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Abstract. We present a new approach to the statistical study and modelling of number counts of faint point sources in astro-
nomical images, i.e. counts of sources whose flux falls below the detection limit of a survey. The approach is based on the
theory of α-stable distributions. We show that the non-Gaussian distribution of the intensity fluctuations produced by a generic
point source population – whose number counts follow a simple power law – belongs to the α-stable family of distributions.
Even if source counts do not follow a simple power law, we show that the α-stable model is still useful in many astrophysical
scenarios. With the α-stable model it is possible to totally describe the non-Gaussian distribution with a few parameters which
are closely related to the parameters describing the source counts, instead of an infinite number of moments. Using statisti-
cal tools available in the signal processing literature, we show how to estimate these parameters in an easy and fast way. We
demonstrate that the model proves valid when applied to realistic point source number counts at microwave frequencies. In the
case of point extragalactic sources observed at CMB frecuencies, our technique is able to successfully fit the P(D) distribution
of deflections and to precisely determine the main parameters which describe the number counts. In the case of the Planck
mission, the relative errors on these parameters are small either at low and at high frequencies. We provide a way to deal with
the presence of Gaussian noise in the data using the empirical characteristic function of the P(D). The formalism and methods
here presented can be very useful also for experiments in other frequency ranges, e.g. X-ray or radio Astronomy.
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1. Introduction

The study of intensity (or temperature) fluctuations in the
Cosmic Microwave Background (CMB) radiation has be-
come one of the milestones of modern cosmology due to
two main reasons. On the one hand, the angular power
spectrum of the fluctuations allow us to place tight con-
straints on the fundamental cosmological parameters (see, e.g.,
Bennett et al. 2003a). For a recent review on the study of
CMB anisotropies, see Hu & Dodelson (2002). On the other
hand, the study of the different physical sources (foregrounds)
that contribute to the incoming radiation at microwave wave-
lengths has a great scientific relevance in itself (De Zotti
et al. 1999). Therefore, a great deal of effort has been devoted to
the task of separating the different components that are present
in CMB maps. In general, component separation techniques
take advantage of the statistical behaviours of each component
to distinguish among them. Hence, it is important to have good
statistical models for each of the components under study.

Among the different foregrounds that appear in CMB ob-
servations, extragalactic point sources (EPS), i.e. individual
galaxies whose typical angular size is much smaller than the

observing beam width (hence the name “point sources”) are
especially difficult to deal with. The galaxies that contribute
to the observed total signal are very diverse, corresponding to
objects at different redshifts and with different physical prop-
erties. This makes it impossible to establish a single spectral
behaviour for all of them, thus hampering the performance
of methods that use multi-frequency observations to achieve
an efficient component separation. The spatial distribution of
faint EPS is roughly uniform across the sky even in presence
of source clustering. Therefore, Galactic cuts useful to avoid
Galactic foregrounds such as synchrotron, dust and free-free
emission, are not applicable to avoid EPS contamination.

EPS contamination occurs when a set of point-like sources
with intensities distributed following a general law, usually
modelled as a power law, is observed by a detector using a
given instrumental response. The final signal is a mixing in
which the brightest sources are still individually detectable over
a “confusion noise” generated by the contributions of faint, un-
resolved sources; this situation is very common in astronomi-
cal images and it has been studied first at radio and X-ray fre-
quencies. The intensity (or temperature) distribution given by
unresolved sources is strongly non-Gaussian and shows long
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positive tails. This kind of behaviour is known in the signal
processing literature as “impulsive noise”.

The effect of the confusion noise is two fold: on one hand
the mean value of this noise is positive, producing a “source
monopole” (integrated extragalactic background) that has to be
summed up to the other components and, on the other hand, it
gives rise to small scale intensity fluctuations. At microwave
frequencies, the fluctuations generated by undetected sources
can severely hamper the detection of true CMB anisotropies
(Franceschini et al. 1989). Recently, Toffolatti et al. (1998;
hereafter T98) presented a detailed analysis of the effect of
point sources on CMB anisotropy maps. By exploiting a
cosmological evolution model for radio and far-IR selected
sources, they made precise predictions on source counts, on
confusion noise and on the angular power spectrum due to un-
detected sources. In particular, they showed that the contribu-
tion of EPS will be very relevant at the lower and higher fre-
quency channels of the future ES Planck mission (Mandolesi
et al. 1998; Puget et al. 1998). As for radio source counts, the
predictions of T98 have been confirmed by the first year data of
the NASA Wilkinson Microwave Anisotropy Probe (WMAP)
mission (Bennett et al. 2003b), al least up to frequencies of
∼30–40 GHz. The WMAP all sky catalogue of bright extra-
galactic sources (Bennett et al. 2003b) consists of 208 objects
with fluxes S > 0.9÷1 Jy on a sky area of 10.38 sr (|bII| > 10◦)
whereas the T98 model predicts 270–280 sources at 30 GHz in
the same area with an average offset of ∼0.75 between observed
and predicted number of extragalactic sources. Moreover, the
distribution of energy spectral indexes (i.e. a, S ∝ ν−a) of
sources in the WMAP sample peaks around a = 0.0, which is
exactly the mean value of the energy spectral index adopted in
T98 for “flat”–spectrum sources, i.e. the dominant source pop-
ulation at these frequencies (the fraction of “steep”–spectrum
sources being ∼10 ÷ 15%). It is also noticeable that the bright-
est source detected by WMAP has a flux density of S � 25 Jy
which, again, corresponds to the flux value for which the
T98 model predicts 1 source all over the sky. Another impor-
tant result confirming the estimates of the T98 cosmological
evolution model is that a good agreement is currently found be-
tween predictions based on that model and data on the excess
angular power spectrum at small angular scales as well as on
the angular bispectrum detected in the WMAP Q and V bands
(Komatsu et al. 2003, Argüeso et al. 2003). Two other indepen-
dent samples of extragalactic sources at 31 and 34 GHz – from
CBI (Mason et al. 2003) and VSA (Taylor et al. 2003) exper-
iments, respectively – show that the T98 model correctly pre-
dicts number counts down to, at least, S � 10 mJy. Therefore,
we can confidently use the T98 model for simulating Poisson
distributed EPS in CMB sky maps, at least up to 50–100 GHz.
At higher frequencies, more recent models can give a better
fit to current data on source counts (see Sect. 5.1.2). As the
outcomes of the methods to be presented here are model inde-
pendent, we still use the T98 model throughout the paper.

The current low sensitivity of detectors at CMB frequen-
cies makes it impossible to test directly model counts down to
fainter fluxes. On the other hand, more information on counts
of faint sources, i.e. sources with fluxes fainter than the de-
tection threshold of a given experiment, can be extracted by

the analysis of the intensity fluctuations of point sources. The
probability density function pdf of fluctuations due to unde-
tected point sources, as a first step to the modelling of the
confusion noise, has been studied since the middle of the last
century (Scheuer 1957, 1974; Condon 1974; Hewish 1961).
These works have shown that it is possible to find analytical ex-
pressions for the characteristic function of the pdf (in Fourier
space), but not for the pdf in the real space. This fact has ham-
pered the development of specific statistical tools to deal with
the EPS confusion noise.

In analysing a sky map there are two traditional ways of de-
termining the main statistical properties of a given source popu-
lation. One possibility is to detect the brightest point sources in
a given data set, e.g. using a linear filter to detect them, and then
obtain parameters such as the number counts, their slope, etc.
For example, Vielva et al. (2003) detect point sources in realis-
tic Planck simulations using a Mexican Hat Wavelet technique
and compare the number of detections with the input number
counts, which correspond to the T98 model. The other possi-
bility is to directly study the pdf of the confusion noise which,
in general, is mixed with the signal coming from CMB and
the other foregrounds plus instrumental noise. This is generally
performed using statistical indicators such as the moments up
to a certain degree (see, e.g., Rubiño-Martín & Sunyaev 2003;
Pierpaoli 2003) or the non-Gaussianity of the wings. A com-
putationally more complex way is to calculate numerically the
theoretical pdf assuming some model for source counts and try-
ing to fit it to the data (Condon & Dressel 1978; Franceschini
et al. 1989). Anyway, the lack of an analytical form for the
pdf makes difficult to establish the optimal estimator of its pa-
rameters. In particular, it is not clear how many moments are
necessary to characterise the pdf (in principle, infinite of them)
or which ones are more appropriate for extracting information
(it is generally assumed, on the basis of mere intuition, that the
third order moment should be one of them).

