

⎠

1/2

, (4.5b)

oscT (f) := hT ‖f − fh‖0,T ,

where yd
h ∈ Wh and fh ∈ Wh with yd

h|T := |T |−1
∫

T
yd dx, fh|T := |T |−1

∫

T
f dx, T ∈ Th(Ω).

Compared to the element residuals ηy,T , ηp,T and the edge residuals ηy,E , ηp,E , the data oscillations osch(yd),
osch(f) are of the same order for non smooth yd, f and of higher order for smooth yd, f , e.g., yd, f ∈ H1(Ω).

Remark 4.1. The element residuals ηy,T and η
(1)
p,T in (4.2a), (4.2b) may be replaced by η̂y,T := hT ‖fh +uh‖0,T

and η̂
(1)
p,T := hT ‖yd

h − yh‖0,T . Obviously, ηy,T , η
(1)
p,T and η̂y,T , η̂

(1)
p,T are equivalent up to the data oscillations

oscT (f) and oscT (yd), respectively. The following results remain valid up to these (additional) data oscillations.

5. Reliability of the error estimator

Theorem 5.1. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of (2.3a)–(2.3d) and (3.2a)–(3.2d), and let

η and µh(ud), µh(ψ) be the residual error estimator and the data oscillations as given by (4.3) and (4.4a),
(4.4b), respectively. Then, there exist positive constants Λ and C, depending on α, Ω and the shape regularity

of {Th(Ω)}, such that

|y − yh|1,Ω + |p − ph|1,Ω + ‖u − uh‖0,Ω + ‖σ − σh‖0,Ω ≤ Λη + C
(

µh(ud) + µh(ψ)
)

. (5.1)

The idea of the proof of Theorem 5.1 is to show that the discretization errors, making up the left-hand side
in (5.1), can be bounded by the discretization errors in the finite element approximations of y(uh) and p(uh)
by yh and ph and the data oscillation µh(ud) and µh(ψ). An upper bound for the latter discretization errors
can be obtained as in the case of the finite element approximations of standard second order elliptic boundary
value problems. As a first step in this direction, we prove the following result.

Lemma 5.2. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of (2.3a)–(2.3d) and (3.2a)–(3.2d), respectively,

and let µh(ud) be the data oscillation according to (4.4a). Moreover, let y(uh) and p(uh) be the intermediate state
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and intermediate adjoint state as given by (3.7a), (3.7b). Then, there exists a positive constant C depending

only on α and Ω such that

|y − yh|1,Ω + |p − ph|1,Ω + ‖u − uh‖0,Ω + ‖σ − σh‖0,Ω ≤ C

(

|yh − y(uh)|1,Ω + |ph − p(uh)|1,Ω (5.2)

+

(
∑

T∈Th(Ω)

(η
(2)
p,T )1/2

)2

+ µh(ψ) + µh(ud)

)

.

Proof. Using (3.8a), (3.8b) and (3.9), we find

|y − yh|1,Ω ≤ |yh − y(uh)|1,Ω + c(Ω)‖u − uh‖0,Ω, (5.3)

|p − ph|1,Ω ≤ |ph − p(uh)|1,Ω + c(Ω)‖y − yh‖0,Ω (5.4)

≤ |ph − p(uh)|1,Ω + c(Ω)2|yh − y(uh)|1,Ω + c(Ω)3‖u − uh‖0,Ω,

‖σ − σh‖
2
0,Ω ≤ 2α2

(

‖u − uh‖0,Ω + µh(ud)
)2

+ 2‖p− Mhph‖
2
0,Ω (5.5)

≤ 4α2
(

‖u − uh‖
2
0,Ω + µ2

h(ud)
)

+ 4c(Ω)2|p − ph|
2
1,Ω

+ 4‖ph − Mhph‖
2
0,Ω ≤ 4(α2 + 3c(Ω)8)‖u − uh‖

2
0,Ω

+ 12c(Ω)2|ph − p(uh)|21,Ω + 12c(Ω)6|yh − y(uh)|21,Ω

+ 4‖ph − Mhph‖
2
0,Ω + 4α2µ2

h(ud).

Moreover, in view of (2.3c) and (3.2c), using Young’s inequality we get

α‖u − uh‖
2
0,Ω = (σh − σ, u − uh)0,Ω + (p − ph, u − uh)0,Ω (5.6)

+ (ph − Mhph, u − uh)0,Ω + α
(
ud − ud

h, u − uh

)

0,Ω

≤ (σh − σ, u − uh)0,Ω + (p − ph, u − uh)0,Ω

+
α

4
‖u − uh‖

2
0,Ω +

2

α
‖ph − Mhph‖

2
0,Ω + 2αµh(ud).

