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Abstract

In this paper we derive an a posteriori error estimate for the numerical approximation of the solution
of a system modeling the flow of two incompressible and immiscible fluids in a porous medium. We
take into account the capillary pressure, which leads to a coupled system of two equations: parabolic
and elliptic. The parabolic equation may become degenerate, i.e., the nonlinear diffusion coefficient may
vanish over regions that are not known a priori. We first show that, under appropriate assumptions, the
energy-type-norm differences between the exact and the approximate nonwetting phase saturations, the
global pressures, and the Kirchhoff transforms of the nonwetting phase saturations can be bounded by
the dual norm of the residuals. We then bound the dual norm of the residuals by fully computable a
posteriori estimators. Our analysis covers a large class of conforming, vertex-centered finite volume-type
discretizations with fully implicit time stepping. As an example, we focus here on two approaches: a
“mathematical” scheme derived from the weak formulation, and a phase-by-phase upstream weighting
“engineering” scheme. Finally, we show how the different error components, namely the space dis-
cretization error, the time discretization error, the linearization error, the algebraic solver error, and the
quadrature error can be distinguished and used for making the calculations efficient.

1 Introduction

Two-phase porous media flow models are of fundamental importance in various real life applications, such
as petroleum reservoir engineering or CO9 sequestration in the subsurface. Such processes can be modelled
by a system consisting of two equations: an elliptic one for the total velocity, coupled to a parabolic one for
the nonwetting phase saturation, see, e.g., [7, 12, 8]. In the latter equation, the diffusion coefficient depends
nonlinearly on the unknown quantities and vanishes over regions that are not known a priori and can vary
in time and space, leading to a degenerate, free boundary problem. Our aim here is to develop a rigorous a
posteriori error estimate for such a model.

A large amount of publications are devoted to the mathematical and numerical analysis of two-phase flow
models. In particular, the existence, uniqueness, and regularity of a (weak) solution are studied in [32, 12, 5,
6, 14, 15]. In the same spirit, much work has been carried out for developing appropriate numerical methods
and proving their convergence, or a priori error estimates, like in [16] for a finite element discretization. In
this paper we focus on the finite volume method [26]. In this context, the convergence of a cell-centered
“mathematical” scheme involving the global pressure and the Kirchhoff transform has been obtained in [34].
Alternatively, the convergence of a cell-centered finite volume scheme with phase-by-phase upstream weighting
(the so-called “engineering” scheme) has been shown in [27]. Vertex-centered finite volume methods in the
“mathematical” context have been studied in, e.g., [25], and in the “engineering” context in, e.g., [29], see
also the references therein.

To the best of our knowledge, contrarily to the case of a priori error estimates, almost no results are
available for rigorous a posteriori error estimates for the two-phase flow model. The arguments used in [17]
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are rather of a priori type. The results of [4] refer to the density-driven flow in porous media, whereas
an posteriori error estimate for miscible displacement of one incompressible fluid by another can be found
in [13]. Recently, a framework for a posteriori error estimation of the dual norm of the residuals for the
two-phase flow problem has been derived in [51]. It has been applied to the cell-centered finite volume
phase-by-phase upstream weighting scheme in [20]. Rigorous a posteriori error estimates for nonlinear, time-
dependent problems are obtained in [22, 28, 49, 36, 38, 39, 18, 2, 19], see also the references given therein;
for basic results on a posteriori error estimates, in particular for linear elliptic model problems, we refer to
the textbooks [48, 1, 35, 46] and to the references therein.

The content of this paper is as follows. In Section 2 we introduce the immiscible incompressible two-
phase flow model. The governing physical equations are given in Section 2.1, while Section 2.2, provides the
mathematical formulation relying on the Kirchhoff transform of the nonwetting saturation (sometimes called
the “complementary pressure”) and on the global pressure. The physical meaning of these mathematical
quantities is less obvious, but they are needed for giving a proper definition of the weak solution. The
existence and uniqueness of a weak solution is guaranteed under certain assumptions on the data and on the
model parameters, which are summarized in Assumption A.

In Section 3, we give the main result of the paper, Theorem 1. This theorem states that the energy-type-
norm of the differences between the exact and the approximate nonwetting phase saturations, the global
pressures, and the Kirchhoff transforms of the nonwetting phase saturations can be bounded by a fully
computable a posteriori error estimate. This theorem is formulated as generally as possible; in particular, it
does not require specifying the underlying discretization. We merely need the technical Assumption B on the
data and the reconstructions u, ,, and uy j- of the Darcy fluxes for each of the two phases. These are vector
fields, constant on each time interval and belonging on each time interval to the functional space H(div, (),
with continuous normal trace over any d — 1 dimensional manifold, and satisfying a local conservation over
the mesh elements, as summarized in Assumption C. Such an approach develops those used in [50, 23, 51],
see also the references therein, and relies on concepts going back to the Prager—Synge equality [43] for linear
elliptic problems.

In Section 4 we apply the abstract result of Theorem 1 to particular finite volume discretizations. This
implies specifying the reconstruction of the phase fluxes (in practice, u, - and uy p, are constructed in the
Raviart-Thomas—Nédélec finite-dimensional subspaces of H(div,)) and verifying the Assumption C. These
steps are carried out for two quite distinct vertex-centered finite volume schemes, a “mathematical” one
derived from the weak formulation and a phase-by-phase upstream weighting “engineering” one.

Section 5 is devoted to the proof of the a posteriori error estimate. We first define the residuals stemming
from the weak formulation in Section 5.1. Next, in Section 5.2, we show that under Assumption A the
energy-type-norm of the differences between the exact and the approximate solutions can be bounded by the
dual norm of the residuals. The result is stated in Theorem 2. Next, under Assumptions B, C, we show in
Section 5.3 that the dual norm of the residuals is bounded by a computable a posteriori error estimate. This
result is stated in Theorem 3.

Finally, in Appendix A we focus on the particular case of the “mathematical” scheme and apply the
methodology developed in [31, 21, 23, 24, 51] to obtain Corollary A.3, showing how the estimators of The-
orem 1 can be used to distinguish the different error components. These components are namely the space
discretization error, the time discretization error, the linearization error, the algebraic solver error, and the
quadrature error. We demonstrate how they can be employed to stop the various iterative procedures and
to equilibrate the spatial and temporal errors in order to use the computational resources as efficiently as
possible.

¢

2 The immiscible, incompressible two-phase flow in porous media

In this section we give the mathematical model for the immiscible incompressible two-phase flow in a porous
medium and bring it in a form that is more suitable for the mathematical and numerical analysis. Then
we state the assumptions on the model parameters and the data, define the weak solution, and recall its
existence and uniqueness.

2.1 The governing equations

For the ease of reading the model under discussion is presented in a dimensionless context. Given a porous
medium occupying an open, bounded, polyhedral subset Q C R?, d = 2,3, consider two incompressible and



immiscible phases flowing within the pores of the medium. For simplicity we restrict ourselves to the case
of horizontal flow and thus neglect the gravity effects. With a € {n, w} being the index for the nonwetting,
respectively the wetting phase, the unknown quantities are the phase saturations s, and pressures p,, as
well as the Darcy velocities u,. The saturations are assumed reduced, thus taking (physical) values between
0 and 1. For each phase, the velocity and the pressure are related by the Darcy—-Muskat law

Uy = — K14 (8a)VDas a € {n,w}. (2.1)

Above, K is the (intrinsic) permeability tensor, which is assumed symmetric and uniformly positive definite.
Here we allow K to be location-dependent, K = K(x). Further, the mobilities 7, are functions of the phase
saturations su, o, = 7o (Sa). Their specific form depends on the medium and on the phase and is determined
experimentally. In particular, these functions are continuous and increasing on [0, 1], satisfying

7a(0) =0, a € {n,w}.

Note that this implies the boundedness of 7,. For mathematical completeness we extend the functions 7, by
constants outside the physically relevant interval [0, 1],

No(Sa <0):=0 and n4(sq > 1) :=n4(1). (2.2)

Disregarding the porosity of the medium, which is allowed after a proper scaling of the time, the mass
balance for each phase gives (see, e.g., [12, 8])

M8 + Vs = ¢a(sa), a € {n,w}, (2.3)

where the source terms ¢, are given functions of the phase saturations. Inserting (2.1) into (2.3) allows to
eliminate the Darcy velocities u,,. Note that a vanishing mobility 7,, which is encountered whenever s, < 0,
leads to a degeneracy in (2.3). In this case the second term on the left becomes 0, and the equation looses
its originally parabolic character.
We further assume that the volume of all pores is filled by the two phases (thus no other fluid phase is
present), implying
Sp + Sw = 1. (2.4)

Under equilibrium conditions at the pore scale, the phase pressures py, and p, are related by
Pn — Pw = W(Sn)u (25)

where 7, the capillary pressure, is an increasing function.
Defining the total velocity

u; = =K (10 (50) VPa + 1w (sw) Vw) (2.6)
and adding both equations (2.3) for @ = w, n, thanks to (2.4), one gets

Vo = QH(SH) + QW(l - Sn) = Qt(sn)' (27)
Using (2.6) in (2.3) for a = n provides
Opsn + V- (ue f(sn) — KA(sn)V(sn)) = qu(sn), (2.8)

where the nonlinear functions f and A are defined as

_ i (8) &) e (1 — 8) (s

The problem is completed by initial and boundary conditions, introduced below after a suitable reformulation.

2.2 A mathematical formulation

The mathematical results below are expressed in terms of the nonwetting phase saturation, denoted from
now on by s, i.e.,
S 1= Sy.