In this paper we will focus on the application of a novel
formalism, the α-stable distributions, to model the pdf of
the intensity fluctuations due to point extragalactic sources.
α-stable distributions are known to be very efficient in mod-
elling impulsive noise. They have a number of interesting math-
ematical properties that make them very attractive; in partic-
ular, it is possible to show that the Gaussian distribution is
a special case of the more general class of α-stable distribu-
tions and that α-stable distributions satisfy a generalised form
of the central limit theorem. Moreover, in this work we show
that the pdf of a theoretical power law representing the number
counts of extragalactic sources observed with a filled-aperture
instrument must follow exactly an α-stable distribution1. The
great advantage is that α-stable distributions are completely de-
scribed by a small number of parameters, what makes them

1 The same analysis can also be applied to images obtained by inter-
ferometry techniques (insensitive to the zero level). In this case, the re-
sulting pdf shows the same shape as for filled-aperture images but it is
centred at 0. If filled-aperture measurements are currently performed
by means of dual-beam scans, subtracting one signal form the other,
filled-aperture and interferometry techniques yield similar pdf s (see,
e.g., De Zotti et al. 1996).
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relatively easy to deal with. Optimal techniques already exis-
tent in the signal processing literature are easy to adapt to di-
rectly extract the main parameters of the source number counts
(namely, the slope of the number counts power law and its
normalisation) without having to resort to clumsy statistics.
Finally, the methods can be generalised for dealing with mix-
tures of signals, as is the case when the EPS population is added
to Gaussian instrumental noise.

Therefore, this work aims at four objectives: first, we will
demonstrate that a generic extragalactic point source popula-
tion whose number counts follow a power law inevitably leads,
when observed with a filled-aperture instrument, to a pdf which
belongs to the family of α-stable distributions. Then, we will
devote some time to introduce the α-stable distributions to the
community, reviewing their main properties and giving the nec-
essary references for further reading. In a third part of this pa-
per we will discuss how α-stable distributions can be used to
model and study more realistic cases, such as the truncated
power law, and we will show that the model is a good ap-
proximation for most cases of astronomical interest. Finally,
we will discuss the case in which other astronomical or instru-
mental signals – such as the Cosmic Microwave Background
(CMB) radiation or instrumental noise – are mixed with the
point sources. In that case, a method will be suggested that is
able to obtain the parameters of the point source deflection dis-
tribution even in presence of “contamination”.

The structure of this paper is as follows: in Sect. 2 we re-
view the basics of the derivation of the characteristic function
of the deflection distribution. In Sect. 3 the α-stable distribu-
tions and their main properties are introduced. Section 4 deals
with the extraction of the physical parameters of the EPS pop-
ulation using the α-stable formalism. In Sect. 5 we study the
application of the formalism to more realistic source models,
using as an example the T98 point source model. Parameter
estimation of α-stable processes mixed with Gaussian noise
is considered in Sect. 6. A few considerations about the im-
plementation of these techniques for the future Planck mis-
sion are given in Sect. 7. Finally, in Sect. 8 we summarise our
conclusions.

2. Source counts and the deflection probability
function P(D)

Let us consider a population of EPS whose differential number
counts can be described in a power law form:

n(S ) = kS −η, S > 0, (1)

where η is the slope of the differential counts power law, k is
called its normalisation and S is the intrinsic flux. The sources
are assumed to be distributed uniformly across the sky and, at
the moment, we will assume that Eq. (1) holds for all S > 0.
The sources are now observed with an instrument whose angu-
lar response is f (θ, φ), not necessarily normalised to unity at the
peak. Then, the mean number of sources responses of intensity
x = f (θ, φ)S in the beam at any time is

R(x) =
∫

n

[
x

f (θ, φ)

]
dΩ

f (θ, φ)
· (2)

Substituting Eq. (1) into Eq. (2) we have that

R(x) = kΩex−η, (3)

where

Ωe =

∫ [
f (θ, φ)

]η−1 dΩ (4)

is a geometrical factor called effective beam solid angle. Let
us now define the deflection D as the fluctuation field that is
observed, that is D = I − 〈I〉, where I is the intensity at a given
point (time) and 〈I〉 is its average value, i.e. 〈I〉 represents the
extragalactic background due to undetected EPS. Let us define
the characteristic function of a given function g(x) as

G(w) =
∫ ∞

−∞
g(x) e−iwxdx. (5)

Scheuer (1957) showed that the characteristic function of the
probability distribution P(D) is related to the characteristic
function of R(x) through

ψ(w) = exp [r(w) − r(0)] , (6)

where ψ(w) and r(w) are the characteristic functions of P(D)
and R(x), respectively.

Using Eqs. (3), (5) and (6) it is possible to calculate the
characteristic function ψ(w). This calculation has been per-
formed by several authors, including Scheuer (1957), Condon
(1974), Barcons (1992) and Franceschini et al. (1989). After
some effort we obtain

ψ(w) = exp
{
iµw − γ |w|α

[
1 + iβsgn(w) tan

(
απ

2

)]}
, (7)

where the parameters α, β, γ and µ relate to the physical pa-
rameters of the EPS and of the detector through

α = η − 1, (8)

β =
1
π
Γ

(
1 + α

2

)
Γ

(
1 − α

2

)
cos

(
απ

2

)
= 1, (9)

γ =
π3/2kΩe

2α+1Γ
(
α+1

2

)
Γ
(
α+2

2

)
sin

(
απ
2

) , (10)

µ =
kΩe

1 − α lim
a→0+

a1−α. (11)

The terms in Eq. (7) have been arranged in this way for a
reason that will be clear in the following. The second equal-
ity in Eq. (9) is due to the properties of the gamma func-
tion (Abramowitz 1971), and as far has we know it hasn’t
been noticed before now. The previous equations are valid for
1 < η < 3. For η > 2 the parameter µ is not finite, a situation
equivalent to the classic Olbers’ paradox in which the observed
integrated flux density is infinite in all directions of the sky.

Equation (7) has an important drawback: to obtain the
pdf of the deflections, P(D), it is necessary to make the inverse
Fourier transform of ψ(w) which, in general, cannot be eval-
uated analytically. Although it can be performed numerically,
the computational cost can be high if many different realisa-
tions are needed for a particular task, and numerical integration
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does not lead to closed form solutions. Instead of doing that, let
us see what can be learnt from the characteristic function itself.
As we will see in the next section, Eq. (7) corresponds exactly
to the actual definition of a family of distributions that is known
in the statistical signal processing literature as α-stable distri-
butions.

3. A short introduction to α-stable distributions

In this section we will make a summary introduction to the
α-stable distributions, in order to clarify some concepts that
will be used later. Starting from the particular case of the EPS
P(D) characteristic function in Eq. (7), that we will see that
belongs to the α-stable family, we will proceed to a more gen-
eral description of α-stable phenomena that could be useful for
astronomers.

The characteristic function in Eq. (7) corresponds to a
pdf that in general should be calculated numerically and that
exhibits heavier tails than a Gaussian distribution. In Fig. 1 the
pdf corresponding to Eq. (7) with β = 1, γ = 1 and three dif-
ferent values of α (1.1, 1.5 and 1.9) are shown. The presence of
heavy tails mean that “glitches” are more likely to occur than
in the Gaussian case. In the signal processing literature, proba-
bility density functions with tails heavier than the Gaussian are
called to be impulsive. A process is impulsive if it takes large
values that significantly deviates from the mean value with non-
negligible probability. These large values often appear as con-
spicuous outlayers. Impulsive processes are ubiquitous in many
“real-world” problems, from atmospheric noise caused by elec-
tric discharges to financial time series data. For more informa-
tion on impulsive noise, see Kuruoğlu (1998). A great deal of
effort has been done to model impulsive processes; is in that
context that the α-stable distributions have experienced popu-
larity. Other models that deal with impulsive processes, such
as the Middleton’s (Middleton 1977), Cauchy and Student-T
models, are very case specific while the α-stable model is gen-
eral and has a strong theoretical justification.

Although α-stable distributions were known from the be-
ginnings of XXth century (Lévy 1925), it was not until the
work of Shao & Nikias (1993) that they received more inter-
est in the signal processing literature. The α-stable distribution
is a generalisation of the Gaussian distribution that furnishes
tractable examples of impulsive behaviour and allows us to de-
scribe such behaviour by means of a small number of param-
eters. The α-stable distributions are usually defined by their
characteristic function:

ψ(w) = exp
{
iµw − γ |w|α Bw,α

}
, (12)

Bw,α =


[
1 + iβsgn(w) tan

(
απ
2

)]
if α � 1[

1 + iβsgn(w) 2
π

log |w|
]

if α = 1
(13)

where −∞ < µ < ∞, γ > 0, 0 < α ≤ 2 and −1 ≤ β ≤ 1. The
four parameters µ, α, β and γ uniquely and completely deter-
mine the stable distribution. The meanings of these parameters
are:

1. the parameter α is called the characteristic exponent
and sets the degree of impulsiveness of the distribution.
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10
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x

p(
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α=1.1
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Fig. 1. Probability density functions corresponding to three different
α-stable models. The parameters of the α-stable are β = 1, γ = 1 and
α = 1.1 (solid line), 1.5 (dotted line) and 1.9 (dot-dashed line). For an
easier comparison among them, the µ parameter of each distribution
has been set so that the maximum of all the pdf s coincide at the arbi-
trary value x = 50. The pdf becomes more impulsive (departs more
from the Gaussian case) as α decreases.

