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In this paper we present the implementation of the two-component scaled zeroth-order regular
approximation(ZORA) method in the molecular electronic structure packagRESs-UK. It is the

first application of this method, which was earlier investigated in the context of density functional
theory, in moleculaab initio basis set calculations. The performance of the method is tested in
atomic calculations, which we can compare with numerical results, on xenon and radon and in
molecular calculations on the molecules AgH, Bl, AuH, TIH, and Bj. In calculations on the,l
molecule we investigated the effect of the different approaches regarding the internal Coulomb
matrix used in the ZORA method. For the remaining molecules we computed harmonic frequencies
and bond lengths. It is shown that the scaled ZORA approach is a cost-effective alternative to the
Dirac—Fock method. €2000 American Institute of Physids$S0021-9606)0)32034-7

I. INTRODUCTION basis sets optimized originally for Dirac—Fock calculations,
see, e.g., Ref. 15.
The inclusion of relativistic effects is essential in the In the present paper we present the first implementation

quantum chemical description of compounds containing on@nd applications of the two-component ZORA Hamiltonian
or more heavier elements, see, e.g., Ref. 1. Highly accuratgithin an ab initio basis set framework. Unlike the earlier
but unfortunately extremely costly, calculations can be perdescribed scalar ZORA Hamiltonidrthis Hamiltonian in-
formed using the full theory of quantum electrodynamics.cludes spin—orbit coupling. We give a short review of the
Due to the computational requirements, these calculationtheory followed by details of the implementation of the
can only be performed on small atomic systems. To be ableethod in thecAMESS-UK packagé. Within this implemen-
to treat systems of chemical interest it is therefore necessatgtion there is room for several approaches regarding the so-
to make approximations. called internal Coulomb matrix. An explanation of this con-
An accurate method is based on the solution of the foureept and the different approximations used will be given.
component Dirac—Fock equations, the relativistic analog offhese approximations are tested in calculations on the |
Hartree—Fock. This method is still very costly mainly be- molecule.
cause of the use of large basis sets needed for a proper de- We test our implementation by calculations on the xenon
scription of the small component. An attractive alternative isand radon atoms. These atomic calculations are compared
to transform the four-component Dirac equation to a two-, owith numerical ZORA calculations using our ZORA imple-
even one-, component formalism. The ZORZeroth-order mentation in thesRAsP2program:°
regular approximationor CPD method, originally developed In molecular calculations on the diatomigs HI, AgH,
by Chang, Pellisier, and Durand and by Heulyal>®and ~ AuH, TIH, and Bi, we investigate the performance of the
later generalized to molecular density functional theory byZORA Hamiltonian. The quality of the wave functions is
van Lenthe, Baerends, and Snijdetand in its scalar form asserted by comparison of orbital energieg @ith four-
to ab initio methods by the present auth6rsperforms such ~ component Dirac—Fock results, obtained using M2 FDIR
a transformation. A calculation based on the ZORA methodProgram packag€: The calculations on the equilibrium ge-
can therefore, in principle, be performed using only a largeometries and harmonic frequencies of the molecules Hl,
component basis, thereby circumventing the use of kinetiAgH, AuH, TIH and B}, are used to test the validity of the
cally balanced basis sets. Since the ZORA orbitals resemblene-center approximation to the internal Coulomb matrix.

the Dirac large components spindrsye can make use of Furthermore the results are compared with experiment and
full Dirac—Fock results obtained with thmrac program*?

a o The comparison with scalar ZORA calculations unveils the
Electronic mail: joop@chem.uu.nl

YPermanent address: Department of Chemistry, University of Oslo, P.O(.':'ffec_t of th_e inclusion of spin—orbit coupling in the self-
Box 1033 Blindern, N-0315 Oslo, Norway. consistent fieldSCH procedure.
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Il. THEORY

