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An a b  in itio  interm olecular potential for the carbon m onoxide dim er (CO )2

A. van der Pol, A. van der Avoird, and P. E. S. Wormer

I n s t i tu te  o f  T h e o re t ic a l  C h em is try ,  U n ivers i ty  o f  N ijm eg en , T oern oo ive ld , 6 5 2 5  E D  N ijm eg en ,

T h e  N e th e r la n d s

(Received 13 October 1989; accepted 8 March 1990)

We have constructed an analytical potential energy surface for CO-CO by means of a b  in i t io  

calculations for the electrostatic and first-order exchange interactions and by the use of 
accurate dispersion coefficients recently calculated in our group. Parameter-free damping 
functions account for second-order exchange and penetration effects. The anisotropy of this 
potential is represented by an expansion in spherical harmonics for the molecules A and B, up 
to L  A, L  B = 5  inclusive. The second virial coefficients calculated with this potential, including 
quantum corrections, lie within the experimental error bars over a wide temperature range.

I. INTRODUCTION

A powerful method for obtaining detailed information 
on the anisotropic intermolecular potentials between small 
molecules is given by a b  in i t io  electronic structure calcula­
tions. This is exemplified by an a b  in i t io  N 2- N 2 potential, 1,2 

which has been used to evaluate second virial coefficients,*” 
various transport properties4 and liquid state data , 3 as well 
as many properties of interest in the different (orientational- 
ly ordered and disordered) phases of solid nitrogen .5' 10 Car ­
bon monoxide is isoelectronic to N 2; its bulk properties are 
similar to those of nitrogen in some respects, but one has 
found several characteristic phenomena which are probably 
related to the (head-tail) asymmetry in the intermolecular 
potential of CO (as compared with N 2). In particular, there 
have been extensive structural, thermodynamic, and spec­
troscopic studies11-19 on the head-tail disorder in solid a-CO 
and on the dynamics of related reorientational processes. 
Theoretical investigations20,21 addressing these problems, 
which have started by the construction of an elaborate se- 
miempirical potential, emphasize the need for an accurate 
CO-CO potential. In earlier studies22-24 it was assumed that 
CO has the same symmetry as N 2. It is of special interest to 
obtain quantitative information on the breaking of this sym­
metry, both in the long-range and the short-range contribu ­
tions to the intermolecular potential.

Here, we present a complete anisotropic potential 
between (rigid) CO molecules. The anisotropic dispersion 
coefficients C6, C7, C8, C9, and C w  have been taken from 
accurate a b  in i t io  calculations by Rijks and Wormer . 25 The 
calculation of the electrostatic and exchange contributions 
to the potential is described in Sec. II. The computational 
procedure has been designed to give the complete potential 
in analytical form, with its anisotropy represented explicitly 
in the form of a spherical expansion. Rather than trying to 
calculate the complete potential at once, from a supermole- 
cular calculation with its inherent basis set superposition 
error , 26 we have added the (second-order) dispersion energy 
to the (first-order) electrostatic and exchange interactions. 
A damping function similar to the form proposed by Tang 
and Toennies27 is used to correct the long-range dispersion 
energy for second-order exchange and penetration effects. 
The parameters in this damping function are completely de­
termined by the ( a b  in i t i o )  first-order exchange results. In

Sec. I l l  we check this a b  in i t io  potential by computation of 
the second virial coefficients and comparison with the ex­
perimental data28,29 over a wide temperature range.

II. REPRESENTATION AND CALCULATION OF THE 

ANISOTROPIC POTENTIAL

The intermolecular potential between two linear mole­
cules can be expanded as follows26:

F(R,?a ,?r ) =  (47t )3 / 2

^ALnL

X(R,?a ,?b), ( 1 )

with the complete orthonormal set of angular functions giv­
en by

IMaMuM V ™  A

^B L

M A M B M

rA =  (0 a ^ a )  and f

x  YLaMa ( rA ) ^ LBMB (^B ) YLM (R)-
(2 )

The vector R =  (i?,R) =  { R , 0 , 0 )  points from the center of 
mass of molecule A to that of molecule B, the unit vectors