Observing (2.5) and (3.4), for the first term on the right-hand side in (5.6) it follows that

(σh − σ, u − uh)0,Ω = (σh, u − ψ)0,Ω
︸ ︷︷ ︸

≤ 0

+ (σh − σ, ψ − ψh)0,Ω + (σh, ψh − uh)0,Ω
︸ ︷︷ ︸

= 0

− (σ, u − ψ)0,Ω
︸ ︷︷ ︸

= 0

− (σ, ψh − uh)0,Ω
︸ ︷︷ ︸

≥0

≤ |(σh − σ, ψ − ψh)0,Ω|.

An application of Young’s inequality yields

(σh − σ, u − uh)0,Ω ≤
α

16(α2 + 3c(Ω)8)
‖σ − σh‖

2
0,Ω + 4

α2 + 3c(Ω)8

α
µ2

h(ψ). (5.7)

On the other hand, in view of (3.10), for the second term on the right-hand side in (5.6) we obtain

(p − ph, u − uh)0,Ω ≤ (p(uh) − ph, u − uh)0,Ω.
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Using Young’s inequality once more, the right-hand side can be further estimated according to

(p(uh) − ph, u − uh)0,Ω ≤
α

4
‖u − uh‖

2
0,Ω +

c(Ω)2

α
|p(uh) − ph|

2
1,Ω. (5.8)

Using (5.7) and (5.8) in (5.6), we end up with

‖u − uh‖
2
0,Ω ≤

1

8(α2 + 3c(Ω)8)
‖σ − σh‖

2
0,Ω (5.9)

+ 2

(
c(Ω)

α

)2

|ph − p(uh)|21,Ω +
4

α2
‖ph − Mhph‖

2
0,Ω

+ 4µ2
h(ud) + 8

α2 + 3c(Ω)8

α2
µ2

h(ψ).

Hence, taking advantage of (5.9) in (5.5), we obtain

‖σ − σh‖
2
0,Ω ≤ 8c(Ω)2

(

3 +
2(α2 + 3c(Ω)8)

α2

)

|ph − p(uh)|21,Ω (5.10)

+ 24c(Ω)6|yh − y(uh)|21,Ω + 8

(

1 + 4
α2 + 3c(Ω)8

α2

)

‖ph − Mhph‖
2
0,Ω

+ 8
(
5α2 + 12c(Ω)8

)
µ2

h(ud) + 64
(α2 + 3c(Ω)8)2

α2
µ2

h(ψ).

On the other hand, using (5.10) in (5.9) readily gives

‖u − uh‖
2
0,Ω ≤

c(Ω)2

α2

5α2 + 6c(Ω)8

α2 + 3c(Ω)8
|ph − p(uh)|21,Ω (5.11)

+
3c(Ω)6

α2 + 3c(Ω)8
|yh − y(uh)|21,Ω +

9α2 + 24c(Ω)8

α2 + 3c(Ω)8
µ2

h(ud)

+

(
4

α2
+

5α2 + 12c(Ω)8

α2(α2 + 3c(Ω)8)

)

‖ph − Mhph‖
2
0,Ω

+ 16
α2 + 3c(Ω)8

α2
µ2

h(ψ).

Combining (5.3), (5.4), (5.10) and (5.11), gives the assertion. �

Lemma 5.3. Let (yh, ph, uh, σh) be the solution of (3.2a)–(3.2d) and let y(uh), p(uh) be the solutions of (3.7a),

(3.7b), respectively. Further, let ηy and η
(1)
p,T , ηp,E be the parts of the residual error estimator η as given by

(4.1a) and (4.2b), (4.2e). Then, there exist positive constants Cν , 4 ≤ ν ≤ 5, depending only on the shape

regularity of {Th(Ω)}, such that

|y(uh) − yh|
2
1,Ω ≤ C4 η2

y, (5.12a)

|p(uh) − ph|
2
1,Ω ≤ C5

⎛

⎝η2
y +

∑

T∈Th(Ω)

(η
(1)
p,T )2 +

∑

E∈Eh(Ω

η2
p,E

⎞

⎠ . (5.12b)
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Proof. Using standard techniques based on Clément’s interpolation operator (cf., e.g., [27]), for the discretization
error |y(uh) − yh|1,Ω we obtain

|y(uh) − yh|
2
1,Ω ≤ C

(
∑

T∈Th(Ω)

h2
T ‖f + uh‖

2
0,T

︸ ︷︷ ︸

= η2
y,T

+
∑

E∈Eh(Ω)

hE‖νE · [∇yh]‖2
0,E

︸ ︷︷ ︸

= η2
y,E

)

,

which is (5.12a).
Applying the same techniques to the discretization error |p(uh) − ph|1,Ω, we obtain

|p(uh) − ph|
2
1,Ω ≤ C

(
∑

T∈Th(Ω)

h2
T ‖y

d − y(uh)‖2
0,T +

∑

E∈Eh(Ω)

hE‖νE · [∇ph]‖2
0,E

︸ ︷︷ ︸

= η2
p,E

)

. (5.13)

For the first term on the right-hand side in (5.13), taking advantage of (5.12a) it follows that

∑

T∈Th(Ω)

h2
T ‖y

d − y(uh)‖2
0,T ≤ 2

(
∑

T∈Th(Ω)

h2
T ‖y

d − yh‖
2
0,T

︸ ︷︷ ︸

= (η
(1)
p,T

)2

+
∑

T∈Th(Ω)

h2
T ‖y(uh) − yh‖

2
0,T

)

(5.14)

≤ 2
∑

T∈Th(Ω)

(η
(1)
T,p)2 + 2h2c(Ω)2|y(uh) − yh|

2
1,Ω

≤ 2
∑

T∈Th(Ω)

(η
(1)
p,T )2 + 2h2c(Ω)2C2η2

y .