_ o p(rr) =2 yl(r)g(r). v
Using an expansion irE/(2c>—V) on the Foldy— toce
Wouthuysen transformed Dirac—Fock equation one can dqt implies
rive the ab initio ZORA and scaled ZORA equatiofisThe

equations, which still contain the large and small compo- Jost I~y ®)
nents of the Dirac spinor, read In the same spirit we assume
1 Kps~Kyy
FEORAY = e[ ORMy;, SFPORAY = eZQ i, (D e ©
K¢X’KX¢’%O'

where ¢;; is the two-component ZORA orbital. The ZORA

o This leads to the removal of the off-diagonal and small
Fock operator is given by

component Coulomb and exchange operators. The resulting

JORA 1 ZORA Fock operator is given by
F —(Co-p—K¢X) (202—V?X+KXX) (Ca-p—de,) o o2 , (
FORA= g p=—5 o p+VI—K 10)
VK 4, 2 2c2-V{ °
and the scaling factor by with
S=1+(yil(co-p—Ky)) V=Vt Iy, (11)
1 and the scaling factor
X (co-p—K, ) 4. 3 2
2c2— V4K, )2 XL c
(26T ) S=1+(il(0-P) iz (Pl ). 12
We use the abbreviation ¢
V=V 43 4] @ We can now perform two-component ZORA calcula-
c ~ VnucT Yoo XX*

tions using only a large component basis set.
The large and small components of the original Dirac

spinor are denoted bg; and x;. The relation betwee; ,

¢;, and x; is determinated by the Foldy—Wouthuysen

transformatiof and has become energy independent by the  The two-component ZORA method is implemented in a

use of the expansion i&/(2c?—V). J andK are the Cou- separate module in th@amEss-UK packagéthat allows only

lomb and exchange operatorsis the speed of lightg are  SCF calculations. The difference from the previously pre-

the Pauli matrices. Equatio®) and(3) differ from the local  sented scalar ZORA scheme is that the ZORA Fock operator

density form derived earliéP by the presence of the ex- (10) contains the spin operators Hence, the orbitals have

change operatork ,, andK,, coupling the large and small to be expanded in a set of spin orbitdls{}, with ¢ the

components. Another difference can be found in the densitgpatial and/ the spin part(either « or 8). Theith ZORA

used in the different exchange potentials in the denominataorbital can be written as

of the ZORA kinetic energy term. In the present formulation

based on Dirac—Fock, we have an exchange poteKtal Pi(r,s)= >, s idu(ra(s)+ch b, (rB(s), (13

only due to the small-small density u

lll. IMPLEMENTATION

wherer denotes the spatial coordinate ashe spin coordi-
pSr,r )= xi(nxi(r’), (5)  nate. Note that the coefficients; ; and cﬁ’i can be, and in
toce general are, complex. The total density matrix can be written
whereas the exchange—correlation potential used in the deas

sity functional theoryDFT) case contains the total density pre  peb
f t (IOB“ phP ) 19
p(N=2 &N () +x{(Nxi(r). 6)
Iocc W|th

Furthermore, the remaining exchange term indbeni-
tio Fock operator contains the large component density. The  p&7=> cf*cl,, {,n=a or . (15)
density functional formulation again uses an exchange- roce
correlation potential containing the total density. These matrices have the properties

At this point the density is still calculated from the large e e B "
and small component spinors obtained from the backtrans- pre=(p)!,  pP=(p)T,  pfr=(p=)! (16
formed ZORA orbitals. An easier and more practical SCFand in the closed shell case we have the additional relation
procedure is obtained when we lose all dependence on thg**=(p?#). The real parts op*® and p?# are symmetric,
small component&.In order to achieve this we make use of whereas the imaginary parts pf* andp?? and the real and
an approximate density derived directly from the ZORA or-imaginary parts op?® andp®? are antisymmetric. The total
bitals density can be written as
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oce cancel in the second and third terms of E2R). T?°RA then
p(r)=2, f |¢i(r,s)[>ds reduces t@?/2, the nonrelativistic kinetic energy operator. If
bos we would have inserted the resolutions directly into &1)
=S (e 48 we would only have had a reliable representation of the ma-
T~ (Pt Pu) $u(r) (1) (17 trix elements if the resolutions were complete in the range of
. o-p and 1/(1-V./2c?). This is a far more severe require-
The properties ensure the fact that the total density, agent.
given in Eq.(17), remains real in spite of the complex den-  Second, the splitting off of the nonrelativistic kinetic en-
sity matrices, even in an open shell case whepd“(  ergy ensures us of having the correct answer in the nonrela-