Clearly, the wetting phase saturation is then given by sy, = 1 — s. Next we reformulate the equations (2.6)
and (2.8) in terms of more convenient unknowns. This involves the following constructions. First, as in [3],
we define the Kirchhoff transform as

o(s) == /OS Aa)7' (a) da, (2.9)

and observe that ¢ is increasing on [0, 1]. Next, we follow [12, 5] and introduce the global pressure P, defined
by

- — e (7~ ()
PPl = vt [ o ey do (210e)
_ R B M\ e ()
= P(s,pn) = pn /0 (@) T — (@) da. (2.10b)
Using these definitions in (2.6) gives “ 1)
u, = —KM(s)VP, 2.11

where
M(s) :=nw(1 —5) + m(s).
The equation (2.7) then becomes
V- (KM(5)VP) = qu(s). (2.12)

Similarly to the extension (2.2) of 7, and 7, the functions f, A, and M defined above are extended
continuously by constants outside of [0, 1]. Clearly, M is uniformly bounded away from 0 over the entire real
axis. From now on, the function 7, will not appear explicitly anymore. For the ease of reading we therefore
remove the subscript n in 7y, i.e., we use

n(s) := nn(s).
This allows rewriting (2.8) into

Ors — V- (K(n(s)VP + Vp(s))) = gus). (2.13)

After having done these steps, we consider the problem on the time interval (0,7] for some 7' > 0 and
prescribe the initial data
5(-,0) = s°. (2.14)
For the sake of simplicity, only Dirichlet boundary conditions for the saturation and the global pressure are
considered, i.e.,
slaaxo,r) =3, Plaaxo,r) =P, (2.15)
where 5 and P are given functions. The generalization to inhomogeneous Dirichlet conditions on a part of
0f) and to inhomogeneous Neumann condition on its complement is possible, by following the steps described
in [16]. However, this leads to more technicalities and notations that would affect the clarity of the exposition.
For any ¢ € (0,T] we use the notations:

o 1 it e(0,0),
Qe:=2x (0, and  Ley(r):= { 0 otherwise.

To define a solution in the weak sense, we make use of common notations in the functional analysis. In
particular, H~1(Q) is the dual of H}(Q) and (-,-) denotes the corresponding duality pairing. Let
E:={(s,P) | s €C([0,T}; L*(Q)), dys € L*((0,T); H (),
p(s) — ¢(5) € L*((0,T); Hy(2)), P —P € L*((0,T); Hy ()}
Then a weak solution of (2.12), (2.13) with the initial and boundary condition (2.14), (2.15) is introduced by

(2.16)
Definition 2.1 (Weak solution). A weak solution is a pair (s, P) € &€ such that s(-,0) = s° and for all
Y € L2((0,T); HY (), there holds
T
| @000y @0+ [ K9P+ Vols)  Vodxdd = [[ au(swxds,  (2.17a)
0 Qr Qr

// KM(s)VP - Vi dxdf = // q:(8)1 dxd6. (2.17b)



The results in this paper are obtained under the following assumptions on the model:
Assumption A (Data and weak solution).

1. The functions M,n : R — R are continuous and there exist positive constants car, Car, and C,, such
that, for all a € ]0,1],
e < M(a) < Cy, n(a) < Cy. (2.18)

2. The diffusion tensor K € [L>=(Q)]%*? is symmetric and uniformly positive definite.

3. The function P in (2.15) belongs to L>((0,T); H'Y2(09)). Thus there exists an extension, still denoted
by P, such that o
P e 1°((0.7): H'(%).

Similarly, the function 5 in (2.15) belongs to L>(9Q x (0,T)) with 0 <35 < 1. Moreover, s can be
extended on Q7 into a measurable function, still denoted by s, such that

o5 € L'(Qr), »(3) € L*((0,7); H' (), 3(-,0) =s".

4. Concerning the sources qn, qw (and gx = qw + qu), we assume that for all (x,t) € Qr, the functions

. 0,1 — R,
qa(;x,t) R (a € {n,w})

are Lipschitz continuous. Hence, for all v € L= (Qr) with 0 < v <1 a.e. in Qr, one has
w(v) € L*(Qr),  a(v) € L=((0,T); L*(2)).

We moreover assume that

@ (0;-:) =0,  quw(l;+,) 20,
5. The initial saturation satisfies

% e L>°(Q) with 0 < <1 ae in €.

6. The Kirchhoff transform function ¢ defined in (2.9) is increasing in [0,1] and L -Lipschitz continuous.

7. There exists a positive constant Cy such that, for all (a,b) € R and for almost all (x,t) € Qr,

(n(a) — n(b))* + (M (a) — M(b))?
+ (gu(a;x,t) = gu(byx,1)” + (ge(a; x, 1) — g (b;x, 1)) < Co(a — b)(p(a) — p(b)).  (2.19)

8. There eists a weak solution (s, P) in the sense of Definition 2.1 which is such that VP € [L>(Qr)]*.

As for 7, see (2.2), ¢ is extended on R by

L,s if s <0,
wls) = { Lo(s—1)+ (1) ifs>1. (2.20)
Here L, is the minimal Lipschitz constant of ¢ on [0, 1]. In this way the properties assumed above for the
interval [0, 1] extend trivially to R.

The assumptions stated above deserve some comments. Points 1 and 6 are satisfied by most of the one-
or two-phase porous media flow models currently used in oil engineering. Point 3 is natural and does not
impose any severe restrictions on the boundary data. As mentioned above, one can apply the techniques
in [16] to extend the present results to inhomogeneous Neumann boundary conditions that are prescribed on
some parts of the boundary.

For point 4, since ¢(s) belongs to L>((0,T); L(f2)), the total velocity u is essentially bounded in
H(div, Q) with respect to time. Moreover, the last assertion of this point is nothing but claiming that one
cannot extract a missing phase.



The condition (2.19) appearing in point 7 is similar to Assumption (A7) in [16] (see also [14]). For scalar
degenerate parabolic equations, it ensures the uniqueness of a solution (see [3, 40]). This condition can
further be employed for deriving a priori error estimates (see [41, 45]), and is mainly relevant for the behavior
of ) close to the degeneracy values, 0 and 1. For example, referring to the van Genuchten curves relating the
permeability and the dynamic capillarity to the saturation (see, e.g., [8]), (2.19) holds if the van Genuchten
parameters m and n are such that n =1/(1 —m) and m € [2/3,1).

Concerning point 8, it obviously requires more analysis since a weak solution as introduced in Definition 2.1
does not necessary fulfill the requirement on the pressure gradient. For domains 2 having a smooth boundary,
[14, Theorem 4.5] provides the essential boundedness of VP. This result is, however, not usable here as we
assume 2 as polyhedral.

Finally, it is worth mentioning that the assumptions in the last two points are not needed for the existence
of a solution (see, e.g., [5, 6, 14]), but are stated here since these will be used later. Essentially we use the
following existence and uniqueness result proved in [14].

Corollary 2.2 (Existence and uniqueness). Under Assumption A, there exists a unique weak solution to the
problem (2.12)—(2.15) in the sense of Definition 2.1.

Remark 2.3 (Continuity in time of the saturation). The space € in (2.16) requires that s is conlinuous in
time. To justify this we recall (2.13), (2.8), and (2.7) and note that if (s, P) is a weak solution, the equation
(2.17a) can formally be written as

05+ V- (ui f(s) — KVp(s)) = qu(s).

For fized wy, this operator involves a L'-contraction semi-group with a comparison principle [11, 33, 40].
Thanks to Assumption A4, s =0 is a sub-solution, while s =1 is a super-solution. Therefore 0 < s <1 a.e.
in Qr. The fact that s € C([0,T); L?(2)) then follows from [10)].

3 The a posteriori error estimate

This section provides the main result, an abstract a posteriori estimate on the difference between the exact
and the approximate solutions. This is obtained in the context of an Euler implicit time stepping, whereas
the spatial discretization is left unspecified.

3.1 Time mesh and some additional notations and assumptions

We consider a strictly increasing sequence of discrete times {#"}o<,<n such that t° = 0 and ¢ = T. For
all 1 < n < N, we define the time interval I,, := (t"‘l,t"] and the time step 7" := t" — t"=1 For each
0 <n < N, we consider a partition D}’ of £2. We denote by D,eft’" the volumes from D}’ having an intersection

with 92 of nonzero measure and by ’D;lm’" the remaining elements of D}'. An example is given in Section 4.1
below. The following weighted norm on subsets D of 2, for v € [L?(D)]?, will be used often below:

1
1 2 2
IVl 4 2y = {/D|5 2 (x)v(x)| dx}

We now define the following space:
V, == {v € C([0,T]; L*(2)), v is affine in time on each I,, for all 1 <n < N}.

Further, for 0 < n < N, we let v" stand for the function v(-,¢"). Note that for functions v € V., dv|1, =
(v™ — v~ 1) /7™, where v|;, denotes the restriction of v to the time interval I,,.
In addition to Assumption A, we now make the following:

Assumption B (Boundary conditions and sources).
1. The boundary condition for the saturation 5 is continuous and piecewise affine in time, 5 € V.
2. The source functions q, and qy, are piecewise constant in time, with values in L*(2).

Since gq, o € {n,t}, are assumed piecewise constant in time, we set ¢ := ¢u |7, for alln =1,...N.



Remark 3.1 (Boundary conditions and sources). Assumption B is made only for the clarity of presentation.
More general boundary conditions and source terms can be taken into account, giving rise to additional error
terms in the analysis carried out below.

Having in mind the time discretization introduced above, relying on the space V.., we consider the following
restriction of the set £ introduced in (2.16)

Er ::{(S,P) | CES Vq-, 8155 € LQ(QT)a

- 2 1 B 72 1 (3.1)
p(s) = @(3) € L*((0,T); Hy(Q)), P — P € L*((0,T); Hy () }-

3.2 Reconstructions of the phase fluxes

Let an arbitrary pair (spr, Phr) € & be given. In order to proceed in a fairly general manner, particularly
without specifying the discretization scheme, we make the following assumption:

Assumption C (Locally conservative fluxes reconstructions). There exist two vector fields uy p- and g pr,
piecewise constant in time, such that

Uy g, = Up prlr,, Uy = U |r, € H(div, Q) forallne{l,...,N}

and such that

n __ n—1 .
Sh Sk +Vull, |dx= [ q}(sp)dx oralln e {1,...,NY and for all D € D"™", 3.2a
n,h n\°h h
D D

™n

/ V-uy), dx = / q'(sp)dx  forallm e {1,...,N} and for all D € D"™".  (3.2b)
D D

The function uy , will be called nonwetting phase fluz reconstruction, whereas the function uy'), will be
called total flux reconstruction. These two functions are discrete counterparts of the nonwetting phase flux
u, in (2.1) (with @ = n), respectively of the total flux u; in (2.6). These fluxes need to be constructed from
the given numerical scheme, see Sections 4.2.2 and 4.3.2 below for two examples. Remark that (3.2a)-(3.2b)
represents a discrete weak form of the continuous mass balance equation (2.3) for « = n, and of (2.7). Finally,
note that with uy pr := W pr — un pr, one gets from (3.2a)—(3.2b)

n __ n—1 )
/ (—% + V-u:},_h> dx = / ¢t(1—s)dx  forallne {1,...,N} and for all D € D", (3.3)
D T ' D

which is a fully discrete counterpart of (2.3) for o« = w.