For α = 2 the distribution corresponds to the Gaussian dis-
tribution and, as α decreases the distribution gets more and
more impulsive. Another particular case is when α = 1
and β = 0, that corresponds to the Cauchy distribution.
For α � (0, 2] the inverse Fourier transform of ψ(w) is not
positive-definite and hence is not a proper probability den-
sity function;

2. the parameter β is called symmetry parameter and deter-
mines the skewness of the distribution. Totally symmetric
distributions have β = 0, whereas β = ±1 corresponds to
totally skewed distributions;

3. the parameter γ is called scale parameter. It is a measure
of the spread of the samples from a distribution around the
mean. When α = 2 we get the Gaussian case and then γ =
σ2

G/2, where σG is the dispersion of the Gaussian;
4. the parameter µ is called location parameter and basically

corresponds to a shift in the x-axis of the pdf. For a sym-
metric (β = 0) distribution, µ is the mean when 1 < α ≤ 2
and the median when 0 < α ≤ 1.

As it can be seen, the first case in Eqs. (12) and (13), α �
1, has exactly the same expression as Eq. (7). For simplicity,
through this paper we are not going to consider the case α =
1, as it corresponds to a single point (of zero measure) in the
interval (0, 2].

Going back to the expressions in Sect. 2, we see that Eq. (7)
held when 1 < η < 3, that is, when 0 < α < 2. As k and Ωe

are positive in Eq. (10) and 0 < α < 2 we have that γ > 0. By
Eq. (9) we know that β = 1. Therefore, Eq. (7) is exactly the
characteristic function of an α-stable distribution with maxi-
mum positive skew.

The fact that a population of point sources that are dis-
tributed in intensity following a power law and that are
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observed with a pencil-beam instrument produce an
α-stable distribution of deflections is very convenient.
The α-stable representation offers several advantages:

1. Simplicity: a non-Gaussian distribution that follows
Eq. (13) can be completely described by only four parame-
ters, instead of an infinite number of moments.

2. Mathematical justification: α-stable distributions include
as a particular case the Gaussian distribution, and share
with it many desirable properties. First, they satisfy the
generalised central limit theorem which states that the
limit distribution on infinitely many i.i.d. random variables,
possibly with infinite variance distribution, is a stable distri-
bution (Feller 1966). Therefore, the use of α-stable distribu-
tions is strongly justified from the theoretical point of view,
as they are able to describe a wider range of data which
might not satisfy the classical central limit theorem. In sec-
ond place, α-stable distributions have the stability property:
the output of a linear system in response to α-stable inputs
is againα-stable and various aspects of linear system theory
developed for Gaussian signals extend directly to the case
of signals with α-stable distribution. For more information
on the mathematical foundation of stable distributions, see
Samorodnitsky & Taqqu (1994) and references therein.

3. Ubiquity: α-stable can be shown to be the limit distribu-
tion of natural noise processes under realistic assumptions
pertaining to their generation mechanism and propagation
conditions (Nikias & Shao 1995). They agree with empir-
ical data extremely well in so different situations as noise
in telephone lines, atmospheric noise, radio networks, radar
systems, financial time series, etc. Even in cases in which
there is not a strong theoretical or physical evidence that
an expression such as Eq. (13) holds, α-stable represen-
tation still provides a good modelling of many processes.
For example, later in this work we will show that the
α-stable model works well even when the source counts do
not follow a pure power law, or when the power law is cut
at a certain flux limits.

There is another advantage in the α-stable formulation: they
have been thoroughly studied in the literature, and their prop-
erties are well understood. Until recently the α-stable distribu-
tions were generally avoided for two main reasons: first, the
probability distribution has not a closed form in real space
(except for the particular cases of the Gaussian, Cauchy and
Pearson distributions). This greatly hamper the development
of statistical signal processing techniques such as maximum-
likelihood and Bayesian estimates. The second one is that
the non-Gaussian α-stable distributions have infinite variance
(and, in some cases, as we have seen in the case of EPS and
η > 2, a µ parameter which is not finite), and it was considered
that α-stabledistributions cannot be physical. But the same ob-
jection applies to a very well-known process, the white noise,
but it is however universally used in all fields of science and
engineering. The variance of the theoretical white noise is not
finite, but this doesn’t stop scientists to use it as an accurate
and useful model for real, finite processes. In the same way,
α-stable distributions have been shown to provide excellent fit
to a very wide class of processes observed both in the natural

world as well as many artificial systems. In the last few years a
great deal of effort has been carried out in the signal processing
field to overcome the two drawbacks above mentioned. Now
there is a plethora of available methods to perform statistical
inference on α-stable environments. In this work we will focus
on the application of existent techniques for α-stable parameter
extraction in order to obtain optimal estimators of the param-
eters describing the differential counts of the EPS population,
namely the slope η and the normalisation k.

4. Point source parameter extraction using
α-stable distributions

After the general discussion of α-stable distributions presented
in the last section, let us now return to the particular case of the
P(D) and its α-stable distribution posed by Eqs. (7) to (11).

According to Eqs. (8) to (11), the usual parameters describ-
ing the differential counts of the EPS population are directly
related with the parameters of the α-stable distribution of ob-
served deflections. In particular, using Eqs. (8) and (10) we
have that

η = α + 1, (14)

k = γ
2α+1Γ

(
α+1

2

)
Γ
(
α+2

2

)
sin

(
απ
2

)
π3/2Ωe

· (15)

Therefore, it suffices to estimate the parameters α and γ to di-
rectly estimate η and k. Over the past years a number of ef-
ficient estimators for the parameters of α-stable distributions
have been developed. Unfortunately, most of them consider
only the estimate in the case of symmetric α-stable distribu-
tions (β = 0), due to the fact that is the most common case in
many signal processing applications. On the other hand, very
recently Kuruoğlu (2001) introduced a number of density pa-
rameter estimators for skewed α-stable distributions. The sim-
plest estimators are based on the following idea: let us consider
an α-stable distribution with parameters α, β, γ and µ, and de-
note it by S α(β, γ, µ). If Xi, i = 1, . . . ,N is the sequence of
data, it is easy to show that very simple manipulations of the
data can be performed in order to produce centred, deskewed
or symmetrised sequences, respectively:

XC
k = X3k + X3k+1 − 2X3k−2

∼ S α

([
2 − 2α

2 + 2α

]
β,

[
2 + 2α

]
γ, 0

)
(16)

XD
k = X3k + X3k+1 − 21/αX3k−2

∼ S α

(
0, 4γ,

[
2 − 21/α

]
µ
)

(17)

XS
k = X2k − X2k−1

∼ S α(0, 2γ, 0). (18)

In the previous equations, the symbol ∼ means equality in dis-
tribution and therefore they must be regarded as exact equa-
tions, not approximations. The only caveat is that they work
only if the samples Xnk, Xnk−1, etc are independent random vari-
ables. Due to the correlations introduced by the beam at small
scales, this is not true if the samples that appear in each indi-
vidual summation are neighbours. Fortunately, at scales larger
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than a few arcmin, where the effect of the beam is negligible,
statistical independence is satisfied. To ensure the validity of
Eqs. (16) to (18) it is enough to randomly shuffle the data before
operating. Since in this paper we do only a first order statistical
modelling – we deal with the ensemble of data rather than a
time or space series – this has no other effect on the methods
we present here apart from guaranteeing the good behaviour of
the previous equations.

Once the distribution is conveniently centred, deskewed or
symmetrised, the techniques for symmetric α-stable parame-
ter estimate can be applied. Kuruoğlu (2001) describes several
groups of techniques adequate for such task: fractional lower
order moment (FLOM) methods, logarithmic moment methods
and extreme value methods. Other useful methods are based on
the study of the empirical characteristic function of the data.
Kuruoğlu (2001) studied the comparison between the different
techniques and showed that both FLOM and logarithmic meth-
ods are very efficient in general. In this work we are going to
use the logarithmic method, as it is easier to implement.

4.1. Logarithmic moments estimators

Let X be a set of data distributed following an α-stable ∼
S α(β, γ, 0). Let us define the logarithmic moments of the dis-
tribution

L1 = E
[
log |X|] , (19)

L2 = E
[(

log |X| − E
[
log |X|])2

]
, (20)

where E is the usual estimator operator. It can be shown
(Kuruoğlu 2001) that

L1 = ψ0

(
1 − 1

α

)
+

1
α

log
∣∣∣∣∣ γ

cos θ

∣∣∣∣∣ , (21)

L2 = ψ1

(
1
2
+

1
α2

)
− θ2

α2
, (22)

where ψk are the values of the polygamma function

ψk−1 =
dk

dxk
logΓ(x)

∣∣∣∣∣∣
x=1

, (23)

that takes values ψ0 = −0.57721566 . . ., ψ1 = π2/6, ψ2 =

1.2020569 . . ., etc., and θ is a dummy parameter

θ = arctan
(
β tan

(
απ

2

))
· (24)

This leads to the following estimators.

4.1.1. Logarithmic estimator for α

Apply centro-symmetrisation as given by Eq. (18) to the ob-
served data to obtain transformed data. Estimate L2 and then

α =

(
L2

ψ1
− 1

2

)−1/2

· (25)

4.1.2. Logarithmic estimator for β

Once α has been estimated, obtain a distribution with µ = 0
(for example centring as in Eq. (16)), estimate L2 and then

|θ| =
([
ψ1

2
− L2

]
α2 + ψ1

)1/2

. (26)

Then, estimate |β| using Eq. (24). If centring was applied, it is
necessary to transform the resulting β by multiplying by (2 +
2α)/(2 − 2α).