+pPP),, can have imaginary elements. Moreover we segjyistic limit (c— ). Direct use of the resolutions in Eq.
that the two-electron part of the Fock matrix is Hermitian. (21) leads, in this limit, to the approximation

The total two-electron Fock matrix can be written as

1
Jee—Kee K s T3 2 (bulul ol 61008, (i la ol b,
K Ba JBB_KBB ( ) (23)
with of the nonrelativistic kinetic energy, again requiring the reso-
lution to be complete in the range ofp. In Eq.(22) the last
Jzﬁ:‘],’%:E (P + ) (pub | Drdb) (19 two terms cancel in the nonrelativistic limit since 1
o —V,./2¢? reduces to 1.
and We now show that we can rewrite all terms in the ZORA
kinetic energy(22) in terms of already available gradient
Kfﬂ:E pii’(¢ﬂ¢x|¢x¢u), (20) integrals. To this end we realize that the Gaussian basis set
K,\

functions used depend on the difference of the electr@nic
where¢ and 7 are eithera or 8. The two-electron matrices and nucleari(y) coordinates onlys,,(r—ry). So
originating from the symmetri¢parts of the density matri- P
ces can be constructed using the, already available, unre- <¢#a|g-p|¢)ya>:+i<¢ﬂ|f|¢y>,
stricted Hartree—Fock matrix builders. The antisymmetric N

(parts of thé density matrix, however, required the develop- g (24)
ment of new code. (uBlopld,B)=—1(¢ul = ¢),
The one-electron part of the Fock matrix requires the N
evaluation of the matrix elements BF°RA, and
1 1 J J
ZORA_ . .
T =5(dululop VA opl L) (21) <¢#a|a-p|¢vﬁ>=l(¢ﬂ|m—l ﬂ'w' (25)
- 2¢?

Where we used the standard representation of the spin op-
These matrix elements can be calculated most easily by irerators, the Pauli matrices

sertion of resolutions of identity. Furthermore we split off 0 ) 10
—i
, O'y:(i O)' 0'2=(0 _1). (26)

the nonrelativistic kinetic energy. We write o= ( 01
X
TEORA (0, L% 0,0~ 5 S (Bululorpldr) e
pr T\ PubulPTI9u6)) T 5 N nul TPIPAEN The spin functions are then represented oy (5) and B
=(9). Consider, e.g., thew part of the second term of Eq.

XS, N prlnlowple,L,) (22). Using the relations in Eq$24) and (25) we write
1 _
52 (Gulloplenins,’ 2 2 (dualopl S, (o)

Ve - =D,D,+D,D,+D,D,+i(D,,D,—D,:Dy), (27
X(ral 1= 5l bt e T T
whereD; denotes the derivative of the overlap matrix with

XS, 1<¢>K§K| op|ld,l,), (22 respect to nuclear coordinaitg,
whereS;l is the inverted metric in the nonorthogonal basis. _ d o
In the last term of Eq(22) we have used an inner projection, (Di)w_<¢u|f|¢v% IN= XN YN (28)
replacing the matrix of an inverse operator by the matrix N
inverse of the operator. and the dot is used to represent a standard matrix multipli-

This procedure has two advantages. First, we now need@ation in a nonorthogonal basis
basis set in the resolution of the identity that is complete in
the range oW /2c2. In the region wher&/./2c? is negligible (AB)=2 Au(Sy) By (29)
the terms arising from the incompleteness of the resolution !
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The ap, Ba, andBp contributions can be rewritten in the electron part ¥,,,9 with only intra-atomic parts.
same way. The last term of E(R2) contains no extra diffi- (2) Use the density of the atomic startup for evaluation
culties since(¢, {,|1—(Ve/2c?)| b, L, is diagonal in spin  of the Coulomb matrix in the ZORA corrections and keep
(so {\={,). The real partD,-D,+D,-D,+D:Dy, is also  the ZORA corrections constant during the remainder of the
present in our implementation of the scalar ZORA method. SCF procedure.