3.3 The estimators

We can now define the a posteriori error estimators. For given n € {1,...,N}, t € I,,, and D € D}, define
the diffusive flux estimators

W 1) 2= [0+ K (050 ) Y Par + Vo)) (-5 (3.4a)
nDF,t,D(t) = Hut,h +KM(ShT)VPhT(t)HE%;Lz(D) (3.4b)
and the residual estimators
Wﬁ,n,D = mp||Orspr + V'uﬁ,h - QQ(SZ)HL?(D), (3.5a)
nﬁ,t,D = mD”V'U-?,h - Q?(SZ)HLQ(D)- (3.5b)
Here mp = Op_’DhD CI_(%D it D e ,D;lnt,n, respectively mp = CF,D,BQhD CI_(.%D if D e D}CLXt"n. The notation hp

stands for the diameter of the volume D, whereas ck,p stands for the smallest eigenvalue of the tensor K on
the volume D. The constant Cp p, D € D;,"", appears in the Poincaré-Wirtinger inequality

e = ¢pllr2(py < Cp,oho|VellL2(py Ve € HY(D), (3.6)



where ¢p is the mean value of the function ¢ over D given by ¢p := [, ¢dx/|D| (|D| is the measure

of D). For a convex D, Cp p can be evaluated as 1/x. Similarly, Cr p oo, D € D,eft’", appears in the
Poincaré—Friedrichs inequality

H(pHLz(D) < CF,D,BQhDHVSD||L2(D) V(p S Hl(D) such that Y = 0 on 902N aD, (37)

Cr,p,oa can be typically taken equal to 1. We refer for more details to [50] and the references therein. Finally,
the time quadrature estimators are given by

_1

NG.n,0(t) = Crohackllan (sh) — an (she) (D) 22Dy (3.8a)
_1

NG.t,0(t) == Crahac ol (si) — a4 (snr) ()l L2(D). (3.8b)

where hq is the diameter of Q2 and ck o the smallest eigenvalue of the tensor K on €. As above, Cf q is the
constant from the Poincaré—Friedrichs inequality

lellrz) < CrahalVeollrzq) Ve € Hy(), (3.9)

and we can take Cp o = 1.

3.4 The a posteriori error estimate

We are now ready to state the main result of this paper.

Theorem 1 (A posteriori error estimate for problem (2.12)—(2.15)). Let (s, P) be the weak solution introduced
in Definition 2.1 and (spr, Phr) € E- be an arbitrary approzimate solution. Under Assumptions A, B, and C,
there exists a generic constant C' > 0, depending neither on the approximate solution nor on the space—time
discretization of Qr, such that

C (Hshr — sl 220,711 () + 1 Phr — P||2L2(0,T;H5(Q)) + [le(snr) — SD(S)H%Q(QT))

< lsnr(5,0) = %310

2 2

2
N
Y / S ran® +an)? s +4 3 (Ban®)? s | dt

n=lac{nt} """ DeDy DeDyp

Moreover, if o= belongs to CO"(R), the term |lp(snr) — @(5)[172(q,) can be replaced by ||spr — SHlLJfL‘(QT).

The assumption that ¢ has a Holder continuous inverse holds for most of the retention curves used in the
subsurface (see, e.g., [7]). For example, considering again the van Genuchten framework with the parameters
m and n = 1/(1 — m) provides a ¢ having a Holder continuous inverse with exponent 2m/(3m + 2). As
follows from above, this provides better a priori estimates for the saturation (see also [45]), and the situation
remains unchanged for a posteriori estimates.

Theorem 1 is an immediate consequence of the estimates in Theorems 2 and 3 below. Its application to
two examples of finite volume schemes is illustrated in the next section. Appendix A deals with the additional
errors that are due to the numerical quadrature, the iterative linearization, and the iterative algebraic solver,
which are taken into account explicitly. Furthermore, the spatial and temporal errors are identified and
adaptive stopping criteria are proposed in Appendix A.

4 An application to two types of vertex-centered finite volume
discretizations

In this section we consider two relatively distinct vertex-centered finite volume discretizations of prob-
lem (2.12)—(2.15), and show how Theorem 1 can be applied in both situations.



Figure 1: Simplicial mesh 7;* and the dual mesh D} (left); simplicial submesh S}’ (right)

4.1 The spatial meshes and the discrete functional spaces

Let 0 <n < N be fixed. We denote by 7, the partition of 2 (the mesh) involved in the numerical calculation
of the approximate solution at time ¢"; 7,0 is the initial mesh. All partitions 7," (0 < n < N) consist of
d-dimensional simplices and are matching. This means that the intersection of two elements K and L is
either empty, or a common vertex, or an /-dimensional face with 1 </ < d — 1.

For any 0 < n < N, we define the space

Vit i={up : Q = R, vy, is continuous and piecewise affine on 7'}
We will also need

Vir :={vnr : @ x [0, T] = R, vy, is affine in time on each I, for all 1 <n < N,
vy = ope (") € Vit for all 0 <n < N}.

In reinforcement of Assumption B1, we need (cf. Remark 3.1) that 3 € V},, and P € Vj,,. We then define

Ve = {u, € Vi, vy =3(-,t") on 9N}, v = {u, €V}, vy = P(-,t") on 0Q},

;S

Virs = {0nr € Viur, vpr =35 00 00 x (0,77}, Viep = AV € Vir, vpr = P on 9Q x (0,T]}.

For each 7., we next consider a dual mesh D}. Every element (dual volume) D € D} is associated
with one vertex of 7;", and constructed around this vertex by joining the face and element barycenters as
indicated in the left picture of Figure 1 for d = 2. The set D;nt’n contains the dual volumes associated
with the interior vertices of 7,"; similarly, DZXt’" consists of the dual volumes associated with the boundary
vertices of 7,". We emphasize that the meshes 7;" (and consequently Dj) may change in time, typically by
refining or coarsening of some elements of the previous mesh. The discrete times and meshes are typically
constructed by a space—time adaptive time-marching algorithm, following, e.g., Section A.3 below.

In addition to the meshes 7, and D}, we will also need below a third mesh for each 1 < n < N. This
mesh is called S}, consists of d-dimensional simplices, and is matching. It is constructed by joining the
barycenters of the elements of 7, with the vertices and the barycenters of the corresponding ¢-dimensional
faces (1 < ¢ < d — 1), see the right picture in Figure 1 for d = 2. Note that S} are submeshes of both 7"
and D}}; given a volume D € D}, we denote by Sp the restriction of S;’ onto D. On S;}, we define the lowest
order Raviart—-Thomas—Nédélec space of vector functions, cf. [9, 47],

RTN(S}) := {vin € H(div,Q); vi|x € RTNo(K) forall K e S;'}. (4.1)

Here, RTN(K) := [Po(K)]? + xPy(K), where K is a given simplex and Py(K) is the space of constants on
K. In particular, v, € RTN((S})) is such that V-v;, € Py(K) for all elements K of S}, vi-np € Py(F) for
all (d — 1)-dimensional faces F' of S}, and such that its normal trace is continuous.

4.2 A “mathematical” scheme

We first discuss a scheme stemming from the Definition 2.1 of the weak solution. We call it here “mathemati-
cal” since it makes use of the Kirchhoff transform. This provides the unknown ¢(s) that has more regularity,
but no particular physical meaning.



4.2.1 The scheme

Let s) € V,?;g denote the discretization of the initial condition s°. Then the “mathematical” vertex-centered
finite volume discretization of problem (2.12)—(2.15) reads:

Definition 4.1 (“Mathematical” finite volume scheme). Find a pair (Spr, Phr) € Virs x V), 5 such that for
all1 <n< N and all D € D;Lnt’", (sh, Pit) € Viitg % V}:ﬁ are solutions of

7—71

_ on—1
[ (B Yax- [ v+ vetsnnds = [ arsax (1.20)
D oD D

- KM(s;)VP!npdo = / qi (sy) dx. (4.2b)
aD D
Formally, to construct P, on the first time interval I; one needs an approximation P at the initial time.
Since the initial saturation s9 is known, one possibility is to solve (4.2b) for n = 0. However, the particular
construction of P{ has no influence on the final approximation.

Remark 4.2 (A scheme based on the Kirchhoff transform). As follows from the analysis of the continuous
problem presented in Section 2, the Kirchhoff transform o(s) has better reqularity than the nonwetting satura-
tion s. This motivates the following adjustment of the scheme (4.2a)—(4.2b). Let © := (5) and ©° := ¢(s°).
Let V’L and V, . 6 be as Vs and Viri5 with s replaced by ©(3). Let finally ©9 € V]?@ denote the discretiza-

tion of the initial condition ©°. Then a Kirchhoff transform vertez-centered finite volume discretization of
problem (2.12)~(2.15) is a pair (Onr, Pur) €V} 5 XV}, .5, such that for all1 <n < N and all D € D",
(©h, Py) € Vs x V' are solutions of

/D ( ((9") o) )dx_/ K(n(¢™ (O1)VE; +VO;)npdo = /Dqlf(w_l(@}f))dx, (4.3a)

- [ KM OR)VEnpdo = [ e @) dx. (43)
oD D

We then define the approzimate saturations sy := ¢~ 1(07), 0 <n < N.

The above approach applies whenever ¢ is strictly increasing and thus the function ¢=1(-) is well defined
(this being satisfied for most of the parameterizations commonly used for modeling porous media flows). If
@ is not tnvertible, a regularization step can be employed, considering, e.g., a small number ¢ > 0 and
approximating ¢ by p. satisfying for all s € R

e<P() <Ly lols) —pels) < Ce, (4.4)

for some constant C > 0. This approach is often used in analyzing degenerate problems and leads to effective
numerical algorithms (see, e.g., [37, 45]).

Note that the two schemes, (4.2a)—(4.2b) and (4.3a)—(4.3b), only differ by a numerical quadrature, see
Remark A.1 below. Therefore from now on we only focus on the scheme (4.2a)—(4.2b).