B =  ( 0 B,d>B ) describe the orientations 
of the respective molecular axes. All these vectors are ex­
pressed relative to an arbitrary (space fixed) coordinate 
frame. The functions Y lm (?) are spherical harmonics and 
the symbol in large brackets is a 3- j coefficient. Since the 
angular basis is constructed such that it is invariant with 
respect to rotations of the space fixed coordinate frame, one 
may use in the calculation of the potential a special frame 
with R =  (0,0) and ?B =  (<9B,0) and vary only the “inter ­
nal” angles 0 A, 0 B and (f) =  (f)A — (f)B of the AB dimer. The 
expansion coefficients can then be written as1,2,26

rrr
1/2 sin 6

a

Jo

r>TT n2n

sin 0 B d O B d(f)
0 Jo

(3)

The equivalence of the monomers in CO-CO leads to the 
symmetry relation

V ( R , 9 A i 6 By<f>) =  V ( R , i r — 0 B , r r -  0A,0) (4)

and hence

v l a l bl (R) — ( — I (^O- (5)
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The invariance of Eq. (1) under space inversion allows non ­
zero expansion coefficients only for even values of
La  +  L b -|- L .

There are three advantages in using this expansion. 
First, it yields an analytic expression for the potential which 
shows explicitly its dependence on the molecular orienta ­
tions with respect to a general coordinate frame. Secondly, 
this expression, in contrast with site-site models, yields in 
principle an exact representation of the potential surface. In 
practice, one can represent the potential to any accuracy by 
truncating the summation in Eq. (1) at values of L A , L B and 
L  which are sufficiently large. Finally, we note that this ex­
pansion, being in terms of coupled spherical harmonics, is 
convenient in scattering calculations and calculations of the 
second virial coefficient, 30 in calculations of the bound states 
of van der Waals dimers31 and in lattice dynamics calcula­
tions which include large amplitude motions of the mole­
cules.5-10

In correspondence with the different first- and second- 
order interactions that contribute to the CO-CO potential, 
we can approximate the expansion coefficients by

» U U L  ( *  ) =  "ZCL„L W  +  uT 'L l  (R  ) +  vT1 „ L  m -
exch fdisp

ÂB
( 6 )

The induction interactions may be neglected since they are 
very small, at all distances, in comparison with the other 
interactions. The electrostatic interactions are directly given 
in the form of a spherical expansion with the following well- 
known closed expression

x
( 2 £ A +  2Lb )!

. (2 L a  +  1 )!(2 L b +  1 )! .

1/2

*Ql aQl .x
- L -  1 (7)

where the Kronecker delta ensures that only the coefficients 
with L a  +  L b =  L  are nonvanishing, and Q L and Q L are

higher multipole moments the differences between the val­
ues including correlation corrections32 and the SCF values 
are not very significant; so, we have retained the latter. The 
experimental quadrupole moment33 lies close to the calcu­
lated values (see Table I).

The dispersion contributions to the expansion coeffi­
cients are written as follows

I
n =  6 ,7 ,...

f Ln*L°L( R ) c : R ( 8 )

The anisotropic long range dispersion coefficients C n have 
been calculated for n =  6,7,8,9,10 by the time-dependent 
coupled Hartree-Fock method and the MBPT method by 
Rijks and Wormer . 25 Through recoupling of the multipole 
transition moments involved34 one can directly obtain the

coefficients C ^aLrL that must be substituted into Eq. ( 8 ) 
(see Table II).  The damping functions f n ( R ), which are 
determined by the form of the first-order exchange interac­
tions, will be discussed below.

Next, we describe the computation of the expansion co-
.exch 

a -̂ b

This quantity is defined by the Heitler-London formula

efficients vc£ chL L ( R )  for the first-order exchange energy.

V
(i)

(9)

where H A and H  B are the Hamiltonians of the monomers A 

and B, H  is the dimer Hamiltonian, i/ft and i/% are the mon­
omer ground state wave functions and s /  is the intermolecu­
lar antisymmetrizer. We calculate the Heitler-London ener­
gy on a grid of orientations ( 0 A , 9 B,(f)). This grid is chosen 
such that it corresponds with Gauss-Legendre quadrature 
for the angles 0 A and 0 B and Gauss-Chebyshev quadrature 
for the angle (j>. Substituting for V { R , 6 A , 6 B ,(f)) the values of 
the Heitler-London energy at these quadrature points and 
using the appropriate weights, 35 we can perform the integra­
tions in Eq. (3) numerically . 1,2 By this procedure we obtain 
the spherical expansion coefficients v L L L ( R )  that repre-