As noted earlief, it is convenient to use two different
basis sets in our calculations. The first one, the external bav. BASIS SETS
sis, is the one used in the electronic structure calculation. .

i . . . In the calculations on the xenon atom we have used two

The latter, the internal basis, is the one used in the resolutio

of the identity. There are two aspects in the construction Oalfferent bz.iS'S Sﬁts' The_ ﬂ.rSt one, which we will call .aQ'
the internal basis. Justed Huzinaga,” was originally developed for nonrelativis-

. . 4 . . _
(1) The (¢|plx)(x|(-+) products of integrals should tic calculation$* and was augmented with extra high expo

be correctly represented. Consider a matrix elenisip p), nents- andp-type functions and with diffuse- and f-type

. i functions to account for the relativistic contraction and ex-
wheres andp denote ars- and p-type Gaussian basis func-

tion. The momentum operator working on a high exponenﬁanSion of the corresponding orbitals. The basis set is used
i : e ncontracted. The second basis set is taken from Byaiid
(g produces ap| with the same exponent. This high expo-

tot G o L not i ; is the large component basis of a basis originally developed
nentp-type taussian is, in general, ot present in our exter, . ny; - £ock calculations. It is again used uncontracted. In
nal basis set. The internal basis, however, should contain th

. - . the case of the radon atom we followed the same recipe as
function. Generalizing this argument {®, d-, and f-type

f . hat th i el for the xenon “adjusted Huzinaga” set. In the corresponding
unctlon_s we see that t. e matrix e_ements are representqi oc_Fock calculation the small component functions were
exactly if we define our internal basis &g} C p+{}.

h lomb o .. generated by kinetic balance.
(2) The Coulomb matri®/c=Vpn,ctJ,, appearing in In the case of the,lmolecule we used a basis from

the inverse operator needs to be evaluated in the intern@ioirier Kari, and Csizmedi again augmented with extra
basis. This is generally done by projecting the external denfunctio,ns an’d used uncontracted.

sity matrix onto the internal basis and building the Coulomb The calculations on the HI molecule were performed
potential from the resulting density. This projection is exact,,;ih g Dyall set® on I. The basis sets used on the silver
if the internal basis contains the external basis. Hence thﬁold thallium, and bismuth atoms are again based on no}w-
condition:{x}C{¢} ensures an exact projection. relativistic basis sets taken from Huzinaga and adjusted to

In practice we have chosen to construct the internal basigcorporate relativistic effects. In all cases we used a SV
by copying all functions from the external basis onto the3 513 set on hydroge.

internal basis, thereby fulfilling the second condition com- ¢ adjusted Huzinaga and Poirier sets are available
pletely. The_interna_ll basis is successively augmen_ted witr&pon request. All molecular calculations have been per-
p-type functions with exponents of external functions  formed using spherical harmonic functions. The atomic cal-

higher than the highest extermatype functions; witii-type  ¢yjations are performed using a Cartesian basis.
functions with exponents of externgdfunctions higher than

the highest external-type functions; and so on. This means \y RESULTS

that we approximate the first condition. The resulting internal _ i

basis(size N;) is usually considerably bigger than the ex- A- Atomic calculations

ternal basigsize Ngy) . Table 1 lists the orbital energies for the xenon atom from

The evaluation of the Coulomb matrix in the internal numerical as well as basis set Dirac—Fock and scaled ZORA
basis is done using a direct algorithm. The screening of inealculations. The basis set results are obtained with the ad-
tegrals ensures the fact that we only compute integrals thatisted Huzinaga set and the larger basis set from Dyall.
are contracted with a nonzero element of the density matrix. ~Looking at the numerical results we see that, except for
Consequently, integrals of the tyjggx|xx) are avoided and the deep core region, the scaled ZORA method reproduces
the calculation of the internal Coulomb matrix is an opera-the Dirac—Fock results closely. The error ranges from 1.73
tion of orderNZ,NZ2, instead ofN,. hartree for the & to 0.0001 hartree for thefh,,.