Combining (5.13) and (5.14) results in (5.12b). �

6. Local efficiency of the error estimator

Theorem 6.1. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of (2.3a)–(2.3d) and (3.2a)–(3.2d) and let

η, µh(ud), µh(ψ) and osch(yd), osch(f) be given by (4.3), (4.4a), (4.4b) and (4.5a), (4.5b), respectively. Then,

there exist positive constants λ and c depending only on Ω and the shape regularity of {Th(Ω)} such that

|y − yh|
2
1,Ω + |p − ph|

2
1,Ω + ‖u − uh‖

2
0,Ω + ‖σ − σh‖

2
0,Ω ≥ λη2 − c

(

µ2
h(ud) + osc2

h(yd) + osc2
h(f)

)

. (6.1)

The proof of Theorem 6.1 will be given by a series of lemmas.

We denote by λT
i , 1 ≤ i ≤ 3, the barycentric coordinates of T ∈ Th(Ω) and refer to ϑT := 27

∏3
i=1 λT

i as
the associated element bubble function. Likewise, λE

i , 1 ≤ i ≤ 2, stand for the barycentric coordinates of

E ∈ Eh(Ω) and ϑE := 4
∏2

i=1 λE
i denotes the associated edge bubble function. We recall from [27] that there

exist constants ci, 1 ≤ i ≤ 3, depending only on the shape regularity of the triangulation Th(Ω) such that for
ζT ∈ Pk(T ), k ∈ N0, and ζE ∈ Pk(E), k ∈ N0, there holds

‖ζT ‖
2
0,T ≤ c1(ζT , ζT ϑT )0,T , T ∈ Th(Ω), (6.2a)

‖ζT ϑT ‖0,T ≤ ‖ζT ‖0,T , T ∈ Th(Ω), (6.2b)

|ζT ϑT |1,T ≤ c2h
−1
T ‖ζT ‖0,T , T ∈ Th(Ω), (6.2c)

‖ζE‖
2
0,E ≤ c3(ζE , ζEϑE)0,E , E ∈ Eh(Ω), (6.2d)

‖ζEϑE‖0,E ≤ ‖ζE‖0,E , E ∈ Eh(Ω). (6.2e)
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For E ∈ Eh(T ) and ζE ∈ Pk(E), k ∈ N0, we further refer to ζ̃E as the extension of ζE to the patch

ωE := T1 ∪ T2, E = T1 ∩ T2, Tν ∈ Th(Ω), 1 ≤ ν ≤ 2, (6.3)

in the sense that for fixed E′
ν ∈ Eh(Tν) \ {E}, for x ∈ Tν we have ζ̃E(x) := ζE(xE) where xE ∈ E is such that

x−xE is parallel to E′
ν . Again, referring to [27], there exist positive constants ci, 4 ≤ i ≤ 5, which only depend

on the shape regularity of {Th(Ω)} such that

‖ζ̃EϑE‖0,ωE
≤ c4h

1/2
E ‖ζE‖0,E, (6.4a)

|ζ̃EϑE |1,ωE
≤ c5h

−1/2
E ‖ζE‖0,E. (6.4b)

Lemma 6.2. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of (2.3a)–(2.3d) and (3.2a)–(3.2d) and let

ηy,T , oscT (f) be given by (4.2a) and (4.5b), respectively. Then, there exists a positive constant c depending only

on the shape regularity of {Th(Ω)} such that for T ∈ Th(Ω)

η2
y,T ≤ c

(

|y − yh|
2
1,T + h2

T ‖u − uh‖
2
0,T + osc2

T (f)
)

. (6.5)

Proof. We have
η2

y,T = h2
T ‖f + uh‖

2
0,T ≤ 2 h2

T ‖fh + uh‖
2
0,T + 2 osc2

T (f). (6.6)

Setting zh := (fh + uh)|T ϑT , applying (6.2a) and observing that ∆yh|T = 0, Green’s formula and the fact that
zh is an admissible test function in (2.3a) imply

h2
T ‖fh + uh‖

2
0,T ≤ c1h

2
T (fh + uh + ∆yh, zh)0,T = c1h

2
T

(

− a(yh, zh) + (f + u, zh)0,T (6.7)

+ (fh − f, zh)0,T + (uh − u, zh)0,T

)

= c1h
2
T

(

a(y − yh, zh) + ((fh − f) + (uh − u), zh)0,T

)

≤ c1

(

h2
T |y − yh|1,T |zh|1,T +

(
h2

T ‖u − uh‖0,T

+ hT oscT (f)
)
‖zh‖0,T

)

.