A  B

the multipole moments of the (linear) molecules A and B.
These multipole moments are calculated for L A , L B =  1 to 5, 
from the monomer SCF (self-consistent field) wave func­
tions of CO (see Table I). Since the SCF method gives the 
wrong sign for the (very small) dipole moment of CO and 
the values calculated32 by MBPT (many-body perturbation 
theory) and by SDCI (singly and doubly excited configura­
tion interaction) are rather different, we have used the ex­
perimental dipole moment33 in the final potential. For the and ip%. We can easily subtract

sent the complete Heitler-London energy and, thus, the 
electrostatic as well as first-order exchange interactions. The 
long range electrostatic (multipole-multipole) interactions 
are given by Eq. (7),  with the multipole moments Q L andA
Ql  that are obtained from the monomer wave functions ^

TABLE I. Monomer properties of CO. Energies in hartree, multipole moments in eaoA.

SCF (this work) M B P T (4)  (Ref. 32) SDCI (Ref. 32) Experiment (Ref. 33)

Total energy -  112.778 074 -  113.127 945 -  113.085 516

Dipole (L a  =  1) -  0.0979 0.0963 0.0411 0.0432

Quadrupole ( ¿ a  = 2 ) -  1.5241 -  1.5201 -  1.5151 -  1.44

Octupole ( ¿ a = 3 ) 4.433 3.876

Hexadecapole (¿A = 4 ) -  10.239 - 9 .3 8 1

32-pole (¿A = 5 ) 16.684

J. Chem. Phys., Vol. 92, No. 12,15 June 1990
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T A B L E  II. Long range in terac tion  coefficients. D ispersion coefficients w hich  are  sm aller  th an  0 .1 %  o f  the leading coefficient have been om itted .

L a L b L

Electrosta tic

^  L+ 1
(k J  m o l~ 1 n m L + ')

D ispersion  (Ref. 25)

^  6

(k J  m o l - 1 n m 6)

^  8
(k J  mol - 1 n m 8)

^  10

(k J  m o l - 1 n m 10)

0 0 0 5.1382( -  3) 5.4187( - 4 ) 5.7308( -  5)

1 1 0 1.8858( -  5) — 5.1742( -  6 )

1 1 2 -  5.9280( -  4) -  4.2671 ( -  5) -  1.0453( -  5)

2 0 2 2.8605( - 4 ) 1.6963( - 4 ) 2 .7475( — 5)

2 2 0 7.3106( - 6 ) 2.5651 ( -  6 ) 1.8231 ( -  6 )

2 2 2 8.7374( -  6 ) — 4.5294( -  6 ) — 3.0602( - 6 )

2 2 4 4.2341 ( -  3) 7.0334( -  5) 2.1237( -  5) 9.9527 ( — 6 )

3 1 2 — 4.3185( - 7 ) 7.5722( -  7)

3 1 4 -  2.4087( - 4 ) 1.6622( -  6 ) — 2.0985( -  6 )

3 3 6 — 2.6027( - 4 ) — 5.6233( -  7) 2.0925( -  7)

4 0 4 -  5.5223( -  6 ) 2.1679( -  6 )

4 2 6 1.5927( -  4) -  2 .0609( -  6 ) — 2.0722( -  7)

4 4 8 1.1488( -  5) 1.7620( -  7)

5 1 6 — 3.1093( -  6 ) 1.2322( -  7)

5 3 8 -  6.4421 ( -  6) -  5.1015( -  8)

D ispersion  ( Ref. 25 )

V* 9

(kJ  mol - 1 n m 7) (kJ  m o l - 1 n m 9)

1 0 1 4.2998( - 4 ) 7.4197( -  5)

2 1 1 7.8675( -  6 ) 7 .8477( -  6 )

2 1 3 -  1.3554( -  3) — 2.5695( -  5) -  1.9223( -  5)

3 0 3 -  1.1557( -  5) 1.6073( -  5)

3 2 3 — 2.7343( -  7) -  1.4372( -  7)

3 2 5 9.5391 ( -  4) — 3.6539( -  6 ) 6.3944( -  7)

4 1 3 -  1.9272( -  7)