To be able to reduce the computational work even fur-  The basis set error can be compared for the adjusted
ther we have implemented several possibilities for the conHuzinaga and Dyall basis sets. For both sets it is seen that
struction of the internal Coulomb matrix. the basis set error made by scaled ZORA is of the same order

(1) Project the external density matrix onto the internalin magnitude as the basis set error in the Dirac—Fock calcu-
basis and build the full or one-center Coulomb matrix. Thelation in the same set. Sometimes, however, the error in the
latter is of course an approximation of the first, but, sincescaled ZORA results is slightly larger. This is probably due
V/2c? is only large near the nuclei, we expect that this extrato the incompleteness of the internal basis. Of course, the
approximation does not result in a serious loss of accuracyabsolute value of the basis set error, for both methods, is
The effect of the one-center approximation has been investsmaller in the larger basis set from Dyall.
gated and will be commented on in Sec. V. This approxima-  The relativistic effect in the orbital energies of the xenon
tion has been made to reduce the computational cost of thetom is 50 hartree for thesland decreases to 0.06 hartree,
evaluation of the two-electron Coulomb matrix in the inter- which is still significant, for the § orbital. The spin—orbit
nal basis. Note that it is also necessary to build the onesplitting in the 5 shell is still 0.05 hartree.
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TABLE I. Orbital energies for the xenon atom obtained with the Dirac—Fock and scaled ZORA methods.

Faas et al.

Dirac—Fock ZORA Dirac—Fock ZORA Dirac—Fock ZORA

numeric numeric Huzinagd Huzinagd Dyall Dyall®
1s —1277.3687 —1275.6352 —1276.2021 —1274.8530 —1277.2511 —1275.5423
2s —202.4784 —202.2698 —202.3546 —202.2127 —202.4603 —202.2547
2pa —189.6793 —189.6160 —189.6442 —189.4510 —189.6729 —189.5154
2p3s —177.7038 —177.5994 —177.7118 —177.6218 —177.7003 —177.6275
3s —43.0131 —42.9738 —42.9836 —42.9724 —43.0057 —42.9673
3p1e —37.6598 —37.6513 —37.6609 —37.6068 —37.6549 —37.6120
3papn —35.3251 —35.3078 —35.3345 —35.3215 —35.3208 —35.3156
3dsp —26.0232 —26.0232 —26.0162 —26.0045 —26.0181 —26.0117
3ds), —25.5369 —25.5311 —25.5382 —25.5313 —25.5323 —25.5308
4s —8.4305 —8.4232 —8.4254 —8.4246 —8.4255 —8.4185
4py —6.4525 —6.4520 —6.4525 —6.4340 —6.4479 —6.4315
4psp, —5.9827 —5.9804 —5.9848 —5.9870 —5.9785 —5.9823
4d3, —2.7113 —2.7125 —2.7095 —2.7066 —2.7069 —2.7046
4dg), —2.6337 —2.6339 —2.6337 —2.6350 —2.6294 —2.6316
5s —1.0102 —1.0094 —1.0092 —1.0098 —1.0070 —1.0061
5p4p —0.4926 —0.4927 —0.4924 —0.4871 —0.4888 —0.4840
5pa —0.4398 —0.4397 —0.4398 —0.4417 —0.4367 —0.4385

Modified, based on Ref. 14.
PReference 15.

The method has also been tested on the heavier radarbitals, respectively. However, even here the error is small
atom, Table Il. The relativistic effects in this atom are evencompared to the relativistic effect. The agreement in the
larger, ranging from 414 hartree on the drbital to 0.2  (sub valence shells is very good.
hartree on the & The spin—orbit splitting is as large as 101 Comparing the basis set results for Dirac—Fock and
hartree for the B shell and decreases to 0.16 hartree in thescaled ZORA, obtained in the adjusted Huzinaga set, with
valence shell. the numerical results, we see that the basis set errors are

The numerical scaled ZORA results deviate significantlyagain of the same order in magnitude. The basis set errors are
from the numerical Dirac—Fock results in the deep core realways significantly smaller that the size of the relativistic
gion. The errors are 9.1 and 1.3 hartree for tleeahd Z  effect.