4.2.2 The reconstruction of the fluxes

Here we show how to obtain, from the scheme (4.2a)-(4.2b), the flux reconstructions uy -, ug - satisfying
Assumption C. To do so we let 1 <n < N and D € Dj be given and construct uj ;,uf;, € RTNg(S}}) as
follows. For each face F' of the mesh Sp included in @D but not in 02, we take

uy ,np = |F| / n(sp)VP? + V(st))npdo, (4.5a)

uf'ynp = — / (KM (s})V P np do. (4.5b)
F

|F|
Observe that in (4.5a)—(4.5b), the degrees of freedom of u]} ;, and uf',, are not prescribed on all faces of 7.
So, equations (4.5a)—(4.5b) do not specify ul! »and ugy, completely The remaining degrees of freedom can be
specified in various ways, as discussed in [50 21, 23] solution of local (Dirichlet—)Neumann problems by the
mixed finite element method, direct prescription. By the Green theorem, from (4.5a)—(4.5b) we immediately
get:
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Lemma 4.3 (Assumption C for the scheme (4.2a)-(4.2b)). Let uy, and up,, satisfy (4.5a)—(4.5b). Then
Assumption C holds true.

Lemma 4.3 guarantees the validity of the a posteriori error estimate of Theorem 1 for (s, Pp.) provided
by the scheme (4.2a)—(4.2b). For identifying the error components and for the stopping criteria, we refer to
Appendix A below.

4.3 A phase-by-phase upstream weighting “engineering” scheme

We now turn to a scheme that is often used in the industrial setting, see, e.g., [29]. Compared to (4.2a)—(4.2b),
it solves the mass balance for both phases explicitly, and involves a stabilizing upwinding term.

4.3.1 The scheme

Let s € V,gg denote the discretization of the initial condition s°, as in Section 4.2.1. Then the “engineering”,

phase-by-phase upstream weighting, vertex-centered finite volume discretization of problem (2.12)—(2.15)
reads:

Definition 4.4 (“Engineering” finite volume scheme). Find a pair (Shr,Dw.hr) € Virs X Var such that
P(8hr, Dw.hr)|oa = P with P(-,) the function of (2.10), and for all 1 <n < N and all D € D;*", (8hs P n)
are solutions of

[ (e [ - sV e = [ a0 -spax o)

(Y o= [ atsp Vot s do = [ it ax (4.6b)

Tn

Here, the superscript upw denotes the fact that the concerned quantity is evaluated using the values at the
vertices in the upstream direction.

4.3.2 The reconstruction of the fluxes

Although the scheme (4.6a)—(4.6b) is quite different from the scheme (4.2a)—(4.2b), the flux reconstructions
Un hr, Ug e satisfying Assumption C are obtained here in the same easy way as in Section 4.2.2.

Letting 1 <n < N and D € D} given, we construct ul, ,,ul , € RTNy(S})) as follows. For each face F
of the mesh Sp included in 9D but not in 92, we take 7 7

e I = ‘% /FUK(an — SV (P )" np do, (4.7a)
ta e = ‘% /Fﬂkn(smwpa,h + 7 (sp))]"™ np do. (4.7b)

Then we define uy’), :=uy ;, +uy . Once again, the Green theorem readily implies:

Lemma 4.5 (Assumption C for the scheme (4.6a)-(4.6b)). Let uy ;, and uy ,, satisfy (4.7a)~(4.7b) and set
u'), ==uy , +uy . Then Assumption C holds true.

As before, Lemma 4.5 ensures that the error estimate in Theorem 1 holds true for (spr, P(Shr, Pw,hr))
provided by the scheme (4.6a)—(4.6b).

5 Proof of the a posteriori error estimate

In this section, we introduce the residuals of the weak formulation (2.17a)—(2.17b), show that the er-
ror between the exact solution (s, P) € & given by Definition 2.1 and an arbitrary approximate solution
($hr, Prr) € € can be bounded by the dual norm of the residuals, and finally show how to bound from above
this dual norm by computable a posteriori error estimates when (sp,, Prr) € €. This altogether gives the
proof of Theorem 1.

11



5.1 Definition of the residuals
Recall the set £ from (2.16). We start by the following definition:

Definition 5.1 (Residuals). Let (spr, Pnr) € € by an arbitrary pair. Define the following continuous linear
forms Ry (shr, Phr), Re(Shry Pnr) on L2((0,T); HY(Q)): for all ¥, & € L*((0,T); HL(S2)),

T
(R (s Prn), ) 1= / (Ousnr (- 6): (- 0) -1 gy 06
// N($hr )V Phr + Vo(spr)) - Vip dxdf — // Gn(shr ) dxdo, (5.1a)

Rusnr )€ i= [ KM (1) VP - VEaxd0 — [ asnr axas (5.1b)
Qr Qr
Clearly, for any pair (sp,, Pyr) € € with sp,,(+,0) = s%, one has
(Shr, Pnr) is a weak solution < Ry(Sar, Phr) = Ri(Shr, Prr) = 0. (5.2)
In obtaining the estimates, we let [ - || g1 (q) stand for the energy norm on HL(Q),
1
1 2 2
ol (o) = A K> (x)Vo(x)| dx ¢ (5-3)

and || - || L2 (0,7;m; () for the energy norm on L?(0,T; HY(Q)) given by

1
1
ol 2o,y = { [ i veol dxd@}
QT

These norms are equivalent to the usual H'(Q)-norms due to the boundary conditions and the properties of
K. The corresponding norm in H~1(Q) is defined as

HCHH*l(Q) = sup <<7¢>H*1,H§-
YEeH (), HwHHé(Q)Zl

Further, for the functionals introduced in Definition 5.1, in a standard way we define

IRa(shrs Puc)lll - = sup (Ru(Shrs Pur), ),
$EL2(0,T;H ()
1122 0,78 2y =1

IR¢(shrs Pur)lll - = sup (Re(shrs Prr), &)
€EL2(0,T;HE (Q))
1€ 2 0. 7113 () =1

Finally, for proving the results below, the following elementary inequality will be used often: for all
a,b € R and all § > 0,
a? b2
b < — 6 — 5.4
ab < o5 + (5.4)

5.2 Bounding the error by the dual norm of the residuals

In this part we show that the error between the exact and approximate solutions can be bounded by the dual
norms of the residuals. The results are obtained under Assumption A, employing a duality technique.

Let (s,P) € &€ be the weak solution introduced in Definition 2.1, and satisfying in particular VP €
[L=(Qr)]? (cf. Assumption A8). Consider an arbitrary pair (si,, Pr) € . For any given t € (0,7T], we
denote by Gp.(-,t) € H}(Q) the function satisfying

/ KVG, (-, t) - Vypdx = / (Shr —s)(-, ) dx (5.5)
Q
for all ¢ € H}(Q). For any t € (0,7T], the existence and uniqueness of Gy, (-, t) is guaranteed by standard

arguments. Moreover, since s, and s are in C([0,7T]; L2(2)), we obtain Gy, € L*(0,T; H}(2)).
We have the following

12



Lemma 5.2. Under Assumption A, there exists a constant Cy > 0 such that, for all t € (0,T], one has
1Ra(shrs Pac) P = 180 = 8) (5 O Fr-10) — 507 (,0) = 8°[|5r-1 e
/ [ (onr = 9)((om) = 9(5)) dxds = Calls = suel ooy 5)

+2 // (snr)K(V Py — VP) - VG, dxdf.

Proof. The H} norm (5.3) (and consequently the H ' norm) are involving the symmetric, positive definite
tensor K. Proceeding as for the standard norms in H 1, respectively H{, for all t € [0, T], the definition (5.5)
gives

[Ghr (D)2 ) = sup /KVGhT 1) - Vip dx
YEHG ()19l g (o) =17

= sup /Q(S;W —5)(-, t)pdx (5.7)

VEH@,I 13 (o) =1

[ (shr — )5 Ol E-1(02)-

Note that, thanks to (5.2), for all ¢ € L?(0,T; H}(£2)), one has

<Rn(ShT7PhT)7w> = <Rn(3hraph‘r)7w> - <Rn(87P)7w>'

In particular, choosing ¢ = G+1(g,) as the test function in this relation provides

(Ru(Shrs Prr )y Grr) = A1 + Ag + Az + Ay + As, (5.8)
where
ao= (O — )(20): Gir (0 1y 1,
A =[] wen KR, - VP)- V6 dxa,
Ay = / / N(snr) — n(3)) KVP - VG dxdd,
A = / / (Vo (snr) — Vip(s)) - VGir dxdd),
As = // (qn(shr) = qu(s)) Ghr dxdb.

t

Recalling (5.5), 0;G},+ solves

-V (Kv(atGhT)) - 8t(5h7' - S) in Qv
0:Ghr = 0 on 0,

for a.e. t € (0,77, in a weak sense. Since d;(sp, — s) € L2(0,T; H=1(Q)), we have 8;Gp, € L*(0,T; H} (%)),
ensuring that Gy, € C([0,T]; H}(£2)). Thus, it follows from the definition (5.5) of Gy, that

1
A= [ K@TGh) - VGir dxdd = 5 (1GarC)ryor — [Gir - Ol e)-

Hence, using (5.7), we obtain that

Av =2 (1o = sy — 9 (-0) = ey ) (5.9)
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Further, with C denoting a positive constant, not necessarily the same at each occurrence, since K%VP €
d
[L>(Q:)]" we get

Y

As =Cln(snr) = n(s)llL2(@n) IGhrll L2 (0,611 (2))

1 2 C?Co 2
z o lsnn) =)z = —5 = 1Gnelliao,m3 (),

where (Y is the constant appearing in relation (2.19).
Third, one has

1 2 Co 2
As > —2—COHQn(5hr) =@ ()72, — 7”Gh7’HL2(Qt)'
Thanks to the Poincaré—Friedrichs inequality (3.9), there exists a C' > 0 such that, for almost all § € (0, t],
1Ghr (- 0)l[2(2) < CllGhr (Ol g (0) = Cll(snr — ) 0l -1 (@)
Therefore, there exists a C' > 0 such that
1

As > —EHQn(ShT) - qn(S)H%?(Qt) = Cllsnr — 5|‘%2(0,t;H*1($l))'
By (5.7) and Assumption A7,
1
Az + A5 > —3 // (snr — 8)(@(snr) — ¢(s)) dxdl — C||spr — S”%?(O,t;H*l(Q))' (5.10)
Fourth, recalling (5.5), since p(s) — ¢(sp-) € L2(0,T; Hi(2))), we obtain