4 1 5 — 3.3208( -  5) 8.6186( - 7 )
4 3 7 -  5.1025( -  5) — 2.8712( - 7 )

5 0 5 — 6.6206( -  7)

5 2 7 1.7511 ( - 5 ) — 2.9273( -  7)

5 4 9 1.6377( -  6 )

L < R  )ÂB
, .H c i t le r -L o n d o n
v l . l bl (R) -  v£ cl „l  (R )ÂB ( 1 0 ) and

and let the expansion coefficients i£xcj? L { R ) represent both v&l ^ l bl  ( R )  =  ^ l^ lbl  (Æ0)exp[ — aLaLbL( R  — R 0 ) ], ( 1 1 c)ÂB
the (dominant) first-order exchange and the (electrostatic) 
charge cloud penetration effects.

We have established that a grid of 6  angles 6  A and 0 B in 
the interval 0 < # < 77- and 5 angles $  in the interval 0 < ^ < 7r  is 
sufficient to obtain all the spherical expansion coefficients up 
to L A =  5 a n d L B =  4 (and vice versa), see Table III. Using 
the equivalence of the CO molecules, see Eq. (4),  we have 
calculated the Heitler-London energy at 105 orientations of 
the molecules, for three distances: R  =  5.5, 6.5, and 7.5 
bohr. The distance dependence of the expansion coefficients 

vL°LnL ( R )  for the exchange and penetration interactions has
A  D

been represented by three different forms:

exch

ÂB ÂB

Xexp[  — a L*L"L( R  — R 0)

( H a )

vZ I l (R)  =  vT Z , l (R o )’A  B

exch 

ÂB
R l a l b l

Ro

X exp [ -  S LaLbL U l - R o ) ] , ( l i b )

where R 0 is an arbitrary fixed distance. In the representa ­
tions ( 1 1 a) and ( l i b )  we have taken for v™chL L ( R 0 ) the

A  D

values of the expansion coefficients calculated at R 0 =  6.5 

bohr and we have calculated the parameters a

l al *l  £l al bl  from vaiues 0f the coefficients ator y  ~ “ ,S

R  =  5.5 and 7.5 bohr. The two parameters it™zhL L ( R 0 ) and
A  B

a LALBL in the representation ( 1 1 c) have been obtained from a 
least-squares fit to the values of the corresponding expansion 
coefficients at R  =  5.5, 6.5 and 7.5 bohr. Due to the fact that 
these R  points are equidistant and that R 0 is the middle

point, it follows that q LaLhL =  a ^ A^ .  The different param ­
eters in the representations ( 1 1 a) and ( 1 1 c) are listed in 
Table III. The parameters in representation ( l i b )  are not 
given, since this representation yields a potential that is prac ­
tically identical, for a wide range of distances R  and for all 
orientations, to the representation ( 1 1 a).

Most terms in the representation (11a) have positive

values of /3 LaLbL, see Table III. For a few terms /? LaLqL i s

negative, which implies that such terms will eventually blow 
up for very large R .  This is of no practical importance, how-

J. Chem. Phys., Vol. 92, No. 12,15 June 1990
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TABLE III. Short-range interaction parameters. The parameters (/?0)> a LKL*L and with

r 0 = 6.5 bohr, occur in the representation of the first-order exchange and penetration energy by Eq. (11a). 

Equation ( 1 lc) contains the parameters ^ l ul  (^o )  and q LaLbL. The latter, which are also used in the second

order damping functions, Eqs. ( 8 ) and (13), are equal to the a L*L"L (and therefore not given). Spherical 
expansion coefficients smaller than 0.5% of the isotropic coefficient have been omitted. For R  > 28 bohr the 
coefficients with negative L*L"L must be set to zero.