Now, by (6.2b), (6.2c) and Young’s inequality, (6.7) gives rise to

h2
T ‖fh + uh‖

2
0,T ≤ 2c2

1

(

c2|y − yh|
2
1,T + h2

T ‖u − uh‖
2
0,T + osc2

T (f)
)

+
1

2
h2

T ‖fh + uh‖
2
0,T . (6.8)

Combining (6.6) and (6.8), readily gives the assertion. �

Lemma 6.3. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of (2.3a)–(2.3d) and (3.2a)–(3.2d) and let

η
(1)
p,T , oscT (yd) be given by (4.2b) and (4.5a), respectively. Then, there exists a positive constant c depending

only on the shape regularity of {Th(Ω)} such that for T ∈ Th(Ω)

(η
(1)
p,T )2 ≤ c

(

|p − ph|
2
1,T + h2

T ‖y − yh‖
2
0,T + osc2

T (yd)
)

. (6.9)

Proof. The assertion (6.9) follows using the same arguments as in the proof of the previous lemma. �

Lemma 6.4. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of (2.3a)–(2.3d) and (3.2a)–(3.2d) and let η
(2)
p,T

and µT (ud) be given by (4.2c) and (4.4a), respectively. Then, for T ∈ Th(Ω) there holds

η
(2)
p,T ≤ ‖p − ph‖0,T + ‖σ − σh‖0,T + α

(

‖u − uh‖0,T + µT (ud)
)

. (6.10)
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Proof. We have

‖Mhph − ph‖0,T ≤ ‖p − ph‖0,T + ‖Mhph − p‖0,T .

Observing (2.3c) and (3.2c), for the second term on the right-hand side we find

‖Mhph − p‖0,T ≤ ‖σ − σh‖0,T + α
(

‖u − uh‖0,T + µT (ud)
)

,

which readily gives (6.10). �

Lemma 6.5. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of (2.3a)–(2.3d) and (3.2a)–(3.2d) and let ηy,T

and ηy,E be given by (4.2a) and (4.2d), respectively. Then, there exists a positive constant c depending only on

the shape regularity of {Th(Ω)} such that for E ∈ Eh(Ω)

η2
y,E ≤ c

(

|y − yh|
2
1,ωE

+ h2
E‖u − uh‖

2
0,ωE

+

2∑

ν=1

η2
y,Tν

)

, (6.11)

where ωE is the patch as given by (6.3).

Proof. We set ζE := (νE · [∇yh])|E and zh := ζ̃EϑE . Then, using (6.2d), applying Green’s formula, observing
that zh is an admissible test function in (2.3a), and taking advantage of (6.4a), (6.4b), we find

η2
y,E = hE‖νE · [∇yh]‖2

0,E ≤ c3hE (νE · [∇yh], ζEϑE)0,E

= c3hE

2∑

ν=1

(ν∂Tν
· [∇yh], zh)0,∂Tν

= c3hE

(

a(yh − y, zh) + (u − uh, zh)0,ωE
+ (f + uh, zh)0,ωE

)

≤ c3h
1/2
E ‖νE · [∇yh]‖0,E

(

c5|y − yh|1,ωE
+ c4

(
hE‖u − uh‖0,ωE

+
(

2∑

ν=1

η2
y,Tν

)1/2)

)

.

An application of Young’s inequality results in (6.11). �

Lemma 6.6. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of (2.3a)–(2.3d) and (3.2a)–(3.2d) and let η
(1)
p,T

and ηp,E be given by (4.2b) and (4.2e), respectively. Then, there exists a positive constant c depending only on

the shape regularity of {Th(Ω)} such that for E ∈ Eh(T ), T ∈ Th(Ω)

η2
p,E ≤ c

(

|p − ph|
2
1,ωE

+ h2
E‖y − yh‖

2
0,ωE

+

2∑

ν=1

(η
(1)
p,Tν

)2

)

, (6.12)

where ωE is the patch as given by (6.3).

Proof. The assertion (6.12) can be verified along the same lines of proof as in Lemma 6.5. �

Remark 6.7. The lower estimates provided by Lemmas 6.2 to 6.6 show that the magnitude of the element and
edge residuals can be used for the purpose of mesh adaptivity as will be described in detail in the subsequent
section.