According to Eq. (9) for the particular case we consider in
this work, β = 1. We provided here the expressions for the
estimation of |θ| and β for the general case, but in the following
we will make use of our knowledge of the true value of β, fixing
it to its theoretical value β = 1 instead of trying to determine it.

4.1.3. Logarithmic estimator for γ

Assume again that µ = 0 (or make it centring the distribution
as in the previous case), estimate L1 and hence

γ = cos(θ) exp
([

L1 − ψ0
]
α + ψ0

)
. (27)

Take into account that if centring was applied, γ should be cor-
rected by multiplying by 1/(2 + 2α).

The estimate of the location parameter µ is a tricky issue.
Although there are some proposed methods, they usually show
problems of convergence and applicability. Fortunately, the de-
termination of µ is not necessary for estimating the parameters
η and k and therefore we will obviate this issue.

Provided with the estimators (25)–(27) we are in position
of determining the parameters η and k.

4.2. Point source parameter extraction from non-ideal
power law number counts

In the previous sections we have showed that an extragalactic
point source population whose number counts follow an ideal
power law leads to an α-stable P(D) distribution. However, a
pure power law like the one in Eq. (1) is an idealisation with
no physical meaning. On one hand, Eq. (1) diverges when S
goes to 0 and, on the other hand, the power law extends to in-
finite fluxes, which is not physically realisable. From the point
of view of astronomy, it is not possible to find galaxies of arbi-
trarily high flux and, if we are willing to avoid Olber’s paradox,
a minimum flux has to be imposed as well (at least as long as
η > 2).

In a real observation there must be a minimum and a maxi-
mum flux S min and S max, respectively. This leads to a truncated
power law

n(S ) =


0 if S < S min

kS −η if S min ≤ S ≤ S max

0 if S > S max.
(28)

From the point of view of modelling point sources in a given
sky map, if the area of the map and the number of sources
(galaxies) are finite, the maximum flux S max can be safely con-
sidered as infinite, being the probability of finding an extraor-
dinarily bright source negligible.
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An analogous situation can be found in the example of
white noise. The theoretical white noise power spectrum is flat
in all the range from 0 to ∞, whereas in reality it is not possi-
ble to find such a process, but something similar with certain
cuts that depends on several factors such as the data size, sam-
pling, etc. Nevertheless, white noise is a very good model for
instrumental noise and many other very well known examples.
In a similar way, we expect that the α-stable model will be a
good one to describe the P(D) distribution originated from a
truncated power law like in Eq. (28), at least for sufficiently
“well-behaved” cases.

Intuition supports the choice of α-stable distributions as a
fair approximation to the true P(D). When observing a finite
sample of a theoretically infinite process, if the sample is big
enough and the process is sufficiently well-behaved, we expect
the general model to be an adequate description of the sam-
ple. Observing a finite number of galaxies implies a cut like
in Eq. (28), that is, that we do not observe infinitely bright
nor infinitely faint galaxies. In any case, the basic shape of
the P(D) distribution, an asymmetric bell-shape with a positive
tail (i.e. the impulsive behaviour), should be preserved. The ex-
tremes of the tails will not be completely realised, but the basic
shape should be kept over a certain range, orders of magnitude
in size if the ratio S max/S min is great enough.

In order to test the validity of the α-stable approximation
as well as the performance of the logarithmic moments esti-
mators introduced in the last section, we performed exhaustive
numerical simulations, reproducing the observation of typical
truncated power law-distributed point sources detected through
a Gaussian beam in a variety of cases. We have found that the
α-stable model is a very good approximation when the non-
Gaussian tail of the distribution is allowed to be well-realised.
By “good approximation” we mean that the parameters η and
k can be estimated with errors below 5% by means of the
logarithmic estimators presented above. The goodness of the
α-stable model depends on the following factors:

1. Sample size: there must be enough data samples to permit
the non-Gaussian tail to appear and the logarithmic esti-
mators to work. The simulations show that ∼105 or more
samples are more than enough to work safely. Note that a
typical 512 × 512 pixel image satisfies this condition.

2. Flux limits: in order to clearly observe the tail of the distri-
bution, the range of fluxes of the point sources must extend
over an interval big enough. In other words, there must exist
a relatively few galaxies much brighter than the vast major-
ity of low-flux ones. A dynamic range S max/S min ≥ 104 suf-
fices to guarantee the good behaviour of the tails. This con-
dition is satisfied in CMB observations as well as in many
other observations at different wavelengths.

3. Slope of the differential counts: as the distribution becomes
more and more non-Gaussian, the tails grow and there are
necessary more and more galaxies to “map” these tails.
This means that for α values near to 2 it is very easy to get
the shape of the distribution with few points, whereas when
α decreases one needs a much higher number of points and
a wider flux dynamic range in order to realise the tails.
The results given in the two previous points are valid for

α ∈ (1, 1.5); for higher α values it is much easier to re-
alise the tails and the α-stable approximation holds even
for smaller number of data and tighter flux cuts. On the
contrary, below α = 1 the α-stable approximation is less
accurate unless the data size and the flux cuts grow accord-
ingly.

4. Beam size, pixel size and number density of sources. The
combination of the first two factors define the so-called ef-
fective resolution element of the experiment. The intuitive
idea behind the effective resolution element is that, due to
the smoothing produced by the instrumental beam and the
finite size of the pixel, the fluctuations in the images are
dumped below a certain scale that is given by the beam and
pixel sizes. If the beam is sufficiently small, the effective
resolution element corresponds to the pixel size, but if the
beam size is bigger than the pixel size (as is usual) the ef-
fective resolution element is related to the coherence scale
of the fluctuation field. For a Gaussian beam of width σb

the coherence scale is roughly equal to σb (Rice 1954), and
the area σ2

b defines the effective resolution element. In the
case of a circular Gaussian beam σb is related the the Full
Width Half Maximum (FWHM) by FWHM = 2σb

√
2 ln 2.

The α-stable approximation is shown to work optimally
when there is approximately one source per effective res-
olution element. When the number density of sources is
lower, the field is undersampled and bigger numbers of
data are needed to realise the tails of the distribution. On
the other hand, very faint galaxies, whose number den-
sity is much higher than one per effective resolution ele-
ment, do not practically generate intensity fluctuations. In
this latter case, the fluctuations are dominated by sources
whose number density is just below the limit of 1 source per
effective resolution element, i.e. the brightest undetected
ones. Hence, the method is very sensitive to objects able
to generate intensity fluctuations, that is, the source popu-
lation which dominates the number counts at fluxes such
that the number density is ∼1 per effective resolution ele-
ment or lower. Note that this limitation is not exclusive of
the α-stable model, but it is shared by every other method
that works with the P(D) distribution (Scheuer 1974). The
reason is that the level of ∼1 source per effective resolu-
tion element (in the sense of coherence scale explained be-
fore) roughly determines the rms amplitude of the distribu-
tion whereas fainter sources only add some Gaussian noise
(Franceschini et al. 1989; Barcons 1992). Moreover, it is
not possible to distinguish between one source per effective
resolution element and an infinitely large number summing
up the same total flux of an individual source.

Therefore, for α ∈ (1, 2] the α-stable is a good approxima-
tion, provided that the number of data and the flux limits of the
galaxies take reasonable values that are easily satisfied in usual
Astronomical cases.

As an example, a 2048 × 2048 pixel simulation was per-
formed in which point sources were distributed following a
truncated power law with flux limits S min = 10−3, S max = 103

(in arbitrary units) and slope η = α + 1 = 2.2, and then
“observed” with a Gaussian beam of FWHM = 3.0 pixels.
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Fig. 2. Comparison of the P(D) distribution function of simulated
point sources with an α-stable distribution fitting the histogram data.
The parameters of the EPS simulation were η = 2.2 (α = 1.2),
S min = 10−3 (in arbitrary units), S max = 103 (in the same arbitrary
units), Npix = 2048× 2048, Ns = Npix and FWHM = 3.0 pixels (corre-
sponding to a true value of the normalisation k = 3.014 × 10−4 in the
chosen arbitrary unit system). The normalised histogram of deflec-
tions is shown by means of a dotted line. The logarithmic moments
estimators applied to that simulation give the estimates α̂ = 1.184 and
γ̂ = 2.521 × 10−4 (corresponding to an estimated value of the normal-
isation k̂ = 3.051 × 10−4, in the chosen arbitrary unit system). Using
these estimates, the corresponding α-stable distribution with β = 1
is shown using a solid line. The position of the dotted line has been
slightly shifted to the right in order to make clearer the plot.

The mean density of sources in the simulation was one per
pixel. The resulting distribution P(D) is shown in Fig. 2. The
real histogram of the deflections produced by the EPS sim-
ulation (the solid line in the figure) is compared with an
α-stable distribution with the parameters extracted from the
EPS simulation using the logarithmic moment estimators in
Eqs. (25)–(27). The agreement between the two curves is very
good and the relative errors in the determination of the param-
eters α and γ (or, conversely, η and k) are ∼1% for both param-
eters (see figure caption).