¿A L b L

V X l W

(kJ m ol~ 1 )

Üa L.i»JL
a

(nm _ l )

ß  Z-aZ-hL

(nm - 2 )
vT X l  ( -^o )
(kJ m ol~ 1 )

0 0 0 13.944 55 32.295 85 9.511 56 13.699 14
1 0 1 7.550 86 28.546 46 21.004 29 7.260 51
1 1 0 1.396 49 21.074 35 51.059 64 1.269 53
1 1 2 -  2.847 85 23.347 83 38.087 38 -  2.652 40
2 0 2 8.450 99 31.324 72 10.195 23 8.291 67
2 1 1 1.696 06 24.093 04 41.636 14 1.569 22
2 1 3 -  3.633 84 27.101 33 25.879 25 -  3.462 46
2 2 0 1.109 47 27.048 95 25.029 87 1.058 82
2 2 2 -  1.811 63 28.468 85 18.944 42 -  1.748 68
2 2 4 4.963 67 31.456 79 7.777 21 4.892 13
3 0 3 3.013 20 29.224 27 16.001 20 2.924 53
3 1 2 0.405 40 17.507 56 81.370 94 0.348 27
3 1 4 -  1.156 32 24.158 55 35.168 79 -  1.082 84
3 2 1 0.267 80 19.678 11 74.105 19 0.233 20
3 2 3 - 0 .5 1 2  38 24.429 69 38.176 71 - 0 .4 7 7  13
3 2 5 1.878 69 29.618 97 12.909 67 1.833 96
3 3 4 0.118 22 16.312 21 103.290 30 0.097 49
3 3 6 -  0.695 57 27.755 23 17.027 04 - 0 .6 7 3  81
4 0 4 1.544 72 31.079 85 7.658 43 1.522 79
4 1 3 0.186 03 17.209 93 102.454 51 0.153 64
4 1 5 - 0 .6 5 2  10 26.164 14 31.195 66 - 0 .6 1 5  21
4 2 2 0.111 50 18.752 43 98.317 26 0.092 81
4 2 4 -  0.269 33 26.986 53 24.718 17 - 0 .2 5 7  18
4 2 6 1.173 49 32.434 34 1.568 09 1.170 06
4 3 5 0.069 61 19.757 10 87.188 63 0.059 15
4 3 7 - 0 .4 9 0  71 31.097 66 5.671 44 -  0.485 55
4 4 8 0.379 22 34.961 43 -  8.782 19 0.385 48
5 0 5 0.394 00 30.459 86 7.985 77 0.388 17
5 1 6 - 0 .1 6 5  61 25.679 89 26.619 33 -  0.157 58
5 2 7 0.365 05 32.797 17 -  2.239 90 0.366 58
5 3 8 -  0.158 80 32.103 22 - 3 .6 1 0  63 -  0.159 87
5 4 9 0.141 40 36.294 47 -  15.655 32 0.145 59

Â B

ever, if we truncate those terms at their minimum values, 
because these minima occur always for R  > 28 bohr and the 
short-range interactions are completely negligible at these 
distances. Some other terms have a maximum. All these 
maxima occur for R  < 5 bohr and it is reassuring that these 
terms also have maxima in the representation ( l i b ) ,  ap ­
proximately at the same values of R .  In the latter representa­
tion the majority of the terms have maxima, however, be-

LaL are positive (and some­
times large). Although these maxima occur mostly at very 
small values of R ,  we prefer the representation (11a) over 
( l i b ) .  The representation (11c) is, of course, simpler. For 
those orientations of the CO molecules where the exchange 
repulsion is still noticeable at distances substantially larger 
than R  =  7.5 bohr, the potential with representation (1 lc) 
begins to deviate from the representations ( 1 1 a) and ( l i b )  
at those distances. This applies in particular to the linear 
geometries of the (C O ) 2 dimer, see Fig. 1.

cause most of the parameters yL

From the values of the parameters i£xc£ L ( R 0) and

v? X l  (*o) m  Table III it is clear that the spherical expan­
sion is converging. Coefficients smaller than 0.5% of the

2 .0

1.0

o
E

>

0 .0

- 1.0

- 2 .0
8 9 10

R (bohr)
11 12

FIG. 1. C O -C O  interaction potential for different orientations of the m on ­
omers [with the use of the experimental value of the dipole moment and 
representation (1 la)  of the exchange repulsion].

J. Chem. Phys., Vol. 92, No. 12,15 June 1990
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isotropic (LA,LB,L) =  (0 ,0 ,0 ) coefficient have been omit­
ted from Table III. A check of the accuracy of the complete 
analytic representation of the first-order exchange and elec­
trostatic interactions by comparison with (independent) a b  

in i t io  calculations of the Heitler-London energy at distances 
and orientations not included in the grid is shown in Table
IV.