Ay = // t(ShT — 5)(p(snr) — @(s)) dxdo. (5.11)

Finally, using (5.7) gives

(Ru(snr, Prr), Ghr) - < [IRu(snrs Bar)lll Isnr = sll 220,61 ()
1 , 1
< §|||Rn(3hraphr)||| + §||Shr — 8|72 0,051 () (5.12)
Employing (5.9)—(5.12) into (5.8) provides (5.6). O

Lemma 5.3. Under Assumption A, there exist the constants Co, C3,Cy > 0 such that, for all t € (0,T], one
has

C3
IRetone Pl 2 Call o = Py = 5 [ (e = 9)pton) = (o))
—203 // ’I](S}”—)K(VP}”— - VP) . VG}“— dxdf — C4H8h-,— - SH%Z(O,t;H*l(Q))'(5'13)
Proof. For any t € (0,T], we denote by Gp,(-,¢) the function in H () satisfying

M(sh7(~,t))KVéhT(~,t) -V dx = —/ N(snr (-, ) KVGh, (-, t) - Vipdx (5.14)

Q Q

for all 1 € H}(2), where G, (-, t) € HE(Q) solves (5.5). The existence and uniqueness of Ghr (-, 1) is again
guaranteed by standard arguments.
Choosing G- (-,t) as test function in (5.14) and using (2.18) and (2.19) gives

~ C C
[Grr (5 O 3 ) < jHGhT('vt)”Hé(Q) =

—|(shr = 5) (5 )l -1 (0)- (5.15)
cm

With A > 0 an arbitrary parameter that will be fixed later, choosing &, := (P;W — P+ )\(A?;W) Lo, as test
function in (5.1b) yields

(Re(Shrs Prr)s énr) = (Re(Shr, Prr)s Enr) — (Re(8, P),&nr) = B1 + Ba + B3 + By + Bs + Bg, (5.16)
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where

By = / M(s3)K (V Py, — VP) - (VP,, — VP) dxdf,
Qt

B i= [ (M(sh) = MEKVP- (VP — VP) dxa,

By = /\/Q M (sp)K (V Py — VP) - VG dxdd,

By = /\// (M (sr) — M(s))KVP - VG dxdf,

B = = [ @lonn) ~ ao) (Phr - P) dxa,

Beo= [ (a0(one) — 0(5)) G il

First, thanks to (2.18), one has
By > enr||Par = Pll72(0.4,m1 (0

Second, since K%VP € [L“(Qt)]d, we get, for some C' > 0,
By > —C|M(snr) — M(s)|l2(@ullPrr — Pllz20,611(2)

CM
> —C||M(snr) — M(S)Hiz(Qt) - THPM - PH%?(O,t;Hg(Q))-

By Assumption A7, there exists a C' > 0, not depending on (s, Pn-), such that

CMm
Bo 2 ~C [[ (s1r = 9)(lon) = 0(9) dxd0 — D[ Par = Pl iy

Third, it follows from the definition (5.14) of G, that
B3 = —)\// 0(sne)K(VPyr — VP) - VG, dxdo.

Fourth, since KX VP € [L>(Q¢)]%, by Assumption A7 and (5.15) we get

By > —COXN|M(snr) — M(s)||l2(ullGrrll 220,612 2
> —C|M(snr) — M(s )HLQ(Qt )‘2”Gh7’H%2(0,t;H(}(Q))
> —C// (shr — $)(@(snr) — @(s)) dxdd — CX?(|snr — 8|l 1200411 (2))-

Fifth, by (5.4), for all & > 0 one has

1
Bs > _@Hq‘c(ShT) - qt(S)H%Q(Qt) - MHP - PhT”%z(Qt)'

(5.17)

(5.18)

(5.19)

(5.20)

Therefore, using the Poincaré-Friedrichs inequality (3.9), a convenient choice of y, and Assumption A7 lead

to

cm
Bs 2 ~C [[ (s1r = 5)(elon) = 0(9) dxd8 — P = Purlfa oy

Sixth, using Assumption A7,

Bg > —)\2||CA¥;WH%2(Qt) - C//Q (shr — 8)(@(shr) — ©(s)) dxdb.

The Poincaré—Friedrichs inequality (3.9) and (5.15) give

Bo 2 ~XCllstr = sl ey = € [ /Q (1 — )((50r) — () dxdf.
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From (5.16)—(5.22), one gets
e
Rulsnr Pur)s&ir) = B P = Py — € [ (snr = 5)(olonr) — () et
—)\// (317 )K(V Py = VP) - VGhr dxdd — NCllsnr — sl 72(0 1.5-1(0f5-23)
On the other hand, we deduce from (5.15) that
Gy
€nrll2 0,602 () < 1 Prr — Pllzzo,sm1 (@) + )\$|\Sh7 = sllz200,6H-1(0))
leading to
(Ri(8hrs Prr)s §nr) < IRe(Shrs Prr )l (||Phr - P||L2(o,t;Hg(Q)) + AC|shr — 5|‘L2(0,t;H*1(Q))) .
With (5.4), we can prove that
2 2 CM 2 2
E|||Rt(5h‘rvph‘r)|” > (Re(Shry Prr), Enr) — THPhT - P||L2(o,t;H5(Q)) — ACllsnr — 3|‘L2(0,t;H*1(Q))-

Using the relation (5.23), this provides

02 03
IR (shr, Pur)lI* > ?M”P]‘LT - P||%2(0¢;H%(Q)) -5 // (shr — 8)(@(snr) — ¢(s)) dxdo

_/\CM

// TI(ShT)K(VPhT - VP) . VG}”- dxdf — O)\2HS}”- - 5|‘L2(O,t;H*1((l))-

Choosing A = 400—]\3 leads to (5.13). O

Note that the fifth term on the right in (5.6) and the third term on the right in (5.13) differ by a constant.
Therefore, a straightforward consequence of Lemmas 5.2 and 5.3 is

Lemma 5.4. Under Assumption A, there exist the constants Cs,Cg,C7 > 0 such that, for allt € (0,T), one
has

IRy (strs P )lI2 + G [ Rosnrs Par I
> Ca ([l(snr = ) Ol = lsnr(,0) = 531 )

4Cs [ (snr = 5)((on) = () dxd
+Cs|| Par — PllL2(0,6:12 () — C7llshr — sl L2(0.4:5-1(0))- (5.24)
The last term on the right-hand side of (5.24) appears with a negative sign. We bound it as follows:

Lemma 5.5. Under Assumption A, there exists a constant Cs > 0 such that
e = sl 075y < s (lnr (. 0) = 80010y + [1Ra(snr Bl + [1Resnr. Par)I7)

Proof. Since ¢ is increasing on R, for all ¢ € (0, 7],

// t(s’” = 8)(p(snr) = ¢(s)) dxdf = 0.

By Lemma 5.4, for all ¢ € (0,7 one has
[(snr =) O Fr-1 @) < Mlsne(50) = sl -1q) +|||R (sr Par)II”

—|||Rt<s;mPhT I + / 1(sr — )2 O3 -1 6.
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The Gronwall lemma yields for all ¢ € [0, 7]
2 & 02 2, 1 2
I(snr = 8)CDllar-20) < €75 { llsnr(0) = s ll5r-10) + [Rn(snrs Pho)lll” + G lIRe(snr, Par ) ) -

CrT
The conclusion follows with Cs = e @5 max {1,1/Cs}. O

We now give the following lemma, which is a straightforward consequence of Lemma 5.5.

Lemma 5.6. Under Assumption A, there exists a constant Cy > 0 such that

lsne = sllz2omya-r oy < Co (lsnr (0) = 82130y + IRa(shrs Par)IP + [IRe(snr, P lI2)
Having proved all the results above we can now state the main result of this section:

Theorem 2 (Upper bound on the error by the residuals). Let (s, P) € € be the weak solution introduced in
Definition 2.1 and let (spr, Pnr) € € be arbitrary. Under Assumption A, there exists a constant C' > 0 such
that

shr = sllZ2(0,7:0-1(2)) + 1 Par — P||2L2(0,T;H5(Q)) + lle(snr) — 991720

< C (Jlsnr (50) = 5”31 + [Ru(snrs Par) I + R (s Par)lI2) (5.25)
Moreover, if =1 belongs to CO7(R), then there exists C > 0 such that

Ishr = sllZa0.-1 () + | Par = PHiz(o,T;Hg(Q)) + llshr — SHlLJfL(QT)

< C(llsnr(0) = 8" I3 gy + IRa(snrs Par) 12 + I[Re(snr Par)lI?) - (5:26)

Proof. Since ¢ is increasing and L-Lipschitz continuous, one has, for all (a,b) € R

(a— b)(p(a) — p(b) > L%(w(a) — (b)),

As a consequence,

/ / (snr — ) (snr) — o(s)) dxdf > Li¢| o(sne) = 2(5) P20 (5.27)

On the other hand, if ¢! is -Holder continuous, for all (a,b) € R one has
(a— b)(p(a) — ¢(b)) = Cla— b)1*".
This gives
/ /Q e =) (plone) = (o) x> Clln =3l g (5.28)

Choosing t = T in (5.24), one by (5.27) obtains

C (Ip(snr) = 9l5) 3200y + 1P = Par 320,13 )
< Psnr(50) = 5310+ IRn (s ParlIP + IRe (s Pac) I+ Cllsnr = 107,01 -

The first result now follows from Lemma 5.6. The second one can be shown in the same way, by using (5.28)
instead of (5.27). O

Remark 5.7 (Uniqueness and continuous dependence on the initial data). Let (s, P) and (3, P) be two weak
solutions following Definition 2.1 for the initial data s°, respectively §. Thanks to (5.2), (5.25) gives
s = 3llL2 0,151 + 1P = Pllrao,rm ) + le(s) = 23 2(@r) < Clls® = 3%llm-1(0)-

This provides the uniqueness of the weak solution for a given initial data, as well as the continuous dependence
with respect to the initial data for the above topology.

Remark 5.8 (Holder continuity of ¢~1). The estimate in (5.26) is obtained assuming additionally that =1
1s Holder continuous. This is fulfilled by parameterizations that are commonly encountered in the literature,
like, e.g., the Brooks—Corey or van Genuchten—Mualem models (see [7]).
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5.3 Bounding the dual norm of the residuals by the a posteriori estimate

We now finally bound the dual norm of the residuals by a fully computable a posteriori error estimate. Recall
the definitions (2.16) and (3.1). Herein, we need to assume (spr, Pnr) € &, instead of merely (spr, Phr) € E.