7. The adaptive refinement process

The refinement of the triangulation Th(Ω) is based on a bulk criterion that has been previously used in the
convergence analysis of adaptive finite element for nodal finite element methods [8,13,25] and for nonconforming,
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mixed and edge element methods [10–12]. Here, we adopt the bulk criterion for the finite element approximation
of the distributed optimal control problem under consideration: Given the universal constants Θi, 1 ≤ i ≤ 4
with 0 < Θi < 1, the outcome is a set of edges ME ⊂ Eh(Ω) and sets of elements Mη,T ,Mµ,T ,Mosc,T ⊂ Eh(Ω)
such that

Θ1

( ∑

E∈Eh(Ω)

(η2
y,E + η2

p,E)
)

≤
∑

E∈ME

(η2
y,E + η2

p,E), (7.1)

Θ2

( ∑

T∈Th(Ω)

(η2
y,T + (η

(1)
p,T )2 + (η

(2)
p,T )2)

)

≤
∑

T∈Mη,T

(η2
y,T + (η

(1)
p,T )2 + (η

(2)
p,T )2), (7.2)

Θ3

( ∑

T∈Th(Ω)

µ2
T (ud) +

∑

T∈Auh

µ2
T (ψ)

)

≤
∑

T∈Mµ,T

(µ2
T (ud) + µ2

T (ψ)), (7.3)

Θ4

( ∑

T∈Th(Ω)

osc2
T (yd) + osc2

T (f)
)

≤
∑

T∈Mosc,T

(osc2
T (yd) + osc2

T (f)). (7.4)

We set
MT := Mη,T ∪Mµ,T ∪Mosc,T

and refine an element T ∈ Th(Ω) regularly (i.e., subdividing it into four congruent subtriangles by joining the
midpoints of the edges), if

• T ∈ MT or
• at least two edges E ∈ Eh(T ) belong to ME .

Denoting by NT := {T ′ ∈ Th(Ω)|T ′ ∩ T �= ∅} the set of all neighboring triangles of T ∈ Th(Ω), we define the set

Fh(uh) := ∂A(uh) ∪ ∂I(uh),

where

∂A(uh) :=
⋃

{T ⊂ A(uh) | NT ∩ I(uh) �= ∅},

∂I(uh) :=
⋃

{T ⊂ I(uh) | NT ∩ A(uh) �= ∅}.

The set Fh(uh) represents a neighborhood of the discrete free boundary between the discrete active and inactive
sets A(uh) and I(uh). In order to guarantee a sufficient resolution of the continuous free boundary, at each
refinement step, the elements T ∈ Fh(uh) are refined regularly.

Further irregular refinements by bisection are only performed in order to guarantee that the refined triangu-
lation is geometrically conforming.

The bulk criterion (7.1)–(7.4) is realized by the following greedy algorithm:

Algorithm (bulk criterion):

Step 1. Initialization:
Set

ME
0 := ∅, MT,η

0 := Fh(uh) and k = 0.

Step 2. Iteration loop:

Step 2a. Check edge residuals:
If

Θ1

⎛

⎝
∑

E∈Eh(Ω)

(η2
y,E + η2

p,E)

⎞

⎠ ≤
∑

E∈ME

(η2
y,E + η2

p,E),
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go to Step 2b, else select some

F ∈ Eh(Ω) \ME
k

such that

ηE,F = max
G∈Eh(Ω)\ME

k

(

ηy,G, ηp,G

)

and set

ME
k+1 := ME

k ∪ {F}, k := k + 1.

Step 2b. Check element residuals:
Set

MT,η
k :=

⋃{

T ∈ Th(Ω) | card
(

Eh(T ) ∩ME
k

)

≥ 2
}

.

If

Θ2

( ∑

T∈Th(Ω)

(η2
y,T + (η

(1)
p,T )2 + (η

(2)
p,T )2)

)

≤
∑

T∈Mη,T

(η2
y,T + (η

(1)
p,T )2 + (η

(2)
p,T )2),

go to Step 2c, else select some

ηT,S := max
T∈Th(Ω)\Mη,T

k

(

ηy,T , η
(1)
p,T , η

(2)
p,T

)

and set

Mη,T
k+1 := Mη,T

k ∪ {S}, k := k + 1.

Step 2c. Check low order data residuals:
Set

Mµ,T
k := Mη,T

k .

If

Θ3

( ∑

T∈Th(Ω)

µ2
T (ud) +

∑

T∈Auh

µ2
T (ψ)

)

≤
∑

T∈Mµ,T

(µ2
T (ud) + µ2

T (ψ)),

go to Step 2d, else select some

ηT,S := max( max
T∈Th(Ω)\Mµ,T

k

µT (ud), max
T∈A(uh)\Mµ,T

k

µT (ψ))

and set

MT,µ
k+1 := MT,µ

k ∪ {S}, k := k + 1.

Step 2d. Check remaining data residuals:
Set

Mosc,T
k := Mµ,T

k .

If

Θ4

( ∑

T∈Th(Ω)

osc2
T (yd) + osc2

T (f))
)

≤
∑

T∈Mosc,T

(osc2
T (yd) + osc2

T (f)),

go to Step 3, else select some

ηT,S := max
T∈Th(Ω)\Mosc,T

k

(

oscT (yd), oscT (f)
)
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Figure 1. Example 1: visualization of the optimal state y (left) and the optimal adjoint state p

(right).

and set
Mosc,T

k+1 := Mosc,T
k ∪ {S}, k := k + 1.

Step 3. Final output:
Output the set of marked edges and elements

ME := ME
k , MT := Mosc,T

k .