TABLE II. Orbital energies for the radon atom obtained with the Dirac—Fock, scaled ZORA, and nonrelativ-

istic method.
Dirac—Fock ZORA Dirac—Fock ZORA Nonrel.
numeric numeric Huzinagd Huzinagd numeric
1s —3644.8056 —3635.6847 —3635.2927 —3627.6551 —3230.3128 %
2s —669.3867 —668.0729 —665.0317 —666.0655 —556.9131 23
2pyp —642.3553 —641.7975 —641.1660 —639.2556 —536.6770 D
2p3p —541.0813 —540.5567 —541.7030 —541.4071
3s —166.9675 —166.6788 —165.2106 —165.9139 —138.4219 3
3P —154.9012 —154.7955 —154.6073 —154.1382 —128.6716 K}
3pap —131.7246 —131.6164 —131.8994 —131.9312
3ds —112.5611 —112.5389 —112.3169 —112.1751 —110.7013 Gl
3ds)» —107.7535 —107.7045 —107.7484 —107.6409
4s —41.3487 —41.2782 —40.8703 —41.0651 —33.9207 4
4Py —36.0209 —36.0002 —35.9615 —35.8068 —29.4912 s}
4pgp, —30.1186 —30.0962 —30.1860 —30.2115
4ds), —21.5464 —21.5465 —21.4956 —21.4501 —21.3313 4
4dsy —20.4371 —20.4305 —20.4580 —20.4345
4fg), —9.1927 —9.1990 —9.2241 —9.2120 —10.1076 4
At —8.9270 —8.9293 —8.9644 —8.9575
5s —8.4168 —8.4025 —8.3145 —8.3572 —6.9058 5
5P —6.4090 —6.4066 —6.4021 —6.3465 —5.2252 D
5pap —5.1752 —5.1724 —5.1949 —5.2058
5d3, —2.1892 —2.1910 —2.1844 —2.1712 —2.3263 5
5ds), —2.0161 —2.0168 —2.0232 —2.0194
6s -1.0727 -1.0707 —1.0559 —1.0620 —0.8740 &
6Py —0.5403 —0.5404 —0.5398 —0.5216 —0.4280 (&)
6pP3p —0.3839 —0.3839 —0.3866 —0.3896

Modified, based on Ref. 14.
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TABLE Ill. Orbital energies of selected orbitals of &t 5.0 bohr, obtained  K5hpy displaved in Fia. 1 is obtained from fittina ous |
with the scaled ZORA method, using different Coulomb options and thedatat.) play 9. 9 b

Dirac—Fock method.

The largest spin—orbit splitting can, of course, be found
ZORA ZORA ZORA in the 27 orbital. Since the spin—orbit splitting is large and
Dirac—Fock full one center  atomic start  the jnteraction splitting, i.e., the splitting between gerade and
1o —1225.9171 —1224.3790 —1224.3786 —1224.3839 ungerade orbitals, is very small, the observed energy levels

should be interpreted as being atomic. The tvpg,20rbitals

2 T1930169  ~1928347  ~1928346  ~192.8355 are combined in the highestrrbital, for which the gerade
—180.4957  —180.2990  —18.2989  —180.2998 and ungerade combination have the same energy. The re-
2m —169.5547  —169.4885  —169.4884  —169.4886 maining 25, orbitals are combined in four orbitals, for
~169.5538  —169.4874  —169.4874  —169.4876 which the ungerade and gerade combinations are again de-
40 —7.7508 —7.7548 —7.7458 —7.7458 generate. These levels are slightly split by the linear part of
—5.8583 —5.8416 —5.8416 —5.8416 the electric field of the nuclei. The spin—orbit splitting cal-
am :g-jggg :g-ji‘z‘é :2'32‘2‘2 :g'ji‘z‘é culated with the Dirac—Fock method is 10.94 hartree. It is
' ' ' ’ reproduced by scaled ZORA within 0.15 hartree.
—2.3304 —2.3298 —2.3298 —2.3298 It is remarkable that the absence of splitting between the
—2.3134 —3.3128 —2.3128 —2.3128 gerade and ungerade orbitals persists up to the subvalence
49 :3:5222 :géggg :;:gggg :;:;Sgg shell. Only in the valence shell is a significant interaction
—2.2427 —2.2454 —2.2454 —2.9454 induced splitting observed.
Table V gives the equilibrium distances for the HI, AgH,
S0 —09749  —09751 09751 —09751  AyH TIH, and Bi, molecules at the nonrelativistic, scalar
50* -0.8421 -0.8421 -0.8421 -0.8421 :
50 04678 _0.4645 0.4645 0.4645 ZORA, and two-component ZORA levels of calculation.
57y, —0.4589 —0.4558 —0.4558 —0.4558 Looking at the corresponding one-center and full Coulomb
573 —0.4307 —-0.4326 —0.4326 —0.4326 results we can conclude that the one-center approximation
57l —0.3700 —0.3719 —0.3719 —0.3719 has an effect of 0.02—0.03 A on equilibrium bond lengths of
573 —0.3477 —0.3501 —0.3501 —0.3501 compounds containing a sixth row eleméAuH and TIH).