Theorem 3 (Upper bound on the residuals). Let Assumptions A1-A3 and B hold. Let ($pr, Pnr) € € be
arbitrary. Let the estimators be defined by (3.4), (3.5), and (3.8). Under Assumption C, there holds

IR (snr, Pre)II? + IR (snr, Por )l

N
<Y [ D OBean®man? p +] X Ghan@)? |

n=1ae{n,t}" In DeDy DeDy

NG
Nl

P'f’OOf. Let 1/),5 S LQ(O,T,H&(Q)) Wlth |‘1/)||L2(0.,T;Hé(ﬂ)) = ||€||L2(O,T;H(1)(Q)) =1 be given. Using the defini-
tion (5.1a), adding and subtracting u, 5, - Vi, and employing the Green theorem and (3.2a) leads to

<R (ShTu PhT // 6t3h7' + V. ‘Un,hr — QH(ShT))"/J dxdt

// N(Shr)VPhr + Vo(Shr)) + Unpr) - Vi dxdt

N
= Oesnr +Vougp = ¢n () (¥ — ¥p) dx
1;/ Z / h o~ I \Sh D

I int,n ¥ D
DeD"™

+ Z / (Orshr +Vouy , — g (sy))ydx o dt

DeDext n

+Z/ > / @ (s) = i (snr )t dxdt

TL De’D’Vl
+ Z / Z / N(shr )V Prr + Vo(snr)) + u§7h) - Vi dxdt.
In pepp

Here 1p stands for the mean value of the function ¢ over the volume D. Let 1 <n < N and ¢ € I,, be fixed.
For any D € Dmt " the Cauchy—Schwarz inequality, the Poincaré-Wirtinger inequality (3.6), the properties
of K, and the deﬁnition (3.5a) give

/D Brsnr + V0 — () (W — 0p) dx < 1o 1KV 120 ().

ext,n

Similarly, the Poincaré-Friedrichs inequality (3.7) gives, for any D € D)

/D(atshT +Veug g, = ¢ (sh)Y dx < ng o plIK2 VY[l L2 () (1)-

In the same manner, for any D € D}, recalling (3.4a), one can use the Cauchy—Schwarz inequality to obtain

/ (K (n(snr)V P + Vip(sir)) + 1l ) - Vo dx < np s, p(8)[K2 Vel 2y (1),
D

whereas definition (3.8a), the Cauchy—Schwarz inequality, and the Poincaré—Friedrichs inequality (3.9) give

2

> [ @ - avdx < 3 S ap®) | IKIV6law )

DeDy DeDyp

This leads to

=
)

IR (shr, Prr)llI” < Z/ nDF,n,D(t)+77§,n,D)2 + Z (na,n,D(t))2 dt.

DeD" DeDp
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Similarly, from (5.1b) and (3.2b), we obtain

(Re(Sr, Pir), €) = //Q (KM (51,)V Pay + i pr) - VE dxdt + /Q (Ve — gu(5mr))€ dxdt

N
nz—:l/r 2 /D(V'uﬁh—q?(s’ﬁ))(é—@dx

.
DeD,;"™"

+ 3 [ (Vur, - (sp))Edx pdt

ext,n v D
DeDy*®

N
+ nz_:l/[ Z /D(q?(s’ﬁ) — q{ (Shr))E dxdt

n DeDy

N
+ Z/I > (KM (spr)VPir +upy,) - VEdxdt.
n=1

n DeD

Using the same arguments as above to bound |||R¢(spr, Phr)|||?, the assertion of the theorem follows. O

A Distinguishing the error components and stopping criteria

Here we consider the scheme of Section 4.2.1 and show how the estimators of Theorem 1 can be further
developed to distinguish between the different error components, derive stopping criteria for iterative lin-
earizations and algebraic solvers, and show how to equilibrate the principal error components. We follow the
approach introduced in [21, 23, 24, 31] and extended to the context of two-phase flows in [51].

A.1 Numerical quadrature, linearization, and algebraic solver

We start by describing the steps taken in the practical implementation of (4.2a)-(4.2b). For the sake of
clarity, we only consider some simple but illustrative examples, but mention that other choices are also
possible.

A.1.1 Numerical quadrature

In the practical calculations, one does not solve (4.2a)-(4.2b) exactly. This is because of the particular
nature of the (nonlinear) functions n(sy), M(s}!), ¢(s}), qn(sy), and ¢}*(s}), making an exact evaluation
of the integrals over elements difficult or even impossible. For this reason, one typically uses a numerical
quadrature.

In this sense, consider an arbitrary (nonlinear) function f : Q@ — R. Given 1 <n < N and v, € V;*, f(vp)
does not necessary belong to V}*. Therefore we define the operator f; : V' — V;* by

(fn(0n)) (%) = (f(vn))(x) (A1)

for all v, € V;* and for all vertices x of T;". Clearly, f3,(vs) is a quadrature-based approximation of f(vp,).

A practical implementation of the “mathematical” vertex-centered finite volume method in (4.2a)-(4.2b)
is employing the numerical quadrature (A.1). This leads to the problem of finding a pair (sp,, Prr) €
Virs X V), such that for all 1 <n < N and all D € D;Lnt’", (si, Ppt) € Viitg V}Zﬁ are solutions of

n

n __ n—1
[ (i Yax- [ gonepver + Vontinpdo = [ @atax. (a0
D oD D
- KM, (sp)VP!np do :/ (g)n(sp) dx. (A.2D)
oD D

Remark A.1 (Link to the Kirchhoff transform scheme of Remark 4.2). Remark 4.2 gives the scheme (4.3a)—
(4.3b), which is similar to (4.2a)—(4.2b), but makes use of the Kirchhoff transform. As above, in the practical
implementation of (4.3a)—(4.3b), one can consider the numerical quadrature in (A.1). The resulting scheme
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leads to the same system of nonlinear algebraic equations as (A.2a)—(A.2b). Consequently, the resulting nodal
values of sj, Py, and O} = ¢(s}) are the same and the two schemes only differ in the interpretation of the
results: the first scheme is given in terms of spr € Viris, whereas Oy € V), g appears in the Kirchhoff-based
approach.

A.1.2 Linearization

At each time step n, (A.2a)—(A.2b) represents a system of nonlinear algebraic equations. Solving it requires
an iterative linearization procedure. Here we only give a simple illustrative example of a fixed point approach;
fixed point or Newton-type linearizations for the equivalent Kirchhoff transform based scheme (4.3a)—(4.3b)
are considered, together with the rigorous convergence proof, in [30, 42, 44].

For a given 1 < n < N, let SZ’O be a given initial guess for the saturation sj. A typical choice is
sy 0 = = 57" '. We consider the following fixed point linearization of (A.2a)-(A.2b). Starting with k = 1, at

each step k we determine the pair (s}’ k P My e Vg X V}ZF such that, for all D € D)™™,

nk  n—1
/ <7Sh %h )dx—/ K (i (sp 5 YVERE + Vg (s 1))-nDdo=/(qﬁ)h(SZ”“_l)dxa (A.3a)
D oD D

Tn

— | KMy(spFhyveF g dU:/ (¢")n(spF 1) dx. (A.3b)
oD

A.1.3 Algebraic solver

At each time step n and each linearization step k, (A.3a)—(A.3b) represents a system of linear algebraic
equations, which is typically solved by an iterative solver (i being the corresponding iteration index). Here
we keep the discussion general without specifying any particular solver.

For a given 1 <n < N and k > 1, let sZ’k’O be a given initial guess for the saturation sZ’k. Typically,

sy 0 — = sy *=1 Starting from i = 1, on each step i an iterative algebraic solver for (A.3a)—(A.3b) provides

the pair (s;; k, 1, PRy e Vi x V' such that, for all D € pirtm

nki _ n—1
/ (Sh Sp, )dx—/ K(T/h( n,k— l)vpnkz+vs0 (nk 1))'1’1[)(?10
D oD

TTL
- [ e - R ()
D
— [ KM VR o = [ (@t ax - RS (A.4b)
oD D

Here, R™*% and Rl”“ are the algebraic residual vectors at the given step i and Ra ]Bl, a € {n,t}, are the

components of these algebraic vectors corresponding to the dual volume D € ’D}lm "

Altogether, the approximate solution obtained at the time step m, the linearization step k, and the

algebraic solver step i is a pair (s)2*", P/"*") € Vi 51, x V.51, given by

splt(Am) = st s = s (A.5a)
O RS A e O S (A.5b)

A.2 Distinguishing the error components

Computing the pair (SZTk o P,?T’k’i), defined by (A.5a)—(A.5b), involves a numerical quadrature, an iterative

linearization, and an iterative algebraic solver. Therefore this approximate solution does not solve the
initial equations (4.2a)—(4.2b) and henceforth the flux reconstructions (4.5a)—(4.5b) do not necessarily satisfy
Assumption C. We show below how these fluxes can be reconstructed in such a way that Assumption C is
still satisfied, allowing to apply Theorem 1. We further show how to distinguish and estimate separately the
additional errors arising from iterative linearizations and algebraic solvers that have not converged completely.
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A.2.1 Reconstruction of the fluxes

Let a time step n, a linearization step k, and an algebraic solver step i be given. We construct here the fluxes

ug’:’z and uy’ ’:’1 satisfying Assumption C. To distinguish the different error components, we consider

n,k,d _ an,k,i n,k,i n,k,i n,k,i

un,h - dn,h + ln,h + an,h + qn,h ’ (AGa)
n,k,i _ an,k,i n,k,i n,k,i n,k,i

us, =dg L Fay tag, (A.6Db)

where all the fluxes above are constructed in the space RTN(S})), cf. Section 4.1; dﬁ’,’j’i, d?,i“ are called

. . . n,k,i n,k,i . . . n,k,i _n,k,i .
the discretization fluzes, ln:h’ 71t,)h) the linearization error fluzes, s ag the algebraic error fluzes, and

ki ki ; o
ay ' qp" the space quadrature-linearization error fluzes.