8. Numerical results

We provide a documentation of numerical results illustrating the performance of the adaptive finite element
approximation for two representative distributed optimal control problems that have been considered in [7]
in the framework of primal-dual active set strategies as iterative solvers for such kind of control problems
(cf. also [16]). In particular, the second example considers a variable obstacle and exhibits a lack of strict
complementarity. It thus features particular cases that have not been included in the numerical examples
presented in [20]. Moreover, the numerical results clearly demonstrate that, at least at the beginning of the
refinement process, the data oscillations have to be taken into account.

Example 1. Constant obstacle.
The data in the optimal distributed control problem (2.1a)–(2.1c) are chosen as follows:

Ω := (0, 1)2, yd := sin(2πx1)sin(2πx2)
exp(2x1)

6
,

ud := 0, α := 0.01, ψ := 0, f := 0.

Figures 1 and 2 show a visualization of the optimal state, the optimal adjoint state, the optimal control, and
the optimal adjoint control, respectively.

The initial simplicial triangulation Th0 was chosen according to a subdivision of Ω by joining the four vertices
resulting in one interior nodal point and four congruent triangles. Since the obstacle ψ is zero, we have
ψh = 0 as well. Moreover, since also ud = 0 and f = 0, for the data oscillations we have µh(ud) = 0 and
osch(f) = osch(ψ) = 0.

Figure 3 displays the adaptively generated triangulations after six (left) and eight (right) refinement steps
with Θi = 0.6, 1 ≤ i ≤ 4, in the bulk criterion. The two areas at the upper left and the bottom right corner
represent the discrete inactive set I(uh), whereas the simply-connected region in between is the discrete active
set A(uh). The continuous free boundary between the continuous active and inactive sets is indicated by the
black curves. We see that the continuous free boundary is accurately resolved by the adaptive refinement
process. Moreover, there are local areas of pronounced refinement within the discrete active and inactive sets.
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Figure 2. Example 1: visualization of the optimal control u (left) and the optimal adjoint
control σ (right).

Figure 3. Example 1: adaptively generated grid after 6 (left) and 8 (right) refinement steps,
Θi = 0.6.

Table 1. Example 1: convergence history of the adaptive FEM, part I: total discretization
error and discretization errors in the state, adjoint state, control, and adjoint control.

l Ndof ‖|z − zh|‖ |y − yh|1 |p − ph|1 ‖u − uh‖0 ‖σ − σh‖0

1 13 2.27 e–01 1.92 e–02 1.48 e–02 1.91 e–01 2.11 e–03
2 41 1.24 e–01 1.34 e–02 1.36 e–02 9.59 e–02 1.06 e–03
3 126 6.19 e–02 6.83 e–03 7.86 e–03 4.67 e–02 5.48 e–04
4 374 3.57 e–02 3.93 e–03 4.89 e–03 2.65 e–02 3.67 e–04
5 968 2.50 e–02 2.63 e–03 3.34 e–03 1.88 e–02 2.50 e–04
6 2553 1.77 e–02 1.92 e–03 2.33 e–03 1.33 e–02 1.57 e–04
7 5396 1.25 e–02 1.31 e–03 1.67 e–03 9.39 e–03 1.17 e–04
8 12 318 8.7 1e–03 9.34 e–04 1.17 e–03 6.53 e–03 7.58 e–05
9 26 887 6.17 e–03 6.52 e–04 8.38 e–04 4.62 e–03 5.66 e–05

It should be emphasized that we are working with only one grid for all variables (state, adjoint state, control,
and adjoint control). Hence, the grid reflects regions of substantial change in all these variables (cf. Figs. 1
and 2).

More detailed information is given in Tables 1–4. In particular, Table 1 displays the error reduction in the
total error

‖|z − zh|‖ := (|y − yh|
2
1,Ω + |p − ph|

2
1,Ω + ‖u − uh‖

2
0,Ω + ‖σ − σh‖

2
0,Ω)1/2
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Table 2. Example 1: convergence history of the adaptive FEM, part II: components of the
error estimator and data oscillations.

l Ndof ηy ηp osch(yd)

1 13 7.73 e–02 1.56 e–01 1.12 e–01
2 41 5.79 e–02 8.29 e–02 2.58 e–02
3 126 3.72 e–02 4.63 e–02 8.06 e–03
4 374 2.26 e–02 2.92 e–02 3.79 e–03
5 968 1.53 e–02 1.98 e–02 1.86 e–03
6 2553 1.11 e–02 1.35 e–02 8.74 e–04
7 5396 7.51 e–03 9.38 e–03 4.39 e–04
8 12 318 5.35 e–03 6.61 e–03 2.24 e–04
9 26 887 3.68 e–03 4.77 e–03 1.13 e–04

Table 3. Example 1: convergence history of the adaptive FEM, part III: average values of the
local estimators.