Let us summarise the results of this section. We have pro-
posed a set of very straightforward estimators to extract the
parameters η and k which characterise the differential counts of
a generic point source population. These estimators, described
in Eqs. (25) to (27), are based on the logarithmic moments of
α-stable distributions and are specifically designed to deal with
non-Gaussian, asymmetric pdf s such as the one generated by
point sources in the sky. From the theoretical point of view,
these estimators are efficient (Kuruoğlu 2001) whereas “clas-
sical” analysis based in ordinary moments (mean, variance,
skewness and so on) is not reliable since they do not converge.
Moreover, the estimate of the parameters α and γ, directly re-
lated to the parameters η and k, is direct and computationally
very fast, since it only needs the calculation of two moments L1

and L2 (Eqs. (19) and (20)). The analysis of a 2048 × 2048 pix-
els takes around one second in a PC with a XEON 2.0 GHz

processor. An approach based on “classical” moments would
require the calculation of an higher number, N ≥ 3, of mo-
ments, their comparison with a precalculated set of values
given by a certain model and, finally, finding the best param-
eters by means of a fit (and so on). The α-stable assumption
works well for the case of truncated EPS distributions, pro-
vided that the number of data is large enough and the ratio be-
tween the cuts S max/S min allows the tails of the distribution to
be correctly realised. By using logarithmic estimators the pa-
rameters η and k can be estimated with very small relative er-
rors (∼5%) for a wide range of η values. As it happens with
other existent methods on the P(D) distribution, this method
works optimally when the average number of sources per ef-
fective resolution element is ∼1. This means that when we es-
timate the parameters η and k of the differential source counts
we are, actually, estimating the parameters of the source pop-
ulation which dominates the counts in the flux interval around
the S value corresponding to ∼1 source per effective resolution
unit.

5. Point source parameter extraction from
non-ideal power law number counts: Realistic
galaxy population models

In Sect. 4.2 we have established the performance and the range
of applicability of estimators based on the α-stable modelling
of the P(D) distribution for truncated power laws, that are a
fair approximation to the observed number counts. Provided
that reasonable conditions of applicability of the estimators are
satisfied, the results are valid for diverse fields of Astronomy,
including the study of the X-ray background and the modelling
of unresolved point sources at radio wavelengths.

In this section we will go one step further and consider
state-of-the-art realistic number counts models. As an example,
we will focus on the application of the α-stabledistributions to
microwave observations and, in particular, to the images that
the future ESA’s Planck mission will produce.

The study of real microwave images differ from the study of
the simulations in the last section for two main reasons. First,
number counts of extragalactic sources do not follow a pure
power law distribution, but a more complex behaviour that de-
pends on the emission properties of galaxies, i.e. their energy
spectra, as well as their local densities and redshift evolution.
The power law distribution is only a first order approximation
to the real one. Second, microwave images contain not only
EPS signal, but also CMB radiation, other Galactic and ex-
tragalactic foregrounds (synchrotron, free-free, dust emission
and Sunyaev-Zel’dovich effect) and instrumental noise. All the
above has to be taken into account in a realistic analysis. In this
section we will deal with the real number count distribution of
the sources. Some hints about how to deal with signal mixtures
will be introduced in next section.

5.1. Extragalactic point sources at Planck frequencies

To test the efficiency of α-stable distributions in estimating
the relevant parameters, η and k, of source number counts
in CMB maps it is better to rely on realistic cosmological
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evolution models for sources. The relevant source popula-
tions at microwave frequencies are “flat”-spectrum compact ra-
dio sources, selected at cm wavelengths, and galaxies whose
emission is dominated by dust, i.e. high redshift spheroids
and low redshift starburst and spiral galaxies, observed in the
far-IR bands. By exploiting all the available data on extragalac-
tic sources coming from surveys at cm and far-IR wavelengths,
T98 presented a phenomenological evolution model which al-
lowed to predict source number counts in the whole frequency
range around the CMB intensity peak. A thorough study on
source contributions to the intensity fluctuations of the CMB
was also presented in that paper. As discussed in Sect. 1,
the observations of the microwave sky provided by NASA’s
WMAP satellite (Bennett et al. 2003b) and the surveys coming
from VSA and CBI experiments, strongly support the predic-
tions on number counts of EPS discussed by T98, at least up to
frequencies ν ∼ 40 GHz. Given that “flat”-spectrum compact
sources are the dominant population in this frequency range,
we may confidently rely on the T98 model for simulating point
sources in the sky up to ν � 100 ÷ 200 GHz. On the other
hand, at frequencies ν ≥ 300–400 GHz many new data have
been published since 1998 and most recent evolution mod-
els fit better than the T98 model the available data on source
counts. These recent models (e.g., Granato et al. 2001, 2004)
show, in particular, a steeper slope of the differential counts of
EPS at S ∼ 10–100 mJy and for 300 ≤ ν ≤ 900 GHz, where
the contribution of high-redshift spheroids show up (see, e.g.,
Perrotta 2003). On the other hand, at fluxes S � 0.1 mJy all
models must converge to a sub-euclidean slope in order to not
exceed the integrated far-IR background. Thus, in all those flux
ranges where there are no great changes of slope, the power-
law approximation still holds and the α-stable method can be
effectively applied. This is the case of all (or almost) all Planck
channels given the current flux limits for source detection fore-
seen for the mission (see Vielva et al. 2003, where all the fore-
grounds have been taken into account). On the other hand, the
method could reveal not easily appliable, or not appliable at
all, to the P(D) data that will come from the future surveys of
the Herschel mission. In fact, current estimates on the sensi-
tivity limits foreseen for Herschel (Negrello et al. 2004) show
that, inside the flux range where the method could be able to
recover the parameter k and η – i.e., for fluxes at the level of
∼1 source/beam, see Sect. 4.2 –, EPS counts should show a
sudden upturn, due to either the strongly positive k-correction
of dust emission spectra and to the strong cosmological evolu-
tion of high-redshift star-forming spheroids.

In this first application of the method we still adopt the orig-
inal T98 model since we are mostly interested in testing the
method rather than using it in a specific observation scenario.

5.1.1. Radio sources

Radio loud AGNs (radio galaxies, quasars and BL-Lacs) are
expected to dominate the counts in Planck LFI channels at
fluxes S ≥ 1–10 mJy. At frequencies around 30 GHz the typ-
ical values for the power law slope are η ∼ 2.0–2.15 (Taylor
et al. 2003; Mason et al. 2003) at fluxes 10 ≤ S (mJy) ≤ 300.

At higher fluxes, the data coming from classical radio sur-
veys at cm wavelengths show typical slope greater than the
Euclidean one (i.e., η > 2.5. On the other hand, at lower fluxes
the power law index should keep ∼2.0–2.2 down to fluxes of
S ∼ a few µJy where it has to break down to lower val-
ues, for not exceeding current limits on the integrated extra-
galactic background (see, e.g., Haarsma & Partridge 1998, and
references therein). The number of expected detections at the
30 GHz Planck channel, based on the T98 models and using the
Mexican Hat Wavelet detection technique (Vielva et al. 2003),
varies from ∼1800 (when the emission of the rotational dust
is taken into account in the simulations) to ∼2700 (when it is
not). Evidently, the number of detections depends on the flux
detection limit attainable by the chosen technique.

5.1.2. Dusty galaxies

Both “normal”, i.e. spiral-like, and active galaxies show dust
emission that quickly dominates over the radio emission at
wavelengths shorter than a few mm. From a theoretical point
of view, the physical processes that govern galaxy formation
and evolution are poorly known, but there is evidence of strong
cosmological evolution in the far-IR/mm region, particularly
for early type galaxies (see Granato et al. 2001, and references
therein). Therefore, it is not easy to model number counts of
these source populations. SCUBA, MAMBO and IRAM sur-
veys are rapidly providing a great amount of data in this
particular energy domain and all these data are guiding the
predictions on source counts and related statistics by means
of phenomenological as well as physical evolution mod-
els (Toffolatti et al. 1998; Guiderdoni et al. 1998; Granato
et al. 2001; Rowan-Robinson 2001). Anyway, all these mod-
els predict that number counts of EPS are dominated by dusty
galaxies at ν ≥ 300 GHz. The number of these sources de-
tectable by Planck is variable, depending on the emission prop-
erties of the cold dust, on the cosmological evolution of sources
and on the capability of detection techniques. Current estimates
by Vielva et al. (2003) based again on the T98 model with
galaxies whose positions in the sky are Poisson-distributed,
predict the detection of ∼12 700 (85% completeness level)
point sources in the 857 GHz Planck channel.

5.1.3. Total counts

Taking into account the mixture of the different types of galax-
ies and all the observational and theoretical constraints on
them, it is evident that the number counts can not be described
by a single power law as in Eq. (1). Even a truncated power
law as in Eq. (28) is not a correct representation of the number
counts. The real number counts need a slope η that changes de-
pending on the flux range considered. In some cases, the data
can still be approximated by the sum of two or more popula-
tions whose number counts can be described by simple power
laws with different slopes.