Let us now return to the damping functions f n ( R )  in 
Eq. ( 8 ). For the isotropic interactions between atoms, where 
the first order overlap repulsion can be fitted to the form 
A  exp ( — a R  ), Tang and Toennies27 have proposed to damp 
the individual terms in the dispersion series

Z f n { R ) C nR  - ( 1 2 )
n

by means of damping functions

ƒ „ (* )  =  !

n

2
Lk =  0

( a R )  

k  !
exp( — a R ) , (13)

which behave as

/ „ ( * ) - 1 

f n ( R ) ~ 0  +  0 ( R

if R 00

n +  1) if 7? ->0 .
(14)

The latter condition can be easily verified by noting that the 
expression between square brackets in Eq. (13) is the trun ­
cated Taylor expansion of exp ( a R ) .

For the anisotropic interactions between CO molecules 
we have chosen to damp each ( L A , L B ,L ) term in the spheri­
cal expansion of the dispersion interactions, Eq. ( 8 ), by

functions f LnAL"L ( R )  that have the form of Eq. (13). The

parameters q LaLkL have been obtained from representation 
(11c) of the first-order exchange repulsion. As already not-

ed they are equal to the parameters a  " “ appearing in 
(11a), see Table III. For CO the present damping functions

are to be preferred over those used2 for N 2, which are based 
on Eq. (11a),  because the terms in (11a) that have maxima 
lead to oscillatory behavior of the damping functions for 
short distances.

In the actual computations the monomer wave func­

tions ip$ and if% are SCF-LCAO functions calculated with 
the ATMOL package36 in the Gaussian (1 \ s , l p , 2 d  /  

9 s , 6 p , 2 d )  basis for C and O, as given in Ref. 37. The CO bond 
length is fixed at r  =  2.132 bohr. The orientation vectors rA 
and rB are chosen to point from C to O. The monomer prop­
erties calculated in this basis are listed in Table I. Apart from 
the (very small) dipole moment, which has the wrong sign 
in any SCF treatment, the ground state of the monomers 
appears to be well described. This dipole moment is replaced 
by the experimental value33 in the final potential, given in 

Tables II and III; for the overall potential and, in particular, 
for the second virial coefficients (see below), this makes lit­
tle difference. In the calculation of the long-range dispersion 
coefficients by Rijks and Wormer25 a ( \ 2 s , l p , 3 d , 2 f  /  

6 s ,5 p ,3 d ,2 f )  basis including more polarization functions has 
been used. The computation of the Heitler-London energy 
took about 30 min of CPU time, for each point on the poten­
tial surface, on the NAS 9160 university computer at Nijme­

gen.
This completes the description of the anisotropic CO­

CO potential. The terms in this potential with even L A and 
L b are comparable in size with the corresponding terms in 
the N 2- N 2 potential, 2 both in the long range and the short 
range. The head-tail asymmetry in CO is reflected by the 
terms in the spherical expansion with odd L A and /o r L B. 

This lack of inversion symmetry is also illustrated by the 
numerical results in Table IV, by the potential curves in Fig. 
1 and by the energy surface in Fig. 2. For the linear geometry 
of the (C O ) 2 dimer, for instance, the exchange repulsion is

T A B L E  IV. C om parison  o f  the spherical expansion o f  the  H e i t le r -L o n d o n  energy, V n) = V cWc +  > with d irect ab initio calculations. E xchange  repu l ­

sion represented  by Eq. (1 1 a ) ;  energies in kJ m o l -  '.