l Ndof ηy,T ηy,E η
(1)
p,T η

(2)
p,T ηp,E

1 13 9.72 e–03 6.07 e–03 3.27 e–02 5.33 e–04 1.17 e–02
2 41 3.15 e–03 2.15 e–03 7.16 e–03 1.31 e–04 3.04 e–03
3 126 1.07 e–03 8.33 e–04 2.01 e–03 3.89 e–05 1.10 e–03
4 374 3.69 e–04 2.95 e–04 6.58 e–04 1.33 e–05 3.86 e–04
5 968 1.44 e–04 1.19 e–04 2.52 e–04 5.22 e–06 1.59 e–04
6 2553 6.12 e–05 5.42 e–05 1.06 e–04 2.21 e–06 7.30 e–05
7 5396 2.71 e–05 2.55 e–05 4.70 e–05 9.82 e–07 3.45 e–05
8 12 318 1.21 e–05 1.22 e–05 2.09 e–05 4.36 e–07 1.68 e–05
9 26 887 5.61 e–06 5.92 e–06 9.65 e–06 2.02 e–07 8.21 e–06

Table 4. Example 1: convergence history of the adaptive FEM, part IV: average values of the
data oscillations, bulk criterion.

l Ndof osc(yd) Mfb,T Mη,E Mη,T Mosc,T

1 13 2.53 e–02 68.8 35.0 31.2 37.5
2 41 2.83 e–03 42.2 13.6 15.6 25.0
3 126 4.47 e–04 25.9 16.7 16.5 20.1
4 374 9.47 e–05 16.3 16.8 14.4 6.1
5 968 2.53 e–05 12.0 14.8 11.5 5.1
6 2553 7.18 e–06 9.9 12.9 12.2 3.3
7 5396 2.28 e–06 8.6 12.5 13.5 3.8
8 12 318 6.90 e–07 7.5 11.7 11.8 1.5
9 26 887 2.31 e–07 7.5 10.8 13.6 2.1

and the errors in the state, the adjoint state, the control, and the adjoint control, respectively. On the other
hand, the actual components of the residual type a posteriori error estimator are given in Table 2, whereas
Table 3 contains the average values of the local element and edge contributions of the error estimator. Finally,
Table 4 lists the average values of the local data oscillation oscT (yd), T ∈ Th(Ω) and the percentages of elements
and edges that have been marked for refinement according to the bulk criterion. Here, Mfb,T , Mη,T and Mosc,T
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Figure 4. Example 2: visualization of the optimal state y (left) and the optimal adjoint state p

(right).

stand for the level l elements marked for refinement due to the resolution of the free boundary, the element
residuals, and the data oscillations, respectively, whereas Mη,E refers to the edges marked for refinement with
regard to the edge residuals. On the coarsest grid, the sum of the percentages exceeds 100%, since an element
T ∈ Th(Ω) may satisfy more than one criterion in the adaptive refinement process. The refinement is initially
dominated by the resolution of the free boundary, whereas at a later stage edge and element residuals dominate.

The second example features a variable obstacle and is such that no strict complementarity holds at the
optimal solution.

Example 2. Variable obstacle.
The data in (2.1a)–(2.1c) have been chosen as follows:

Ω := (0, 1)2, yd := 0, ud := û + α−1 (σ̂ + ∆−2û),

ψ :=

{
(x1 − 0.5)8, (x1, x2) ∈ Ω1

(x1 − 0.5)2, otherwise
, α := 0.1, f := 0.

Here, û and σ̂ are given by

û :=

{
ψ(x1, x2), (x1, x2) ∈ Ω1 ∪ Ω2

−1.01 ψ(x1, x2), otherwise

σ̂ :=

{
2.25 (x1 − 0.75) × 10−4, (x1, x2) ∈ Ω2

0, otherwise

with Ω1 and Ω2 specified as follows

Ω1 := {(x1, x2) ∈ Ω | ((x1 − 0.5)2 + (x2 − 0.5)2)1/2 ≤ 0.15},

Ω2 := {(x1, x2) ∈ Ω | x1 ≥ 0.75}.

Figures 4 and 5 display the optimal state y, the optimal adjoint state p, the optimal control u = û, and the
optimal adjoint control σ = σ̂, respectively.

The initial simplicial triangulation Th0 has been chosen as in Example 1, whereas the parameters Θi in the
bulk criterion have been specified according to Θi = 0.7, 1 ≤ i ≤ 4. Figure 6 shows the adaptively generated
triangulations after six (left) and eight (right) refinement steps. As in Example 1, we see that the continuous
free boundary F := {(x1, x2) ∈ Ω | x1 = 0.75} and the boundary layer at the left vertical boundary of the
computational domain (cf. Fig. 4) are well resolved by the adaptive solution process.
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Figure 5. Example 2: visualization of the optimal control u (left) and the optimal adjoint
control σ (right).

Figure 6. Example 2: adaptively generated grid after 6 (left) and 8 (right) refinement steps,
Θi = 0.7.
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Figure 7. Example 2: adaptive versus uniform refinement, Θi = 0.6 (left) and Θi = 0.7 (right).