In spite of this, the α-stable model can still be useful to ex-
tract information about the general behaviour of the dominat-
ing point source population from the analysis of the total P(D).
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In order for this affirmation to be true, the shape of the number
counts curve should be similar to a power law at least in the flux
range of the dominant2 point sources, and the P(D) should be
not much different from an α-stable. Let us see if any of these
conditions are satisfied by Planck observations.

Figure 3 shows the log N–log S curves for the ten Planck
channels according to the T98 model. The solid lines show the
total number counts in the simulations (including both radio se-
lected and far-IR galaxies). The figure shows that the behaviour
of the number counts does not correspond to a single power
law. As discussed before, this is not surprising, given that the
spectra and the evolution properties of sources dominating ra-
dio and far-IR source counts are quite different. However, a
power law fitted to the number counts (straight dotted lines),
only at fluxes greater than the one where there is approximately
only one source per effective resolution element, does not de-
part much from the true curve. The slopes of these fits lead
to best-fit slopes η ∼ 2.1–2.7. The best-fit slopes and nor-
malisations calculated for each channel are shown in Table 1.
According to Fig. 3, The best-fit slopes could be considered
as a good approximation to the true slope of the source popu-
lation which dominates the counts in the relevant flux interval
(see Sect. 4.2) in each case: i.e., “flat”-spectrum radio sources
in the low frequency channels, dusty galaxies in the high
frequency ones.

As mentioned before, in many cases the data can be approx-
imated by the sum of two or more populations whose num-
ber counts can be described by simple power laws with dif-
ferent slopes. If one of these populations happen to dominate
over the others in the flux range corresponding to <∼1 sources
per effective resolution element, the α-stable model will be
a fair approximation able to determine the parameters corre-
sponding to such population. If there is not a dominant pop-
ulation, but a number Np of roughly equally rich populations
with different slopes, the situation becomes more complex and
the α-stable model will not be correct in general. However, as
Np increases the situation tends again to α-stability, due to the
generalised central limit theorem (Sect. 3). In this latter case,
the α-stable will allow us to determine the average parameters
of the mixed source populations.

5.2. Validity of the α-stable model

A very simple way to see if the α-stable model is valid for the
Planck point source simulations is to fit the number counts to a
single power law with certain fit parameters αfit and kfit, then to
apply the logarithmic estimators in Eqs. (25)–(27) to realistic
Planck EPS simulations in order to obtain some estimated αlogm

and klogm, and then check the agreement between the two sets
of values.

We performed realistic point source simulations using the
T98 model. The simulated sky maps were filtered using the
beam sizes (circular Gaussian approximation) and the pixel

2 By “dominant” we mean the sources that produce the greatest con-
tribution to the number counts in the flux interval that corresponds to
number densities ∼1 per effective resolution element, as explained in
Sect. 4.2.
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Fig. 3. Predicted integral counts in the ten original Planck channels.
The solid line shows the total number counts in the simulations (in-
cluding both radio selected and far-IR galaxies). The dotted line is the
best-fit single power law model for each channel. The fit is performed
using only number counts of bright sources down to the flux at which
there is approximately one source per effective resolution element, that
is, the flux interval in which the statistical analysis of the P(D) is sen-
sible to the number counts law.

scales of the 9 Planck channels. The number counts of the
T98 model were fitted to a straight line in order to obtain the
values of the parameters αfit and kfit that better fit the model
in the flux range of interest. Taking into account the results
of Sect. 4.2, the fit was performed using the number counts at
fluxes S > S 1, where S 1 is flux over which there is approxi-
mately one source per effective resolution element. The param-
eters α and k were then estimated for each channel using loga-
rithmic moments estimators. The results can be seen in Table 1.
Table 1 shows that the validity of the α-stable model is better
for some channels than for others. The relative errors in the pa-
rameter α are only a few percent. The agreement in k is worse
because Eqs. (15) and (27) are very sensitive to the estimated
value of α and therefore relatively small errors in α can lead
to big errors in k. For the case of the 30 GHz channel kfit and
klogm agree up to a 12%, and the agreement in the 44, 70 and
100 GHz is even better, whereas for the worst case (217 GHz)
the difference between the two values rises to a 52%. For the
857 GHz channel the relative difference between kfit and klogm

is 15%. Therefore, we can conclude that the α-stable is a good
model for the T98 sources, and that the logarithmic moments
estimators can recover quite well the most representative value
of α for the fluxes greater than the flux over which there is ap-
proximately one source per effective resolution element. This
value varies depending on the channel, and corresponds in gen-
eral to a few tens of mJy in the Planck case. The estimation of
k is less reliable in general, but the method can be still useful,
however, as a means to constrain its value.
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Table 1. Comparison between the point source parameters α and k ex-
tracted using logarithmic estimators (denoted by the “logm” subscript)
and the best-fit power law (denoted by the “fit” subscript) for the nine
frequencies of the T98 Planck EPS simulations. The normalisatio k
is expressed in units of Jyα pixel−2. A good agreement between the
fit and the logm values indicates that the α-stable approximation is
valid as a means for estimating the slope and the normalisation of the
differential number counts of the dominating point source population.
Relative errors are calculated as rx = 100 ×

∣∣∣xlogm − xfit

∣∣∣ /xfit, x repre-
senting either α or k.

ν (GHz) αfit αlogm rα kfit klogm rk

30 1.22 1.24 2 6.63 × 10−4 5.81 × 10−4 12

44 1.18 1.18 0 1.77 × 10−4 1.73 × 10−4 2

70 1.16 1.13 3 4.36 × 10−5 4.72 × 10−5 8

100 1.18 1.15 3 4.20 × 10−5 4.30 × 10−5 3

143 1.30 1.37 5 2.67 × 10−5 1.64 × 10−5 39

217 1.58 1.67 6 4.59 × 10−6 2.22 × 10−6 52

353 1.83 1.77 3 10.54 × 10−5 8.81 × 10−6 16

545 1.83 1.76 4 8.19 × 10−5 6.61 × 10−5 19

857 1.75 1.69 3 6.44 × 10−4 5.50 × 10−4 15

The results of Table 1 show that the agreement between the
fitted α and the value estimated with the logarithmic moments
is worse for the case of the intermediate channels. This result
is easily explained taking into account the previous discussion
about the physical nature of the galaxies at microwave fre-
quencies. Whereas the low-frequency channels of Planck (30,
44 an 70 GHz) are dominated by radio-selected point sources
and the high-frequency ones (545 and 857) are mainly pop-
ulated by far-IR galaxies, at the intermediate frequencies the
mixing of two main different populations distorts the shape of
the P(D) distribution, making the α-stable approximation less
valid. As an example of this, in Figs. 4 and 5 the histogram
of the deflection distribution due to the EPS as two of the
Planck channels are compared with the α-stable distributions
generated using the corresponding estimated αlogm and klogm.
Figure 4 corresponds with the 30 GHz channel whereas Fig. 5
corresponds with the 217 GHz case. For this latter channel, the
basic shape of the P(D) is very well approximated by the α-
stable, but small differences in the region of the tail, barely
visible to the eye, are enough to hamper the validity of the
α-stable model. On the contrary, for the 30 GHz case in Fig. 4
the agreement between the two curves is good along all the
curve, and specially good in the tail, where the most important
information is stored, leading to a good estimation of the slope
α and the normalisation k of the radio source counts.

6. Point source parameter extraction in presence
of noise and other signals

We have shown that the tools based on α-stable analysis are
applicable to astronomical data such as those that will be ob-
served by the low and high frequency channels of Planck. Even
when the mixture of two roughly equally dominant different
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line) and an α-stable distribution (dotted line). The α-stable distribu-
tion has the α and γ parameters that were estimated by means of log-
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populations makes impractical to determine the normalisation k
of the mixture, it is still possible to set constraints to the global
slope of the number counts. But the previous discussion was
restricted only to the emission of point sources. Apart form the
EPS population, the microwave sky contains emissions from
many other astronomical sources (“foregrounds”), CMB radi-
ation and instrumental noise. Therefore, it is not possible in
general to observe the point sources independently from the
other components. Though the addition of these other signals
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does not modify the α-stable nature of the point sources P(D),
it affects the way we can learn the parameters α and γ from
the data. The estimate of these parameters can get very com-
plicated in presence of all these components. In the following
we will consider the simplified (albeit very commonly found in
practise) problem of a mixture of a Gaussian random process
and EPS. This is the case when instrumental noise (generally
modelled as Gaussian white noise) is added to the EPS signal
by the detector. In the case of CMB observations, that would
be the case as well in “clean” sky areas (that is, not affected by
foreground contamination). We shall comment about this in the
next section.

6.1. Parameter estimation in Gaussian
and α-stable mixtures

Let us consider the case of a mixture of EPS “confusion noise”
and a Gaussian signal. This Gaussian signal can be instru-
mental noise or even the CMB itself if is has not been previ-
ously separated from the data. The Gaussian distribution is a
particular case of the α-stable family with α = 2. The mix-
ture of two α-stable distribution with different α index is not
an α-stable distribution. Therefore, the simple logarithmic mo-
ments estimators presented in Sect. 4 are not valid.