This error is of the same magnitude as the error which is
usually regarded as allowable in bond length calculations.
For Bi, the effect is as large as 0.11 A for scalar ZORA and
0.10 A for spin—orbit ZORA. Even for the fifth row element
B. Molecular calculations Ag, the effect is 0.01 A. The effect of spin—orbit coupling is

In calculations on the,Imolecule we investigated the ©ONly noticeable on the TIH and Bmolecules. For TIH we
effects of the different types of internal Coulomb matrix op- ave a spin—orbit contraction of 0.03 A for scaled ZORA.
tions. Table 11l shows the orbital energies of selected orbitals ~ FOr these molecules we have also computed the har-
for Dirac—Fock and scaled ZORA basis set calculations. Théhonic frequencies, Table VI. The spin—orbit effect is pro-
scaled ZORA results are produced using the full, one-centeflounced for Bj, where we have a decrease of 13 ¢rFor
and atomic-start-up density Coulomb options. We see that!H an increase of 51 crt is found. The other molecules do
the effects of the use of the different Coulomb options ard'0t show a significant change. The use of the one-center
only visible in the core region. However, even there the dif-2PProximation for the TIH and Bimolecules introduces, ex-
ferences between the scaled ZORA results are very small arggPt for the scalar ZORA TIH result, an error ranging from
the orbital energies are equally close to the Dirac—Fock oned>% to 300/?- .

We note that the,l molecule is a simple nonpolar ex- ~ Comparing the most accurate ZORA calculatigtvso-
ample. It might be expected that the cheapest option, theomponent scaled ZORA with the full Coulomb optiawith
atomic start-up option, does not perform very well in ionic Pirac—Fock values and experiment, we see that the error
molecules since it uses a Coulomb potential, in the ZORAMade by scaled ZORA compared to experiment is compa-

corrections, based on the superposition of the densities of tH&Ple to the error made by Dirac—Fock. This holds for both
neutral atoms. the equilibrium bond lengths and the harmonic frequencies.

The orbital energies of the, Imolecule produced by
I_3|rac—_Fock and one-center scaled ZORA calculation arg/ cONCLUSION
listed in Table IV. Except for the deepest core levels the
agreement between Dirac—Fock and scaled ZORA is very The two-component ZORA method has been imple-
good. The deviation of the scaled ZORA results from themented in theGAMESS-UK package. In atomic calculations
Dirac—Fock numbers is of the same order of magnitude awe showed that the error of ZORA orbital energies obtained
calculated in our numerical xenon calculations. This suggesti® a basis set calculation, compared to numerical calcula-
that the one-center approximation as well as the incompletdions, is of the same order of magnitude as the basis set
ness of the internal basis have not resulted in a loss in accefrors in the corresponding Dirac—Fock calculation. More-
racy. However, it must be noted that the error introduced byver, we demonstrated that the deviations of the scaled
the one-center approximation can be much larger for otheZ ORA results from the Dirac—Fock numbers is in every case
interatomic distances, Fig. 1. The equilibrium distaf83  much smaller than the size of the relativistic effect. The basis
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TABLE IV. Orbital energies for the,lmolecule at 5.0 bohr, obtained with the scaled ZORA method, with the
one-center Coulomb matrix option, and the Dirac—Fock method.