We first specify dﬁ:ﬁ’i, d?,i” For each face F' of the mesh Sp included in dD but not in 92, we define

n,k,i 1 n,k,i n, k., n,k,i
dpyimp = i /F (K (sp ")V PPN 4+ Vo (s mp do, (A.7a)
n,k,i L 1 n,k,i n,k,i A
dgy, ' mp = T F(KMh(sh VP npdo. (A.7b)
Next, l;’,’fl and l?,i” are specified implicitly by
n,k,t n,k,t 1 n,k— n,k,i n.k—
(dnjl;j’ +1n:I;§’ )np = —m/ (E(nh(sh’k 1)VPh’k’ —i—chh(sh’k 1))-npdo, (A.8a)
F
n,k,i n,k,i 1 n,k— n,k,i
(¢f7+kﬁymﬁ=—ﬁméugh@,kUvaﬁumﬂa (A.8b)

As discussed in Section 4.2.2, for the remaining degrees of freedom one can proceed as in [50, 21, 23]. As for
n,k,i n,k,i n,k,i n,k,i

a ' al" and q) )", g, for all D € D;Lnt’" we merely require that

/V-aﬁ;’;’idx:R;‘:gi, (A.9a)
D
n,k,i n,k,i
/v-am dx = R}, (A.9b)
D
and
/ Vel dx = / (@ (sp™h) = qi(sph) dx, (A.10a)
D D
n,k,i n n,k—1 n( nkyi
/D Vg dx = /D (@) = () ax. (A.10D)

ki k-1 ki ki ki ki ki
From R}'5" and (¢f)n(sy,™ ) — qn(sy ™), o € {n,t}, app', afy™" and g7, qf'y”" can be constructed

using, for instance, the algorithm of [31, Section 7.3] or proceeding as in [24]. The goal is to ensure that
n,k,i n,k,i n,k,i

”qa,h HEf%;Lz(Q)? ”aa,h ||5*%;L2(£2)7 and Hla,h HEf%;Lz(Q)’

gets negligible and the algebraic and linearization solver, respectively, converge.
Using (A.4a)—(A.4b), the above definitions lead to:

a € {n,t}, go to zero as the quadrature error

Lemma A.2 (Assumption C for time step n, linearization step k, and algebraic solver step 7). Let u;L,Ijl

and uﬁ’,f’i satisfy (A.6)—(A.10). Then Assumption C holds true for u;”,jZ and u?,i”

21



A.2.2 Distinguishing the error components

Given a time step n, a time ¢ € I,,, a volume D € D}, a linearization step k, and an iterative solver step ¢,

we introduce the following notations, refining the ones in (3.4), (3.5), and (3.8):

n,k,i n,k,i n,k,i n,k,i n,k,i
nDFnD():: ||ur1h +K( (ShT )vph‘r +V (ShT ))(t)HE*%;Lz(D)’

k, k, k, K,

e o (t) = ul + KM )R O3 o
k, k, k, k

n?{nlD :=mp||s) 1+Vuﬁhl—qn(82 l)”L?(D)

M = mpl|Vul — g (sp) | 2oy

ki k, ki
Mo p(t) = Crohacg’ = llgn (s — sy VOlz2(oy,

n,k,i n,k,i ny n,k,i
NG p(t) = OFQhQCKQHQt( ) = ai (s ) Dl L2y

Define the spatial error estimators by

n,k,i n,k,i n,k,i n,k,i n,k,i n,k,i n
nsan _anD+||d +K( (ShT )vph‘r +V (ShT ))(t )

k ki ki k, ki
n:p t,LD '777;’{,t72) + Hd?,h ‘ +KM(SZT ,L)VP}?T l(tn)HE*%;[g(D)’

the temporal error estimators by

Mt () =K sy VRS 4+ V(sph) () — K(n(sym ) VLS + Vi

+ 0G0,

n,k,i n,k,i n,k,i n,k,i n,k,i/,n
ntm t, D( ) ::HKM(ShT )VP]'LT (t) - K]\4(Sh7' )VP]'LT (t )”K*%;LZ(D)

the linearization error estimators by

n,k,i H 1™ k, 1”
77lmmD -3 2,L2(D)’
n,k,g Hlnkln
nlmtD ,L2(D)7
the algebraic error estimators by
n,k,i _ Han ki L
nalg n, D" 5*5;[‘2([))’
n k,i o H n,k, ZH
algtD 7_;L2(D)’
and the space quadrature—linearization error estimators by
n,k,i _ || n, k B
nquaan q K*%;LQ(D)’
n,k,i o || n,k, 1H
nquadtD _7_;L2(D)'

The estimators introduced above have global counterparts, defined as

nkz . n,k,i
() =2 30 3 (ki)

a€{n,t} DED}

() =4 > / ST (k1) at,

ae{n,t} In DeDy

(nﬁnk Z) Z Z nﬁnkoj D )

a€{n,t} DED}

2
()" =20 >0 3 (ligan)”

ac{n,t} DEDy

( n,k,i n,k,i
nquad) ' 77quoxd a, D

ac{n,t} DEDy

With the above notations, we have the following
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Corollary A.3 (Distinguishing the space, time, linearization, and algebraic solver errors). Let the time step
n, the linearization step k, and the iterative solver step i be fixed. The estimators of (A.11) can be bounded
locally as

n,k,i n,k,i n,k,i n,k,i n,k,i n,k,i n,k,i n,k,i
nDF,a,D(t) + nR,a,D + nQ,a,D(t) S nsp,a,D + ntm,a,D(t) + nlin,a,D + nalg,a,D + nquad,a,D’ te In? Q€ {Il, t}7

and globally as

Lol
[N]
V)
N

n,k,i n,k,i n,k,i
Z /1 Z ("DF o.p(t) +nR,a,D)2 + Z (nQ,a,D(t))2 di

ac{n,t} DeDyp DeDyp
n,k,i n,k,i n,k,i n,k,i n,k,i
< Msp + Mem— + in + nalg + nquad'

A.3 Stopping criteria and adaptivity

Based on the estimate of Corollary A.3, we now give criteria for stopping the iterative linearization and
the iterative algebraic solver, for controlling the space quadrature error, and for adaptive space—time mesh
refinement.

A.3.1 A stopping criterion for iterative algebraic solvers

Let 0 < 7alg be a user-given weight, typically close to 1. Following [31, 24], the iterative algebraic solver can
be stopped whenever
ki ki ki ki ki
ﬁ;llg ‘< Valg(n:p'k'z + Nt + ﬁﬁn L+ n;lua(;)' (A.13)

Essentially (A.13) indicates when the error due to the iterative algebraic solver starts to be dominated
by other terms in the global error. After meeting this criterion, one should focus on reducing the other
components in the overall error.

A local version of (A.13) can also be stated. Given D € D}, let 0 < a1, p. The iterative algebraic solver
should be stopped whenever

n,k,i n,k,i n,k,i n,k,i n,k,i
nalg,a,D < ’yalng(nsp,oc,D + ntm,a,D + nlin,a,D + nquad,a,D)’ ORS {n7 t} (A14)

A.3.2 A stopping criterion for iterative linearizations

Let 0 < 7yin be a user-given weight, typically close to 1. Following [21, 24], the iterative linearization solver
can be stopped whenever
Yy "y Yy Yy
i < a5+ i 4 mas)- (A.15)

Whenever (A.15) holds, the overall error is dominated by the other components than the linearization er-
ror, therefore no improvement in the approximation can be expected by when continuing iterating in the
linearization step.

A local version of (A.15) can be defined as in the previous paragraph. Given D € D}, let 0 < ¥iin,D-
Then the iterative linearization solver should be stopped whenever

n,k,i

ki ki ki
nlin,a,D S FylinwD(n:p,al,D + T]t:lm,oi,D + nguadz,a,D)7 OS {Il, t}' (A16)

A.3.3 Controlling the quadrature errors

. . ki ki .
Whenever the nonlinear source functions g, are present, the fluxes q)’}"*, q;";"" and the corresponding

estimators ngﬁig w.D? ngl;];ﬁ « p are nonzero. As above, let 0 < yquaq be a user-given weight, typically close to
1. We require
kst ki ki
Nepnad < Yanad (0™ + nt ™), (A.17)

i.e., that the error stemming from the approximation of the nonlinear source functions is controlled by the
spatial and temporal ones. Locally, given D € D}, let 0 < Yquaqa,p- Then the quadrature errors are to be
controlled by

ki kst ki
ngua(;,a,D < ’yquadvD(n:p,al,D + nzlm,ozz,D)7 a € {n7t}' (A18)
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A.3.4 Adaptive space—time mesh refinement

Once the conditions (A.13), (A.15), and (A.17) or (A.14), (A.16), and (A.18) are verified, we are left with
balancing the spatial and temporal errors. First, we require that

’k" ~ ) )‘
w1 (A.19)

In contrast to (A.13), (A.15), and (A.17), the goal here is to have 12" and ikt of comparable size instead
of getting either n:lr;lki much smaller than ngﬁk’i or vice versa. Further, a local version of (A.19) can also be
stated: for all D € D},

o onykyi
NomwD = Mg ps @ € {n,t}. (A.20)

Achieving (A.19) or (A.20) is to be done by changing the time step 7" or the spatial mesh 7;". In the
. n,k,i
latter, the goal is to ensure that all ng " p,

equally distributed in space.

a € {n,t}, D € Dy, are of comparable size, i.e., that error is

References

[1] M. AINSWORTH AND J. T. ODEN, A posteriori error estimation in finite element analysis, Pure and
Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000.

[2] G. Akrivis, C. MAKRIDAKIS, AND R. H. NOCHETTO, A posteriori error estimates for the Crank-
Nicolson method for parabolic equations, Math. Comp., 75 (2006), pp. 511-531.

[3] H. W. ALT AND S. LUCKHAUS, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983),
pp. 311-341.

[4] L. ANGERMANN, P. KNABNER, AND K. THIELE, An error estimator for a finite volume discretization
of density driven flow in porous media, Appl. Numer. Math., 26 (1998), pp. 179-191. Proceedings of
the International Centre for Mathematical Sciences Conference on Grid Adaptation in Computational
PDEs: Theory and Applications (Edinburgh, 1996).

[5] S. N. ANTONTSEV, A. V. KAZHIKHOV, AND V. N. MONAKHOV, Boundary value problems in me-
chanics of nonhomogeneous fluids, North-Holland, Amsterdam, 1990. Studies in Mathematics and Its
Applications, Vol. 22.