The characteristic function of the mixture of two inde-
pendent random variables can be expressed as the product
of the characteristic functions of the two original variables.
That means that the characteristic function of a mixture of an
α-stable distribution S α(β, γ, µ) and a Gaussian N(0, σ) is

ψmix(w) = exp

{
iµw − γ |w|α Bw,α +

1
2
σ2w2

}
, (29)

where Bw,α is defined in Eq. (13). Applying centro-
symmetrisation as in Eq. (18) we have

ψS
mix(w) = exp

[
−2γ |w|α − σ2w2

]
. (30)

The parameter extraction in the case of mixtures with charac-
teristic functions such as in Eq. (30) is a very difficult problem
that has not been totally solved yet. It has been studied by Ilow
& Hatzinakos (1998), who presented some basic ideas based
on the empirical characteristic function (ecf)

ψ̂N (w) ≡ 1
N

N∑
m=1

eiwx(m). (31)

The ecf is a complex random variable and its expected value
coincides with the true characteristic function of the distribu-
tion when the x(m) samples are i.i.d. Ilow & Hatzinakos (1998)
described two types of methods based on the ecf to perform the
estimate of the parameters α, γ and σ in Eq. (30): minimum
distance methods and moment-type methods. We tested both
kind of methods and found that the moment-type ones suffer
from problems of stability in the particular case under study.
Therefore, we will focus on the minimum distance method.

6.1.1. Minimum distance method

In the minimum distance method, the estimate of the parame-
ters Θ = (α, γ, σ) is obtained in the optimisation process

min
Θ

∫ ∞

−∞

∣∣∣ψ̂N(w) − ψΘ(w)
∣∣∣2 W(w)dw, (32)

where W(w) is an appropriate weighting function. For exam-
ple, the choice W(w) = exp(−w2) allows the integral (32) to be
solved by means of Gauss-Hermite quadratures, which is com-
putationally convenient. Thus, the estimate of the parametersΘ
is reduced to a minimisation over three parameters. An interest-
ing possibility appears when one of the parameters, generally
σ, is a priori known. Then the minimisation gets much more
simple.

The minimum distance method is as far as we know the
best choice present at this moment in the literature, but it may
present some problems. In particular, the choice of the weight-
ing function W(w) is arbitrary. The choice W(w) = exp(−w2) is
useful from the computational point of view but it may mask
important features of the ecf. We are currently working in the
elaboration of more robust methods, that will be the scope of
future works. For the moment, let us restrict the discussion to
the minimum distance method.

6.2. Some simple tests

In order to test the minimum distance method we performed a
set of simulations of point sources whose number counts fol-
low a truncated power law, adding a Gaussian white noise to
the beam-convolved sources. The size of the simulations was
Npix = 1024 × 1024 and the cuts of the truncated power law
were set so that S max/S min = 106 in arbitrary units. The beam
was set to FWHM = 3 pixels. For the sake of clarity, the simula-
tions contains one source on average per pixel, that corresponds
with �1 source per effective resolution element (as defined in
Sect. 4.2), given the value of the FWHM chosen.

We have tested the performance of the method as a function
of the relative contribution of each component of the mixture.
In order to do that, the slope of the EPS law was set to η = 2.2
(α = 1.2). Fifty simulations were performed for each case. We
fixed the contribution of the Gaussian noise to σG = 1 (in arbi-
trary units) and let vary the value of the minimum source flux
S min. This has the effect of varying the rms of the EPS contri-
bution, i.e. the γS of the α-stable distribution. In other words,
we fix the second term in the exponential of Eq. (30) and vary
the first one. As described in Sect. 3, we write the scale param-
eter of the Gaussian contribution to the characteristic function
as γG = σ2

G/2 (where σG is the Gaussian noise dispersion).
Then we can study the performance of the method as the ratio
γS /γG varies. Results are shown in Fig. 6.

The method obtains its better performance when the con-
tributions of the α-stable distribution and the Gaussian noise
are comparable in the characteristic function. Inside the inter-
val −1 ≤ log (γS /γG) ≤ 1 the relative errors in the determi-
nation of the three parameters are of a few percent. When the
Gaussian contribution dominates (log (γS /γG) < −1) the esti-
mator “sees” only a Gaussian contribution and tries to adjust it
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Fig. 6. Performance of the minimum distance method as a function
of the relative contribution of the mixture components. The top panel
shows the relative error in the determination of the Gaussian disper-
sion σG. The relative error in the determination of the α-stable pa-
rameter γ is shown in the middle panel. The bottom panel shows the
relative error in the determination of the index α. Statistical error bars
are shown in each case.

to the three parameters by considering that the two terms inside
the exponential in Eq. (30) are identical Gaussian exponents.
Therefore, it wrongly gives α a value of 2, underestimates the
true γG by a factor ∼50% and greatly overestimates γS .

When the point source population overdominates the
method tends to assign the central parts of the distribution to
an almost inexistent Gaussian and to fit the remaining tail to
an α-stable that is more impulsive than the real one, producing
lower values of α than the true ones. The γS parameter is well
established in this region, but the estimated γG gets artificially
high.

In many real cases, the level of the Gaussian contribution
is a priori known. For example, the noise level of an instru-
ment is generally well known in most experiments. If that is
the case, the minimisation (32) can be simplified by fixing the
value of σ (that is, γG). Then the minimisation is performed
in the two-dimensional parameter space (α, γ). In this case, the
estimates of the α-stable parameters improve significantly in
the low γS /γG regime. As an example, in the previous test
experiment for γS = 7.48 × 10−3 (corresponding to the point
log (γS /γG) = −1.82 in Fig. 6), the estimates of the parameters
when σ was unknown are α̂ = 1.75 ± 0.22, γ̂S = 0.09 ± 0.11,
whereas if the value of σ is fixed the parameters are much bet-
ter estimated, α̂ = 1.2 ± 0.1, γ̂S = 7.54 × 10−3 ± 0.91 × 10−3.
Our tests show that if σ is well known it is safe to apply the
method until ratios log (γS /γG) � −2.2, with few percent rel-
ative errors in α and γ. Below that threshold, the performance
drops quickly.

In the intermediate γS /γG regime the improvement is not
so spectacular: as an example, for γS = 0.472 (corresponding
to the point log (γS /γG) = −0.025 in Fig. 6), the results were
α̂ = 1.2 ± 0.02, γ̂S = 0.476 ± 0.02 when σ was unknown and
α̂ = 1.2 ± 0.01, γ̂S = 0.466 ± 0.006 when it was known.

In the high γS /γG regime the knowledge of σ gives few
information and the results are practically the same when it is
known than when it is not. Of course, if the EPS largely dom-
inate the mixing it may be a better idea just to forget about
the minimum distance method and to apply directly the loga-
rithmic moment estimators of Sect. 4, as the data can be re-
garded as an α-stable contaminated with a small amount of
noise. To test this idea we just applied the logarithmic mo-
ment estimators to our simulations. The results show that if
log (γS /γG) � 0.6 the logarithmic moments fail, as expected,
but over that threshold they work very well. As an example, for
γS = 7.5 (corresponding to log (γS /γG) = 0.57) the minimum
distance method obtained α̂ = 1.27 ± 0.47, γ̂S = 6.48 ± 3.46,
whereas direct application of the logarithmic moments gives
α̂ = 1.19 ± 0.01, γ̂S = 7.24 ± 0.12. At higher γS /γG ratios
the validity of the logarithmic moment estimators is even more
justified: for γS = 118.6 (corresponding to log (γS /γG) = 2.37)
the minimum distance method obtained α̂ = 0.55 ± 0.80,
γ̂S = 22.0 ± 22.6, whereas direct application of the logarith-
mic moments gives α̂ = 1.19 ± 0.01, γ̂S = 109 ± 4. A small
negative bias (∼−5%) seems to appear in the determination of
γS for high γS /γG ratios, probably due to the presence of the
Gaussian interference.

Taking all the previously said into account, the reccomen-
dation is to use the minimum distance method when the ex-
pected log (γS /γG) ≤ 1 and just the logartihmic moments esti-
mator for higher α-stable/Gaussian ratios. Fixing the value of
the Gaussian contribution with a priori information allows us
to determine the α-stable parameters safely up to log (γS /γG) ∼
−2, whereas if σ has to be determined the safety region finishes
around log (γS /γG) ∼ −1.

We also performed simulations varying the slope η (α) at
a given γS /γG (both contributions were set so that the contri-
bution to the characteristic function of both components are
the same). The estimates for the three parameters α, γ and σ
have low relative errors (∼10%) around the values α ∼ 1.0–1.6.
Far from this region, the estimates become worse, specially in
the low-α regime, where bigger simulations or larger dynamic
ranges (the ratio S max/S min) are needed in order to “map” the
α-stable tail correctly. On the other hand, when α gets too close
to 2 the two distributions are almost Gaussian and is very hard
to distinguish them.