Figure 7 displays the benefit of adaptive versus uniform refinement. In particular, the total discretization
error in the state, adjoint state, control, and adjoint control is shown as a function of the total number of degrees
of freedom.
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Table 5. Example 2: convergence history of the adaptive FEM, part I: total discretization
error and discretization errors in the state, adjoint state, control, and adjoint control.

l Ndof ‖|z − zh|‖ |y − yh|1 |p − ph|1 ‖u − uh‖0 ‖σ − σh‖0

1 13 5.36 e–02 6.85 e–03 1.04 e–04 4.66 e–02 8.86 e–06
2 41 3.12 e–02 3.83 e–03 5.99 e–05 2.74 e–02 4.63 e–06
3 102 2.10 e–02 2.39 e–03 4.10 e–05 1.85 e–02 2.29 e–06
4 291 1.41 e–02 1.58 e–03 2.94 e–05 1.24 e–02 1.39 e–06
5 873 9.31 e–03 9.73 e–04 1.93 e–05 8.32 e–03 8.41 e–07
6 2325 6.33 e–03 6.17 e–04 1.22 e–05 5.70 e–03 5.60 e–07
7 5816 4.38 e–03 4.02 e–04 7.62 e–06 3.97 e–03 3.76 e–07
8 14 524 3.03 e–03 2.66 e–04 5.26 e–06 2.76 e–03 2.42 e–07
9 38 364 1.97 e–03 1.71 e–04 3.42 e–06 1.80 e–03 1.54 e–07

Table 6. Example 2: convergence history of the adaptive FEM, part II: components of the
error estimator and data oscillations.

l Ndof ηy ηp µh(ud) µh(ψ)

1 13 5.45 e–02 5.76 e–04 4.77 e–02 3.93 e–02
2 41 2.99 e–02 3.30 e–04 2.64 e–02 2.06 e–02
3 102 1.72 e–02 2.71 e–04 1.83 e–02 1.34 e–02
4 291 1.01 e–02 1.80 e–04 1.21 e–02 8.62 e–03
5 873 6.10 e–03 1.21 e–04 8.33 e–03 5.49 e–03
6 2325 3.93 e–03 7.50 e–05 5.74 e–03 3.73 e–03
7 5816 2.54 e–03 4.84 e–05 4.22 e–03 2.34 e–03
8 14 524 1.65 e–03 3.23 e–05 3.08 e–03 1.55 e–03
9 38 364 1.07 e–03 2.17 e–05 2.34 e–03 1.02 e–03

Table 7. Example 2: convergence history of the adaptive FEM, part III: average values of the
local estimators.

l Ndof ηy,T ηy,E η
(1)
p,T η

(2)
p,T ηp,E

1 13 1.01 e–02 2.50 e–03 1.22 e–04 2.19 e–06 4.21 e–05
2 41 2.52 e–03 8.10 e–04 3.05 e–05 6.38 e–07 1.43 e–05
3 102 9.61 e–04 3.46 e–04 1.17 e–05 2.69 e–07 5.94 e–06
4 291 3.24 e–04 1.33 e–04 3.95 e–06 9.53 e–08 2.13 e–06
5 873 1.06 e–04 4.73 e–05 1.27 e–06 3.14 e–08 7.42 e–07
6 2325 3.94 e–05 1.94 e–05 4.70 e–07 1.19 e–08 3.02 e–07
7 5816 1.57 e–05 8.19 e–06 1.87 e–07 4.75 e–09 1.28 e–07
8 14 524 6.35 e–06 3.55 e–06 7.55 e–08 1.94 e–09 5.37 e–08
9 38 364 2.42 e–06 1.44 e–06 2.88 e–08 7.45 e–10 2.20 e–08

Tables 5–8 contain the same information as Tables 1–4 for Example 1. Since in Example 2, the obstacle ψ is
not constant, the data oscillation µh(ψ) has been considered. As far as the selection step MARK is concerned,we
again observe a pronounced refinement for the resolution of the free boundary at the beginning of the refinement
process, whereas edge and element residuals dominate at a later stage.
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Table 8. Example 2: convergence history of the adaptive FEM, part IV: average values of the
data oscillations, bulk criterion.

l µT (ud) µT (ψ) Mfb,T Mη,E Mη,T Mµ,T

1 1.04 e–02 8.88 e–03 37.5 25.0 25.0 43.8
2 2.70 e–03 2.26 e–03 18.8 9.1 21.9 34.4
3 1.09 e–03 8.86 e–04 14.0 12.8 31.4 23.3
4 3.83 e–04 3.10 e–04 9.1 14.0 35.7 16.7
5 1.29 e–04 1.03 e–04 5.8 14.6 32.5 9.6
6 4.98 e–05 3.97 e–05 4.3 12.8 28.7 7.4
7 2.04 e–05 1.61 e–05 3.4 13.6 29.1 3.4
8 8.33 e–06 6.51 e–06 2.7 16.1 32.0 1.5
9 3.26 e–06 2.51 e–06 2.0 14.6 28.6 0.9
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