Oa ^  B *

R =  5.5 b o h r R =  6.5 b o h r R =  7.5 bohr

i /d )
expanded

r /d )
ab initio

r/(D
expanded

T/( 1 )
 ̂ ab initio

r/d>
expanded ' ab initio

0° 90° 0° 38.530 37.782 4.817 4.805 0.252 0.261

90° 90° 0° 20.120 20.159 4.276 4.223 1.187 1.166

90° 90° 180° 17.234 14.974 2.640 2.374 0.403 0.378

90° 90° 90° 15.609 14.954 2.712 2.654 0.517 0.516

0° 180° 0° 135.637 150.261 17.729 19.712 2.852 3.188

45° 45° 0° 67.992 70.864 11.648 12.042 1.420 1.481

45° 45° 180° 132.224 126.295 22.724 21.865 4.000 3.864

135° 45° 180° 114.906 118.445 24.867 25.469 4.632 4.744

135° 45° 135° 123.536 128.420 27.012 27.741 5.057 5.184

135° 45° 0° 316.111 305.900 66.819 65.078 13.992 13.669

90° 90° 135° 15.621 14.567 2.362 2.373 0.345 0.386

0° 0° 0° 440.837 469.728 79.080 82.770 14.140 14.644

180° 0° 0° 1135.089 1241.556 256.586 271.314 55.608 58.243

0 a 0 B * R =  5.0 b o h r R =  6.0 boh r R =  7.0 b o h r

30° 0° 0° 804.342 826.765

30° 30° 10° 411.052 396.443 13.704 13.211

0° 0° 0° 187.831 197.751

30° 30° 150° 18.434 18.319
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minimum, however ( 0 A =  40°, 0 B =  70°, 7?min =7 . 17  bohr 
and Vmin =  — 1.71 kJ/m ol), and for (f> =  180° there is a sec­
ondary minimum for a shifted antiparallel structure ( 0 A 

=  10°,0B =  110° ,R min = 6 .7 7  bohr and Vmxn =  -  1.66 k J /  
mol. Such small energy differences are within the errors 
made in the present calculations, however, so the only con­
clusion we can reasonably draw is that the (C O ) 2 dimer will 
show wide-angle oscillations in its vibrational ground state, 
with low-lying excited states that may have a completely 
different structure, just as is the case in the (N 2 ) 2 dimer .38

III. SECOND VIR IAL COEFFICIENTS

Using the potential presented in the previous section we 
have calculated the second virial coefficient B ( T )  over the 
temperature range (77 K < T <  573 K ) in which it has been 
measured .28,29 Since our potential has the form of the spheri­
cal expansion ( 1 ), we can directly use the formulas for two 
linear molecules presented by Pack .30 We have included the 
first quantum corrections due to the relative translational 
(R ) motions, the molecular rotations (A ) and the Coriolis 
term (C):

B ( T ) = B c]asm + B < Rl ) ( T )  +  B " \ T ) + B " \ T ) .

(15)

The derivatives required in the quantum corrections have 
been calculated analytically. The integrations over the four­
dimensional configuration space have been made by using 
the same type of quadrature as described in Sec. II for the 
angles ( 0 A , 6 B ,(f>) with 8 X 8 X 7 points and a 1 0 0  points tra ­
pezoidal rule for the distance R  in the range from 4.8 to 45 
bohr. In the inner region, R <  4.8 bohr, the function 
exp( — V / k T )  is effectively zero; this yields a constant con­
tribution to the classical term and zero for the quantum cor­
rections. In the outer region, R  > 45 bohr, all contributions 
are negligible. We have checked that the results for i? (70, 
given in Table V, are stable against changes in the integration 
parameters and in the boundaries.

T A B L E  V. Second virial coefficients ( in  c m 3 mol - 1 ), ca lcu la ted  from  the ab initio potentia l w ith  the experi ­

m ental dipole m o m en t  and  represen ta tion  (11a)  o f  the  first-order exchange repulsion. T h e  values o f  B tol in 

parentheses are  calculated  w ith  the  s im pler represen ta tion  ( 11c) o f  the  exchange repulsion.

T{K) -^clas B </> B <!> *«ot Bexpt] (Refs. 28 an d  29)

77.3 -  319.74 4.82 6.23 0.31 -  308.38 ( - 299.86) -  320.0

90.1 -  234.53 2.91 3.64 0.18 -  227.80 ( - 221.59) -  230.0

143.0 - 9 3 . 1 1 0.82 0.92 0.05 -  91.34 ( - -  88.55) - 9 2 . 0

173.0 - 6 1 . 0 5 0.53 0.56 0.03 -  59.94 ( - -  57.83) - 6 2 . 0

213.0 - 3 5 . 3 5 0.34 0.34 0.02 -  34.65 ( - -  33.07) - 3 5 . 0

242.0 -  23.08 0.26 0.26 0.01 -  22.54 ( - - 2 1 .2 0 ) - 2 2 . 8

263.0 -  16.21 0.23 0.22 0.01 -  15.75 ( --  14.55) -  16.0

273.0 -  13.38 0.21 0.20 0.01 -  12.96 ( --  11.81) -  13.0

298.1 - 7 . 2 7 0.18 0.17 0.01 - 6 . 9 1  ( - 5 . 8 8 ) -  8.0

323.2 - 2 . 2 8 0.16 0.14 0.01 -  1.97 ( -  1.04) - 3 . 7

348.2 1.85 0.14 0.12 0.01 2.12 ( 2.98) 1.1
373.1 5.32 0.12 0.11 0.01 5.55 ( 6.34) 4.6