7. Some considerations about EPS parameter
estimation at Planck frequencies

As mentioned before, the microwave sky as observed by any
of the many experiments that are now being carried out or in
preparation is a mixture of CMB, galactic foregrounds, EPS,
galaxy clusters and instrumental noise and systematics. The
full study of the EPS’ confusion noise in such a complicated
mixture is out of the scope of this work and will be addressed
in future studies. However, some considerations about the
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expected problematics and possible results for the future
Planck mission can be hinted in base on the results of previous
sections.

Galactic foregrounds will be a major problem for the ap-
plication of the techniques presented in this work. Foreground
signature is nor Gaussian nor α-stable, and therefore neither
the logarithmic moment estimators nor the minimum distance
method for Gaussian plus α-stable mixtures are expected to
work well under strong Galactic contamination circumstances.
Neither will do any other of the existent methods for the
P(D) study.

On the other hand, in areas of the sky where the Galactic
contamination is low there would be present basically EPS,
CMB and instrumental noise (as well as some secondary
CMB anisotropies due to SZ effect). CMB is Gaussian or
near-Gaussian distributed, and therefore in such sky areas the
minimum distance method presented in Sect. 6.1.1 can be
applied, just considering the mixture of CMB plus noise as a
single Gaussian component with joint effective variance σ2

eff =

σ2
CMB + σ

2
n. Such approach should success for the channels

where the EPS signal is more relevant, that is, the low fre-
quency channels (30 and 44 GHz) where radio sources are
dominant and the high frequency channels (545 and 857 GHz)
where dusty galaxies are dominant.

Unfortunately, precisely at those channels the foreground
contribution is expected to be very high. In particular, at
857 GHz will be practically impossible to find a single patch
of the sky where the Galactic dust emission is subdominant
with respect to CMB. Foreground-free areas of the sky could
be found outside the Galactic plane in the intermediate Planck
channels, where EPS are expected to be so faint that they
will be under the detection threshold of the minimum distance
method.

A more interesting possibility appears if the foreground
emission can be somehow removed from the data before the
analysis. As mentioned in the Introduction, there are sev-
eral different statistical component separation methods that are
able, given some amount of a priori knowledge about the sta-
tistical properties of the different components, to extract them.
These methods in general are not able to deal with unresolved
point sources, and normally a residual map containing noise,
EPS and some leftovers of the components that have not been
perfectly separated is obtained as a by-product of the sepa-
ration. Note that most component separation assume that the
non-separable noise is Gaussian, which is not true in presence
of EPS. This may introduce errors in the separation of the fore-
grounds. An interesting possibility that will be studied in the
future is to introduce our knowledge on the α-stable nature of
EPS confusion noise in the component separation method.

If a perfect separation was possible, the residual map
would contain just instrumental noise and EPS. In that ideal
case and for the T98 EPS model and the noise levels ex-
pected for Planck, the ratios between the point source and the
Gaussian noise contributions to the residual map would be
log (γS /γG) = 2.77, 3.09, 3.31, 2.05, 0.75, 0.30, 0.17 and
−0.12 for the 30, 44, 70, 100, 143, 217, 353, 545 and 857 GHz
channels, respectively. According with the results in Sect. 6,
such ratios should allow the methods presented in this work to

obtain the α-stable parameters of the P(D) with small errors for
all the channels.

The real case will not be so optimistic as the one just men-
tioned, but not so pessimistic as the case in which all the fore-
grounds are fully present. The study of the performance of the
α-stable methods after the application of a component separa-
tion method – such as the Maximum Entropy method (Hobson
et al. 1999), for example – will be carried out in a future work.

8. Conclusions

In this work we introduce the formalism of α-stable distribu-
tions as a useful tool for the modelling and the statistical study
of number counts of undetected point sources in astronomical
images. When the number of faint point sources in an image
is large, the unresolved EPS contribution creates a “confusion
noise” that can be studied to obtain information about the par-
ent EPS population.

We have shown that when the differential number counts
of point sources follow a simple power law the characteristic
function of the resultant distribution of intensity (or temper-
ature) fluctuations is exactly an α-stable one. In Sect. 3 we
briefly review the many definitions and properties concern-
ing the α-stable formalism. The α-stable model allows us to
model non-Gaussian, impulsive distributions in a flexible way
and with a reduced number of parameters. The mathematical
foundation of α-stable analysis is well established and useful
results such as the generalised central limit theorem are avail-
able. The α-stable distributions include the Gaussian distribu-
tion as a particular case.

We have shown as well that, under reasonable conditions,
the α-stable model is well suited to describe point source popu-
lations following truncated power law number counts. We also
have shown that even if the number distribution in flux is not a
pure power law the α-stable model may be useful to estimate
the parameters of the dominant source population. In particu-
lar, the α-stable model has been proved to be useful and very
efficient in recovering the k and η parameters of the EPS num-
ber counts foreseen for the highest and the lowest frequency
channels of the Planck surveyor mission, where point sources
give the dominant contribution to CMB fluctuations. As the
EPS number counts in these channels are strongly dominated
by flat-spectrum radio sources (at low frequencies, LFI chan-
nels) and by dusty galaxies (at high frequencies, HFI channels),
the method discussed here has proved helpful in determining
the main parameters of the differential number counts of both
populations.

The α-stable model allows us to design efficient and com-
putationally fast estimators to extract the physical parameters
of the EPS populations from P(D) distribution. In particular,
the logarithmic moments estimators are able to determine the
slope η and the normalisation k of the EPS population with rel-
ative errors of a few percent over a wide range of conditions.
The method is shown to work optimally in the case in which
there is approximately one source per effective resolution
element.

Even when the EPS signal is mixed with Gaussian in-
terference, it is possible to estimate its parameters using the
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empirical characteristic function, given by Eq. (31). We sug-
gest a minimum distance method that is able to deal with the
presence of Gaussian noise in a wide range of values of the
ratio γS /γG.

Furthermore, the method uses all the information content
of the data, taking into account bright sources as well as very
faint ones which contribute to the confusion noise distribution.
Anyway, as discussed in Sect. 4.2, the α-stable model works
optimally in the case of approximately one source per effective
resolution element and, thus, its maximum efficiency is reached
at fluxes corresponding to this source density. An interesting
possibility is to complement the information extracted with this
technique with other methods. For example, by detecting and
counting bright sources it is possible to obtain the slope η and
the normalisation k in the high flux range. These quantities can
be compared with the ones obtained by this method for study-
ing the differences among source populations which dominate
the counts at high and intermediate fluxes. The way to proceed
should be detecting first the bright resolved sources and, once
removed these sources from the data – for example masking the
area occupied by them –, analysing the P(D) of the unresolved
sources by means of the statistical estimators introduced in this
work. The statistical study of the P(D) allows us to go below
the detection threshold. The flux limit these methods can reach
depend strongly on the characteristic of the experiment: in ab-
sence of noise and other foregrounds, the theoretical limit is
the flux corresponding to approximately one source per effec-
tive resolution element. In presence of noise and foregrounds,
this limit will be higher and must be determined for each par-
ticular case.

As mentioned before, the α-stable model works well even
there is the presence of two or more source populations with
different slopes of the number counts, provided that the depar-
ture from a simple power-law is not extreme in the relevant flux
range. Then, techniques such as the logarithmic moments esti-
mators are able to estimate a single slope that corresponds to
the one of the dominant source population. It is possible, how-
ever, to refine the results. A method similar to the minimum
distance method presented in Sect. 6.1.1 can be conveniently
modified to include more than one different α-stable compo-
nents in order to determine the parameters k and η of two or,
possibly, more source populations.

Work to obtain an optimal technique to deal with
α-stable mixtures is currently in progress.

In this work we considered that the spatial distribution
of the sources in the sky is uniform. However, the sources
are expected to show some degree of autocorrelation. Source
clustering will produce a broadening in the P(D) distribution
(Barcons 1992). This effect should be taken into account in
a future work. We did not take into account the presence of
Sunyaev-Zel’dovich (SZ) effect in the CMB maps. The signa-
ture of SZ clusters is expected to be similar in nature to the
signature of EPS3 and, thus, the formalism of this work could
be applied to it. At frequencies ν < 217 GHz the SZ effect will

3 As far as the two populations are observed through large effective
aperture beam so that clusters and EPS can be considered as point-like
objects.

have a negative contribution to the maps, producing skewed
P(D) distributions with negative tails. Several ways of discrim-
inating between unresolved point sources and SZ clusters in
CMB maps have been studied by Rubiño-Martín & Sunyaev
(2003).

The previous conclusions can be applied to different
fields in Astronomy including the X-ray background, radio
Astronomy and, in general, to all the observations in which it is
interesting the study of the statistical properties of undetected
point sources.

The potentialities of the α-stable modelling go further than
the designing of estimators such as the ones presented in this
work. The α-stable model allows us to use techniques present in
the signal processing literature for achieving a complete prob-
abilistic description of the data that can be used for more ambi-
tious goals such as Bayesian estimation, denoising, etc. Future
works will explore these interesting possibilities.
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