[6] T. ARBOGAST, The existence of weak solutions to single porosity and simple dual-porosity models of
two-phase incompressible flow, Nonlinear Anal., 19 (1992), pp. 1009-1031.

[7] J. BEAR, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972.

[8] J. BEAR AND Y. BACHMAT, Introduction to Modeling of Transport Phenomena in Porous Media, vol. 4
of Theory and Applications of Transport in Porous Media, Kluwer Academic Publishers, Dordrecht,
Holland, 1990.

[9] F. BrREzZI AND M. FORTIN, Mized and hybrid finite element methods, vol. 15 of Springer Series in
Computational Mathematics, Springer-Verlag, New York, 1991.

[10] C. CaNcES AND T. GALLOUET, On the time continuity of entropy solutions, J. Evol. Equ., 11 (2011).

[11] J. CARRILLO, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147
(1999), pp. 269-361.

[12] G. CHAVENT AND J. JAFFRE, Mathematical models and finite elements for reservoir simulation, North-
Holland, Amsterdam, 1986. Studies in Mathematics and Its Applications, Vol. 17.

[13] Y. CHEN AND W. L1u, A posteriori error estimates of mized methods for miscible displacement problems,
Internat. J. Numer. Methods Engrg., 73 (2008), pp. 331-343.

[14] Z. CHEN, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak
solution, J. Differential Equations, 171 (2001), pp. 203-232.

24



[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

24]

[25]

[26]

[27]

———, Degenerate two-phase incompressible flow. II. Reqularity, stability and stabilization, J. Differential
Equations, 186 (2002), pp. 345-376.

Z. CHEN AND R. E. EWING, Degenerate two-phase incompressible flow. III. Sharp error estimates,
Numer. Math., 90 (2001), pp. 215-240.

——, Degenerate two-phase incompressible flow. IV. Local refinement and domain decomposition, J.
Sci. Comput., 18 (2003), pp. 329-360.

Z. CHEN AND G. J1, Sharp L' a posteriori error analysis for nonlinear convection-diffusion problems,

Math. Comp., 75 (2006), pp. 43-71.

J. DE FrRUTOS, B. GARCIA-ARCHILLA, AND J. NovO, A posteriori error estimates for fully discrete
nonlinear parabolic problems, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 3462-3474.

D. A. D1 PIETRO, M. VOHRALIK, AND C. WIDMER, An a posteriori error estimator for a finite volume
discretization of the two-phase flow, in Finite Volumes for Complex Applications VI, J. Fott, J. Fiirst,
J. Halama, R. Herbin, and F. Hubert, eds., Berlin, Heidelberg, 2011, Springer-Verlag, pp. 341-349.

L. EL ArLaoul, A. ERN, AND M. VOHRALIK, Guaranteed and robust a posteriori error estimates and
balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods
Appl. Mech. Engrg., 200 (2011), pp. 597-613.

K. ERrRIKSSON AND C. JOHNSON, Adaptive finite element methods for parabolic problems. IV. Nonlinear
problems, STAM J. Numer. Anal., 32 (1995), pp. 1729-1749.

A. ERN AND M. VOHRALIK, A posteriori error estimation based on potential and flux reconstruction
for the heat equation, STAM J. Numer. Anal., 48 (2010), pp. 198-223.

—, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs.
In preparation, 2011.

R. EYMARD AND T. GALLOUET, Convergence d’un schéma de type éléments finis—volumes finis pour
un systéme formé d’une équation elliptique et d’une équation hyperbolique, RATRO Modél. Math. Anal.
Numér., 27 (1993), pp. 843-861.

R. EYMARD, T. GALLOUET, AND R. HERBIN, Finite volume methods, in Handbook of Numerical
Analysis, Vol. VII, North-Holland, Amsterdam, 2000, pp. 713-1020.

R. EymMARD, R. HERBIN, AND A. MICHEL, Mathematical study of a petroleum-engineering scheme,
M2AN Math. Model. Numer. Anal., 37 (2003), pp. 937-972.

L. GALLIMARD, P. LADEVEZE, AND J. P. PELLE, Error estimation and time-space parameters opti-
mization for FEM non-linear computation, Computers & Structures, 64 (1997), pp. 145-156.

R. HUBER AND R. HELMIG, Node-centered finite volume discretizations for the numerical simulation of
multiphase flow in heterogeneous porous media, Comput. Geosci., 4 (2000), pp. 141-164.

W. JAGER AND J. KACUR, Solution of doubly nonlinear and degenerate parabolic problems by relaxation
schemes, RAIRO Modél. Math. Anal. Numér., 29 (1995), pp. 605-627.

P. JIRANEK, Z. STRAKOS, AND M. VOHRALIK, A posteriori error estimates including algebraic error
and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32 (2010), pp. 1567-1590.

D. KRONER AND S. LUCKHAUS, Flow of oil and water in a porous medium, J. Differential Equations,
55 (1984), pp. 276-288.

S. N. KRUZKOV, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.),
81 (123) (1970), pp. 228-255.

A. MICHEL, A finite volume scheme for two-phase immiscible flow in porous media, SIAM J. Numer.
Anal.; 41 (2003), pp. 1301-1317.

25



[35] P. NEITTAANMAKI AND S. REPIN, Reliable methods for computer simulation, vol. 33 of Studies in Math-
ematics and its Applications, Elsevier Science B.V., Amsterdam, 2004. Error control and a posteriori
estimates.

[36] R. H. NOCHETTO, G. SAVARE, AND C. VERDI, A posteriori error estimates for variable time-step
discretizations of nonlinear evolution equations, Comm. Pure Appl. Math., 53 (2000), pp. 525-589.

[37] R. H. NocHETTO AND C. VERDI, Approzimation of degenerate parabolic problems using numerical
integration, STAM J. Numer. Anal., 25 (1988), pp. 784-814.

[38] M. OHLBERGER, A posteriori error estimate for finite volume approzimations to singularly perturbed
nonlinear convection—diffusion equations, Numer. Math., 87 (2001), pp. 737-761.

[39] ——, A posteriori error estimates for vertex centered finite volume approzimations of convection—
diffusion—reaction equations, M2AN Math. Model. Numer. Anal., 35 (2001), pp. 355-387.

[40] F. OTTO, L'-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equa-
tions, 131 (1996), pp. 20-38.

[41] 1. S. PoP, Error estimates for a time discretization method for the Richards’ equation, Comput. Geosci.,
6 (2002), pp. 141-160.

[42] 1. S. Pop, F. RADU, AND P. KNABNER, Mixzed finite elements for the Richards’ equation: linearization
procedure, J. Comput. Appl. Math., 168 (2004), pp. 365-373.

[43] W. PRAGER AND J. L. SYNGE, Approximations in elasticity based on the concept of function space,
Quart. Appl. Math., 5 (1947), pp. 241-269.

[44] F. A. Rapu, 1. S. Popr, AND P. KNABNER, Newton-type methods for the mized finite element dis-
cretization of some degenerate parabolic equations, in Numerical mathematics and advanced applications,
Springer, Berlin, 2006, pp. 1192-1200.

[45) ——, Error estimates for a mized finite element discretization of some degenerate parabolic equations,
Numer. Math., 109 (2008), pp. 285-311.

[46] S. I. REPIN, A posteriori estimates for partial differential equations, vol. 4 of Radon Series on Compu-
tational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.

[47] J. E. ROBERTS AND J.-M. THOMAS, Mized and hybrid methods, in Handbook of Numerical Analysis,
Vol. 11, North-Holland, Amsterdam, 1991, pp. 523-639.

[48] R. VERFURTH, A review of a posteriori error estimation and adaptive mesh-refinement techniques,
Teubner-Wiley, Stuttgart, 1996.

[49] R. VERFURTH, A posteriori error estimates for nonlinear problems: L™(0,T; W1 (Q))-error estimates

for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations,
14 (1998), pp. 487-518.

[50] M. VOHRALIK, Guaranteed and fully robust a posteriori error estimates for conforming discretizations
of diffusion problems with discontinuous coefficients, J. Sci. Comput., 46 (2011), pp. 397-438.

[61] M. VOHRALIK AND M. F. WHEELER, A posteriori error estimates, stopping criteria, and adaptivity for
two-phase flows. In preparation, 2011.

26



PREVIOUS PUBLICATIONS IN THIS SERIES:

Number | Author(s) | Title | Month
I1-42 C. Mercuri Global compactness fora | July ‘11
M. Squassina class of quasi-linear
problems
11-43 M.V. Shenoy A mathematical model for | Sept. ‘11
R.M.M. Mattheij polymer lens shrinkage
A.AF.vd. Ven
E. Wolterink
11-44 P.I. Rosen Esquivel Wall shape optimization Sept. ‘11
J.H.M. ten Thije for a thermosyphon loop
Boonkkamp featuring corrugated pipes
J.A.M. Dam
R.M.M. Mattheij
I1-45 J. de Graaf A complex-like calculus for | Sept. ‘11
spherical vectorfields
11-46 C. Cances An a posterior error Sept. ‘11
I.S. Pop estimate for vertex-

M. Vohralik

centered finite volume
discretizations of
immiscible incompressible
two-phase flow

Ontwerp: de Tantes,
Tobias Baanders, CWI




	rana11-46.pdf
	Introduction
	The immiscible, incompressible two-phase flow in porous media
	The governing equations
	A mathematical formulation

	The a posteriori error estimate
	Time mesh and some additional notations and assumptions
	Reconstructions of the phase fluxes
	The estimators
	The a posteriori error estimate

	An application to two types of vertex-centered finite volume discretizations
	The spatial meshes and the discrete functional spaces
	A ``mathematical'' scheme
	The scheme
	The reconstruction of the fluxes

	A phase-by-phase upstream weighting ``engineering'' scheme
	The scheme
	The reconstruction of the fluxes


	Proof of the a posteriori error estimate
	Definition of the residuals
	Bounding the error by the dual norm of the residuals
	Bounding the dual norm of the residuals by the a posteriori estimate

	Distinguishing the error components and stopping criteria
	Numerical quadrature, linearization, and algebraic solver
	Numerical quadrature
	Linearization
	Algebraic solver

	Distinguishing the error components
	Reconstruction of the fluxes
	Distinguishing the error components

	Stopping criteria and adaptivity
	A stopping criterion for iterative algebraic solvers
	A stopping criterion for iterative linearizations
	Controlling the quadrature errors
	Adaptive space–time mesh refinement