Dirac—Fock ZORA AE Dirac—Fock ZORA AE
1o —1225.9171 —1224.3786 —1.5385 —1225.9171 —1224.3786 —1.5385 I*
20 —193.0169 —192.8346 —0.1823 —193.0169 —192.8346 —-0.1823 &*

—180.4957 —180.2989 —0.1968 —180.4957 —180.2989 —0.1968
2m —169.5547 —169.4884 —0.0662 —169.5547 —169.4884 —0.0662 27
—169.5538 —169.4874 —0.0665 —169.5538 —169.4874 —0.0665

30 —40.5096 —40.4772 —0.0325 —40.5096 —40.4772 -0.0325 I~
—35.3098 —35.2597 —0.0502 —35.3098 —35.2597 —0.0502

3T —33.1988 —33.1951 —0.0036 —33.1988 —33.1951 —0.0036 37*
—33.1946 —33.1906 —0.0040 —33.1946 —33.1906 —0.0040
—24.1560 —24.1520 —0.0040 —24.1560 —24.1520 —0.0040
—24.1505 —24.1465 —0.0041 —24.1505 —24.1465 —0.0041

36 —23.7216 —23.7221 0.0005 —23.7216 —23.7221 0.0005 3*
—23.7193 —23.7198 0.0004 —23.7193 —23.7198 0.0004
—23.7146 —23.7150 0.0003 —23.7146 —23.7150 0.0003

4o —7.7508 —7.7458 —0.0050 —7.7507 —7.7458 —0.0050 4&*
—5.8583 —5.8416 —0.0167 —5.8582 —5.8415 —0.0167

A —5.4490 —5.4541 0.0052 —5.4488 —5.4539 0.0051 4*
—5.4384 —5.4428 0.0044 —5.4383 —5.4428 0.0044
—2.3304 —2.3298 —0.0006 —2.3303 —2.3296 —0.0006
—2.3134 —2.3128 —0.0007 —2.3134 —2.3126  —0.0007

46 —2.2655 —2.2686 0.0031 —2.2652 —2.2684 0.0031 #&*
—2.2566 —2.2595 0.0029 —2.2564 —2.2593 0.0029
—2.2427 —2.2454 0.0027 —2.2426 —2.2454 0.0027

50 —0.9749 —0.9751 0.0002 —0.8421 —-0.8421 -0.0001 *

50 —0.4678 —0.4645 —0.0033

S5y —0.4589 —0.4558 —0.0031 —0.3700 —0.3719 0.0019 5773,

53, —0.4307 —0.4326 0.0019 —0.3477 —0.3501 0.0024 5%,

set error of the employed sets is also much smaller. This In calculations of the equilibrium geometries and har-
brings the calculation on molecules of chemical significancenonic frequencies of the molecules HI, AgH, TIH, AuH and
within reach. Bi,, it transpires that the spin—orbit effect on the bond

For the b, molecule it was shown that already a pure |engths is only noticeable in the TIH and JBinolecules.
atomic ZORA correction is significantly accurate.

0.02 —— T T

0.01 [ a

0.00 |
o : ]
e r ]
El -0.01 .
= r total energy FIG. 1. Error made by the one-center Coulomb option
5 -0.02 [ ° sum of orbital energies 1 with respect to the full Coulomb option Wlth the scaled
2 i ZORA method for thed molecule. The vertical dashed
w 003 L b line indicates the geometry used in Tables Il and IV.

equilibrium geometry
-0.04 | 3
-0.05 : N L U S R [ ]

3.0 3.5 4.0 4.5 5.0
Interatomic Distance (Angstrom)
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TABLE V. Equilibrium distancegA) from nonrelativistic, scalatsr), and For ionization potentials the method gives acceptable results

two-componenttc) scaled ZORA(using the one-center and full Coulomb except for the deepest levels. e g treahd xp shells of

option) calculations. Comparison with experiment and Dirac—Fock values. o A . .
radon. The suitability of ZORA for other properties requires

AgH HI AuH TIH B, further investigation.
Non-Rel. 1.74 161 178 193 261
sr ZORA One center 1.68 1.60 1.65 1.93 2.64 ACKNOWLEDGMENTS
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