398.1 8.28 0.11 0.10 0.01 8.49 ( 9.23) 7.7

423.2 10.85 0.10 0.09 0.00 11.04 ( 11.72) 9.6

473.2 15.00 0.08 0.07 0.00 15.15 ( 15.75) 14.5

513.2 17.63 0.07 0.06 0.00 17.76 ( 18.31) 17.3

573.2 20.75 0.06 0.05 0.00 20.87 ( 21.35) 20.5

FIG . 2. O rien ta tiona l  dependence  o f  the  van der  W aals  well dep th  (in  k J /  

mol) in the  C O - C O  poten tia l  for (f> — 0°. N o tice  the sy m m etry  co rre sp o n d ­

ing with Eq. (4 ) .  O rien ta t ions  w ithou t  a well (cf. Fig. 1) are  found in the 

upper left-hand corner.

about 10 times larger (at the same distance R )  for OC-CO 
than for CO-OC. This is due to the larger extension of the 
charge distribution on C, compared with O, and to the fact 
that the center of mass of CO lies more closely to the O atom. 
For larger distances this factor increases, which indicates 
that the charge density decays more steeply around O than 
around C.

The anisotropy of the CO-CO interaction is displayed 
as a contour plot in Fig. 2. For most angles (f> we have found 
that the T-shaped structure with the O atom of one molecule 
pointing towards the other molecule ( 0 A = 0°, 0 B =  85°, 
R m m 7.28 bohr and V.mm =  — 1.67 kJ/m ol is most stable. 
For the angle (p =  0° shown in Fig. 2 there is still a deeper
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F IG . 3. Second virial coefficients o f  CO. T he  experim ental da ta  (Refs. 28 

and  29) are indicated w ith  (es t im ated )  e r ro r  bars, the ab initio calculations 

are  represented  by the closed curve. T he  dashed curve is the  second virial 

coefficient calculated  with the isotropic potential.

The effect of the anisotropy in the potential is quite im­
portant (see Fig. 3). The quantum corrections are signifi­
cant only at the lowest temperatures (see Table V). The 
Coriolis term is always small. The quantum corrections for 
the translational motions are practically the same as in nitro ­
gen2; the rotational and Coriolis correction terms are more 
than twice as large. This is caused by the additional aniso­
tropic terms (with odd L A and/or L B ). The replacement of 
the calculated dipole moment by the experimental value has 
little influence on the virial coefficients. The use of the ex­
perimental quadrupole moment would not visibly change 
the curve in Fig. 3. The accuracy indicated for the experi­
mental data28,29 is typically +  6 cm 3 mol- 1  at the lowest 
temperatures, +  2 cm3 mol - 1 in the middle range and +  1 

cm3 mol” 1 at the higher temperatures. We conclude that the 
a b  in i t io  CO-CO potential calculated and represented in Sec.
II yields a B ( T )  curve in good agreement with the measured 
data, practically within the experimental error bars for all 
temperatures (see Fig. 3). The damping of the dispersion 
terms in the potential is essential to obtain this agreement. 
The simpler representation ( 1 lc) of the first-order exchange 
repulsion is somewhat less accurate ( see Table V ). The virial 
coefficients calculated with the a b  in i t io  potential are far bet­
ter than the data obtained39 from some empirical anisotropic 
CO-CO potentials. They are also at least as good as the virial 
coefficients computed, in a narrower temperature range, 
from a model potential that has been specifically fitted to the 
experimental virial coefficients and viscosity data .40 

N o t e  a d d e d  in p ro o f:  Recently we have been informed by 
Prof. B. Schramm (private communication) that the latest 
measurements of the second virial coefficient at 77.3 K yield 
a value of — 307 +  5 cm3 m ol“ l . This brings our calculated 
value within the experimental error bars, also at this tem ­
perature (see Table V and Fig. 3).
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